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A B S T R A C T

A general approach to wavefront reception applicable to any type of wave allows to point out some overlooked
aspects and ignored consequences of established theories. The Doppler and aberration effects of electromagnetic
waves, the cosmological redshift and the measurement of durations are all perceptual phenomena, and as such
require the use of reception rather than Lorentz-transformed coordinates, since perceived durations relate
proper to proper durations whereas the famous time dilation of special relativity relates proper to improper
durations. Taking this subtlety into account rehabilitates the controversial Poincaré ellipsoid whose polar
equation is just the relativistic Doppler effect. The application of this approach to the Galilean case whose
transformed and received wavefronts are homothetic, reveals new aberration relations and the existence of a
transverse Doppler effect very similar, in proportion to the respective wave velocities, to the relativistic one,
thus forbidding in practice the test of his theory proposed by Einstein. The reasons for the long persistence of
a classical angular Doppler formula divorced from wavefront reception are discussed, one of them ironically
being the theory of special relativity.
1. Introduction

The viewing of a distant scene transmitted by light at the frequency
of one frame per wave crest, would appear accelerated if the periods
were shortened and slowed if the periods were lengthened. The time
marked by a clock viewed on this movie would appear modified in
the same way compared to our local clock. On the other hand, special
relativity says that a clock in uniform motion is slowed down by a
Lorentz factor (𝛾) with respect to ours. In fact these two phenomena are
not equivalent because the measured time distortions do not correspond
to the orientation-independent time dilation of special relativity, which
is not directly perceived but calculated for distant objects. Clarifica-
tion of this point removes misunderstandings, resolves long-standing
debates and rehabilitates Poincaré’s ellipsoidal wavefront theory. The
application of the same wavefront approach to the Galilean case is
even more instructive and allows the improvement of the current
aberration and Doppler rules. This study, which is perfectly in line
with the existing theories, aims at correcting erroneous interpretations.
The most profound clarification concerns the classical aberration and
Doppler effects, but even here the proposed correction does not really
challenge a theory, since the classical Doppler effect, widely used in
textbooks, has curiously never been rigorously demonstrated and is
rather the result of erroneous postulates, such as the supposed absence
of a transverse effect, as opposed to the relativistic Doppler effect.

E-mail address: denis.michel@live.fr.

2. The slowing of perceived time by stretching waves

2.1. Lessons from cosmological redshift

A proof of the direct relationship between the expansion of the
electromagnetic wave and the duration comes from an astronomical
observation, not originally intended for this purpose, made in the con-
text of the expansion of the universe thanks to the type Ia supernovae
(SNIa). SNIa are stellar explosions that are extremely luminous for
a certain stereotypical duration, and which can be seen from very
far away. The light from some very distant and therefore very old
SNIa took a long time to reach us, and as space expanded during
the light’s journey, it stretched its wavelengths. In this context, a
striking phenomenon was noticed: The duration of the brightness of
SNIa depends on their distance, in exact proportion to their redshift,
i.e. to the lengthening of the period.
𝛥𝑡app

𝛥𝑡
= 𝑇 app

𝑇
(1)

For example, a distant SNIa with a redshift of 𝑇 app∕𝑇 = 1.5, has a
brightness duration that is exactly 1.5 times longer (Perlmutter, 1999).
This observation shows that the simple fact of decreasing the frequency
of the waves, increases the apparent durations. If we consider the
question carefully, there is no magic here: the same scene viewed
https://doi.org/10.1016/j.rio.2024.100741
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Fig. 1. Events of birth (𝐸1) and disappearance (𝐸2) of a soap bubble in a vehicle moving at constant speed 𝑣 with respect to observers, one located at the back (𝑂𝐵) and the
other at the front (𝑂𝐹 ) of the vehicle. The images of the formation and the bursting of the bubble reach the observers at the speed of light 𝑐.
at 30 frames per second when the wavelengths are not stretched
(𝑇 app∕𝑇0 = 1) is viewed at 20 frames per second when the wavelengths
are stretched by 𝑇 app∕𝑇0 = 1.5, and therefore the viewing time will
necessarily be longer to receive all the frames of the scene.

This cosmic time dilation has little to do with the famous time dila-
tion of special relativity and the 𝛾 factor of the Lorentz transformations;
nor with the Doppler effect related to the speed of the source, which
will be addressed later. In fact, before the famous Hubble publication,
Lemaître had shown that periods should follow expansion (Lemaître,
1927). For an interval of universe

𝑑𝑠2 = 𝑑𝑡2 − 𝑎(𝑡)2𝑑𝜎2 (2)

where 𝑑𝜎 Is the element length of a space of radius equal to 1, the
equation of a light beam is

𝜎2 − 𝜎1 = ∫

𝑡2

𝑡1

𝑑𝑡
𝑎

(3)

where 𝜎1 and 𝜎2 are the coordinates of a source and an observer. A
beam emitted later at 𝑡1 + 𝛿𝑡1 and arriving at 𝑡2 + 𝛿𝑡2 undergoes a shift
such that
𝛿𝑡2
𝑎2

−
𝛿𝑡1
𝑎1

= 0 (4)

giving

𝑧 =
𝛿𝑡2
𝛿𝑡1

− 1 =
𝑎2
𝑎1

− 1 (5)

where 𝛿𝑡1 and 𝛿𝑡2 can be considered as the periods at emission and
reception respectively (Lemaître, 1927). Obviously, if a procession of
regularly spaced walkers crosses a stretching rubber band, their spacing
on arrival will be stretched in the same ratio as the rubber band.
The same reasoning applies to a series of wave crests. The ratio of
the received wavelength to the emitted wavelength simply follows the
increase in the distance 𝐷 between the source and the receiver that
occurred during the light’s journey:

𝑇 app

𝑇
=

𝐷reception

𝐷emission
(6)

This generalized increase in wavelength, known as cosmological
redshift, holds even when the sources and receivers are in the same
inertial frame, showing that any distortion of electromagnetic waves
leads to an altered perception of time. Time distortion phenomena
are not exclusively associated with relativity (Lorentz transformations
in SRT or gravity in GRT) or with the relativistic Doppler effect, but
are a matter of electromagnetic frequency modification, whatever the
underlying mechanism.

2.2. Wave reception is a physical process

The perception of compressed or expanded waves is not a simple
optical illusion because the physical effects are real. A clear example
is provided by the technique of atomic cooling. An atom can be
immobilized by illuminating it from all sides with streams of light.
As the atom moves in a given direction, the Doppler effect causes the
light frequency, and therefore the light energy, to increase in front
of it and decrease behind it, bringing the atom back to its original
position (Hänsch and Schawlow, 1975).
2 
3. Limit speed and causality

3.1. The limit speed of light

Physical laws are such that apparent inconsistencies are eliminated.
A typical example is the speed limit of light, which prevents us from
witnessing incongruous scenes and having to reconstruct them later.
We have never seen a soap bubble emerge spontaneously from a cloud
of droplets and then disappear into the tube of an experimenter who
sucks it in. However, this is the vision we might have in the absence
of limit velocity as shown in Fig. 1. As shown by the arrows at the top
of the diagram, as the car moves forward, the images of the bubble
arrive at a greater distance from the observer 𝑂𝐵 at the back of the
car, and at a smaller distance from the observer 𝑂𝐹 at the front of
the car. Hypothetically, if the speed of the car exceeded the speed of
light (𝑣 > 𝑐), 𝑂𝐹 could witness a reverse scene, the bursting of the
bubble before its birth. Such a perception, which violates the principle
of causality, is prevented by the unsurpassable speed of light. At worst,
in the asymptotic case of a car traveling at nearly 𝑐, the birth and
bursting of the bubble would appear to be simultaneous, and its lifetime
would tend toward zero, but would never be negative. By comparison,
if there were no speed limit, we could see the consequences before the
causes.

3.2. Causality break in the absence of speed limit

In the soap bubble experiment of Fig. 1, the vehicle can never reach
the speed limit 𝑐 of the wave carrying its image. As a consequence,
the causal order of events is necessarily respected visually. We will
always see the bubbles burst after they form, regardless of their relative
speed with respect to any observer. This sequence of events respects
causality and is consistent with the statistical arrow of time. But what
would have happened if there were no speed limit? Let us imagine
that the duration of the bubble is no longer measured visually but
acoustically, assuming that tic and tac sounds are emitted at the birth
and bursting of the bubble, and that the vehicle is a fast airplane that
exceeds the speed of sound. If it were technically possible to listen to
the sounds produced in the cockpit of the plane that broke the sound
barrier, and assuming the existence of sound intensity corrections, we
would hear the bubble burst before it appeared, as if on a soundtrack
played backwards. We would also hear the pilot (un)swallow his coffee
before it was (un)poured into his cup. In the absence of a speed limit,
the wavefronts can arrive at the receptor as separate bubbles that
are reversed in time, as shown by Christian Doppler in 1847 in his
diagram of the cone of successive wavefronts emitted by a supersonic
source (Doppler, 1847) (right panel in Fig. 2 for 𝛽 > 1).

4. Orientation-dependent perception of durations

The association between the redshift and the duration (Perlmutter,
1999) illustrates the connection between perceived time and period
distortion. Applying this principle to the kinetic Doppler effect, the
occupants of a vehicle coming toward us should move rapidly, and then
suddenly slow down as it moves away from us. As shown below, this
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Fig. 2. Time reversal between sending and receiving for 𝛽 = 1, the sound barrier for
the sound wave. For 𝛽 > 1, the most recently emitted wavefronts are received first.

is indeed what the theory of special relativity predicts. To illustrate
this, let us calculate the apparent lifetime of the soap bubble inside the
moving vehicle of Fig. 1.

4.1. Orientation-dependent relativistic duration measurement

The basic tools of special relativity allow us to demonstrate the
nature of the perceived time. In the frame of reference 𝑅 of the eyes
in Fig. 1, let us consider the point of view of 𝑂𝐵 who sees the car 𝑂′

moving away from him. In the reference frame of the car 𝑅′, a soap
bubble is temporarily formed. The clocks of 𝑂𝐵 and 𝑂′ are synchronized
and coincide at 𝑡 = 𝑡′ when they cross each other. Let us consider
the spacetime coordinates of the events: the formation of the bubble
(𝐸1) and the reception of this image by 𝑂𝐵 (𝐸𝑅). The image of the
appearance of the bubble is emitted by the car 𝑂′ at 𝑡′𝐸1 and is received
by 𝑂𝐵 at a date which he notes 𝑡𝑅 at the location 𝑥𝑅 = 0. The
corresponding coordinates in 𝑅′ are given by Lorentz transformations:

𝑥′𝑅 = 𝛾
(

𝑥𝑅 − 𝛽𝑐𝑡𝑅
)

= −𝛾𝛽𝑐𝑡𝑅 (7a)

𝑡′𝑅 = 𝛾
(

𝑡𝑅 −
𝛽𝑥𝑅
𝑐

)

= 𝛾𝑡𝑅 (7b)

The date 𝑡′𝐸 of the appearance of the bubble in 𝑅′ can be deduced from
the distance traveled by the light ray in 𝑅′. The speed of the light ray
𝑐 is given by the ratio

𝑐 =
𝑥′𝐸 − 𝑥′𝑅
𝑡′𝑅 − 𝑡′𝐸

=
0 − (−𝛾𝛽𝑐𝑡𝑅)
𝛾𝑡𝑅 − 𝑡′𝐸

(8a)

from which

𝑡′𝐸 = 𝛾𝑡𝑅(1 − 𝛽) = 𝑡𝑅

√

1 − 𝛽
1 + 𝛽

(8b)

This equation establishes the relation between the date of emission
by 𝑂′ of the image of the event 𝐸1, and the date of reception 𝑡𝑅 of its
image by 𝑂𝐵 . The same reasoning is valid for the events of birth and
bursting of the bubble, which gives a life interval of the bubble

𝛥𝑡𝑅 = 𝛥𝑡′𝐸

√

1 + 𝛽
1 − 𝛽

(9)

We simply rediscover the relativistic Doppler effect here, because
the events 𝐸1 and 𝐸2 could just as well be the emissions of two
successive wave crests. The reception events take place at the same
location in the reference frame 𝑅, so the time interval between them
𝛥𝑡𝑅 is a proper time for 𝑂𝐵 . The emission events take place at the same
location in the reference frame 𝑅′, so the time interval between them
𝛥𝑡′𝐸 is a proper duration for 𝑂′. The proper lifetime of the bubble for 𝑂′,
appears to be extended in the time of 𝑂𝐵 , in a ratio different from the 𝛾
factor of the time dilation of special relativity. The latter is not directly
perceived but can be calculated mathematically as follows. Once the
3 
coordinates in 𝑅′ are obtained (𝑥′𝐸1 = 0 and 𝑡′𝐸1 = 𝛾𝑡𝑅(1 − 𝛽)), we can
determine them in 𝑅 by applying the Lorentz transformations in the
other direction

𝑥𝐸1 = 𝛾
(

𝑥′𝐸1 + 𝛽𝑐𝑡′𝐸1
)

= 𝛾𝛽𝑐𝑡𝑅

√

1 − 𝛽
1 + 𝛽

=
𝛽𝑐𝑡𝑅
1 + 𝛽

(10a)

𝑡𝐸1 = 𝛾

(

𝑡′𝐸1 +
𝛽𝑥′𝐸1
𝑐

)

= 𝛾2𝑡𝑅(1 − 𝛽) =
𝑡𝑅

1 + 𝛽
(10b)

By substituting in this last equation the value of 𝑡𝑅 as a function of
𝑡′𝐸1,

𝑡𝑅1 = 𝑡𝐸1(1 + 𝛽) = 𝑡′𝐸1

√

1 + 𝛽
1 − 𝛽

(11a)

The relation between 𝑡𝐸1 to 𝑡′𝐸1 is obtained

𝑡𝐸1 =
𝑡′𝐸1

√

1 − 𝛽2
(11b)

and as the next event of bursting of the bubble 𝐸2, follows the same
rule,

𝛥𝑡𝐸 = 𝛥𝑡′𝐸 𝛾 (11c)

The time dilation of special relativity is verified, but 𝛥𝑡𝐸 cannot be
timed by 𝑂𝐵 because it is no longer a proper duration, since 𝐸1 and
𝐸2 do not occur at the same place in 𝑅. The time dilation of special
relativity relates a proper duration and an improper duration, which
cannot be measured directly.

Similar calculations can be made for the reception of images by 𝑂𝐹 ,
still in 𝑅 but at the front of the vehicle. The suffix 𝑅 now refers to the
reception of images by 𝑂𝐹 while keeping the same orientation of the 𝑥
axis, we have

𝑥′𝑅 = 𝛾
(

𝑥𝑅 + 𝛽𝑐𝑡𝑅
)

= 𝛾𝛽𝑐𝑡𝑅 (12a)

𝑡′𝑅 = 𝛾
(

𝑡𝑅 +
𝛽𝑥𝑅
𝑐

)

= 𝛾𝑡𝑅 (12b)

The light ray carrying to 𝑂𝐹 the image of the appearance of the bubble
has speed

𝑐 =
𝑥′𝑅 − 𝑥′𝐸1

𝑡′𝑅 − 𝑡′𝐸1
=

−𝛾𝛽𝑐𝑡𝑅
𝛾𝑡𝑅 − 𝑡′𝐸1

(13a)

from which

𝑡′𝐸1 = 𝛾𝑡𝑅(1 + 𝛽) = 𝑡𝑅

√

1 + 𝛽
1 − 𝛽

(13b)

Repeating the same process for the image of the bubble bursting, the
observer 𝑂𝐹 measures a shorter life of the bubble with his stopwatch.

𝛥𝑡𝑅 = 𝛥𝑡′𝐸

√

1 − 𝛽
1 + 𝛽

(14)

But again, this does not change the relativistic time dilation, because
for 𝑂𝐹 ,

𝑥𝐸1 = 𝛾
(

𝑥′𝐸1 + 𝛽𝑐𝑡′𝐸1
)

= 𝛾𝛽𝑐𝑡𝑅

√

1 + 𝛽
1 − 𝛽

=
𝛽𝑐𝑡𝑅
1 − 𝛽

(15a)

𝑡𝐸1 = 𝛾

(

𝑡′𝐸1 +
𝛽𝑥′𝐸1
𝑐

)

= 𝛾2𝑡𝑅(1 + 𝛽) =
𝑡𝑅

1 − 𝛽
(15b)

and thus always

𝑡𝐸1 =
𝑡𝑅

1 − 𝛽
= 1

1 − 𝛽
𝑡′𝐸1

√

1 − 𝛽
1 + 𝛽

= 𝑡′𝐸1𝛾 (16)

The time dilation actually measured by each point of a rest frame
depends not only on the velocity modulus 𝑣 of the moving reference
frame, but also on the velocity vector 𝑣. It will therefore be interest-
ing to average these measurements for all possible orientations (see
Section 7.3).
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4.2. Direct compensation for a round trip

The correction from perceived time to Lorentz-dilated time de-
scribed above, which takes into account the travel time of light, is
unnecessary for a round trip. Imagine a sprinter running the 100
meters at a significant fraction of the speed of light. Given the above
calculations, this sprinter who wants to improve his record will prefer
to be timed on sight (the old-fashioned way) by a judge at the finish
rather than at the start. Indeed, if each stride of the sprinter has a
proper duration of 𝑇 , the judge at the front, as 𝑂𝐹 on Fig. 1, will see
this duration reduced to 𝑇

√

1−𝛽
1+𝛽 while the judge at the back, as 𝑂𝐵 on

Fig. 1, will see this time increased to 𝑇
√

1+𝛽
1−𝛽 . So, if the sprinter runs

100 meters at a constant speed in 𝑛 strides, his measured time will be
𝛥𝑡app

𝐹 = 𝑛𝑇
√

1−𝛽
1+𝛽 and 𝛥𝑡app

𝐵 = 𝑛𝑇
√

1+𝛽
1−𝛽 respectively. The judges should

correct their different measurements using the calculations of Eqs. (10)
and (15) because for the judge at the front, the path of the light showing
the position of the sprinter and the path of the sprinter are oriented in
the same direction, while for the judge at the back, the path of the
light showing the position of the sprinter and the path of the sprinter
are oriented in opposite directions. Interestingly, this correction is not
necessary when the 100-meter straight run is converted into a round
trip of two 50-meter. One of the judges is then placed at the start/finish
point and the other at the turnaround point. In this case, the simple
addition of the times perceived by the two judges, who always remain
in the same inertial frame, gives the expected duration.

𝑛
2
𝑇

√

1 + 𝛽
1 − 𝛽

+ 𝑛
2
𝑇

√

1 − 𝛽
1 + 𝛽

= 𝑛𝑇
√

1 − 𝛽2

Of course, the sprinter will be disappointed to find that the judges
have extended his course time, which on his own stopwatch is only
𝑛𝑇 , but he will have two consolations: (1) now both judges measure
the same duration, and (2) he concludes that he has aged a little less
during the race, by a 𝛾 factor, than the judges.

4.3. Orientation-dependent ‘‘Galilean lifetime’’ measurement

Electromagnetic time results from the speed limit of light combining
time and space. But let us repeat the previous calculation of the lifetime
of the soap bubble using only a Galilean wave emitted by the soap
bubble, keeping the notation but replacing the Lorentz transformations
by Galilean transformations. The corresponding coordinates in 𝑅′ are
given by:

𝑥′𝑅 = 𝑥𝑅 − 𝛽𝑐𝑡𝑅 = −𝛽𝑐𝑡𝑅 (17a)

𝑡′𝑅 = 𝑡𝑅 (17b)

The date 𝑡′𝐸 of the appearance of the bubble in 𝑅′ can be deduced from
the distance traveled by the Galilean ray at 𝑅′, whose speed 𝑐 is given
by

𝑐 =
𝑥′𝐸 − 𝑥′𝑅
𝑡′𝑅 − 𝑡′𝐸

=
0 − (−𝛽𝑐𝑡𝑅)
𝑡𝑅 − 𝑡′𝐸

(18a)

giving

𝑡′𝐸 = 𝑡𝑅 (1 − 𝛽) (18b)

The ‘‘Galilean lifetime’’ of the bubble is thus increased

𝛥𝑡𝑅𝐵 =
𝛥𝑡′𝐸
1 − 𝛽

(19a)

nd without redoing the whole calculation, we understand that for the
bserver 𝑂𝐹

𝑡𝑅𝐹 =
𝛥𝑡′𝐸
1 + 𝛽

(19b)

s expected, we find the classical longitudinal Doppler effect.
4 
5. Doppler effects calculated from the perceived wavefront sur-
faces

According to the dictionary, time is perceived as the sequence of
events. The density of the stream of received images will, of course,
affect the tempo. This density is modified by the speed of the source rel-
ative to the receiver through the Doppler effect which was introduced
in an academic way above in Section 4, but this extensive method
was limited to the elementary collinear case. The very general non-
academic approach used below will give the results in all directions
at once, both for the Doppler effect and for the aberration relations.
Moreover, it allows to revise the Galilean relations previously estab-
lished. Concerning the relativistic aspect, this approach restores all its
importance and validity to the Poincaré ellipsoid, which remains the
subject of persistent debate. To better understand Poincaré’s argument,
let us first establish its basis.

5.1. The coordinates of the light front describe a sphere in all reference
frames

Since light propagates at the same speed in all directions, its wave-
front is necessarily spherical. Moreover, since the speed of light is the
same in all reference frames, a sphere of a light wave in one reference
frame 𝑆′ must also be a sphere in the reference frame 𝑆. This is indeed
what the Lorentz transformations ensure. The sphere

𝑥′2 + 𝑦′2 + 𝑧′2 = (𝑐𝑡′)2 (20a)

transformed using

𝑥′ =
𝑥 + 𝛽𝑐𝑡
√

1 − 𝛽2
, 𝑦′ = 𝑦, 𝑧′ = 𝑧 and 𝑡′ =

𝑡 + 𝛽𝑥
𝑐

√

1 − 𝛽2

becomes
(𝑥 + 𝛽𝑐𝑡)2

1 − 𝛽2
+ 𝑦2 + 𝑧2 =

(𝑐𝑡 + 𝛽𝑥)2

1 − 𝛽2
(20b)

which simplifies into

𝑥2 + 𝑦2 + 𝑧2 = (𝑐𝑡)2 (20c)

There is no discussion of this result, which highlights the power
of Lorentz transformations, and there is no point in trying to op-
pose the sphere attributed to Einstein and the ellipse attributed to
Poincaré (Pierseaux, 2005), since both authors were aware that a
Lorentz-transformed light sphere is a light sphere received as an el-
lipsoid by an observer in relative motion (Einstein, 1905; Poincaré,
1918). It happens that Doppler, aberration, and measured time are
reception effects, and that confusing the reception coordinates with
those designed to ensure Lorentz invariance would misleadingly suggest
a violation of the Lorentz invariant, as in Meléndez (2009).

5.2. Contraction of lengths and of length-measuring instruments

The contraction of lengths in the direction of displacement contin-
ues to intrigue the general public because it has never been detected;
but is it detectable in practice? Measuring an object means using an
instrument in the reference frame of that object. So if the object moves
along 𝑥, the 𝑥 dimension of the measuring instrument will be shortened
in the same ratio, making any detection impossible. But as Poincaré
pointed out, if one does not use a material object as a measuring
instrument, but an electromagnetic wave path (which is not subject
to length shortening), then the wave path should appear stretched by
comparison along 𝑥 and take the form of an ellipsoid (Pierseaux, 2005;
Einstein, 1905; Poincaré, 1918; Meléndez, 2009; Michel, 2021; Moreau,

√

1 − 𝛽2.
1994) with a transverse/longitudinal axis ratio of
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Fig. 3. Perspective view of the shapes of (A) the material sphere drawn to Eq. (23), (B) the received relativistic wavefront surface drawn to Eq. (27) and (C) the Galilean wavefront
drawn to Eq. (30), for 𝛽 = 0.9. In the wavefront panels B and C, the source is located at the intersection of the axes.
5.3. Equations of the spheres of the mobile frame

5.3.1. The material sphere
From the mobile coordinate system, the surface of a material sphere

of radius 1 has the equation

𝑥′2 + 𝑦′2 + 𝑧′2 = 1 (21)

But from the fixed coordinate system, the sphere seen in its entirety
would appear flattened in the 𝑥 direction of motion. According to the
Lorentz transformation for the 𝑥 axis at 𝑡 = 0,
(

𝑥
√

1 − 𝛽2

)2

+ 𝑦2 + 𝑧2 = 1 (22)

as defined by Einstein in chapter 4 of Einstein (1905). It can be
converted in polar coordinates using 𝑥 = 𝜌 sin 𝜃 cos𝜑, 𝑦 = 𝜌 sin 𝜃 sin𝜑
and 𝑧 = 𝜌 cos 𝜃, for 𝑅 = 1,

𝜌 =

√

1 − 𝛽2

1 − 𝛽2
(

1 − sin2 𝜃 cos2 𝜑
)

(23)

whose shape is represented in Fig. 3A. It reduces in the two spatial
dimensions 𝑥 = 𝜌 cos 𝜃 and 𝑦 = 𝜌 sin 𝜃 into the ellipse flattened along
the 𝑥 direction:

𝜌 =

√

1 − 𝛽2

1 − 𝛽2 sin2 𝜃
(24)

5.3.2. The light wavefront
The speed of light is constant in all frames and always gives 45◦

lines in all Minkowski diagrams regardless of the chosen point of view
at rest. The time set to zero above is now set to one period conceived as
the interval between two successive images. Inserting the period given
by the fourth transformation into the first transformation (of 𝑥′) gives

𝑥′ = 𝑥
√

1 − 𝛽2 + 𝛽𝑐𝑇 ′ (25)

Using 𝑐 = 1 as Poincaré did, the surface of a single-period wavefront is
the ellipsoid of equation

(𝑥
√

1 − 𝛽2 + 𝛽)2 + 𝑦2 + 𝑧2 = 1 (26)

whose conversion in polar coordinates yields the remarkably elegant
equation

𝜌 =

√

1 − 𝛽2

1 + 𝛽 sin 𝜃 cos𝜑
(27)

plotted in Fig. 3B. It reduces to an ellipse in 2D polar coordinates. The
radius 𝜌 for the receiver is changed from 𝜌0 = 1 in the same ratio as
the apparent wavelength.

𝜌
𝜌0

= 𝜆mov

𝜆
=

√

1 − 𝛽2

1 + 𝛽 cos 𝜃
(28)

This polar equation gives the complete collection of focal rays from
the source to the wavefront surface for one period, so it is also the
equation for the Doppler effect. Of course, we recover the rays collinear
with the path of the source in front of and behind it, which were
laboriously determined in Section 4, but also all the other rays.
5 
5.3.3. The Galilean wavefront
Although the speed of sound has no common measure with that

of light, the same letters 𝑐 and 𝛽 are used in both cases for ease of
comparison. The Galilean transformations are simple: 𝑥′ = 𝑥 + 𝑣𝑡, 𝑦′ =
𝑦, 𝑧′ = 𝑧 and 𝑡′ = 𝑡. Thus, the surface of the Galilean wavefront emitted
by a source moving with velocity 𝑣 in direction 𝑥 is a sphere of the
Cartesian equation

(𝑥 + 𝑣𝑡)2 + 𝑦2 + 𝑧2 = (𝑐𝑡)2 (29a)

Keeping the notation 𝛽 = 𝑣∕𝑐 where 𝑐 is no longer a speed limit, for a
time corresponding to a single period unit,

(𝑥 + 𝛽)2 + 𝑦2 + 𝑧2 = 1 (29b)

The wavelengths are directly obtained by converting this Cartesian
equation in polar equation.

𝜌 =
√

1 − 𝛽2
(

1 − sin2 𝜃 cos2 𝜑
)

− 𝛽 sin 𝜃 cos𝜑 (30)

shown in Fig. 3C and which reduces in 2D in the Galilean circle

𝜌
𝜌0

= 𝜆mov

𝜆
=
√

1 − 𝛽2 sin2 𝜃 − 𝛽 cos 𝜃 (31)

whose off-center aspect can also be understood as a change of the wave
vector for the receiver (Boutayeb, 2019; Chesnokov and Kazachkov,
2022). This Doppler effect expressed in frequencies is shown in Fig. 4B.
The notable points of these curves are listed in the tables 1 and 2 of
Appendix B. Note in these tables that for 𝜃 = 𝜋∕2 (yellow lines in the
tables), the results for the relativistic and Galilean Doppler effects are
identical. The Doppler effects found in this way are functions of the
angle 𝜃 between the trajectory of the source and the source–receiver
line exactly when the Doppler effect is received. But because of the
travel time of the wave, the source is no longer in the position it was
when it emitted both its image and the wave crests involved in the mea-
sured Doppler effect. The difference between this angle noted 𝜃′ and 𝜃
defines the phenomenon of aberration, long understood by Bradley in
astronomy. Although Bradley’s discovery largely predates the theory of
relativity, today the relativistic aberration rules established by Einstein
are well known, but strangely their Galilean counterparts are generally
ignored, which may explain the problems existing with the classical
Doppler formula.

5.3.4. Derivation of aberration and Doppler formulas from wavefront sur-
faces

∙ Relativistic aberration
The relativistic ellipsoid is wider on the 𝑥 axis by 1∕

√

1 − 𝛽2, which
makes the geometric comparison with the sphere difficult. To make
their diameters coincide on 𝑥 while preserving the proportions of the
ellipse, let us just contract the radius orthogonal to the trajectory, from
1 to

√

1 − 𝛽2. For a source moving from left to right, the Cartesian
equation of this simplified ellipse is

(𝑥 + 𝛽)2 +
𝑦2

= 1 (32)

1 − 𝛽2
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Fig. 4. Doppler effects as functions of the angles 𝜃 and 𝜃′. Since the true determinants of energies and colors are frequencies, Doppler effects are described in terms frequency
ratios. (A) Relativistic Doppler effect deduced from the perceived ellipsoidal wavefront. (B) Galilean Doppler effect derived from the perceived spherical wavefront. The dashed
black curve corresponds to the so-called classical Doppler effect, shown for comparison.
Its polar equation obtained using 𝑥 = 𝜌 cos 𝜃 and 𝑦 = 𝜌 sin 𝜃, is

𝜌 =
1 − 𝛽2

1 + 𝛽 cos 𝜃
(33)

It allows us to easily obtain the aberration relations because, since it
is not directional, the relativistic dilation transforms the ellipse in a
homothetic way without changing its characteristics and angles. Since
the intersection of the focal radius 𝜌 and the perimeter of the ellipse
does not correspond to a point tangential to the radius emanating from
the center of the ellipse, let us consider the fixed frame of reference
of this center from which the wave front propagated with spherical
symmetry. We have

cos 𝜃′ =
𝛽 + 𝜌 cos 𝜃

𝑅
(34a)

where 𝑅 is the large radius without flattening fixed at 1. Using the value
of 𝜌 given in Eq. (33), this equation becomes

cos 𝜃′ =
cos 𝜃 + 𝛽
1 + 𝛽 cos 𝜃

(34b)

whose reciprocal form is as elegant.

cos 𝜃 =
cos 𝜃′ − 𝛽
1 − 𝛽 cos 𝜃′

(34c)

These aberration relations can then be expressed in other ways

sin 𝜃′ = sin
(

cos−1
(

cos 𝜃 + 𝛽
1 + 𝛽 cos 𝜃

))

=

√

1 − 𝛽2 sin 𝜃
1 + 𝛽 cos 𝜃

and

tan 𝜃′ = sin 𝜃′
cos 𝜃′

=
sin 𝜃

√

1 − 𝛽2

𝛽 + cos 𝜃
(35)

∙ Two relativistic Doppler equations
Using the aberration relations, the Doppler effect can be written in

two ways

𝑓mov
(𝜃)

𝑓
=

1 + 𝛽 cos 𝜃
√

1 − 𝛽2
(36a)

𝑓mov
(𝜃′)

𝑓
=

√

1 − 𝛽2

1 − 𝛽 cos 𝜃′
(36b)

A more standard demonstration of these formulas is described
in Einstein (1905) and further detailed in Joos and Freeman (1913).
6 
∙ Galilean aberration
In the Galilean case,

cos 𝜃′ =
𝛽 + 𝜌 cos 𝜃

𝑅
(37a)

For 𝑅 = 1 and expressing 𝜌 as function of the angle 𝜃 (Eq. (31))

cos 𝜃′ = cos 𝜃
√

1 − 𝛽2 sin2 𝜃 + 𝛽 sin2 𝜃 (37b)

and conversely

cos 𝜃 =
cos 𝜃′ − 𝛽

√

1 + 𝛽2 − 2𝛽 cos 𝜃′
(37c)

giving for the tangent

tan 𝜃′ =
𝜌 sin 𝜃

𝛽 + 𝜌 cos 𝜃

=
sin 𝜃

(
√

1 − 𝛽2 sin2 𝜃 − 𝛽 cos 𝜃
)

cos 𝜃
√

1 − 𝛽2 sin2 𝜃 + 𝛽 sin2 𝜃

(37d)

These new aberration relations were introduced in Michel (2021).
∙ Two Galilean Doppler equations
As for the relativistic case, two Galilean Doppler formulas related

through these reciprocal aberration relations, can be established de-
pending on the angle considered. The Doppler formula as a function
of 𝜃
𝑓mov
(𝜃)

𝑓
= 1

√

1 − 𝛽2 sin2 𝜃 − 𝛽 cos 𝜃
(38)

was found above as the focal radius from the actual position of the
source to the wavefront, which is independent of the distance of
the receptor, because at this position the successive wavefronts are
equidistant from the source. However, the successive distances between
the source and receiver are no longer the same, so the Doppler formula
as a function of 𝜃′ must be derived differently, for example by applying
the aberration relations to the Doppler function of 𝜃.
𝑓mov
(𝜃′)

𝑓
= 1

√

1 + 𝛽2 − 2𝛽 cos 𝜃′
(39)

This function of 𝜃′ can be also be confirmed geometrically using
the cosine law. By the way, Eq. (31) can also be found in this way but
it does not hold for the optical Doppler effect as assumed in Klinaku
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Fig. 5. Two successive pulses are sent to the receptor, with the second pulse being
sent exactly when the first is received.

(2021) because spherical geometry cannot apply in this case. For the
angle 𝜃′, let us imagine, as shown in Fig. 5, that a source 𝑆 located at
an unspecified distance from a receiver 𝑐𝛥𝑡1, emits a signal and that at
the same time as this signal is received, it emits a second signal. This
situation makes it possible to compare the durations for the source with
the durations perceived by the receiver. In fact, by fixing the time of
origin 𝑡 = 0 when the source is at the position 𝑆1 (Fig. 5), then the
duration that elapses between the two signals at the source is 𝛥𝑡1. For
the receiver and in Galilean coordinates, the first signal is received at
time 𝑡𝑎 = 𝛥𝑡1 and the second signal is received at time 𝑡𝑏 = 𝛥𝑡1 + 𝛥𝑡2,
which gives a duration between the two reception events of 𝑡𝑏−𝑡𝑎 = 𝛥𝑡2.

So the ratio between the perceived and local durations of the source
is simply given by the ratio 𝛥𝑡2∕𝛥𝑡1. This is the Doppler effect, whether
this duration is a wave period or not, as was shown earlier for the
lifetime of the soap bubble. All that remains is to find this ratio
geometrically. During the journey of the first signal, the source will
have traveled 𝑣𝛥𝑡1. So on the one hand we have

𝐷 = 𝑐𝛥𝑡1 sin 𝜃′ = 𝑐𝛥𝑡2 sin 𝜃 (40a)

and on the other hand, the cosine law gives

(𝑐𝛥𝑡1)2 + (𝑣𝛥𝑡1)2 − 2𝑣𝑐𝛥𝑡21 cos 𝜃
′ = (𝑐𝛥𝑡2)2 (40b)

The combination of these two equations gives

sin 𝜃 =
𝑐𝛥𝑡1 sin 𝜃′

√

(𝑐𝛥𝑡1)2 + (𝑣𝛥𝑡1)2 − 2𝑣𝑐𝛥𝑡21 cos 𝜃
′

= sin 𝜃′
√

1 + 𝛽2 − 2𝛽 cos 𝜃′

(40c)

as calculated reciprocally by Compton for a ray passing through a
moving sphere (Compton, 1923). Hence, the ratio of wavelengths is
𝑐𝛥𝑡2
𝑐𝛥𝑡1

= sin 𝜃′
sin 𝜃

=
√

1 + 𝛽2 − 2𝛽 cos 𝜃′ (40d)

or
𝛥𝑡1
𝛥𝑡2

= 1
√

1 + 𝛽2 − 2𝛽 cos 𝜃′
(40e)

Again, this result which is identical to Eq. (39), is valid for any kind
of duration. A Doppler effect basically relates a proper duration to a
perceived duration, in both the relativistic and in the classical case,
whether that duration is the lifetime of a soap bubble, as calculated
in Section 4, or the period of a wave. Introducing considerations such
as fractions of a wave period would be unnecessarily disturbing. In
fact, to the question what happens for a wave whose period is not
exactly 𝛥𝑡1, we can first answer that in principle it is always possible
to perform the experiment with the wave whose period is precisely 𝛥𝑡 .
1

7 
Fig. 6. Increasing imprecision in frequency as the duration of the signal decreases.
Example of a sound of 40 Hertz (40 cycles per second). An infinite (non-physical)
duration of the sound allows the absolute focusing of its frequency (top panel). We
observe a broadening of the frequency peak (𝛥𝑓 ) and the appearance of parasite
frequencies as the signal duration (𝛥𝑡) is shortened.

The number of Doppler formulas is not infinite; there is not one for
every wavelength and for every source-observer distance. Furthermore,
for a wave, calculations made for durations of the order of a period or
a fraction of a period would be meaningless for determining a Doppler
effect, because they would overestimate its precision. A Doppler effect
is not applicable for less than one period and can only be defined for
a series of successive wave crests, for which the question of the phase
coincidence disappears. Expressing the Doppler effect as a function of
a precise angle 𝜃′ is illusory since the series of wave crests that allows
it to be characterized does not correspond to a single 𝜃′ but to a small
range of 𝜃′. In fact the instantaneous frequency is never well defined
for a continuously changing angle. Even for a collinear Doppler effect
of a cosinusoidal signal

𝑋(𝑡) = cos
(

2𝜋𝑓0𝑡
)

(41)

the imprecision of the frequency is given by the Fourier transform of
this wave function and depends on the duration of the measurement.
𝑓0 is obtained precisely only for the infinite signal duration of Eq. (41)
by Dirac peaks (top panel of Fig. 6)

𝑋(𝑓 ) = 1
2
[

𝛿
(

𝑓 − 𝑓0
)

+ 𝛿
(

𝑓 + 𝑓0
)]

(42)

But for a finite duration 𝛥𝑡, the wave function is

𝑋(𝑡) = rect (𝑡∕𝛥𝑡) ⋅ cos
(

2𝜋𝑓0𝑡
)

(43)

whose Fourier transform involves the cardinal sine function

𝑋(𝑓 ) = 1 |

|

|

sin(𝜋𝛥𝑡 (𝑓 − 𝑓0)) +
sin(𝜋𝛥𝑡 (𝑓 + 𝑓0)) |

|

|

(44)

2
|

𝜋(𝑓 − 𝑓0) 𝜋(𝑓 + 𝑓0) |
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whose graph shows the spread of the frequency peak with respect to 𝑓0
and the appearance of parasite frequencies. In the example of a 40 Hz
wave chosen for Fig. 6, a listening duration of a single period results
in a frequency uncertainty ranging from 0 to 80 Hz (bottom panel of
Fig. 6). The formal treatment of a wave bubble corresponding to a
single period gives the correct result, but its application is irrelevant
in practice. For physically relevant finite signals and in particular for
a continuously changing angular Doppler effect, the product of the
minimal imprecision in the frequency and the duration is a constant
(𝛥𝑡 ⋅ 𝛥𝑓 = 2) and the window 𝛥𝑡 is all the shorter, theoretically zero,
since the evolution of 𝜃 is fast.

6. How to explain the persistence of a questionable Galilean for-
mula

The currently accepted Doppler formula, which describes the fre-
quency change of a moving source perceived by a static observer is

𝑓mov

𝑓
= 1

1 − 𝛽 cos 𝜗
(45)

Its representation (dotted line in Fig. 4B) gives an intermediate curve
which does not allow to decide about the nature of the angle 𝜗 between
the trajectory of the source and the direction of the receiver. Its main
characteristic is to cancel (value of 1) for an angle of 𝜋∕2, but in the ab-
sence of a clear development, it is difficult to point to any specific error
in its demonstration. Nevertheless, a number of arguments questioning
its validity are listed below.

6.1. The success of the perceived wavefront approach

An argument specific to the present study is to ask why, while
the wavefront approach is so effective in recovering all the correct
relativistic formulas, it would not work for the Galilean case.

6.2. An orphan formula disconnected from aberration

The collinear Galilean Doppler equations are identical for the tradi-
tional and the new formulas. They are also confirmed by the rigorous
approach to wave reception in Section 4.3. However, the intermediate
angular values differ significantly, especially in two aspects: (i) the
existence of a transverse Doppler effect for the new formulas but not
for the old one, and (ii) two new formulas, depending on whether they
are expressed in terms of 𝜃 or 𝜃′, against only one old formula, as if the
aberration had been neglected in the classical approach. The origin of
the angle 𝜗 of Eq. (45) is the source but in addition, it is necessary to
specify whether the position of the source is to be taken into account
when the wave is emitted or received. In the treatment of Pierce (2019),
it corresponds to 𝜃′ used here, so in the following parts we will rewrite
the Galilean Doppler formula as
𝑓mov

𝑓
= 1

1 − 𝛽 cos 𝜃′
(46)

In an attempt to reconcile the usual (Eq. (46)) and new (Eq. (39))
formulas, Eq. (46) could be rewritten as a square root of a square.
𝑓mov

𝑓
= 1

√

1 + 𝛽2 cos2 𝜃′ − 2𝛽 cos 𝜃′
(47)

But we see that Eqs. (47) and (39) are still different and that in addition,
one cannot invoke the approximation of a very small angle 𝜃′ (which
would make cos2 𝜃′ ≈ 1) because of the alleged prediction that the
Doppler effect must vanish (𝑓mov∕𝑓 = 1) when 𝜃′ = 𝜋∕2 and cos 𝜃′ = 0.
Moreover, while Einstein presented the relativistic Doppler formulas
in pairs and in conjunction with two reciprocal aberration relations,
in the rare demonstrations of the Galilean Doppler effect (later called
classical in reference to relativistic) available in the literature, one finds
no trace of an expression as a function of two angles, nor in conjunction
8 
Fig. 7. Since the speed of light can be considered as infinite compared to that of sound,
the sound wave carrying the Doppler effect emitted by the source 𝑆 at an angle 𝜃′

toward the receiver 𝑅, and the light carrying the image of the source, emitted at an
angle 𝜃 toward the receiver, arrive together at the receiver. 𝐷 is the shortest distance
between the source and the receiver on the entire trajectory.

with Galilean aberration rules. The aberration and Doppler formulas
should be rigorously obtained together from the same approach, which
must conjugate four equations for the two angles 𝜃 or 𝜃′: two Doppler
equations and two aberration equations. This is exactly what Einstein
did in Einstein (1905). Interestingly, a recent manuscript (Alejos and
Muños, 2023) proposes to combine the old Doppler formula with the
Galilean aberration rule of the new Doppler formula defined in Michel
(2021). This combination of Doppler and aberration formulas obtained
in different ways, respectively approximate and strictly geometric,
leads to a non-spherical Galilean wavefront.

6.3. Dual detection of the Doppler effect and of the position

An acceptable example of Galilean wave is provided by the sound,
in the case of a source moving in a stationary propagation medium and
a receiver stationary with respect to that medium. When measuring
the Doppler shift of sound, the tracking of the source can lead to
ambiguities in the estimation of the transverse position. The light
Doppler effect is, of course, measured by pointing the telescope at the
source, but we know that this source has changed location while the
light was traveling toward the telescope, so that its true position is
invisible. In contrast for a Galilean wave, the information about the
Doppler effect and on the location of the source are carried by different
channels and can be recovered simultaneously.

As depicted in Fig. 7, the Doppler effect of the sound is of course
carried by the acoustic wave but the information about the position of
the source is generally visual, i.e. carried by a light wave. This issue is
concretely illustrated in the experimental verification of Appendix A. If
the source velocity is constant, both 𝜃 and 𝜃′ can be used, but if there
is any doubt about the constancy of the velocity, then the use of 𝜃′ is
preferable, but this requires the use of a highly directional microphone
to identify the spatial origin of the sound. Note also that the Doppler
effects of sound involve many more parameters concerning the relative
motion between the three actors: source, receiver and medium, which
will not be discussed here.

6.4. The classical Doppler formula could have been strenghened by the
relativistic one

Another possible reason for the consolidation of the traditional
Doppler formula may have been a resemblance to the relativistic
Doppler effect. Indeed, the relativistic Doppler shift is often derived
as if it were the classical phenomenon, but modified by the addition of
a time dilation term as explained in certain textbooks (Sher, 1968; Gill,
1965; Feynman et al., 1977; Morin, 2008). Thus, the classical formula
of the Doppler effect Eq. (46) has probably been aided by the advent
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of the relativistic Doppler effect, the form of which can suggest the
confusing idea that it is simply the classical Doppler effect corrected
by the relativistic dilation factor.

6.4.1. The puzzling idea that the classical Doppler effect is the ‘‘primary
effect’’ of the relativistic one

According to approximate relativistic theories, the classical formula
would be a primary Doppler effect of purely kinetic nature, which must
be complemented by a so-called ‘‘secondary’’ effect of time dilation
by the Lorentz factor (multiplication of the periods by 1∕

√

1 − 𝛽2) to
obtain the relativistic Doppler effect. In fact, kinetic and temporal
effects cannot be dissociated in relativity and the Lorentz factor itself
includes the change in kinetic energy. Nevertheless, this questionable
principle has been accepted because it seems to work. The multipli-
cation by

√

1 − 𝛽2 of Eq. (46) does indeed give Eq. (36b), which is
instein’s relativistic Doppler formula where 𝜃′ is the reception angle.

This unfortunate identity has logically reinforced the presumed validity
of Eq. (46) as the classical Doppler effect formula for generations
of researchers and teachers. The consensus created in the scientific
community by this apparent proof probably inhibited naive questions
such as, for instance, if the only difference between the classical and
relativistic Doppler effects is the dilation of the periods for the latter,
then why should the classical and relativistic aberration rules be dif-
ferent? In fact, the generalized correction by the dilation factor has a
homothetic effect, which by itself cannot change the angles.

6.4.2. Additional confusion caused by an inappropriate wave averaging
mode

The puzzling concept of the secondary Doppler effect, which is sup-
posed to be specific to relativity and which probably gives credit to the
current classical Doppler effect, has itself been consolidated by the in-
appropriate use of the arithmetic mean for averaging Doppler effects. In
the articles validating the relativistic Doppler effect, longitudinal (Ives
and Stillwell, 1938) and transverse (Hasselkamp et al., 1979), it is
explained that the relativistic Doppler effect, unlike the classical one,
includes a secondary transverse effect. Ives and Stilwell simultaneously
measured the longitudinal wavelengths of approach (𝜆a) and recession
(𝜆r), with and against the motion of the particles. They then compared
the wavelength shifts with their so-called ‘‘center of gravity’’ which is
calculated as an arithmetic mean (Hasselkamp et al., 1979). Knowing
the relativistic longitudinal effects to be demonstrated, they calculated

𝜆mean =
𝜆a + 𝜆r

2

= 1
2

⎛

⎜

⎜

⎝

𝜆0

√

1 − 𝛽
1 + 𝛽

+ 𝜆0

√

1 + 𝛽
1 − 𝛽

⎞

⎟

⎟

⎠

=
𝜆0

√

1 − 𝛽2
∼ 𝜆0 +

𝜆0
2
𝛽2

(48)

They concluded that 𝜆mean ≠ 𝜆0 due to transverse Doppler shift

𝛥𝜆
𝜆0

=
𝜆mean − 𝜆0

𝜆0
∼ 1

2
𝛽2

This conclusion results from a misuse of the arithmetic mean. Per-
aps judging the appearance of Eq. (48) satisfactory, these authors did
ot look at what is going on for the frequency 𝑓mean which corresponds

to this 𝜆mean. However, since the collinear Doppler effect during the
approach for wavelengths corresponds to the Doppler effect during the
recession for frequencies and vice versa, they would have found that
the result is the same

𝑓mean =
𝑓0

√

1 − 𝛽2
(49)

ut for any photon, the product: frequency × wavelength is a well
nown constant

𝜆 = 𝑐 (50)
9 
nd therefore the above approach is obviously wrong as we would have

mean 𝜆mean =
𝜈0 𝜆0
1 − 𝛽2

≠ 𝑐 (51)

In fact, the arithmetic mean used in Ives and Stillwell (1938) and
Hasselkamp et al. (1979) is inappropriate for averaging Doppler effects
because as explained in Section 7.2, it cannot work for both frequencies
and wavelengths.

6.4.3. The transverse effect supposedly specific of relativity
Finally, the acceptance of the classical Doppler effect by the sci-

entific community may have been favored by the mistaken intuition
that it should cancel (𝑓mov∕𝑓 = 1) when the source is the closest. The
absence of Doppler shift predicted by the currently accepted equation
Eq. (46) seems very reasonable (Fowler, 2008), but it is nevertheless
incorrect, as a rigorous analysis of the spherical wavefront (Table 2
in Appendix B) shows. For a moving source and static receiver, the
Galilean transverse effect obtained for a reception angle 𝜃′ = 𝜋∕2, is

(

𝑓mov

𝑓

)

transverse
= 1

√

1 + 𝛽2
(52)

When this effect is received, the source is at the distance 𝛽𝐷 from
the nearest point (Table 2). By comparison, the famous relativistic
transverse effect, which Einstein envisioned as a possible confirmation
of special relativity theory (Einstein, 1907), is
(

𝑓mov

𝑓

)

transverse
=
√

1 − 𝛽2 (53)

These effects are both 1− 𝛽2

2 +(𝛽4) and differ only by 𝛽4∕4, making
the discrimination proposed by Einstein technically very delicate.

7. Mean Doppler effects

7.1. Sum of Doppler effects

The sums of the Doppler-modified durations can include the sum-
mation of Doppler effects on periods. Depending on whether the cal-
culation is based on the point of emission of the signal or the position
of its source (angle 𝜃′ or 𝜃 respectively), we recover the asymmetry
f Einstein’s traveling clock experiment (Einstein, 1905). The result
f Section 4.2, which adds opposite collinear Doppler effects, can be
eneralized to all observer orientations around the emission point

1
2𝜋 ∫

2𝜋

𝜃′=0

1 − 𝛽 cos 𝜃′
√

1 − 𝛽2
𝑑𝜃′ = 1

√

1 − 𝛽2
(54)

hile this summed Doppler effect cancels out if the origin of the angle
s the actual location of the source.

1
2𝜋 ∫

2𝜋

𝜃=0

√

1 − 𝛽2

1 + 𝛽 cos 𝜃
𝑑𝜃 = 1 (55)

7.2. The appropriate mean for averaging frequencies

The addition of Doppler effects is useful for summing durations but
not for calculating an average Doppler effect, as in Section 6.4.2. Math-
ematically, there are several modes of averaging that apply differently
to the specific situations. These different types of averaging include,
when applied to two Doppler effects,

• The arithmetic mean: 1
2

(

𝑓mov
1
𝑓

+
𝑓mov
2
𝑓

)

• The geometric mean:
(

𝑓mov
1 𝑓mov

2

)
1
2

𝑓 𝑓
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• The harmonic mean: 2𝑓
𝑓mov
1 + 𝑓mov

2

The appropriate one is necessarily the geometric mean, because it
is the only one that holds for both periods and frequencies, such that

⟨𝑓1, 𝑓2⟩ =
1

⟨𝑇1, 𝑇2⟩
(56)

As a matter of fact, the use of geometric averages for wavelengths
has already been empirically applied and, in particular, satisfies the
rule of color reflectance fusion.

7.3. Mean relativistic Doppler effect

The product involved in the geometric mean for all angles 𝜃 around
the source using Eq. (36b) can be transformed into a sum by going
through the logarithms. Expressed in periods

⟨

𝑇mov

𝑇

⟩

=

( 𝜋
∏

𝜃=0

𝑇mov
(𝜃)

𝑇

)
1
𝜋

= exp

[

1
𝜋 ∫

𝜋

𝜃=0
ln

(
√

1 − 𝛽2

1 + 𝛽 cos 𝜃

)

𝑑𝜃

]

(57)

But one can also start directly with products, using two-by-two ge-
metric averages between points symmetrically positioned apart from
∕2 by an angle 𝜉 ranging from 0 to 𝜋∕2.

𝑇mov

𝑇

(𝜋
2
± 𝜉

)

⟩

=

√

1 − 𝛽2
√

[

1 + 𝛽 cos
(

𝜋
2 − 𝜉

)] [

1 + 𝛽 cos
(

𝜋
2 + 𝜉

)]

=

√

1 − 𝛽2

1 − 𝛽2 sin2 𝜉

(58)

This half geometric averaging minimizes the inequality between
the global geometric mean and the residual arithmetic mean, which
is obtained by summing the geometric means of all symmetric 𝜉,
⟨

𝑇mov

𝑇

⟩

< 2
𝜋

√

1 − 𝛽2 ∫

𝜋
2

𝜉=0

𝑑𝜉
√

1 − 𝛽2 sin2 𝜉
(59)

whose last term is Legendre’s complete elliptic integral of the first
kind (Byrd and Friedman, 1971). The right side of Eq. (59) is less than
one since the square root of the elliptic integral should be removed to
obtain 1.

2
𝜋

√

1 − 𝛽2 ∫

𝜋
2

𝜉=0

𝑑𝜉
1 − 𝛽2 sin2 𝜉

= 1 (60)

More precisely,
⟨

𝑇mov

𝑇

⟩

< 2
𝜋
𝐾

(

𝛽2

𝛽2 − 1

)

∼ 1 −
𝛽2

4
−

7𝛽4

64
(61)

7.4. Mean Galilean Doppler effect

The geometric mean of the Galilean Doppler effects obtained before
and after the nearest point is independent of 𝜃 and less than 1. Using
Eq. (38) and for periods,

⟨

𝑇mov

𝑇

⟩

=

( 𝜋
∏

𝜃=0

𝑇mov
(𝜃)

𝑇

)
1
𝜋

=
√

1 − 𝛽2 ∼ 1 −
𝛽2

2
−

𝛽4

8
(62)

In both cases, perceived time appears globally contracted, contrary
o a time dilation.
𝑇mov

𝑇

⟩

< 1

Note that the mean Galilean Doppler effect is 1∕𝛾 while the mean
relativistic one is not.
10 
7.5. Comparison of the mean Galilean and relativistic values

For the Galilean circle, the situation is geometrically clear. On the
axis crossing the source and orthogonal to its trajectory, the wavefronts
are narrowed by

√

1 − 𝛽2, narrower in front of this axis and wider be-
hind it, with an overall average equal to the transverse axis. Strikingly,
the properties of this axis are exactly the same for the ellipse (compare
the yellow lines between Tables 1 and 2 in Appendix B). However, since
the ellipse is longer at the back, the global average of the distances
between successive wave crests is slightly higher.

8. Discussion

8.1. New tools for comparing and revising wave perception

This study unambiguously links the Doppler effect to the geom-
etry of the perceived wavefront surfaces, which leads to a change
in the apparent durations for electromagnetic waves, in accordance
with the theory of special relativity. This geometric approach over-
comes the limitations of phase-based treatments below one period to
determine frequencies, that are meaningful only for a set of periods. Al-
though electromagnetic and Galilean waves are fundamentally different
in nature, it is instructive to compare their properties. Their differ-
ences in terms of aberration and the Doppler effect are more subtle
than expected and depend entirely on the respective received wave-
fronts: ellipsoidal for electromagnetic waves and spherical for Galilean
waves. Some explanations are proposed to explain the persistence of
an erroneous classical Doppler formula in the recent literature and in
university courses. In fact, the currently accepted Doppler equation has
been strangely shaped by the knowledge of the relativistic one, while
the two Doppler effects obey radically different laws. It suffers from
unproven assumptions widely used in textbooks such as: (1) there is
no transverse classical Doppler effect; (2) the relativistic Doppler effect
corresponds to the Galilean Doppler effect modified by the Lorentz di-
lation factor. Einstein himself took the previous formula of the Doppler
effect (not yet called classical) for granted, which logically led him
to believe that the transverse effect he had discovered was specific
to the relativistic Doppler effect. His contributions were so important
that he cannot be asked to verify the previous formulas. The timing
of perceived durations, like the Doppler and aberration effects, is a
receiving process that depends on the velocity vector. Unlike the time
dilation of special relativity, perceived time is not uniform in a global
inertial frame. The appropriate tool for converting proper to proper
durations is the Doppler effect, which applies not only to wave periods,
to which it is usually limited, but to any duration.

8.2. Conclusion

The Doppler effect is generally considered to be a long-established
phenomenon, corresponding to a dead branch of fundamental physics,
now confined to general education. According to the historical recol-
lections of Nolte (2020), one of the difficulties Christian Doppler had
in convincing the scientific community in 1842 was that his theory
seemed too mathematically simple to describe physics. As this study
suggests, using only elementary algebra, the Doppler effect seems to
remain both mathematically simple and physically subtle.
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Appendix A. Classical Doppler measurement

The relativistic Doppler effects predicted by Einstein have been per-
fectly verified experimentally in their longitudinal (Ives and Stillwell,
1938) and transverse (Hasselkamp et al., 1979) versions, but curiously
the angular Doppler effect, which predates relativity, has remained
little studied. Moreover, the study of Hasselkamp et al. (1979) was
based on the unverified idea that the so-called classical Doppler effect
has no transverse effect, which is disputed here. Any ordinary movie is
a joint recording of image and sound, but since these two types of waves
reach the camera and microphone at different speeds, they actually
describe separate moments in the recent past (Fig. 7). To illustrate this
subtlety, let us analyze the shift in sound frequency during the passage
of an airplane by analyzing image and sound in parallel.

A.1. Determination of an airplane speed and rest frequency

The asymptotic values of the apparent frequencies heard when the
source arrives, written 𝑓𝑎 and those measured when the source recedes,
written 𝑓𝑟, are sufficient to determine the source velocity, even without
knowing the source frequency 𝑓0. Indeed, 𝑓𝑎 and 𝑓𝑟 are related by

𝑓 = 𝑓 1 − 𝛽 = 𝑓 1 + 𝛽 (A.1a)
0 𝑎 ( ) 𝑟 ( )

11 
from which

𝛽 =
𝑓𝑎 − 𝑓𝑟
𝑓𝑎 + 𝑓𝑟

(A.1b)

The frequencies given by the spectrogram 𝑓𝑎 = 6750 Hz and 𝑓𝑟 =
4338 Hz, give 𝛽 = 0.2175 (at 15 ◦C, 74 m/s or 266 km/h). Once 𝛽 is
known, the equalities of Eq. (A.1a) allow us to find the rest frequency:
𝑓0 = 5282 Hz. Note that although it is called rest frequency, 𝑓0 may
not exist when the aircraft is stopped with the engines on, for example
if this sound is generated by the flow of the apparent wind.

A.2. Doppler formulas as a function of distance

Angular Doppler formulas are not very practical for analyzing ex-
perimental results because they compress the far zones and induce
a distortion between the linear recording of the moving source at
constant speed. The correspondence between any angle 𝜗 and the
distance is

𝐷 = −𝑋 tan 𝜗 (A.2)

where 𝐷 is the shortest source-observer distance over the whole source
trajectory, and 𝑋 is the distance of the source from this closest point.
𝑋
𝐷

= 𝑥 = − cos 𝜗
√

1 − cos2 𝜗
(A.3)

cos 𝜗 = − 𝑥
√

1 + 𝑥2
(A.4)

By applying this relation to the angles 𝜃 and 𝜃′ presented previously,
we obtain, for the classical Doppler formula
(

𝑓mov

𝑓

)

classical
= 1

1 +
𝛽𝑥′

√

(A.5)
1 + 𝑥′2
Fig. A.1. Doppler effect illustrated by a dominant frequency recorded during the passage of an airplane at low altitude. The blue lines connecting the images of the planes to
the spectrogram indicate the actual coincidence of sound and image on the film, while the red lines connect the recorded frequencies to their actual points of emission. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.2. Plots of Galilean angular aberration as a function of distance. Dashed curve:
Angle 𝜃 between the trajectory of the source and the source–receiver direction according
to Eq. (A.10). Solid line curve: angle 𝜃′ between the trajectory of the source and the
line connecting the emission point to the receiver.

and for the formulas deduced from the spherical wavefront, the Doppler
effects are described as functions of the coordinates of the position of
the source (𝑃 ) and of the emission point (𝐸), by setting 𝜗 = 𝜃 or 𝜃′

respectively.
(

𝑓mov

𝑓

)

𝑃
=

√

1 + 𝑥2

𝛽𝑥 +
√

1 − 𝛽2 + 𝑥2
(A.6)

and
(

𝑓mov

𝑓

)

𝐸
= 1

√

1 + 𝛽2 + 2𝛽 𝑥′
√

1 + 𝑥′2

(A.7)

As a check, we can verify that Eq. (A.6) gives the average Doppler
effect determined with its angular counterpart Eq. (62). The geometric
mean of the Galilean Doppler effect is

∀𝑥,
⟨

𝑓 (−𝑥)
𝑓0

,
𝑓 (+𝑥)
𝑓0

⟩

= 1
√

1 − 𝛽2
(A.8)

The Doppler effect of the sound is naturally carried by the acoustic
wave but the information about the position of the source is generally
visual, i.e. carried by light (Fig. 7). When the wave emitted in 𝑋
reaches the receiver, the source has traveled a distance that depends
on the duration 𝛥𝑡 of the flight of the wave from the source to the
receiver. This path, of length 𝑐𝛥𝑡, is the hypotenuse of a right triangle
whose other two sides are the shortest distance 𝐷, and the distance 𝑋
separating the source from the nearest point. So Pythagoras says

(𝑐𝛥𝑡)2 = 𝐷2 +𝑋2 (A.9a)

from which

𝛥𝑡 =

√

𝐷2 +𝑋2

𝑐
= 𝐷

√

1 + 𝑥2

𝑐
(A.9b)

During this time, the source will have traveled

𝛥𝑋 = 𝑣𝛥𝑡 = 𝛽𝐷
√

1 + 𝑥2 (A.9c)

or in normalized distance

𝛥𝑥 = 𝛽
√

1 + 𝑥2 (A.9d)

The point of emission can be calculated from the actual position
of the source when the Doppler effect is detected. The angle 𝜃′ =

cos−1
(

− 𝑥
√

)

whose origin is the point of emission, is expected

1 + 𝑥2
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to become 𝜃 when replacing 𝑥 by 𝑥 + 𝛥𝑥,

𝜃 = cos−1
⎛

⎜

⎜

⎜

⎝

−(𝑥 + 𝛽
√

1 + 𝑥2)
√

1 + (𝑥 + 𝛽
√

1 + 𝑥2)2

⎞

⎟

⎟

⎟

⎠

which can be rewritten

= cos−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

− 𝑥
√

1 + 𝑥2

)

− 𝛽

√

√

√

√1 + 𝛽2 − 2𝛽

(

− 𝑥
√

1 + 𝑥2

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(A.10)

Expectedly in this form, Eq. (A.10) is analogous to the aberra-
tion formula Eq. (37c). These functions are shown in Fig. A.2. The
introduction of Eq. (A.10) into the Doppler formula Eq. (38), gives
back the curve of Eq. (A.7). Conversely, the introduction into the
Doppler formula Eq. (39) of the angle 𝜃 obtained by conversion of

cos−1
(

− 𝑥
√

1 + 𝑥2

)

by the aberration formula Eq. (37b), gives the curve

of Eq. (A.6). The Doppler functions derived from this approach are
shown in Fig. A.3.

A.3. Curve fitting and conclusions

The theoretical equation combining the simultaneously recorded
image and sound is Eq. (A.6) where the ordinate is the sound Doppler
shift and the abscissa 𝑥 is the spatial coordinate of the source deter-
mined visually. Inserting the previously measured value of 𝛽 into this
equation gives the horizontal increment 𝑥 = 1. At 𝑥 = 0 (5156 Hz,
Doppler effect of 1.025) the observer’s line of sight is perpendicular to
the plane trajectory. The Doppler effect for 𝑥 = 0 is expected to be
𝑓mov

𝑓0 orthogonal
= 1

√

1 − 𝛽2

As explained in the main text, this is not the transverse Doppler effect
which is
𝑓mov

𝑓0 transverse
= 1

√

1 + 𝛽2

This latter effect (5156 Hz, Doppler effect of 0.977) is received only
when the plane has moved away from the transverse position by a dis-
tance 𝛽𝐷 from the nearest point. Given the delay of 0.323 s measured
from the video, it corresponds to 110 m from the transverse position.
In summary, the accuracy of the curve fit shown in Fig. A.3 can be
verified by checking the frequencies for the following two points:

∙ 𝑥 = 0 → 𝑓mov = 𝑓0∕
√

1 − 𝛽2
∙ 𝑥 = 𝛽 → 𝑓mov = 𝑓0∕

√

1 + 𝛽2
In addition, for image and sound to match, 𝑥 = 0 must coincide with

the most transverse position of the source. This can be seen in Fig. A.1
in the apparent orientation of the wings and the alignment of the side
windows of the cockpit. Once these three criteria are met, the rest of the
curve fits remarkably well (Fig. A.1). The blue lines connect the images
and the sounds which are superimposed on the video. But this apparent
simultaneity is only an illusion of reception, as shown by the red lines
that connect the sound to the position of the plane where it was actually
emitted. This offset is, of course, due to the difference in speed between
light and sound to get from the plane to the camera (Mangiarotty and
Turner, 1967). The sound received when the plane is seen perfectly in
profile was sent at the position 𝑥 = −𝛽∕

√

1 + 𝛽2, which would belong
to the curve drawn to Eq. (A.7) if added to the same diagram.

Appendix B. Points of comparison between relativistic and
Galilean angular Doppler effects

See Tables 1 and 2.
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Fig. A.3. Doppler effect of the sound as a function of the relative position of a moving source on its path, for a stationary receiver in the absence of wind, expressed as a function
of either the coordinate of the emitting point (lower red curve drawn to Eq. (A.7)), or of the visually detected source (upper blue curve drawn to Eq. (A.6)). The dashed black
curve shown for comparison is that of the classical Doppler formula drawn to Eq. (A.5). The increment of the coordinate 𝑥 is the minimum distance between the source and the
receiver. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Some relativistic correspondences between angles, distances and Doppler effects. The green line corresponds
to the transverse Doppler effect, and the yellow line is the only common point with the Galilean Doppler
effect of Table 2.

Origin of the angle Distance to the nearest point of the Doppler effect

Source Point of emission Source position Wave emission
𝜃 𝜃′ 𝑥 𝑥′ 𝑓mov∕𝑓

0 0 −∞ −∞
√

1 + 𝛽
1 − 𝛽

𝜋
2

cos−1 𝛽 0 −
𝛽

√

1 − 𝛽2
1

√

1 − 𝛽2

cos−1 −
1 −

√

1 − 𝛽2

𝛽
cos−1

1 −
√

1 − 𝛽2

𝛽
1
√

2

√

1
√

1 − 𝛽2
− 1 − 1

√

2

√

1
√

1 − 𝛽2
− 1 1

cos−1 −𝛽 𝜋
2

𝛽
√

1 − 𝛽2
0

√

1 − 𝛽2

𝜋 𝜋 +∞ +∞
√

1 − 𝛽
1 + 𝛽
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Table 2
Some Galilean correspondences between angles, relative distances and Doppler effects. The unit of
angle is radian and the unit of distance is the minimum distance between the mobile source and
the stationary receiver. The green line corresponds to the transverse Doppler effect, and the yellow
line is the only common point with the relativistic Doppler effect (Table 1).

Origin of the angle Distance to the nearest point of the Doppler effect

Source Point of emission Source position Wave emission
𝜃 𝜃′ 𝑥 𝑥′ 𝑓mov∕𝑓

0 0 −∞ −∞ 1
1 − 𝛽

𝜋
2

cos−1 𝛽 0 −
𝛽

√

1 − 𝛽2
1

√

1 − 𝛽2

cos−1 −
𝛽
2

cos−1
𝛽
2

𝛽
√

4 − 𝛽2
−

𝛽
√

4 − 𝛽2
1

cos−1 −
𝛽

√

1 + 𝛽2
𝜋
2

𝛽 0 1
√

1 + 𝛽2

𝜋 𝜋 +∞ +∞ 1
1 + 𝛽
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