

High-resolution mass spectrometry-based untargeted approach: A cutting-edge analytical technique for the detection and identification of organophosphorus synthesis sources

Carla Orlandi, Grégoire Delaporte, Emmanuel Joubert, Christine Albaret, Anne Bossée, Laurent Debrauwer, Emilien Jamin

▶ To cite this version:

Carla Orlandi, Grégoire Delaporte, Emmanuel Joubert, Christine Albaret, Anne Bossée, et al.. Highresolution mass spectrometry-based untargeted approach : A cutting-edge analytical technique for the detection and identification of organophosphorus synthesis sources. ACS Fall 2024, Aug 2024, Denver (Colorado, USA), United States. hal-04769375

HAL Id: hal-04769375 https://hal.science/hal-04769375v1

Submitted on 6 Nov 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ACS FALL 2024 AUGUST 18 – 22 | DENVER, CO |

High-resolution mass spectrometry-based untargeted approach

A cutting-edge analytical technique for the detection and identification of organophosphorus synthesis sources

Carla ORLANDI carla.orlandi@inrae.fr

Chem-ecting the dots: the world of chemical forensics, OPCW

2

Sourcing and impurity profile

> Metabolomics-based CAS discovery strategies

Setting up the Untargeted approach Our use-case: chlorpyrifos (various synthetic routes)

Synthesis	Precursor	Reactant
S1	4Ab	1Aa
S2	4Ab	1Ba
S3	4Ba	1Aa
S4	4Ba	1Ba
S5	4Ba	1Ca
S6	4Db	1Aa
S7	4Db	1Ba

Wide range of compounds and possible impurities combinations

Setting up the Untargeted approach

Analytical LC-HRMS conditions

Setting up the Untargeted approach

> Chemometrics

Multivariate methods suitable to provide a more complete description of studied phenomena

- Major sources of variability \rightarrow PCA (unsupervised)
- Specific sources of variability \rightarrow PLS (supervised)

PCA: First overview of variability between samples and correlation between features

PLS-DA: Discrimination of various used synthetic sources Quality of the model assessed with Q²Y >0.4 and permutation test

Setting up the Untargeted approach

> Annotation Challenges

August 18-22 | DENVER, CO | Carla ORLANDI

HRMS: sensitive and selective detection of discriminating impurities

Features (PLS-DA; VIP>1) annotated using LC (RT), HRMS, MS/MS and IMS data to propose a putative

structure

[1] Confirmed Structure	[2] Probable Structure	[3] Tentative Candidate	[4] Unknown
5	72	36	9
ACS FALL 2024			

Sumner et al. Metabolomics (2007) 3, 211-221

p. 8

Schymanski et al. Environ Sci Technol. (2014)

5% accuracy acceptance

INRAe

CCS: close values between structure proposals

Support to annotation \rightarrow remove hypothesis, putative information of structure

ACS FALL 2024 August 18-22 | DENVER, CO | Carla ORLANDI

> Analysis of unknown samples

Methodology validation

Blind analysis of new unknown samples to classify their synthesis route according to their discriminating impurities with the constructed model

>

Methodology validation

Synthesis	Precursor	Reactant
S1	4Ab	1Aa
S2	4Ab	1Ba
S3	4Ba	1Aa
S4	4Ba	1Ba
S5	4Ba	1Ca
S6	4Db	1Aa
S7	4Db	1Ba

p. 11

Loadings

Scores (PLS-DA)

ACS FALL 2024 August 18-22 | DENVER, CO | Carla ORLANDI

Methodology validation

	ACP	RAW & PLS-DA & DB		
Unknown Samples	Triplicate	Precursor	Reactant	Synthesis
UNK01	•		1Ca	
UNK02	٠	4Ba 4Ba	1Ba	S4
UNK03	۷		1Ca	
UNK04	•	4Ab	1Aa	S1
UNK05	•	4Ab	1Aa	S1
UNK06	۲		1Ca ^{1Ca}	
UNK07	*	4Ba	1Ba	S4
UNK08	•	4Ab	1Aa	S1
UNK09	*	4Ba	1Ba	S4

Precursor	Reactant
4Ab	1Aa
4Ab	1Ba
4Ba	1Aa
4Ba	1Ba
4Ba	1Ca
4Db	1Aa
4Db	1Ba
	Precursor 4Ab 4Ab 4Ba 4Ba 4Ba 4Ba 4Db

p. 12

Targeted Approach		
Discrimin	Presence?	
Precursor 4Ab	<i>m/z</i> 299.9963 rt 18.5min	YES
	<i>m/z</i> 315.9736 rt 22.4min	YES
	<i>m/z</i> 321.9771 rt 17.6min	YES
	<i>m/z</i> 287.9421 rt 12.7min	YES
Precursor 4Ba	NO	
Precursor 4Db	<i>m/z</i> 554.7456 rt 27.5min	NO
	<i>m/z</i> 504.8106 rt 26.6min	NO
	<i>m/z</i> 532.8596 rt 26.2min	NO
	<i>m/z</i> 424.9442 rt 21.9min	NO

What about UNK01,03,06 « Precursor »?

reactif1 M300T1115

4Ab 4Ba reactif1 M316T1345_2

4Ab 4Ba 4Db

reactif1 M322T1087

4Ab 4Ba 4Db

Methodology validation

	ACP	Raw & DB	PLS-DA & DB	
Unknown Samples	Triplicate	Precursor	Reactant	Synthesis
UNK01	•	4Ab	1Ca	S8
UNK02	*	4Ba 4Ba	1Ba	S4
UNK03	•	4Ab	1Ca	S8
UNK04	•	4Аb 4Аb	1Aa	S1
UNK05	•	4Ab	1Aa	S1
UNK06	•	4Ab	1 Ca ^{1Ca}	S8
UNK07	٠	4Ba	1Ba	S4
UNK08	•	4Ab	1Aa	S1
UNK09	٠	4Ba	1Ba	S4

	Synthesis	Precursor	Reactant
	S1	4Ab	1Aa
	S2	4Ab	1Ba
	S3	4Ba	1Aa
	S4	4Ba	1Ba
	S5	4Ba	1Ca
	S6	4Db	1Aa
	S7	4Db	1Ba
Γ	S8	4Ab	1Ca

New combination of synthesis pathways discovered

ACS FALL 2024

>

August 18-22 | DENVER, CO | Carla ORLANDI

- Conclusions Methodology to support attribution of the origin of a toxic threat agent according to the chemical signature of substances resulting from its production pathway
 Chemical footprints were linked to a manufacturing process from synthetic raw
 - materials
- Methodology validated under blinded conditions with unknown new samples

Applicable to others scientific fields: biomarkers of chemical exposure on health and sourcing of toxic treat agents

« Better understand how it is produced, better understand how it works! »

> Perspectives

Ruggedness: Apply the methodology to complex samples

Acknowledgements

Supervisors

Emilien **JAMIN** Laurent **DEBRAUWER**

Collaborators and funders

DGA NRBC

Grégoire **DELAPORTE** Anne **BOSSEE** Emmanuel **JOUBERT** Christine **ALBARET**

Grant DGA N° 22470120

Grant AID N° 2022 65 0036

Thank you for your attention

