Cloaking by a thin plate in water waves

Sophie THERY - University of Augsburg

WAVES July 4th 2024

Joint work with Malte Peter (University of Augsburg), Luke Bennetts (University of Adelaide) and Sébastien Guenneau (Imperial College London)

Cloaking principle :

Create a invisibility cloak to conseal an object

source : Wikipedia, Metamaterial cloaking

space $E_1(X_1, X_2)$

Invariant form for a change of coordinate

Example with conductivity equation

space *e*, (x_1, x_2)

Cloaking in water waves by a thin plate

Difference with electromagnetism:

- Coupling of two different physical domains
- Water wave and elastic plate equations are not shape invariant.

Two differents goal:

- \bullet "Protected" area \rightarrow change of coordinate in the plate
- "Invisibility" cloak \rightarrow other methods

Cloaking in water waves

Related works

• Shallow water by designed water depth *Porter and al 2004; Zareei and Alam 2015*

Cloaking in water waves

Related works

- Shallow water by designed water depth *Porter and al 2004; Zareei and Alam 2015*
- On the "invisibility cloak" :

Iida and al. 2023; Farhat and al 2020; Newman 2014 Numerical optimization to minimize the scattering of an object

 \Rightarrow No guarantee the object will be "protected"

 \Rightarrow We want explicit material property

Cloaking in thin plate

Related works

- Change of coordinate in a isotropic plate *Zareei and Alam 2017,Colquitt 2014*
	- ▶ Kirchhoff-Love plate equation is not shape invariant
	- \triangleright We have to add an external force (prestress) to have a perfect cloaking

Cloaking in thin plate

Related works

- Change of coordinate in a isotropic plate *Zareei and Alam 2017,Colquitt 2014*
	- \triangleright Kirchhoff-Love plate equation is not shape invariant
	- \triangleright We have to add an external force (prestress) to have a perfect cloaking

Our approach

- Take a general anisotropic plate equation
- Apply to the coupled "water-wave-plate" model

[Introduction](#page-1-0)

- [Cloaking principle and existing work](#page-1-0)
- [Existing work and our approach](#page-4-0)

[Cloaking in the plate](#page-8-0)

- [Change of coordinates in an anisotropic plate](#page-9-0)
- [How to choose the plate parameters and transformation](#page-17-0)

[Cloaking of water waves by thin plate](#page-21-0)

- [Change of coordinate in water domain](#page-21-0)
- [Cloaking water wave by thin plate](#page-26-0)

General equation for thin isotropic plate :

$$
D\Delta^2 w + \rho_0 d\partial_t^2 w = \rho g \qquad \qquad \text{in } \mathbf{P} \subset \mathbb{R}^2
$$

+ boundary conditions on ∂**P**

with *w* the vertical displacement

General equation for thin anisotropic plate :

$$
(D_{ijkl}w_{,kl})_{,ij} + \rho_0 d\partial_t^2 w = pg \qquad \text{in } \mathbf{P} \subset \mathbb{R}^2
$$

+ boundary conditions \qquad \text{on } \partial \mathbf{P}

with *w* vertical plate displacement, and $i, j, k, l \in \{1, 2\}$.

General equation for thin anisotropic plate :

$$
(D_{ijkl}w_{,kl})_{,ij} + \rho_0 d\partial_t^2 w = pg \qquad \text{in } \mathbf{P} \subset \mathbb{R}^2
$$

+ boundary conditions \qquad \text{on } \partial \mathbf{P}

with *w* vertical plate displacement, and $i, j, k, l \in \{1, 2\}$. Variational formulation from Lagrangian :

$$
\delta L_p(w)(\widetilde{w}) = -\int_{\mathbf{P}} \widetilde{w}_{,ij} D_{ijkl} w_{,kl} + \int_{\mathbf{P}} \rho_0 d\partial_t w \partial_t \widetilde{w} - \int_{\mathbf{P}} \rho g \widetilde{w}
$$

General equation for thin anisotropic plate :

$$
(D_{ijkl}w_{,kl})_{,ij} + \rho_0 d\partial_t^2 w = pg \qquad \text{in } \mathbf{P} \subset \mathbb{R}^2
$$

+ boundary conditions \qquad \text{on } \partial \mathbf{P}

with *w* vertical plate displacement, and $i, j, k, l \in \{1, 2\}$. Variational formulation from Lagrangian :

$$
\delta L_p(w)(\widetilde{w}) = -\int_{\mathbf{P}} \widetilde{w}_{,ij} D_{ijkl} w_{,kl} + \int_{\mathbf{P}} \rho_0 d\partial_t w \partial_t \widetilde{w} - \int_{\mathbf{P}} \rho g \widetilde{w}
$$

We suppose symetries $D_{iikl} = D_{iikl} = D_{iilk}$.

$$
\widetilde{w}_{,ij}D_{ijkl}w_{,kl} = \left(\begin{matrix} \widetilde{w}_{,11} \\ \widetilde{w}_{,22} \\ \sqrt{2}\widetilde{w}_{,12} \end{matrix}\right)^T \left(\begin{matrix} D_{1111} & D_{1122} & \sqrt{2}D_{1112} \\ D_{1122} & D_{2222} & \sqrt{2}D_{2221} \\ \sqrt{2}D_{1112} & \sqrt{2}D_{2221} & 2D_{1212} \end{matrix}\right) \left(\begin{matrix} w_{,11} \\ w_{,22} \\ \sqrt{2}w_{,12} \end{matrix}\right)
$$

Matrix represenation

• Isotropic plate

$$
\mathbf{D}^{iso} = \begin{pmatrix} D & \nu D & 0 \\ \nu D & D & 0 \\ 0 & 0 & (1-\nu)D \end{pmatrix}
$$

with $D=\frac{Eh^3}{12(1)}$ $\frac{2\pi}{12(1-\nu)}$, *E* the Young's modulus and ν the Poisson ratio.

General anisotropic plate : 6 degree of freedom

$$
\mathbf{D} = \begin{pmatrix} D_{1111} & D_{1122} & D_{1112} \\ D_{1122} & D_{2222} & D_{2221} \\ D_{1112} & D_{2221} & D_{1212} \end{pmatrix}
$$

イロト イ団 トイミト イミトー ミ

Change of coordinates in an anisotropic plate For a change of coordinates $(X_1, X_2) = F(X_1, X_2)$:

$$
\int_{e} \widetilde{w}_{,ij} D_{ijkl} w_{,kl} dv = \int_{E} \widetilde{W}_{,IJ} D_{IJKL} W_{,KL} + \widetilde{W}_{,IJ} b_{IJK} W_{,K} + \widetilde{W}_{,I} b_{IJK} W_{,K} + \delta W_{,I} c_{IK} W_{,K} dV
$$

Change of coordinates in an anisotropic plate

For a change of coordinates $(X_1, X_2) = F(x_1, x_2)$:

 $\left(D_{\textit{IJKL}} \textit{W}_{\textit{,KL}}\right)_{\textit{,IJ}}$ − *N*_{IJ} W_i, I_j + *S*_IW_i_I + ρ_0 *h* $\partial_t^2 \textit{w} = \rho g$ anisotropic plate prestress force

With *NIJ* , *S^I* depending on *bIJK* , *c^I* .

Change of coordinates in an anisotropic plate

For a change of coordinates $(X_1, X_2) = F(x_1, x_2)$:

 $\left(D_{\textit{IJKL}} \textit{W}_{\textit{,KL}}\right)_{\textit{,IJ}}$ − *N*_{IJ} W_i, I_j + *S*_IW_i_I + ρ_0 *h* $\partial_t^2 \textit{w} = \rho g$ anisotropic plate prestress force

With *NIJ* , *S^I* depending on *bIJK* , *c^I* .

Issues

- **.** Ignoring prestress force provide an inefficient cloaking.
- Prestress force is null for linear transformation *Pomot and al. 2019*

⇒ **How to choose** *Dijkl* **and** *F* **to get an efficient cloaking**

Work on linear forms

$$
\begin{array}{l} \text{Define } B_{\digamma}: \mathbb{R}^6 \rightarrow \mathbb{R}^9 \\ B_{\digamma}((D_{ijkl})_{i,j,k,l \in \{1,2\}}) = (b_{lJK},c_{IJ})_{l,J,K \in \{1,2\}}. \end{array}
$$

Work on linear forms

Define
$$
B_F : \mathbb{R}^6 \to \mathbb{R}^9
$$

\n $B_F((D_{ijkl})_{i,j,k,l \in \{1,2\}}) = (b_{IJK}, c_{IJ})_{I,J,K \in \{1,2\}}.$

 $B_{\digamma}(\mathbb{R}^6)=\{0\}$ for linear transformation or s.t $\mathit{F}_{21}=\mathit{F}_{12}=0$

Work on linear forms

Define
$$
B_F : \mathbb{R}^6 \to \mathbb{R}^9
$$

\n $B_F((D_{ijkl})_{i,j,k,l \in \{1,2\}}) = (b_{lJK}, c_{lJ})_{l,J,K \in \{1,2\}}$
\n• $B_F(\mathbb{R}^6) = \{0\}$ for linear transformation or s.t $F_{21} = F_{12} = 0$
\n• $\ker(B_F) \neq 0$:
\nin e $c(x_1, x_2) \begin{pmatrix} \Gamma_1^2 & \Gamma_1 \Gamma_2 & \Gamma_1 \Gamma_3 \\ \Gamma_1 \Gamma_2 & \Gamma_2^2 & \Gamma_2 \Gamma_3 \\ \Gamma_1 \Gamma_3 & \Gamma_2 \Gamma_3 & \Gamma_3^2 \end{pmatrix} \quad \forall c \in \mathbb{C}^2(\mathbf{P})$
\n \Rightarrow

in E
$$
\begin{pmatrix} G_1^2 & G_1 G_2 & G_1 G_3 \ G_2 G_2 & G_1^2 & G_2 G_3 \ G_1 G_3 & G_2 G_3 & G_3^2 \end{pmatrix}
$$
 + NO prestress force

with Γ*ⁱ* , *Gⁱ* depending on Hessian of *F*.

How to choose plate parameters

For general non linear transformations

- Isotropic plate is transformed to anisotropopic plate + prestress force
- **E** Equation is shape invariant for specific familly of anisotropic plate

Issues:

- Difficulty in predicting wave behaviour in a completely anisotropic material
- Choose a good couple tranformation-plate parameters

[Introduction](#page-1-0)

- [Cloaking principle and existing work](#page-1-0)
- [Existing work and our approach](#page-4-0)

[Cloaking in the plate](#page-8-0)

- [Change of coordinates in an anisotropic plate](#page-9-0)
- [How to choose the plate parameters and transformation](#page-17-0)

[Cloaking of water waves by thin plate](#page-21-0)

- [Change of coordinate in water domain](#page-21-0)
- [Cloaking water wave by thin plate](#page-26-0)

Change of coordinate in water

Equation in the water domain

$$
\nabla^2 \Phi = 0 \qquad \mathbb{R}^2 \times]-h,0[
$$

$$
\partial_z \Phi = 0 \qquad z = -h
$$

$$
\partial_z \Phi = \partial_t \eta \qquad z = 0
$$

$$
\partial_t \Phi + g \eta = p/\rho_w \qquad z = 0
$$

with Φ potential and η water elevation.

Change of coordinate in water Equation in the water domain

 $\nabla^2 \Phi = 0$ $\mathbb{R}^2 \times] - h, 0[$ $\partial_z \Phi = 0$ $z = -h$ $\partial_z \Phi = \partial_t \eta$ $z = 0$ $\partial_t \Phi + g\eta = p/\rho_w$ $z = 0$

with Φ potential and η water elevation.

For an horizontal change of variable in the water domain

$$
\nabla_{X,Y} \left(\frac{\mathbf{J} \mathbf{J}^T}{|\mathbf{J}|} \nabla_{X,Y} \Phi \right) + \partial_Z^2 \Phi = 0 \qquad \mathbb{R}^2 \times |\mathbf{d}, 0|
$$

$$
\partial_Z \Phi = 0 \qquad \qquad z = \mathbf{d}
$$

$$
\partial_Z \Phi = \partial_t \eta \qquad \qquad z = 0
$$

$$
\partial_t \Phi + g \eta = P/\rho_W \qquad z = 0
$$

Change of coordinate in water

Equation in the water domain

$$
\nabla_{x,y} \left(h \nabla_{x,y} \Phi \right) = -\partial_t \eta \quad \text{in } \mathbb{R}^2 \n\partial_t \Phi + g \eta = p/\rho_w \quad \text{in } \mathbb{R}^2
$$

For an horizontal change of variable in the water domain

$$
\nabla_{X,Y} (H \nabla_{X,Y} \Phi) = -\partial_t \eta \quad \text{in } \mathbb{R}^2
$$

$$
\partial_t \Phi + g \eta = P/\rho_w \quad \text{in } \mathbb{R}^2
$$

- \Rightarrow Consider shallow water regime
- \Rightarrow To be shape invarient, water thinkness have to be anisotropic
- \Rightarrow Plate immersion is anisotropic

Variational formulation for system plate+water In shallow water regime, :

$$
S_{p+w}(\phi,\eta)(\psi,\xi) = \int_{t_0}^{t_1} \int_{\Omega} -\rho_{w}\psi \partial_t \eta + \rho_{w} \nabla \psi h \nabla \Phi + \rho_{w} \partial_t \Phi \xi + \rho_{w} g \eta \xi
$$

$$
+ \xi_{,ij} D_{ijkl} \eta_{,kl} - \rho_0 d \partial_t \xi \partial_t \eta \quad dx_1 dx_2
$$

with *h* water thinkness thinkness.

After horizontal change of coordinate:

$$
S_{p+w}(\phi,\eta)(\psi,\xi) = \int_{t_0}^{t_1} \int_{\widetilde{\Omega}} -\widetilde{\rho_w}\psi \partial_t \eta + \widetilde{\rho_w}\nabla\psi H \nabla_h \Phi + \widetilde{\rho_w}\partial_t \Phi \xi + \widetilde{\rho_w} g \eta \xi
$$

+ $\xi_{,ij} D_{IJKL} \eta_{,kl} - \widetilde{\rho_0} \rho \partial_t \xi \partial_t \eta \, dX_1 dX_2$

- Anisotropic stiffness matrix
- Anisotropic plate immersion

イロン イ押ン イヨン イヨン 一重

An analytical time-harmonic solution

Using a particular couple plate parameters/tranformation :

in e
\n
$$
c(x_1, x_2) \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \forall c \in \mathbf{C}^2(\mathbf{P})
$$
\n⇒
\n
$$
F : r \rightarrow c_1 r + \frac{c_2}{r} \quad \forall c_i \in \mathbb{R}
$$
\n
$$
F = \sqrt{x_1^2 + x_2^2}
$$
\n
$$
r = \sqrt{x_1^2 + x_2^2}
$$

- Plate with hole or object in initial space
- Analytical solution using eigen matching method \bullet

Conclusion

Cloaking with a floating plate brings **several difficulties**:

- Coupling of physical domain: plate/water wave interaction \Rightarrow non "invisibility"
- Resulting plate is anisotropic on the stiffness and the thickness

Conclusion

Cloaking with a floating plate brings **several difficulties**:

- Coupling of physical domain: plate/water wave interaction \Rightarrow non "invisibility"
- **•** Resulting plate is anisotropic on the stiffness and the thickness

Solution: Proposed tools help to find a familly of anisotropic plate with "good" property to create a protected area

Conclusion

Cloaking with a floating plate brings **several difficulties**:

- Coupling of physical domain: plate/water wave interaction \Rightarrow non "invisibility"
- **•** Resulting plate is anisotropic on the stiffness and the thickness

Solution: Proposed tools help to find a familly of anisotropic plate with "good" property to create a protected area

Next step

- Homogenisation technique to create such a plate
- What's happening inside the "hole" or on the object

From electromagnetism

First reference work

- Theoretical : method using a change of coordinate, *Pendry and al. 2006*; *Leonhardt 2006*
- Experimental : using metamaterial *Schrig and al. 2006* \Rightarrow Homogeneisation

Cloaking principle applied to many other waves since