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Overlooked effects of wavefront reception with or without speed limit,

from aberration to time measurement

Denis Michel

Université de Rennes, Irset, Rennes, France. E-mail: denis.michel@live.fr

A general approach to wavefront reception appli-
cable to any type of wave allows to point out some
overlooked aspects and ignored consequences of
established theories. The Doppler and aberration
effects of electromagnetic waves, the cosmological
redshift and the measurement of durations are all
perceptual phenomena, and as such require the use
of reception rather than Lorentz-transformed co-
ordinates, since perceived durations relate proper
to proper durations whereas the famous time di-
lation of special relativity relates proper to im-
proper durations. Taking this subtlety into ac-
count rehabilitates the controversial Poincaré el-
lipsoid whose polar equation is just the relativistic
Doppler effect. The application of this approach to
the Galilean case whose transformed and received
wavefronts are homothetic, reveals new aberra-
tion relations and the existence of a transverse
Doppler effect very similar, in proportion to the
respective wave velocities, to the relativistic one,
thus forbidding in practice the test of his theory
proposed by Einstein. The reasons for the long
persistence of a classical angular Doppler formula
divorced from wavefront reception are discussed,
one of them ironically being the theory of special
relativity.

Keywords:
Wavefront reception, transverse Doppler effect, aberra-
tion, relativity, time measurement.

1 Introduction

The viewing of a distant scene transmitted by light at the
frequency of one frame per wave crest, would appear ac-
celerated if the periods were shortened and slowed if the
periods were lengthened. The time marked by a clock
viewed on this movie would appear modified in the same
way compared to our local clock. On the other hand,
special relativity says that a clock in uniform motion is
slowed down by a Lorentz factor () with respect to ours.
In fact these two phenomena are not equivalent because
the measured time distortions do not correspond to the
orientation-independent time dilation of special relativ-

ity, which is not directly perceived but calculated for dis-
tant objects. Clarification of this point removes misun-
derstandings, resolves long-standing debates and rehabili-
tates Poincaré’s ellipsoidal wavefront theory. The applica-
tion of the same wavefront approach to the Galilean case
is even more instructive and allows the improvement of
the the current aberration and Doppler rules. This study,
which is perfectly in line with the existing theories, aims at
correcting erroneous interpretations. The most profound
clarification concerns the classical aberration and Doppler
effects, but even here the proposed correction does not re-
ally challenge a theory, since the classical Doppler effect,
widely used in textbooks, has curiously never been rigor-
ously demonstrated and is rather the result of erroneous
postulates, such as the supposed absence of a transverse
effect, as opposed to the relativistic Doppler effect.

2 The slowing of perceived time by
stretching waves

2.1 Lessons from cosmological redshift

A proof of the direct relationship between the expansion of
the electromagnetic wave and the duration comes from an
astronomical observation, not originally intended for this
purpose, made in the context of the expansion of the uni-
verse thanks to the type Ia supernovae (SNIa). SNIa are
stellar explosions that are extremely luminous for a cer-
tain stereotypical duration, and which can be seen from
very far away. The light from some very distant and there-
fore very old SNIa took a long time to reach us, and as
space expanded during the light’s journey, it stretched its
wavelengths. In this context, a striking phenomenon was
noticed: The duration of the brightness of SNIa depends
on their distance, in exact proportion to their redshift, i.e.
to the lengthening of the period.

app a
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For example, a distant SNIa with a redshift of
T2PP /T = 1.5, has a brightness duration that is exactly
1.5 times longer [I]. This observation shows that the sim-
ple fact of decreasing the frequency of the waves, increases
the apparent durations. If we consider the question care-
fully, there is no magic here: the same scene viewed at 30
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frames per second when the wavelengths are not stretched
(T?PP /Ty = 1) is viewed at 20 frames per second when the
wavelengths are stretched by T?PP /T, = 1.5, and therefore
the viewing time will necessarily be longer to receive all
the frames of the scene.

This cosmic time dilation has little to do with the
famous time dilation of special relativity and the ~ fac-
tor of the Lorentz transformations; nor with the Doppler
effect related to the speed of the source, which will be
addressed later. In fact, before the famous Hubble pub-
lication, Lemaitre had shown that periods should follow
expansion [2]. For an interval of universe

ds* = dt* — a(t)*do? (2)

where do Is the element length of a space of radius equal
to 1, the equation of a light beam is

b2 qt
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where o7 and o9 are the coordinates of a source and an
observer. A beam emitted later at ¢; + §¢; and arriving at
to + dto undergoes a shift such that
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where 6t; and dt; can be considered as the periods at
emission and reception respectively [2]. Obviously, if a
procession of regularly spaced walkers crosses a stretching
rubber band, their spacing on arrival will be stretched in
the same ratio as the rubber band. The same reasoning
applies to a series of wave crests. The ratio of the received
wavelength to the emitted wavelength simply follows the
increase in the distance D between the source and the
receiver that occurred during the light’s journey:

Tapp . Dreception (6)
T D emission
This generalized increase in wavelength, known as cos-

mological redshift, holds even when the sources and re-
ceivers are in the same inertial frame, showing that any

distortion of electromagnetic waves leads to an altered per-
ception of time. Time distortion phenomena are not exclu-
sively associated with relativity (Lorentz transformations
in SRT or gravity in GRT) or with the relativistic Doppler
effect, but are a matter of electromagnetic frequency mod-
ification, whatever the underlying mechanism.

2.2 Wave reception is a physical process

The perception of compressed or expanded waves is not a
simple optical illusion because the physical effects are real.
A clear example is provided by the technique of atomic
cooling. An atom can be immobilized by illuminating it
from all sides with streams of light. As the atom moves in
a given direction, the Doppler effect causes the light fre-
quency, and therefore the light energy, to increase in front
of it and decrease behind it, bringing the atom back to its
original position [3].

3 Limit speed and causality

3.1 The limit speed of light

Physical laws are such that apparent inconsistencies are
eliminated. A typical example is the speed limit of light,
which prevents us from witnessing incongruous scenes and
having to reconstruct them later. We have never seen a
soap bubble emerge spontaneously from a cloud of droplets
and then disappear into the tube of an experimenter who
sucks it in. However, this is the vision we might have in
the absence of limit velocity as shown in Fig.1. As shown
by the arrows at the top of the diagram, as the car moves
forward, the images of the bubble arrive at a greater dis-
tance from the observer Op at the back of the car, and
at a smaller distance from the observer Op at the front of
the car. Hypothetically, if the speed of the car exceeded
the speed of light (v > ¢), Op could witness a reverse
scene, the bursting of the bubble before its birth. Such
a perception, which violates the principle of causality, is
prevented by the unsurpassable speed of light. At worst,
in the asymptotic case of a car traveling at nearly ¢, the
birth and bursting of the bubble would appear to be si-
multaneous, and its lifetime would tend toward zero, but
would never be negative. By comparison, if there were
no speed limit, we could see the consequences before the
causes.
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Figure 1. Events of birth (E1) and disappearance (E2) of a soap bubble in a vehicle moving at constant speed v with respect
to observers, one located at the back (Op) and the other at the front (Or) of the vehicle. The images of the formation and the

bursting of the bubble reach the observers at the speed of light c.



3.2 Causality break in the absence of
speed limit

In the soap bubble experiment of Fig.1, the vehicle can
never reach the speed limit ¢ of the wave carrying its im-
age. As a consequence, the causal order of events is nec-
essarily respected visually. We will always see the bubbles
burst after they form, regardless of their relative speed
with respect to any observer. This sequence of events re-
spects causality and is consistent with the statistical ar-
row of time. But what would have happened if there were
no speed limit? Let us imagine that the duration of the
bubble is no longer measured visually but acoustically, as-
suming that tic and tac sounds are emitted at the birth
and bursting of the bubble, and that the vehicle is a fast
airplane that exceeds the speed of sound. If it were tech-
nically possible to listen to the sounds produced in the
cockpit of the plane that broke the sound barrier, and
assuming the existence of sound intensity corrections, we
would hear the bubble burst before it appeared, as if on
a soundtrack played backwards. We would also hear the
pilot (un)swallow his coffee before it was (un)poured into
his cup. In the absence of a speed limit, the wavefronts
can arrive at the receptor as separate bubbles that are re-
versed in time, as shown by Christian Doppler in 1847 in
his diagram of the cone of successive wavefronts emitted
by a supersonic source [4] (right panel in Fig.2 for g > 1).

Figure 2. Time reversal between sending and receiving for
B =1, the sound barrier for the sound wave. For g > 1, the
most recently emitted wavefronts are received first.

4 Orientation-dependent percep-
tion of durations

The association between the redshift and the duration
[1] illustrates the connection between perceived time and
period distortion. Applying this principle to the kinetic
Doppler effect, the occupants of a vehicle coming toward
us should move rapidly, and then suddenly slow down as it
moves away from us. As shown below, this is indeed what
the theory of special relativity predicts. To illustrate this,
let us calculate the apparent lifetime of the soap bubble
inside the moving vehicle of Fig.1.

4.1 Orientation-dependent relativistic

duration measurement

The basic tools of special relativity allow us to demon-
strate the nature of the perceived time. In the frame of
reference R of the eyes in Fig.1, let us consider the point
of view of Op who sees the car O’ moving away from
him. In the reference frame of the car R’, a soap bubble is
temporarily formed. The clocks of Op and O’ are synchro-
nized and coincide at ¢t = ¢’ when they cross each other.
Let us consider the spacetime coordinates of the events:
the formation of the bubble (E1) and the reception of this
image by Op (Eg). The image of the appearance of the
bubble is emitted by the car O’ at 5, and is received by
Op at a date which he notes tg at the location xg = 0.
The corresponding coordinates in R’ are given by Lorentz
transformations:

'p =7 (zr — Betr) = —yPctr (7a)

Bx
th =" <tR - 703 =7lr

The date t; of the appearance of the bubble in R’ can be
deduced from the distance traveled by the light ray in R’.
The speed of the light ray c is given by the ratio

(7b)

/ !
- — (=Bt
=5tk 0 (rfdln) (s0)
t, —t, Vi — 1
from which
1_
g = ytr(l— B) = try| 0 (8h)

1+ 5

This equation establishes the relation between the date
of emission by O’ of the image of the event E1, and the
date of reception tg of its image by Op. The same rea-
soning is valid for the events of birth and bursting of the
bubble, which gives a life interval of the bubble

4 Q

We simply rediscover the relativistic Doppler effect
here, because the events E1 and E2 could just as well
be the emissions of two successive wave crests. The recep-
tion events take place at the same location in the refer-
ence frame R, so the time interval between them Atpg is
a proper time for Opg. The emission events take place at
the same location in the reference frame R’, so the time
interval between them At/ is a proper duration for O’.
The proper lifetime of the bubble for O, appears to be
extended in the time of Op, in a ratio different from the ~
factor of the time dilation of special relativity. The latter
is not directly perceived but can be calculated mathemat-
ically as follows. Once the coordinates in R’ are obtained
(25, = 0 and thy; = vtr(1 — B)), we can determine them
in R by applying the Lorentz transformations in the other
direction

Atp = Aty



o1 = Wy + ety) =2ty 155 = 15 (100)
ten = (1o + 288 ) = Ptl1 - ) = 2 (10v)

By substituting in this last equation the value of tp as a
function of 5,

1+4
trr =tp1(1+B) =ty 5 (11a)
The relation between tgq to t%, is obtained
tl
£l (11b)

=

and as the next event of bursting of the bubble E2, follows
the same rule,

Atp = Aty v (11c)

The time dilation of special relativity is verified, but
Atg cannot be timed by Op because it is no longer a
proper duration, since E1 and E2 do not occur at the
same place in R. The time dilation of special relativity re-
lates a proper duration and an improper duration, which
cannot be measured directly.

Similar calculations can be made for the reception of
images by Op, still in R but at the front of the vehicle.
The suffix R now refers to the reception of images by O
while keeping the same orientation of the x axis, we have

2y =7 (xR + Bctr) = yBctr (12a)

Bx
tk:y(tRJFCR = tg (12b)
The light ray carrying to O the image of the appearance
of the bubble has speed

Ty — @ —yfBctr
= th _ t/El = t _ t/ (]‘33‘)
R Uml YR — Uy
from which
1+
tpr =7tr(1+5) =tr 13 g (13b)

Repeating the same process for the image of the bub-
ble bursting, the observer O measures a shorter life of
the bubble with his stopwatch.

1-5
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But again, this does not change the relativistic time dila-
tion, because for O,

Atr = Aty (14)

1+p ﬂCtR
zp1 =7 (¢ + Betp) = vBetr 1-5 1-8 (15a)
/
t
ten = (1o + 2288 ) =Pl ) = 2 (15v)
and thus always
tr 1 / 1- B !

The time dilation actually measured by each point of
a rest frame depends not only on the velocity modulus
v of the moving reference frame, but also on the veloc-
ity vector ¢. It will therefore be interesting to average
these measurements for all possible orientations (see sec-

tion .

4.2 Direct compensation for a round trip

The correction from perceived time to Lorentz-dilated
time described above, which takes into account the travel
time of light, is unnecessary for a round trip. Imagine a
sprinter running the 100 meters at a significant fraction
of the speed of light. Given the above calculations, this
sprinter who wants to improve his record will prefer to be
timed on sight (the old-fashioned way) by a judge at the
finish rather than at the start. Indeed, if each stride of
the sprinter has a proper duration of T, the judge at the
front, as Op on Fig.1, will see this duration reduced to
T % while the judge at the back, as Op on Fig.1, will
148
-8
100 meters at a constant speed in n strides, his measured
time will be At7FP = nT % and At3P =nT,/ % re-
spectively. The judges should correct their different mea-
surements using the calculations of Eq. and Eq.
because for the judge at the front, the path of the light
showing the position of the sprinter and the path of the
sprinter are oriented in the same direction, while for the
judge at the back, the path of the light showing the po-
sition of the sprinter and the path of the sprinter are ori-
ented in opposite directions. Interestingly, this correction
is not necessary when the 100-meter straight run is con-
verted into a round trip of two 50-meter. One of the judges
is then placed at the start/finish point and the other at
the turnaround point. In this case, the simple addition of
the times perceived by the two judges, who always remain
in the same inertial frame, gives the expected duration.

see this time increased to T’ So, if the sprinter runs

nT
V1-—p2
Of course, the sprinter will be disappointed to find that
the judges have extended his course time, which on his own

np LB np J1=F
2 V1—-p 27 \\1+p




stopwatch is only nT, but he will have two consolations:
(1) now both judges are measuring the same duration, and
(2) he will conclude that he has aged a little less during
the race, by a v factor, than the judges.

4.3 Orientation-dependent ” Galilean life-
time” measurement

Electromagnetic time results from the speed limit of light
combining time and space. But let us repeat the previ-
ous calculation of the lifetime of the soap bubble using
only a Galilean wave emitted by the soap bubble, keeping
the notation but replacing the Lorentz transformations by
Galilean transformations. The corresponding coordinates
in R’ are given by:

(17a)
(17b)

The date t/; of the appearance of the bubble in R’ can be
deduced from the distance traveled by the Galilean ray at
R’, whose speed c is given by

T’y =z — Pfetr = —Petr

tp =tr

/ /
— — (—PBct
C:fE/E SU/RZO ( 5?1%) (182)
th —th tr —ty
giving
ty=tr (1- ) (18D)

The ”Galilean lifetime” of the bubble is thus increased
At
1-5
and without redoing the whole calculation, we understand
that for the observer Op

AtRB = (19&)

At
1+8

As expected, we find the classical longitudinal Doppler
effect.

(19b)

5 Doppler effects calculated from
the perceived wavefront surfaces

According to the dictionary, time is perceived as the se-
quence of events. The density of the stream of received
images will, of course, affect the tempo. This density is
modified by the speed of the source relative to the re-
ceiver through the Doppler effect which was introduced in
an academic way above in the section 4] but this extensive
method was limited to the elementary collinear case. The
very general non-academic approach used below will give
the results in all directions at once, both for the Doppler
effect and for the aberration relations. Moreover, it al-
lows to revise the Galilean relations previously established.
Concerning the relativistic aspect, this approach restores
all its importance and validity to the Poincaré ellipsoid,
which remains the subject of persistent debate. To better
understand Poincaré’s argument, let us first establish its
basis.

5.1 The coordinates of the light front de-
scribe a sphere in all reference frames

Since light propagates at the same speed in all directions,
its wavefront is necessarily spherical. Moreover, since the
speed of light is the same in all reference frames, a sphere
of a light wave in one reference frame S’ must also be a
sphere in the reference frame S. This is indeed what the
Lorentz transformations ensure. The sphere

:L_IQ + y/2 4 2/2 —_ (Ct/)2 (203,)

transformed using

t+ 52
=y, 7 =zand t/ = ——

JI-B

Tz = x"’ﬁCt ’

e’

becomes
(x+Bet)® 5 5 (ct+fBx)?
=~ B 20b
5 +y +z 52 (20b)
which simplifies into
2?4+ y? + 22 = (ct)? (20c)

There is no discussion of this result, which highlights
the power of Lorentz transformations, and there is no
point in trying to oppose the sphere attributed to Einstein
and the ellipse attributed to Poincaré [5], since both au-
thors were aware that a Lorentz-transformed light sphere
is a light sphere received as an ellipsoid by an observer
in relative motion [6, [7]. It happens that Doppler, aber-
ration, and measured time are reception effects, and that
confusing the reception coordinates with those designed
to ensure Lorentz invariance would misleadingly suggest a
violation of the Lorentz invariant, as in [§].

5.2 Contraction of lengths and of length-
measuring instruments

The contraction of lengths in the direction of displace-
ment continues to intrigue the general public because it
has never been detected; but is it detectable in practice?
Measuring an object means using an instrument in the
reference frame of that object. So if the object moves
along z, the x dimension of the measuring instrument
will be shortened in the same ratio, making any detection
impossible. But as Poincaré pointed out, if one does not
use a material object as a measuring instrument, but an
electromagnetic wave path (which is not subject to length
shortening), then the wave path should appear stretched
by comparison along = and take the form of an ellipsoid
Bl [© 7, [8, [@, 0] with a transverse/longitudinal axis ratio

of /1 — (2.



5.3 Equations of the spheres of the mobile
frame

5.3.1 The material sphere
From the mobile coordinate system, the surface of a ma-
terial sphere of radius 1 has the equation

l'/2 4 y/2 4 Z/2 -1 (21)

But from the fixed coordinate system, the sphere seen
in its entirety would appear flattened in the x direction of
motion. According to the Lorentz transformation for the
x axis at t =0,

2
z 2, 2
— | +y¥+22=1 22
( — 52) Y (22)
as defined by Einstein in chapter 4 of [6]. It can be

converted in polar coordinates using z = psin# cosy,
y = psinfsinp and z = pcosf, for R =1,

_ 1-p
P= \/1 — B2 (1 —sin® @ cos? ) (23)

whose shape is represented in Fig.3A. It reduces in the
two spatial dimensions x = pcos# and y = psinf into the
ellipse flattened along the = direction:

_ 1-p
P= 1—2sin%0

5.3.2 The light wavefront

(24)

The speed of light is constant in all frames and always
gives 45° lines in all Minkowski diagrams regardless of the
chosen point of view at rest. The time set to zero above
is now set to one period conceived as the interval between
two successive images. Inserting the period given by the
fourth transformation into the first transformation (of z’)
gives

2 =21 - B2+ BT’

Using ¢ = 1 as Poincaré did, the surface of a single-period
wavefront is the ellipsoid of equation

(@VI=p 48 +y* + 2" =1

(25)

(26)

whose conversion in polar coordinates yields the remark-
ably elegant equation

VIF

=—— 27
14 Bsinfcosp (27)

p

plotted in Fig.3B. It reduces to an ellipse in 2D polar co-
ordinates. The radius p for the receiver is changed from
po = 1 in the same ratio as the apparent wavelength.

)\mov

o JI—F

po A - 1+ Bcosf

This polar equation gives the complete collection of fo-
cal rays from the source to the wavefront surface for one
period, so it is also the equation for the Doppler effect. Of
course, we recover the rays collinear with the path of the
source in front of and behind it, which were laboriously
determined in section 4} but also all the other rays.

p

(28)

5.3.3 The Galilean wavefront

Although the speed of sound has no common measure with
that of light, the same letters ¢ and [ are used in both cases
for ease of comparison. The Galilean transformations are
simple: #' =z +wvt, ¥y =y, 2/ = z and ¢ = t. Thus,
the surface of the Galilean wavefront emitted by a source
moving with velocity v in direction x is a sphere of the
Cartesian equation

(z+vt)? +y? + 22 = (ct)? (29a)

Keeping the notation 8 = v/c where ¢ is no longer a speed
limit, for a time corresponding to a single period unit,
(+8)?2+y*+22=1 (29b)

The wavelengths are directly obtained by converting
this Cartesian equation in polar equation.

p:\/leQ (17811129(3082(,0)7681119(}08@ (30)
shown in Fig.3C and which reduces in 2D in the Galilean
circle

:A =1/1—(2sin?6 — Bcosh
Po A

whose off-center aspect can also be understood as a change
of the wave vector for the receiver [11} [12]. This Doppler
effect expressed in frequencies is shown in Fig.4B. The no-
table points of these curves are listed in the tables 1 and
2 of appendix B. Note in these tables that for § = 7/2
(yellow lines in the tables), the results for the relativistic
and Galilean Doppler effects are identical. The Doppler
effects found in this way are functions of the angle 6 be-
tween the trajectory of the source and the source-receiver
line exactly when the Doppler effect is received. But be-
cause of the travel time of the wave, the source is no
longer in the position it was when it emitted both its im-
age and the wave crests involved in the measured Doppler
effect. The difference between this angle noted 6’ and 6
defines the phenomenon of aberration, long understood
by Bradley in astronomy. Although Bradley’s discovery
largely predates the theory of relativity, today the rela-
tivistic aberration rules established by Einstein are well
known, but strangely their Galilean counterparts are gen-
erally ignored, which may explain the problems existing
with the classical Doppler formula.

(31)



Figure 3. Perspective view of the shapes of (A) the material sphere drawn to Eq.7 (B) the received relativistic wavefront
surface drawn to Eq. and (C) the Galilean wavefront drawn to Eq., for = 0.9. In the wavefront panels B and C, the

source is located at the intersection of the axes.

5.3.4 Derivation of aberration and Doppler for-
mulas from wavefront surfaces

o Relativistic aberration

The relativistic ellipsoid is wider on the z axis by
1/4/1 — 32, which makes the geometric comparison with
the sphere difficult. To make their diameters coincide on x
while preserving the proportions of the ellipse, let us just
contract the radius orthogonal to the trajectory, from 1
to y/1 — B2. For a source moving from left to right, the
Cartesian equation of this simplified ellipse is

2
2 Y _

@+ﬁ)+1—ﬁ2_1 (32)

Its polar equation obtained using = pcosf and y =
psinf, is

1-p52
= — 33
P 1+ Bcosb (33)

It allows us to easily obtain the aberration relations be-
cause, since it is not directional, the relativistic dilation
transforms the ellipse in a homothetic way without chang-
ing its characteristics and angles. Since the intersection
of the focal radius p and the perimeter of the ellipse does
not correspond to a point tangential to the radius ema-
nating from the center of the ellipse, let us consider the
fixed frame of reference of this center from which the wave
front propagated with spherical symmetry. We have

B+ pcosb
R

where R is the large radius without flattening fixed at 1.
Using the value of p given in Eq., this equation be-
comes

cosf' = (34a)

cosf + f3

0 =—" 34b
o8 1+ Bcosb (34)
whose reciprocal form is as elegant.
cosf — 3
0= ——— 34
o8 1— Bcosb’ (34c)

These aberration relations can then be expressed in other
ways

sin# = sin ( cos™! cosfO+ 08\ _ @
1+ Bcosh 1+ Bcosd
and
o _ —
tan g — sin @ _ sin 0y/1— 52 (35)
cos ¢’ B+ cosf

e Two relativistic Doppler equations

Using the aberration relations, the Doppler effect can
be written in two ways

f(ngl?v 1+ Bcosd

[ (36a)
1w _ JiF .

f 1o B cost’
A more standard demonstration of these formulas is
described in [6] and further detailed in [13].

e Galilean aberration

In the Galilean case,

B8+ pcosf
R
For R = 1 and expressing p as function of the angle 0

(BEq-(31))

cost = (37a)

cosf = cosf\/1 — B2sin®0 + Bsin’ 0 (37b)
and conversely
cosf = cost' — 5 (37¢)
1+ B2 —2Bcost’
giving for the tangent
tan @ = — LY sin 0
B+ pcosb
(37d)

sin (\/ 1 — 32sin% 60 — B cos 9)
cos+/1 — B2 sin® 0 + Bsin’ 0
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These new aberration relations were introduced in [9].
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Figure 4. Doppler effects as functions of the angles 6 and ¢’. Since the true determinants of energies and colors are frequencies,

Doppler effects are described in terms frequency ratios. (A) Relativistic Doppler effect deduced from the perceived ellipsoidal

wavefront. (B) Galilean Doppler effect derived from the perceived spherical wavefront. The dashed black curve corresponds to

the so-called classical Doppler effect, shown for comparison.

e Two Galilean Doppler equations

As for the relativistic case, two Galilean Doppler for-
mulas related through these reciprocal aberration rela-
tions, can be established depending on the angle consid-
ered. The Doppler formula as a function of 6

o

1
f V1 —32sin”0 — Bcosb

was found above as the focal radius from the actual posi-
tion of the source to the wavefront, which is independent
of the distance of the receptor, because at this position
the successive wavefronts are equidistant from the source.
However, the successive distances between the source and
receiver are no longer the same, so the Doppler formula as
a function of #” must be derived differently, for example by
applying the aberration relations to the Doppler function
of 6.

(38)

i 1
= (39)
f \/1+5272B0030’

This function of 6’ can be also be confirmed geometri-
cally using the cosine law. By the way, Eq. can also
be found in this way but it does not hold for the the op-
tical Doppler effect as assumed in [I4] because spherical
geometry cannot apply in this case. For the angle #’, let
us imagine, as shown in Fig.5, that a source S located at
an unspecified distance from a receiver cAt, emits a sig-
nal and that at the same time as this signal is received, it

emits a second signal. This situation makes it possible to
compare the durations for the source with the durations
perceived by the receiver. In fact, by fixing the time of
origin t = 0 when the source is at the position S; (Fig.5),
then the duration that elapses between the two signals at
the source is At;. For the receiver and in Galilean co-
ordinates, the first signal is received at time t, = Aty
and the second signal is received at time t, = At + Ato,
which gives a duration between the two reception events
of tb — ta = Atg

S1 vAr1 S2

Figure 5. Two successive pulses are sent to the receptor, with
the second pulse being sent exactly when the first is received.

So the ratio between the perceived and local durations
of the source is simply given by the ratio Ats/At;. This is
the Doppler effect, whether this duration is a wave period
or not, as was shown earlier for the lifetime of the soap



bubble. All that remains is to find this ratio geometrically.
During the journey of the first signal, the source will have
traveled vAt;. So on the one hand we have

D = cAty sinf = cAty sind (40a)
and on the other hand, the cosine law gives
(cAt1)? + (vAt)? — 2vcAt? cos ' = (cAty)®  (40b)
The combination of these two equations gives
. cAt; sin ¢’
sinf =
V(cAt)? + (vAt1)2 — 2vcAt3 cos 0
(40¢)

sin 6’

- 1+ B2 —2Bcost

as calculated reciprocally by Compton for a ray passing
through a moving sphere [I5]. Hence, the ratio of wave-
lengths is

cAty  sinf" 5 -
E_m—\/l—i—ﬂ — 2B cosf (40d)
o At 1
! (40e)

Aty V/1+ B2 —2[cosd’

Again, this result which is identical to Eq., is valid
for any kind of duration. A Doppler effect basically relates
a proper duration to a perceived duration, in both the rel-
ativistic and in the classical case, whether that duration
is the lifetime of a soap bubble, as calculated in section [
or the period of a wave. Introducing considerations such
as fractions of a wave period would be unnecessarily dis-
turbing. In fact, to the question what happens for a wave
whose period is not exactly Aty, we can first answer that
in principle it is always possible to perform the experiment
with the wave whose period is precisely At;. The number
of Doppler formulas is not infinite; there is not one for
every wavelength and for every source-observer distance.
Furthermore, for a wave, calculations made for durations
of the order of a period or a fraction of a period would
be meaningless for determining a Doppler effect, because
they would overestimate its precision. A Doppler effect is
not applicable for less than one period and can only be
defined for a series of successive wave crests, for which the
question of the phase coincidence disappears. Expressing
the Doppler effect as a function of a precise angle 6 is
illusory since the series of wave crests that allows it to be
characterized does not correspond to a single 6’ but to a
small range of ¢’. In fact the instantaneous frequency is
never well defined for a continuously changing angle. Even
for a collinear Doppler effect of a cosinusoidal signal

X (t) = cos (27 fot) (41)

the imprecision of the frequency is given by the Fourier
transform of this wave function and depends on the dura-
tion of the measurement. fj is obtained precisely only for

the infinite signal duration of Eq. by Dirac peaks (top
panel of Fig.6).

1
X(=sb(-f 4+ @)
0.5
At =00
X
0 5 10 15 20 25 30 35 40 45 50 55 60
f(second )
0.5
At=1s
X
0 5 0 15 20 25 30 35 40 45 50 55 60
f(second 1)
0.05
At=0.1s
X
0 5 0 15 20 25 30 35 40 45 50 55 60
Af f(second 1)
oot|] At=T
X
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
f(second 1)

Af

Figure 6. Increasing imprecision in frequency as the duration
of the signal decreases. Example of a sound of 40 Hertz (40
cycles per second). An infinite (non-physical) duration of the
sound allows the absolute focusing of its frequency (top panel).
We observe a broadening of the frequency peak (Af) and the
appearance of parasite frequencies as the signal duration (At)
is shortened.

But for a finite duration At, the wave function is

X(t) = rect (t/At) - (43)

whose Fourier transform involves the cardinal sine func-
tion

cos (27 fot)

sin(rAt (f — fo))  sin(wAt (f + fo))
7(f = fo) m(f + fo)

whose graph shows the spread of the frequency peak with
respect to fy and the appearance of parasite frequencies.
In the example of a 40 Hz wave chosen for Fig.6, a listening
duration of a single period results in a frequency uncer-
tainty ranging from 0 to 80 Hz (bottom panel of Fig.6).
The formal treatment of a wave bubble corresponding to
a single period gives the correct result, but its application
is irrelevant in practice. For physically relevant finite sig-
nals and in particular for a continuously changing angular

(44)

X(f) =5



Doppler effect, the product of the minimal imprecision in
the frequency and the duration is a constant (At-Af = 2)
and the window At is all the shorter, theoretically zero,
since the evolution of 6 is fast.

6 How to explain the persistence
of a questionable (alilean for-
mula

The currently accepted Doppler formula, which describes
the frequency change of a moving source perceived by a
static observer is

meVi 1
f  1—pBcos?

Its representation (dotted line in Fig.4B) gives an inter-
mediate curve which does not allow to decide about the
nature of the angle ¥ between the trajectory of the source
and the direction of the receiver. Its main characteristic
is to cancel (value of 1) for an angle of 7/2, but in the ab-
sence of a clear development, it is difficult to point to any
specific error in its demonstration. Nevertheless, a number
of arguments questioning its validity are listed below.

(45)

6.1 The success of the perceived wave-
front approach

An argument specific to the present study is to ask why,
while the wavefront approach is so effective in recovering
all the correct relativistic formulas, it would not work for
the Galilean case.

6.2 An orphan formula disconnected from
aberration

The collinear Galilean Doppler equations are identical for
the traditional and the new formulas. They are also con-
firmed by the rigorous approach to wave reception in the
section [4.3] However, the intermediate angular values dif-
fer significantly, especially in two aspects: (i) the existence
of a transverse Doppler effect for the new formulas but not
for the old one, and (ii) two new formulas, depending on
whether they are expressed in terms of 6 or ¢, against
only one old formula, as if the aberration had been ne-
glected in the classical approach. The origin of the angle
¥ of Eq. is the source but in addition, it is necessary
to specify whether the position of the source is to be taken
into account when the wave is emitted or received. In the
treatments of [I6] or [I7], it corresponds to 6" used here, so
in the following parts we will rewrite the Galilean Doppler
formula as fmov .

f - 1— Bcost’

In an attempt to reconcile the usual (Eq.([46)) and new
(Eq.) formulas, Eq. could be rewritten as a square
root of a square.

(46)
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meV B 1
f V1 + 2cos? 0 — 2B cost’

But we see that Eq. and Eq. are still different and
that in addition, one cannot invoke the approximation of a
very small angle §’ (which would make cos? 6’ ~ 1) because
of the alleged prediction that the Doppler effect must van-
ish (f™°V/f =1) when ¢’ = /2 and cos 6’ = 0. Moreover,
while Einstein presented the relativistic Doppler formulas
in pairs and in conjunction with two reciprocal aberra-
tion relations, in the rare demonstrations of the Galilean
Doppler effect (later called classical in reference to rela-
tivistic) available in the literature, one finds no trace of
an expression as a function of two angles, nor in conjunc-
tion with Galilean aberration rules. The aberration and
Doppler formulas should be rigorously obtained together
from the same approach, which must conjugate four equa-
tions for the two angles 6 or §’: two Doppler equations and
two aberration equations. This is exactly what Einstein
did in [6]. Interestingly, a recent manuscript [17] proposes
to combine the old Doppler formula with the Galilean
aberration rule of the new Doppler formula defined in
[9). This combination of Doppler and aberration formu-
las obtained in different ways, respectively approximate
and strictly geometric, leads to a non-spherical Galilean
wavefront.

(47)

6.3 Dual detection of the Doppler effect
and of the position

An acceptable example of Galilean wave is provided by the
sound, in the case of a source moving in a stationary prop-
agation medium and a receiver stationary with respect to
that medium. When measuring the Doppler shift of sound,
the tracking of the source can lead to ambiguities in the
estimation of the transverse position.

Figure 7. Since the speed of light can be considered as infi-
nite compared to that of sound, the sound wave carrying the
Doppler effect emitted by the source S at an angle ¢’ toward
the receiver R, and the light carrying the image of the source,
emitted at an angle 0 toward the receiver, arrive together at
the receiver. D is the shortest distance between the source and
the receiver on the entire trajectory.

The light Doppler effect is, of course, measured by
pointing the telescope at the source, but we know that
this source has changed location while the light was trav-
eling toward the telescope, so that its true position is in-
visible. In contrast for a Galilean wave, the information



about the Doppler effect and on the location of the source
are carried by different channels and can be recovered si-
multaneously. As depicted in Fig.7, the Doppler effect of
the sound is of course carried by the acoustic wave but
the information about the position of the source is gen-
erally visual, i.e. carried by a light wave. This issue is
concretely illustrated in the experimental application in
Appendix A. If the source velocity is constant, both 6 and
0" can be used, but if there is any doubt about the con-
stancy of the velocity, then the use of ' is preferable, but
this requires the use of a highly directional microphone to
identify the spatial origin of the sound. Note also that the
Doppler effects of sound involve many more parameters
concerning the relative motion between the three actors:
source, receiver and medium, which will not be discussed
here.

6.4 The classical Doppler formula could
have been strenghened by the rela-
tivistic one

Another possible reason for the consolidation of the tra-
ditional Doppler formula may have been a resemblance
to the relativistic Doppler effect. Indeed, the relativistic
Doppler shift is often derived as if it were the classical
phenomenon, but modified by the addition of a time dila-
tion term as explained in certain textbooks [I8] [19] 20, 2T].
Thus, the classical formula of the Doppler effect Eq.
has probably been aided by the advent of the relativistic
Doppler effect, the form of which can suggest the confusing
idea that it is simply the classical Doppler effect corrected
by the relativistic dilation factor.

6.4.1 The puzzling idea that the classical Doppler
effect is the ”primary effect” of the rela-
tivistic one

According to approximate relativistic theories, the classi-
cal formula would be a primary Doppler effect of purely
kinetic nature, which must be complemented by a so-
called ”secondary” effect of time dilation by the Lorentz
factor (multiplication of the periods by 1/4/1 — 82) to
obtain the relativistic Doppler effect. In fact, kinetic and
temporal effects cannot be dissociated in relativity and
the Lorentz factor itself includes the change in kinetic
energy. Nevertheless, this questionable principle has been
accepted because it seems to work. The multiplication
by /1 — 32 of Eq. does indeed give Eq. , which
is Einstein’s relativistic Doppler formula where 6’ is the
reception angle. This unfortunate identity has logically
reinforced the presumed validity of Eq. as the classi-
cal Doppler effect formula for generations of researchers
and teachers. The consensus created in the scientific com-
munity by this apparent proof probably inhibited naive
questions such as, for instance, if the only difference be-
tween the classical and relativistic Doppler effects is the
dilation of the periods for the latter, then why should the
classical and relativistic aberration rules be different? In
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fact, the generalized correction by the dilation factor has
a homothetic effect, which by itself cannot change the
angles.

6.4.2 Additional confusion caused by an inappro-
priate wave averaging mode

The puzzling concept of the secondary Doppler effect,
which is supposed to be specific to relativity and which
probably gives credit to the current classical Doppler ef-
fect, has itself been consolidated by the inappropriate use
of the arithmetic mean for averaging Doppler effects. In
the articles validating the relativistic Doppler effect, lon-
gitudinal [22] and transverse [23], it is explained that the
relativistic Doppler effect, unlike the classical one, includes
a secondary transverse effect. Ives and Stilwell simultane-
ously measured the longitudinal wavelengths of approach
(Aa) and recession ()\;), with and against the motion of
the particles. They then compared the wavelength shifts
with their so-called ” center of gravity” which is calculated
as an arithmetic mean [23]. Knowing the relativistic lon-
gitudinal effects to be demonstrated, they calculated

Aa + Ar
Al’l/leflrl - 2
1 1-8 148
_2<AO 145 T 5) (48)
o Ao 42
A 52 0+ 5 B

They concluded
Doppler shift

that Apean 7# Ao due to transverse

AX o Ameam - )\O

= _ Q2
Ao Ao 2”8

~

This conclusion results from a misuse of the arithmetic
mean. Perhaps judging the appearance of Eq. satis-
factory, these authors did not look at what is going on
for the frequency fiean Which corresponds to this Apean-
However, since the collinear Doppler effect during the ap-
proach for wavelengths corresponds to the Doppler effect
during the recession for frequencies and vice versa, they
would have found that the result is the same

fo

Vi-7

But for any photon, the product: frequency x wavelength
is a well known constant

(49)

fmcan =

fa=e (50)

and therefore the above approach is obviously wrong as
we would have

Yo Ao

1- 32

fmean )\mean -

fo (51)



In fact, the arithmetic mean used in [22] 23] is inappro-
priate for averaging Doppler effects because as explained
in section it cannot work for both frequencies and
wavelengths.

6.4.3 The transverse effect supposedly specific of
relativity

Finally, the acceptance of the classical Doppler effect by
the scientific community may have been favored by the
mistaken intuition that it should cancel (f™°V/f = 1)
when the source is the closest. The absence of Doppler
shift predicted by the currently accepted equation Eq.
seems very reasonable [24], but it is nevertheless incorrect,
as a rigorous analysis of the spherical wavefront (Table
in Appendix B) shows. For a moving source and static
receiver, the Galilean transverse effect obtained for a re-
ception angle 8/ = 7/2, is

meV 1

( ) S (52)
f transverse V 1 =+ ﬂZ
When this effect is received, the source is at the distance
BD from the nearest point (Table . By comparison,
the famous relativistic transverse effect, which Einstein
envisioned as a possible confirmation of special relativity
theory [25], is

7 (53)

These effects are both 1 — %2 + O(B*) and differ only
by 3%/4, making the discrimination proposed by Einstein
technically very delicate.

(fmov) _ 1 — 62
transverse

7 Mean Doppler effects

7.1 Sum of Doppler effects

The sums of the Doppler-modified durations can include
the summation of Doppler effects on periods. Depending
on whether the calculation is based on the point of emis-
sion of the signal or the position of its source (angle ¢’
or 0 respectively), we recover the asymmetry of Einstein’s
traveling clock experiment [6]. The result of the subsec-
tion which adds opposite collinear Doppler effects,
can be generalized to all observer orientations around the
emission point

1 [* 1-Bcost ., 1

% 9'=0 /1 — 52 - /1 — 52

while this summed Doppler effect cancels out if the origin
of the angle is the actual location of the source.

2m _ 132
1TV

27 Jo_o 1+ Bcosf

(54)

(55)

But in addition to this temporal average, there is also
an energetic average of Doppler effects.
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7.2 The appropriate mean for averaging
frequencies

The addition of Doppler effects is useful for summing dura-
tions but not for calculating an energetic average Doppler
effect, as in the subsection Mathematically, there
are several modes of averaging that apply differently to
the specific situations. These different types of averaging
include, when applied to two Doppler effects,

1 {I’]OV féIlOV
2( ;T )

e The arithmetic mean: —

fmov fr?“w) 2
;7

2
f{nov + fél’lOV

e The geometric mean: (

e The harmonic mean:

The appropriate one is necessarily the geometric mean,
because it is the only one that holds for both periods and
frequencies, such that

1

(fi:f2) = 75

(T, T3) (56)

As a matter of fact, the use of geometric averages for
wavelengths has already been empirically applied and, in
particular, satisfies the rule of color reflectance fusion.

7.3 Mean relativistic Doppler effect

The product involved in the geometric mean for all angles
f around the source using Eq. can be transformed
into a sum by going through the logarithms. Expressed in
periods

TmOV s T(rg;)v %
< 7 >: (H T>
0=0
= exp l/7r In 17_/62 do
T Jo=0

1+ PBcosb
But one can also start directly with products, using
two-by-two geometric averages between points symmetri-
cally positioned apart from 7/2 by an angle £ ranging from
0 to /2.

(57 (5+9)
P
\/[1+5cos(g —&)] [1+ Bcos (5 +¢)]

_ 1-p
V11— p32sin’¢

(58)



This half geometric averaging minimizes the inequality
between the global geometric mean and the residual arith-
metic mean, which is obtained by summing the geometric
means of all symmetric &,

(7

whose last term is Legendre’s complete elliptic integral of
the first kind [26]. The right side of Eq.(59) is less than
one since the square root of the elliptic integral should be
removed to obtain 1.

TmOV
(59)

<2 [

1-2 sinzf

More precisely,
Tmov 2 62 62 7ﬁ4
< T ><7r (621)N1_4_64 (61)

7.4 Mean Galilean Doppler effect

The geometric mean of the Galilean Doppler effects ob-
tained before and after the nearest point is independent
of 6 and less than 1. Using Eq. and for periods,

mov B ™ T(rg;)" %_ 52 /84
< T >_<01:[O T ) =VI=F ~l-T -
(62)

In both cases, perceived time appears globally con-
tracted, contrary to a time dilation.

() <1

Note that the mean Galilean Doppler effect is 1/~ while
the mean relativistic one is not.

TmOV

7.5 Comparison of the mean Galilean and
relativistic values

For the Galilean circle, the situation is geometrically clear.
On the axis crossing the source and orthogonal to its tra-
jectory, the wavefronts are narrowed by +/1— 32, nar-
rower in front of this axis and wider behind it, with an
overall average equal to the transverse axis. Strikingly,
the properties of this axis are exactly the same for the
ellipse (compare the yellow lines between Table|l| and Ta-
ble [2in Appendix B). However, since the ellipse is longer
at the back, the global average of the distances between
successive wave crests is slightly higher.
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8 Discussion

8.1 New tools for comparing and revising
wave perception

This study unambiguously links the Doppler effect to the
geometry of the perceived wavefront surfaces, which leads
to a change in the apparent durations for electromagnetic
waves, in accordance with the theory of special relativ-
ity. This geometric approach overcomes the limitations of
phase-based treatments below one period to determine fre-
quencies, that are meaningful only for a set of periods. Al-
though electromagnetic and Galilean waves are fundamen-
tally different in nature, it is instructive to compare their
properties. Their differences in terms of aberration and
the Doppler effect are more subtle than expected and de-
pend entirely on the respective received wavefronts: ellip-
soidal for electromagnetic waves and spherical for Galilean
waves. Some explanations are proposed to explain the per-
sistence of an erroneous classical Doppler formula in the
recent literature and in university courses. In fact, the
currently accepted Doppler equation has been strangely
shaped by the knowledge of the relativistic one, while the
two Doppler effects obey radically different laws. It suf-
fers from unproven assumptions widely used in textbooks
such as: (1) there is no transverse classical Doppler ef-
fect; (2) the relativistic Doppler effect corresponds to the
Galilean Doppler effect modified by the Lorentz dilation
factor. Einstein himself took the previous formula of the
Doppler effect (not yet called classical) for granted, which
logically led him to believe that the transverse effect he
had discovered was specific to the relativistic Doppler ef-
fect. His contributions were so important that he cannot
be asked to verify the previous formulas. The timing of
perceived durations, like the Doppler and aberration ef-
fects, is a receiving process that depends on the velocity
vector.

8.2 Conclusion

Unlike the time dilation of special relativity, perceived
time is not uniform in a global inertial frame. The ap-
propriate tool for converting proper to proper durations
is the Doppler effect, which applies not only to wave pe-
riods, to which it is usually limited, but to any duration.
The Doppler effect is generally considered to be a long-
established phenomenon, corresponding to a dead branch
of fundamental physics, now confined to general educa-
tion. According to the historical recollections of [27],
one of the difficulties Christian Doppler had in convinc-
ing the scientific community in 1842 was that his theory
seemed too mathematically simple to describe physics.
As this study suggests, using only elementary algebra,
the Doppler effect seems to remain both mathematically
simple and physically subtle.
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Appendices

A Classical Doppler measurement

The relativistic Doppler effects predicted by Einstein
have been perfectly verified experimentally in their lon-
gitudinal [22] and transverse [23] versions, but curiously
the angular Doppler effect, which predates relativity, has
remained little studied. Moreover, the study of [23] was
based on the unverified idea that the so-called classical
Doppler effect has no transverse effect, which is disputed
here. Any ordinary movie is a joint recording of image
and sound, but since these two types of waves reach the
camera and microphone at different speeds, they actually
describe separate moments in the recent past (Fig.7). To
illustrate this subtlety, let us analyze the shift in sound
frequency during the passage of an airplane by analyzing
image and sound in parallel.

A.1 Determination of an airplane speed
and rest frequency

The asymptotic values of the apparent frequencies heard
when the source arrives, written f, and those measured

X 5

T

b

when the source recedes, written f,., are sufficient to deter-
mine the source velocity, even without knowing the source
frequency fy. Indeed, f, and f, are related by

fOZfa(1_6>:fr(1+ﬁ) (A'la)
from which
_ fa_fr
/3_ fa+fr (A.lb)

The frequencies given by the spectrogram f,=6750 Hz
and f,=4338 Hz, give 8 = 0.2175 (at 15°C, 74 m/s or 266
km/h). Once § is known, the equalities of Eq. allow
us to find the rest frequency: fo = 5282 Hz. Note that
although it is called rest frequency, fy may not exist when
the aircraft is stopped with the engines on, for example
if this sound is generated by the flow of the apparent wind.

Figure A1l. Doppler effect illustrated by a dominant frequency recorded during the passage of an airplane at low altitude. The

blue lines connecting the images of the planes to the spectrogram indicate the actual coincidence of sound and image on the

film, while the red lines connect the recorded frequencies to their actual points of emission.
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A.2 Doppler formulas as a function of dis-
tance

Angular Doppler formulas are not very practical for ana-
lyzing experimental results because they compress the far
zones and induce a distortion between the linear recording
of the moving source at constant speed. The correspon-
dence between any angle ¢ and the distance is

D = —Xtand (A.2)

where D is the shortest source-observer distance over the
whole source trajectory, and X is the distance of the source
from this closest point.

E—x—— cos ¥ (A.3)
D V1 —cos2 .
cost) = — —— (A4)

V14 2?
By applying this relation to the angles 6 and 6’ pre-
sented previously, we obtain, for the classical Doppler for-

mula
<fm0v> B 1
f classical 1+ BZL'/

and for the formulas deduced from the spherical wave-
front, the Doppler effects are described as functions of the
coordinates of the position of the source (P) and of the
emission point (E), by setting ¢ = 0 or ' respectively.

(A.5)

(fm°v> _ V14 a2 (A6)
f)p Br+/1-52+a2 '
and

(A7)

(fmov B 1
f E_ x/
2
\/1+ﬂ +26\/1+$’2

As a check, we can verify that Eq.(A.6|) gives the av-
erage Doppler effect determined with its angular counter-
part Eq.. The geometric mean of the Galilean Doppler
effect is

(A.8)

w, (10 S0 S

The Doppler effect of the sound is naturally carried
by the acoustic wave but the information about the posi-
tion of the source is generally visual, i.e. carried by light
(Fig.7). When the wave emitted in X reaches the receiver,
the source has traveled a distance that depends on the du-
ration At of the flight of the wave from the source to the
receiver. This path, of length cAt, is the hypotenuse of a
right triangle whose other two sides are the shortest dis-
tance D, and the distance X separating the source from
the nearest point. So Pythagoras says

(cAt)* = D* + X2 (A.9a)

from which

At = VDZ(;LXZ:D‘/lji‘”‘”2 (A.9D)
During this time, the source will have traveled
AX = vAt = BDV/1 + 22 (A.9¢)
or in normalized distance
Az = By/1+ 22 (A.9d)
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Figure A2. Plots of Galilean angular aberration as a function
of distance. Dashed curve: Angle 6§ between the trajectory
of the source and the source-receiver direction according to
Eq.. Solid line curve: angle §’ between the trajectory of
the source and the line connecting the emission point to the
receiver.

The point of emission can be calculated from the actual
position of the source when the Doppler effect is detected.

The angle 6’ = cos™! ( z > whose origin is the

V14 z?

point of emission, is expected to become 6 when replacing
x by z + Az,

[ @+ BVI+a?)
\/1—1— (z + BV1 + 2?2)?

which can be rewritten

0 = cos™

e (- )

Expectedly in this form, Eq. is analogous to
the aberration formula Eq.. These functions are
shown in Fig.A2. The introduction of Eq. into
the Doppler formula Eq., gives back the curve of
Eq.(A7). Conversely, the introduction into the Doppler
formula Eq. of the angle 6 obtained by conversion of

cos™! (_x) by the aberration formula Eq. ,
Vita) il
gives the curve of Eq.(A.6). The Doppler functions derived

from this approach are shown in Fig.A3.

= COos
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Figure A3. Doppler effect of the sound as a function of the relative position of a moving source on its path, for a stationary

receiver in the absence of wind, expressed as a function of either the coordinate of the emitting point (lower red curve drawn
to Eq.(A.7)), or of the visually detected source (upper blue curve drawn to Eq.(A.6)). The dashed black curve shown for
comparison is that of the classical Doppler formula drawn to Eq.(A.5). The increment of the coordinate z is the minimum

distance between the source and the receiver.

A.3 Curve fitting and conclusions

The theoretical equation combining the simultaneously
recorded image and sound is Eq. where the ordinate
is the sound Doppler shift and the abscissa x is the spatial
coordinate of the source determined visually. Inserting the
previously measured value of § into this equation gives the
horizontal increment = 1. At = 0 (5156 Hz, Doppler
effect of 1.025) the observer’s line of sight is perpendicular
to the plane trajectory. The Doppler effect for x = 0 is
expected to be

1

meV

fO orthogonal VA 52

As explained in the main text, this is not the transverse
Doppler effect which is

meV

fO transverse

1
Nienc

This latter effect (5156 Hz, Doppler effect of 0.977) is
received only when the plane has moved away from the
transverse position by a distance D from the nearest
point. Given the delay of 0.323 seconds measured from
the video, it corresponds to 110 m from the transverse
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position. In summary, the accuracy of the curve fit shown
in Fig.A3 can be verified by checking the frequencies for
the following two points:

fo//1-p52
fo/\/1+ 32

In addition, for image and sound to match, x = 0 must
coincide with the most transverse position of the source.
This can be seen in Fig.A1l in the apparent orientation of
the wings and the alignment of the side windows of the
cockpit. Once these three criteria are met, the rest of the
curve fits remarkably well (Fig.A1). The blue lines con-
nect the images and the sounds which are superimposed
on the video. But this apparent simultaneity is only an
illusion of reception, as shown by the red lines that con-
nect the sound to the position of the plane where it was
actually emitted. This offset is, of course, due to the dif-
ference in speed between light and sound to get from the
plane to the camera [28]. The sound received when the
plane is seen perfectly in profile was sent at the position
x = —f/4/1+ 52, which would belong to the curve drawn
to Eq. if added to the same diagram.

oz =0 fmo
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B Points of comparison between relativistic and Galilean angular Doppler
effects

Table 1: Some relativistic correspondences between angles, distances and Doppler effects. The green line corresponds to the
transverse Doppler effect, and the yellow line is the only common point with the Galilean Doppler effect of Table 2.

Origin of the angle Distance to the nearest point of the Doppler effect
source point of emission source position wave emission

9 0/ T 11?/ fmov / f
1

0 0 —00 —00 LB
1-5
1

T cos™' 3 0 = b

2 /1— 2 /1= 32
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Table 2: Some Galilean correspondences between angles, relative distances and Doppler effects. The unit of angle is radian and
the unit of distance is the minimum distance between the mobile source and the stationary receiver. The green line corresponds
to the transverse Doppler effect, and the yellow line is the only common point with the relativistic Doppler effect (Table 1).

Origin of the angle Distance to the nearest point of the | Doppler effect
source point of emission | source position wave emission
9 9/ T ZL'/ fmov / f
1
0 0 - — —
00 00 -5
s _q 8 1
= cos™ ' 3 0 e —_—
2 V1 — 32 V1—p52
cos™* _B cos™! B b __F 1
2 2 4 — 32 4— 32
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