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Overlooked effects of wavefront reception with or without speed limit,

from aberration to time measurement

Denis Michel

Université de Rennes, Irset, Rennes, France. E-mail: denis.michel@live.fr

The measurement of durations, Doppler and aber-
ration effects and cosmological redshift, are all
perceptual phenomena, and as such require the
use of reception rather than Lorentz-transformed
coordinates. Perceived durations relate proper to
proper durations while the famous time dilation
of special relativity relates proper to improper
durations. Taking this subtlety into account reha-
bilitates the controversial Poincaré ellipsoid whose
polar equation is just the relativistic Doppler ef-
fect and which in no way questions the sphericity
of light wavefronts in all frames. The transposition
of this approach to the Galilean case whose trans-
formed and received wavefronts are homothetic,
reveals new aberration relations and the existence
of a transverse Doppler effect very similar, in pro-
portion to the respective wave velocities, to the
relativistic one, thus forbidding in practice the
test of his theory proposed by Einstein. The rea-
sons for the long persistence of a classical angular
Doppler formula divorced from wavefront recep-
tion are discussed, one of them ironically being
the theory of special relativity.

Keywords:
Wavefront reception, transverse Doppler effect, aberra-
tion, relativity, time measurement.

1 Introduction

The viewing of a distant scene transmitted by light at the
frequency of one frame per wave crest, would appear ac-
celerated if the periods were shortened and slowed if the
periods were lengthened. The time marked by a clock
viewed on this film would appear modified in the same
way compared to our local clock. On the other hand,
special relativity says that a clock in uniform motion is
slowed down by a Lorentz factor (γ) with respect to ours.
In fact these two phenomena are not equivalent because
the measured time distortions do not correspond to the
orientation-independent time dilation of special relativity
which is not directly perceived but calculated. Clarify-
ing this point removes misunderstandings, resolves long-
standing debates and rehabilitates Poincaré’s ellipsoidal

wavefront theory. Transposing the electromagnetic wave-
front approach to its Galilean counterpart is even more
instructive and allows to improve the current aberration
and Doppler rules.

2 To change the perception of time
by changing the waves

2.1 The prediction of Lemâıtre

Before the celebrated publication of Hubble, Lemâıtre had
shown that wavelengths should follow expansion [1]. For
an interval of universe

ds2 = dt2 − a(t)2dσ2 (1)

where dσ Is the element length of a space of radius equal
to 1, the equation of a light beam is

σ2 − σ1 =

∫ t2

t1

dt

a
(2)

where σ1 and σ2 are the coordinates of a source and an
observer. A beam emitted later at t1 + δt1 and arriving at
t2 + δt2 undergoes a shift such that

δt2
a2
− δt1
a1

= 0 (3)

giving

z =
δt2
δt1
− 1 =

a2
a1
− 1 (4)

where δt1 and δt2 can be considered as the periods at
emission and reception respectively [1]. If a procession of
regularly spaced walkers crosses a stretching rubber band,
their spacing on arrival will obviously be stretched in the
same ratio as the rubber band. The same reasoning ap-
plies to a series of wave crests. In his article, Lemâıtre
called this effect a Doppler effect [1]. This term is ac-
ceptable if it is broadly defined as a wave distortion, but
this is not the classical Doppler effect related to the speed
of the source which will be addressed later. The ratio of
the received wavelength to the emitted wavelength simply
follows the increase in the distance D between the source
and the receiver that occured during the light’s journey:
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T app

T
=
Dreception

Demission
(5)

This generalized increase in wavelength, known as the
cosmological redshift, is evaluated by comparing standard
values such as atomic rays which are all identical as long as
they are measured in their inertial rest frames. This red-
shift is entirely a phenomenon of wave distortion, which
holds even if the sources and the receivers belong to the
same inertial frame.

2.2 The observation: the slowing of time
by stretching waves

A proof of the direct relation between the electromagnetic
wave stretching and the durations comes from an astro-
nomical observation, not originally intended for this pur-
pose, made in the context of the expansion of the universe
thanks to the type Ia supernovae (SNIa). SNIa are stel-
lar explosions that are extremely luminous for a certain
stereotypical duration, and which can be seen from very
far away. The light from some very distant and there-
fore very old SNIa took a long time to reach us, and as
space expanded during the light’s journey, it stretched its
wavelengths. In this context, a striking phenomenon was
noticed: The duration of the brightness of SNIa depends
on their distance, in exact proportion to their redshift, i.e.
to the lengthening of the period.

∆tapp

∆t
=
T app

T
(6)

For example, a distant SNIa with a redshift of
T app/T = 1.5, has a brightness duration that is exactly
1.5 times longer [2]. This observation shows that the sim-
ple fact of decreasing the frequency of the waves, increases
the apparent durations. If we consider the question care-
fully, there is no magic here: the same scene viewed at 30
frames per second when the wavelengths are not stretched
(T app/T0 = 1) is viewed at 20 frames per second when the
wavelengths are stretched by T app/T0 = 1.5, and therefore
the viewing time will necessarily be longer to receive all

the frames of the scene.

2.3 Wave reception is a physical process

The perception of compressed or expanded waves is not a
simple optical illusion because the physical effects are real.
A clear example is provided by the technique of atomic
cooling. An atom can be immobilized by illuminating it
from all sides with streams of light. As the atom moves in
a given direction, the Doppler effect causes the light fre-
quency, and therefore the light energy, to increase in front
of it and decrease behind it, bringing the atom back to its
original position [3].

3 Limit speed and causality

3.1 The limit speed of light

Physical laws are such that apparent inconcistencies are
eliminated. A typical example is the speed limit of light,
which prevents us from witnessing incongruous scenes and
having to reconstruct them later. We have never seen a
soap bubble appear spontaneously from a cloud of droplets
and then disappear into the tube of an experimenter who
sucks it in. However, this is the vision we might have in
the absence of limit velocity as shown in Fig.1. As shown
by the arrows at the top of the diagram, as the car moves
forward, the images of the bubble arrive at a greater dis-
tance from the observer OB at the back of the car, and
at a smaller distance from the observer OF at the front of
the car. Hypothetically, if the speed of the car exceeded
the speed of light (v > c), OF could witness a reverse
scene, the bursting of the bubble before its birth. Such
a perception, which violates the principle of causality, is
prevented by the unsurpassable speed of light. At worst,
in the asymptotic case of a car traveling at nearly c, the
birth and bursting of the bubble would appear to be si-
multaneous, and its lifetime would tend toward zero, but
would never be negative. By comparison, if there were
no speed limit, we could see the consequences before the
causes.

Figure 1. Events of birth (E1) and disappearance (E2) of a soap bubble in a vehicle moving at constant speed v with respect

to observers, one located at the back (OB) and the other at the front (OF ) of the vehicle. The images of the formation and the

bursting of the bubble reach the observers at the speed of light c.

2



3.2 Causality break in the absence of
speed limit

In the soap bubble experiment of Fig.1, the vehicle can
never reach the speed limit c of the wave carrying its im-
age. As a consequence, the causal order of the events is
necessarily respected visually. We will always see bubbles
burst after they form, regardless of their relative speed
with respect to any observer. This sequence of events re-
spects causality and is consistent with the statistical ar-
row of time. But what would have happened if there had
been no speed limit? Let us imagine that the duration
of the bubble is no longer measured visually but acousti-
cally, assuming that tic and tac sounds are emitted when
the bubble is born and when it bursts, and that the ve-
hicle is a fast aircraft that exceeds the speed of sound.
If it were technically possible to listen to the sounds in
the cockpit of the plane that broke the sound barrier and
assuming the existence of sound intensity corrections, we
would hear the bubble bursting before it appeared, as if on
a soundtrack played backwards. We would also hear the
pilot (un)swallow his coffee before it was (un)poured into
his cup. In the absence of a speed limit, the wavefronts
can arrive at the receptor as separate bubbles that are re-
versed in time, as shown by Christian Doppler in 1847 in
his diagram of the cone of successive wavefronts emitted
by a supersonic source [4] (right panel in Fig.2 for β > 1).

Figure 2. Time reversal between sending and receiving for

β = 1, the sound barrier for the sound wave. For β > 1, the

most recently emitted wavefronts are received first.

4 Orientation-dependent percep-
tion of durations

The association between the redshift and the duration
[2] illustrates the connection between perceived time and
period distortion. Applying this principle to the kinetic
Doppler effect, the occupants of a vehicle coming toward
us should move rapidly, and then suddenly slow down as it
moves away from us. As shown below, this is indeed what
the theory of special relativity predicts. To illustrate this,
let us calculate the apparent lifetime of the soap bubble
inside the moving vehicle.

4.1 Orientation-dependent relativistic
duration measurement

The basic tools of special relativity allow to demonstrate
the nature of the perceived time. In the frame of reference
R of the eyes in Fig.1, let us consider the point of view of
OB who sees the car O′ moving away from him. In the
reference frame of the car R′, a soap bubble is temporarily
formed. The clocks of OB and O′ are synchronized and co-
incide at t = t′ when they cross each other. Let us consider
the spacetime coordinates of the events: formation of the
bubble (E1) and the reception of this image by OB (ER).
The image of the appearance of the bubble is emitted by
the car O′ at t′E1 and is received by OB at a date which
he notes tR at the location xR = 0. The corresponding
coordinates in R′ are given by Lorentz transformations:

x′R = γ (xR − βctR) = −γβctR (7a)

t′R = γ

(
tR −

βxR
c

)
= γtR (7b)

The date t′E of the appearance of the bubble in R′ can be
deduced from the distance traveled by the light ray in R′.
The speed of the light ray c is given by the ratio

c =
x′E − x′R
t′R − t′E

=
0− (−γβctR)

γtR − t′E
(8a)

from which

t′E = γtR(1− β) = tR

√
1− β
1 + β

(8b)

This equation establishes the relation between the date
of emission by O′ of the image of the event E1, and the
date of reception tR of its image by OB . The same rea-
soning is valid for the events of birth and bursting of the
bubble, which gives a life interval of the bubble

∆tR = ∆t′E

√
1 + β

1− β
(9)

We simply rediscover the relativistic Doppler effect
here, because the events E1 and E2 can just as well be
the emissions of two successive wave crests. The recep-
tion events take place at the same location in the refer-
ence frame R, so the time interval between them ∆tR is a
proper time for OB . The emission events take place at the
same location in the reference frame R′, so the time inter-
val between them ∆t′E is a proper duration for O′. The
proper lifetime of the bubble for O′, appears extended in
the time of OB , in a ratio different from the γ factor of
the time dilation of special relativity. The latter is not di-
rectly perceived but can be calculated mathematically as
follows. Once the coordinates in R′ are obtained (x′E1 = 0
and t′E1 = γtR(1 − β)), we can determine them in R by
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applying the Lorentz transformations in the other direc-
tion

xE1 = γ (x′E1 + βct′E1) = γβctR

√
1− β
1 + β

=
βctR
1 + β

(10a)

tE1 = γ

(
t′E1 +

βx′E1

c

)
= γ2tR(1− β) =

tR
1 + β

(10b)

By substituting in this last equation the value of tR as a
function of t′E1,

tR1 = tE1(1 + β) = t′E1

√
1 + β

1− β
(11a)

The relation between tE1 to t′E1 is obtained

tE1 =
t′E1√
1− β2

(11b)

and as the next event of bursting of the bubble E2, follows
the same rule,

∆tE = ∆t′E γ (11c)

The time dilation of special relativity is verified, but
∆tE cannot be timed by OB because it is no longer a
proper duration, since E1 and E2 do not occur at the
same place in R. The time dilation of special relativity
puts in relation a proper duration and an improper dura-
tion, which cannot be measured directly.

Similar calculations can be made for the reception of
images by OF , still in R but at the front of the vehicle.
The suffix R now refers to the reception of images by OF
while keeping the same orientation of the x axis, we have

x′R = γ (xR + βctR) = γβctR (12a)

t′R = γ

(
tR +

βxR
c

)
= γtR (12b)

The light ray carrying to OF the image of the appearance
of the bubble has speed

c =
x′R − x′E1

t′R − t′E1

=
−γβctR
γtR − t′E1

(13a)

from which

t′E1 = γtR(1 + β) = tR

√
1 + β

1− β
(13b)

Repeating the same process for the image of the bub-
ble bursting, the observer OF measures a shorter life of
the bubble with his stopwatch.

∆tR = ∆t′E

√
1− β
1 + β

(14)

But again, this does not change the relativistic time dila-
tion, because for OF ,

xE1 = γ (x′E1 + βct′E1) = γβctR

√
1 + β

1− β
=

βctR
1− β

(15a)

tE1 = γ

(
t′E1 +

βx′E1

c

)
= γ2tR(1 + β) =

tR
1− β

(15b)

and thus always

tE1 =
tR

1− β
=

1

1− β
t′E1

√
1− β
1 + β

= t′E1γ (16)

The time dilation actually measured by each point of
a rest frame depends not only on the velocity modulus v
of the moving reference frame, but also on the velocity
vector ~v. It will therefore be interesting to average these
measurements for all possible orientations (see section 7).

4.2 Orientation-dependent ”Galilean life-
time” measurement

Electromagnetic time results from the speed limit of light
combining time and space. But let us repeat the previous
calculation of the lifetime of the soap bubble using only
a Galilean wave emitted by the soap bubble, keeping the
notation but replacing the Lorentz transformations by the
Galilean transformations. The corresponding coordinates
in R′ are given by:

x′R = xR − βctR = −βctR (17a)

t′R = tR (17b)

The date t′E of the appearance of the bubble in R′ can be
deduced from the distance traveled by the Galilean ray at
R′, whose speed c is given by

c =
x′E − x′R
t′R − t′E

=
0− (−βctR)

tR − t′E
(18a)

giving

t′E = tR (1− β) (18b)

The ”Galilean lifetime” of the bubble is thus increased

∆tRB =
∆t′E
1− β

(19a)

and without redoing the whole calculation, we understand
that for the observer OF

∆tRF =
∆t′E
1 + β

(19b)

As expected, we find the classical longitudinal Doppler
effect.
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5 Doppler effects calculated from
the perceived wavefront surfaces

According to the dictionary, time is perceived as the se-
quence of events. The density of the stream of received
images will naturally affect the tempo. This density is
modified by the speed of the source relative to the receiver
through the Doppler effect which has been introduced in
an academic way above in the section 4, but this extensive
method was limited to the elementary collinear case. The
very general non-academic approach used below will give
the results in all directions at once, both for the Doppler
effect and for the aberration relations. Moreover, it allows
to revise previously established Galilean relations. Con-
cerning the relativistic aspect, this approach restores all
its importance and validity to the Poincaré ellipsoid that
remains subject to persistent debate. In order too better
understand Poincaré’s argument, let us establish its basis.

5.1 The coordinates of the light front de-
scribe a sphere in all reference frames

Since light propagates at the same speed in all directions,
its wavefront is necessarily spherical. Moreover, since the
speed of light is the same in all reference frames, a sphere
of a light wave in one reference frame S′ must also be a
sphere in the reference frame S. This is indeed what the
Lorentz transformations ensure. The sphere

x′2 + y′2 + z′2 = (ct′)2 (20a)

transformed using

x′ =
x+ βct√

1− β2
, y′ = y, z′ = z and t′ =

t+ βx
c√

1− β2

becomes

(x+ βct)2

1− β2
+ y2 + z2 =

(ct+ βx)2

1− β2
(20b)

which simplifies into

x2 + y2 + z2 = (ct)2 (20c)

There is no discussion about this result which high-
lights the power of Lorentz transformations and no point
in trying to oppose the sphere attributed to Einstein and
the ellipse attributed to Poincaré [5], since both authors
were aware that a Lorentz-transformed light sphere is a
light sphere, received as an ellipsoid by an observer in rel-
ative motion [6, 7]. It happens that Doppler, aberration
and measured time are reception effects and that confusing
the reception coordinates with those designed to ensure
Lorentz invariance, would misleadingly suggest a violation
of the Lorentz invariant as for example in [8].

5.2 Contraction of lengths and of length-
measuring instruments

The contraction of lengths in the direction of displace-
ment continues to intrigue the general public because it
has never been detected; but is it detectable in practice?
Measuring an object means using an instrument in the
reference frame of that object. So if the object moves
along x, the x dimension of the measuring instrument
will be shortened in the same ratio, making any detection
impossible. But as Poincaré pointed out, if one does not
use a material object as a measuring instrument, but an
electromagnetic wave path (which is not subject to length
shortening), then the wave path should appear stretched
by comparison along x and take the form of an ellipsoid
[5, 6, 7, 8, 9, 10] with a transverse/longitudinal axis ratio

of
√

1− β2.

5.3 Equations of the spheres of the mobile
frame

5.3.1 The material sphere

From the mobile coordinate system, the surface of a ma-
terial sphere of radius 1 has the equation

x′2 + y′2 + z′2 = 1 (21)

But from the fixed coordinate system, the sphere seen
in its entirety would appear flattened in the x direction of
motion. According to the Lorentz transformation for the
x axis at t = 0,(

x√
1− β2

)2

+ y2 + z2 = 1 (22)

as defined by Einstein in chapter 4 of [6]. It can be
converted in polar coordinates using x = ρ sin θ cosϕ,
y = ρ sin θ sinϕ and z = ρ cos θ, for R = 1,

ρ =

√
1− β2

1− β2
(
1− sin2 θ cos2 ϕ

) (23)

whose shape is represented in Fig.3A. It reduces in the
two spatial dimensions x = ρ cos θ and y = ρ sin θ into the
ellipse flattened along the x direction:

ρ =

√
1− β2

1− β2 sin2 θ
(24)

5.3.2 The light wavefront

The speed of light is constant in all frames and always
give 45◦ lines in all Minkowski diagrams regardless of the
chosen point of view at rest. The time set above to zero
is now set to one period conceived as the interval between
two successive images. Inserting the period given by the
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fourth transformation into the first transformation (of x′)
gives

x′ = x
√

1− β2 + βcT ′ (25)

Using c = 1 as Poincaré did, the surface of a single-period
wavefront is the ellipsoid of equation

(x
√

1− β2 + β)2 + y2 + z2 = 1 (26)

whose conversion in polar coordinates yields the remark-
ably elegant equation

ρ =

√
1− β2

1 + β sin θ cosϕ
(27)

plotted in Fig.3B.

Figure 2. Perspective view of the shapes of (A) the material sphere drawn to Eq.(23), (B) the received relativistic wavefront

surface drawn to (27) and (C) the Galilean wavefront drawn to Eq. Eq.(30), for β = 0.9. In the wavefront panels B and C, the

source is located at the intersection of the axes.

It reduces in 2D polar coordinates to an ellipse. The
radius ρ is changed for the receiver from ρ0 = 1 in the
same ratio as the apparent wavelength.

ρ

ρ0
=
λmov

λ
=

√
1− β2

1 + β cos θ
(28)

This polar equation gives the complete collection of fo-
cal rays from the source to the wavefront surface for one
period, so this is also the equation for the Doppler effect.
We naturally recover the rays collinear to the path of the
source in front of and behind it, which were laboriously
determined in section 4, but also all the other rays.

Figure 4. Doppler effects as functions of the angles θ and θ′. Since the true determinants of energies and colors are frequen-

cies, Doppler effects are described using frequency ratios (A) Relativistic Doppler effect deduced from the perceived ellipsoidal

wavefront. (B) Galilean Doppler effect deduced from the perceived spherical wavefront. The dotted black curve corresponds to

the so-called classical Doppler effect, shown for comparison.

5.3.3 The Galilean wavefront

Of course the Lorentz transformations based on the speed
limit apply in all circumstances, but they can be approxi-
mated by Galilean transformations when the electromag-
netic β is close to zero, as for example for the sound wave

whose speed has no common measure with that of light.
However, the same letter β is kept here to express the
Doppler formulas for ease of comparison. The Galilean
transformations are simple: x′ = x + vt, y′ = y, z′ = z
and t′ = t. Hence, the surface of the Galilean wavefront
emitted from a source moving of velocity v in direction x,
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is a sphere of the Cartesian equation

(x+ vt)2 + y2 + z2 = (ct)2 (29a)

Keeping the notation β = v/c where c is no longer a speed
limit, for a time corresponding to a single period unit,

(x+ β)2 + y2 + z2 = 1 (29b)

The wavelengths are directly obtained by converting
this Cartesian equation in polar equation.

ρ =
√

1− β2
(
1− sin2 θ cos2 ϕ

)
− β sin θ cosϕ (30)

shown in Fig.3C and which reduces in 2D in the Galilean
circle

ρ

ρ0
=
λmov

λ
=

√
1− β2 sin2 θ − β cos θ (31)

whose off-centre aspect can also be understood as a change
of the wave vector for the receiver [11, 12]. This Doppler
effect expressed with frequencies is represented on Fig.4B.
The notable points of these curves are listed in the ta-
bles 1 and 2 of appendix B. Note in these tables that for
θ = π/2 (yellow lines in the tables), the results for the rel-
ativistic and Galilean Doppler effects are identical. The
Doppler effects found in this way are functions of the an-
gle θ between the trajectory of the source and the source-
receiver line exactly when the Doppler effect is received.
But because of the travel time of the wave, the source is no
longer in the position it was when it emitted both its im-
age and the wave crests involved in the measured Doppler
effect. The difference between this angle noted θ′ and θ
defines the phenomenon of aberration, long understood
by Bradley in astronomy. Although Bradley’s discovery
largely predates the theory of relativity, today the rela-
tivistic aberration rules established by Einstein are well
known but strangely their Galilean counterparts are gen-
erally ignored, which may explain the problems existing
with the classical Doppler formula.

5.3.4 Derivation of aberration and Doppler for-
mulas from wavefront surfaces

• Relativistic aberration

The relativistic ellipsoid is wider on the x axis by
1/
√

1− β2, which renders the geometric comparison with
the sphere difficult. To make their diameters coincide on x
while preserving the proportions of the ellipse, let us just
contract the radius orthogonal to the trajectory, from 1
to
√

1− β2. For a source moving from left to right, the
Cartesian equation of this simplified ellipse is

(x+ β)2 +
y2

1− β2
= 1 (32)

whose polar equation obtained using x = ρ cos θ and
y = ρ sin θ

ρ =
1− β2

1 + β cos θ
(33)

allows us to easily obtain the aberration relations because
as it is not directional, the relativistic dilation transforms
the ellipse in a homothetic way without changing its char-
acteristics and angles. Since the intersection of the focal
radius ρ and the perimeter of the ellipse does not corre-
spond to a point tangential to the radius emanating from
the center of the ellipse, let us consider the fixed frame of
reference of this center from which the wave front propa-
gated with spherical symmetry. We have

cos θ′ =
β + ρ cos θ

R
(34a)

where R is the large radius without flattening fixed at 1.
Using the value of ρ given in Eq.(33), this equation be-
comes

cos θ′ =
cos θ + β

1 + β cos θ
(34b)

whose reciprocal form is as elegant.

cos θ =
cos θ′ − β

1− β cos θ′
(34c)

These aberration relations can then be expressed in other
ways

sin θ′ = sin

(
cos−1

(
cos θ + β

1 + β cos θ

))
=

√
1− β2 sin θ

1 + β cos θ

and

tan θ′ =
sin θ′

cos θ′
=

sin θ
√

1− β2

β + cos θ
(35)

• Two relativistic Doppler equations

Using the aberration relations, the Doppler effect can
be written in two ways

fmov
(θ)

f
=

1 + β cos θ√
1− β2

(36a)

fmov
(θ′)

f
=

√
1− β2

1− β cos θ′
(36b)

A more standard demonstration of these formulas is
described in [6] and further detailed in [13].

• Galilean aberration

In the Galilean case,

cos θ′ =
β + ρ cos θ

R
(37a)

For R = 1 and expressing ρ as function of the angle θ
(Eq.(31))

cos θ′ = cos θ

√
1− β2 sin2 θ + β sin2 θ (37b)
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and conversely

cos θ =
cos θ′ − β√

1 + β2 − 2β cos θ′
(37c)

giving for the tangent

tan θ′ =
ρ sin θ

β + ρ cos θ

=
sin θ

(√
1− β2 sin2 θ − β cos θ

)
cos θ

√
1− β2 sin2 θ + β sin2 θ

(37d)

These new aberration relations were introduced in [9].

• Two Galilean Doppler equations

As for the relativistic case, two Galilean Doppler for-
mulas related through these reciprocal aberration rela-
tions, can be established depending on the angle consid-
ered. The Doppler formula as a function of θ

fmov
(θ)

f
=

1√
1− β2 sin2 θ − β cos θ

(38)

was found above as the focal radius from the actual posi-
tion of the source to the wavefront which holds regardless
of the distance of the receptor because at that position the
successive wavefronts are equidistant from the source. But
the successive intervals between the point of emission and
the point of reception are, of course, no longer the same,
so that the Doppler formula as a function of θ′ must be
derived differently, for example by applying the aberration
relations to the Doppler function of θ.

fmov
(θ′)

f
=

1√
1 + β2 − 2β cos θ′

(39)

This function of θ′ can be also be confirmed geometri-
cally using the cosine law. Incidentally, Eq.(31) can also
be found in this way but it does not hold for the the op-
tical Doppler effect as assumed in [14] because spherical
geometry cannot apply in this case. For the angle θ′, let
us imagine, as shown in Fig.5, that a source S located at
an unspecified distance from a receiver c∆t1, emits a sig-
nal and that at the same time as this signal is received, it
emits a second signal. This situation makes it possible to
compare the durations for the source with the durations
of the source perceived by the receiver. In fact, by fixing
the time of origin t = 0 when the source is at the posi-
tion S1 (Fig.5), then the duration that elapses between the
two signals at the source is ∆t1. Besides, for the receiver
and in Galilean coordinates, the first signal is received at
time ta = ∆t1 and the second signal is received at time
tb = ∆t1 + ∆t2, which gives a duration between the two
reception events of tb − ta = ∆t2.

Figure 5. Two successive pulses are sent to the receptor, with

the second pulse being sent exactly when the first is received.

So the ratio between the perceived and local durations
of the source is simply given by the ratio ∆t2/∆t1. This
is the Doppler effect, whether this duration is a wave pe-
riod or not, as was shown previously for the lifetime of the
soap bubble. All that remains is to find this ratio geomet-
rically. During the first signal’s journey, the source will
have travelled v∆t1. So on the one hand we have

D = c∆t1 sin θ′ = c∆t2 sin θ (40a)

and on the other hand, the cosine law gives

(c∆t1)2 + (v∆t1)2 − 2vc∆t21 cos θ′ = (c∆t2)2 (40b)

The combination of these two equations gives

sin θ =
c∆t1 sin θ′√

(c∆t1)2 + (v∆t1)2 − 2vc∆t21 cos θ′

=
sin θ′√

1 + β2 − 2β cos θ′

(40c)

as calculated reciprocally by Compton for a ray passing
through a moving sphere [15]. Hence, the ratio of wave-
lengths is

c∆t2
c∆t1

=
sin θ′

sin θ
=
√

1 + β2 − 2β cos θ′ (40d)

or
∆t1
∆t2

=
1√

1 + β2 − 2β cos θ′
(40e)

Again, this result which is identical to Eq.(39), is valid
for any kind of duration. A Doppler effect basically relates
a proper duration to a perceived duration, in both the rel-
ativistic and in the classical case, whether that duration
is the lifetime of a soap bubble, as calculated in section 4,
or the period of a wave. Introducing considerations such
as fractions of a period of a wave would be unnecessar-
ily disturbing. In fact, to the question what happens for
a wave whose period is not exactly ∆t1, we can answer
that in principle it is always possible to perform the ex-
periment with the wave whose period is ∆t1. The number
of Doppler formulas is not infinite, there is not one for
every wavelength and for every source-observer distance.
Furthermore, for a wave, calculations made for durations
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of the order of a period or a fraction of a period would
be meaningless for determining a Doppler effect, because
they would overestimate its precision. A Doppler effect is
not applicable for less than one period and can only be
defined for a series of successive wave crests, for which the
question of the phase coincidence disappears. Expressing
the Doppler effect as a function of a precise angle θ′ is
illusory since the series of wave crests that allows it to be
characterised does not correspond to a single θ′ but to a
small range of θ′. In fact the instantaneous frequency is
never well defined for a continuously changing angle. Even
for a collinear Doppler effect of a cosinusoidal signal

X(t) = cos (2πf0t) (41)

the imprecision of the frequency is given by the Fourier
transform of this wave function and depends on the dura-
tion of the measurement. f0 is obtained precisely only for
the infinite signal duration of Eq.(41) by Dirac peaks (top
panel of Fig.6)

X(f) =
1

2
[δ (f − f0) + δ (f + f0)] (42)

But for a finite duration ∆t, the wave function is

X(t) = rect (t/∆t) · cos (2πf0t) (43)

whose Fourier transform involves the cardinal sine func-
tion

X(f) =
1

2

∣∣∣∣ sin(π∆t (f − f0))

π(f − f0)
+

sin(π∆t (f + f0))

π(f + f0)

∣∣∣∣ (44)

whose graph shows a spread of the frequency peak with
respect to f0 and the appearance of parasite frequencies.
In the example of a 40 Hz wave chosen for Fig.6, a listening
duration of a single period results in a frequency uncer-
tainty ranging from 0 to 80 Hz (bottom panel of Fig.6).
The formal treatment of a wave bubble corresponding to
a single period gives the correct result, but its application
is irrelevant in practice. For physically relevant finite sig-
nals and particularly for a continuously changing angular
Doppler effect, the product of the minimal imprecision in
the frequency and the duration is a constant (∆t ·∆f = 2)
and the window ∆t is all the shorter, theoretically zero,
as the evolution of θ is fast.

Figure 6. Increasing imprecision in frequency as the duration

of the signal decreases. Example of a sound of 40 Hertz (40

cycles per second). An infinite (non-physical) duration of the

sound allows the absolute focusing of its frequency (top panel).

We observe a broadening of the frequency peak (∆f) and the

appearance of parasite frequencies as the signal duration (∆t)

is shortened.

6 How to explain the persistence
of a questionable Galilean for-
mula

The currently accepted Doppler formula, which describes
the frequency change of a moving source perceived by a
static observer is

fmov

f
=

1

1− β cosϑ
(45)

Its representation (dotted line in Fig.4B) gives an inter-
mediate curve which does not allow to decide about the
nature of the angle ϑ between the trajectory of the source
and the direction of the receiver. Its main characteristic
is to cancel (value of 1) for an angle of π/2, but in the
absence of a clear development of the classical Doppler
formula, it is difficult to point to any specific error in its
demonstration. However, a number of arguments ques-
tioning its validity are listed below.
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6.1 The success of the perceived wave-
front approach

An argument, specific to the present study, is to ask why,
while the wavefront approach is so effective in recovering
all the correct relativistic formulas, it would not work for
the Galilean case.

6.2 An orphan formula disconnected from
aberration

The collinear Galilean Doppler equations are identical for
the traditional and the new formulas. They are also con-
firmed by the rigorous approach to wave reception in the
section 4.2. However, the intermediate angular values dif-
fer significantly, especially in two aspects: (i) the existence
of a transverse Doppler effect for the new formulas but not
for the old one, and (ii) two new formulas, depending on
whether they are expressed in terms of θ or θ′, against
only one old formula, as if the aberration had been ne-
glected in the classical approach. The origin of the angle
ϑ of Eq.(45) is the source but in addition, it is necessary
to specify whether the position of the source is to be taken
into account when the wave is emitted or received. In the
treatments of [16] or [17], it corresponds to θ′ used here, so
in the following parts we will rewrite the Galilean Doppler
formula as

fmov

f
=

1

1− β cos θ′
(46)

In an attempt to reconcile the usual (Eq.(46)) and new
Eq.(39) formulas, (Eq.(46)) could be rewritten as a square
root of a square.

fmov

f
=

1√
1 + β2 cos2 θ′ − 2β cos θ′

(47)

But we see that Eq.(47) and Eq.(39) are still different and
that in addition, one cannot invoke the approximation of a
very small angle θ′ (which would make cos2 θ′ ≈ 1) because
of the alleged prediction that the Doppler effect must van-
ish (fmov/f = 1) when θ′ = π/2 and cos θ′ = 0. Moreover,
while Einstein presented the relativistic Doppler formulas
in pairs and in conjunction with two reciprocal aberra-
tion relations, in the rare demonstrations of the Galilean
Doppler effect (subsequently called classical in reference to
relativistic) available in the literature, one finds no trace
of an expression as a function of two angles, nor in con-
junction with Galilean aberration rules. The aberration
and Doppler formulas should be obtainable together from
the same approach. Interestingly, a recent manuscript
[17] proposes to combine the old Doppler formula with
the Galilean aberration rule of the new Doppler formula
[9]. However, this combination of Doppler and aberration
formulas obtained in different ways, respectively approxi-
mate and strictly geometrical, leads to unacceptable con-
sequences such as a non-spherical asymmetric wavefront.

6.3 Dual detection of the Doppler effect
and of the position

An acceptable example of Galilean wave is provided by the
sound, in the case of a source moving in a stationary prop-
agation medium and a receiver stationary with respect to
that medium. When measuring the Doppler shift of sound,
the tracking of the source can lead to ambiguities in the
estimation of the transverse position. The light Doppler
effect is, of course, measured by pointing the telescope at
the source, but we know that this source has changed loca-
tion while the light was traveling toward the telescope, so
that its true position is invisible. In contrast for a Galilean
wave, the information about the Doppler effect and on the
location of the source are carried by different channels and
can be recovered simultaneously.

Figure 6. Since the speed of light can be considered as in-

finite compared to that of sound, the sound wave carrying

the Doppler effect emitted by the source S under an angle θ′

toward the receiver R, and the light carrying the image of the

source, emitted under an angle θ toward the receiver, arrive

together at the receiver. On the whole trajectory, D is the

shortest distance between the source and the receiver.

As depicted in Fig.6, the Doppler effect of the sound
is of course carried by the acoustic wave but the informa-
tion about the position of the source is generally visual,
i.e. carried by a light wave. This issue is concretely il-
lustrated in the experimental application in Appendix A.
If the source velocity is constant, both θ and θ′ can be
used, but if there is any doubt about the constancy of the
velocity, then the use of θ′ is preferable, but this requires
the use of a highly directional microphone to identify the
spatial origin of the sound. Note also that the Doppler
effects of sound involve many more parameters concern-
ing the relative motion between the three actors: source,
receiver and medium, which will not be discussed here.

6.4 The classical Doppler formula could
have been strenghened by the rela-
tivistic one

The traditional Doppler formula may have been consoli-
dated by a resemblance to the relativistic Doppler effect.
Indeed, the relativistic Doppler shift is often derived as
if it were the classical phenomenon, but modified by the
addition of a time dilation term as explained in certain
textbooks [18, 19, 20, 21]. Thus, the classical formula of
the Doppler effect Eq.(46) has probably been aided by the
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advent of the relativistic Doppler effect, the form of which
can suggest the confusing idea that it is simply the clas-
sical Doppler effect corrected by the relativistic dilation
factor.

6.4.1 The puzzling idea that the classical Doppler
effect is the ”primary effect” of the rela-
tivistic one

According to approximate relativistic theories, the classi-
cal formula would be a primary Doppler effect of purely
kinetic nature, which must be complemented by a so-
called ”secondary” effect of time dilation by the Lorentz
factor (multiplication of the periods by 1/

√
1− β2) to

obtain the relativistic Doppler effect. In fact, kinetic and
temporal effects cannot be dissociated in relativity and
the Lorentz factor itself includes the change in kinetic
energy. Nevertheless, this questionable principle has been
accepted because it seems to work. The multiplication
by
√

1− β2 of Eq.(46) does indeed give Eq.(36b), which
is Einstein’s relativistic Doppler formula where θ′ is the
reception angle. This unfortunate identity has logically
reinforced the presumed validity of Eq.(46) as the classi-
cal Doppler effect formula for generations of researchers
and teachers. The consensus created in the scientific com-
munity by this apparent proof probably inhibited naive
questions such as, for instance, if the only difference be-
tween the classical and relativistic Doppler effects is the
dilation of the periods for the latter, then why should the
classical and relativistic aberration rules be different? In
fact, the generalized correction by the dilation factor has
a homothetic effect, which by itself cannot change the
angles.

6.4.2 Additional confusion caused by an inappro-
priate wave averaging mode

The puzzling concept of the secondary Doppler effect,
which is supposed to be specific to relativity and which
probably gives credit to the current classical Doppler ef-
fect, has itself been consolidated by the inappropriate use
of the arithmetic mean for averaging Doppler effects. In
the articles validating the relativistic Doppler effect, lon-
gitudinal [22] and transverse [23], it is explained that the
relativistic Doppler effect, unlike the classical one, includes
a secondary transverse effect. Ives and Stilwell simultane-
ously measured the longitudinal wavelengths of approach
(λa) and recession (λr), with and against the motion of
the particles. They then compared the wavelength shifts
to their so-called ”center of gravity” which is conceived as
an arithmetic mean [23]. Knowing the relativistic longitu-
dinal effects to be demonstrated, they calculated

λmean =
λa + λr

2

=
1

2

(
λ0

√
1− β
1 + β

+ λ0

√
1 + β

1− β

)

=
λ0√
1− β2

∼ λ0 +
λ0
2
β2

(48)

They concluded that λmean 6= λ0 due to transverse
Doppler shift

∆λ

λ0
=
λmean − λ0

λ0
∼ 1

2
β2

This conclusion results from a misuse of the arithmetic
mean. Perhaps judging the appearance of Eq.(48) satis-
factory, these authors did not look at what is going on
for the frequency fmean which corresponds to this λmean.
However, since the collinear Doppler effect during the ap-
proach for wavelengths corresponds to the Doppler effect
during the recession for frequencies and vice versa, they
would have found that the result is the same

fmean =
f0√

1− β2
(49)

But for any photon, the product: frequency × wavelength
is a well known constant

fλ = c (50)

and therefore the above approach is obviously wrong as
we would have

fmean λmean =
ν0 λ0
1− β2

6= c (51)

In fact, the arithmetic mean used in [22, 23] is inappro-
priate for averaging Doppler effects because as explained
in section 7, it cannot work for both frequencies and wave-
lengths.

6.4.3 The transverse effect supposedly specific of
relativity

Finally, the acceptance of the classical Doppler effect by
the scientific community may have been favored by the
mistaken intuition that it should cancel (fmov/f = 1)
when the source is the closest. The absence of Doppler
shift predicted by the currently accepted equation Eq.(46)
seems very reasonable [24], but it is nevertheless incorrect,
as a rigorous analysis of the spherical wavefront (Table 2
in Appendix B) shows. For a moving source and static
receiver, the Galilean transverse effect obtained for a re-
ception angle θ′ = π/2, is(

fmov

f

)
transverse

=
1√

1 + β2
(52)

When this effect is received, the source is at the distance
βD from the nearest point (Table 2). By comparison,
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the famous relativistic transverse effect, which Einstein
envisioned as a possible confirmation of special relativity
theory [25], is (

fmov

f

)
transverse

=
√

1− β2 (53)

These effects are both 1 − β2

2 +O(β4) and differ only
by β4/4, making the discrimination proposed by Einstein
technically very delicate.

7 Mean Doppler effects

7.1 The appropriate mean for averaging
frequencies

Mathematically, there are several modes of averaging that
apply differently to the specific situations. These different
types of averaging include, when applied to two Doppler
effects,

• The arithmetic mean:
1

2

(
fmov
1

f
+
fmov
2

f

)

• The geometric mean:

(
fmov
1

f

fmov
2

f

) 1
2

• The harmonic mean:
2f

fmov
1 + fmov

2

The appropriate one is necessarily the geometric mean,
because it is the only one that holds for both periods and
frequencies, such that

〈f1, f2〉 =
1

〈T1, T2〉
(54)

As a matter of fact, the use of geometric averages for
wavelengths has already been empirically applied and, in
particular, satisfies the rule of color reflectance fusion.

7.2 Mean relativistic Doppler effect

The product involved in the geometric mean for all angles
θ around the source using Eq.(36b) can be transformed
into a sum by going through the logarithms. Expressed in
periods

〈
Tmov

T

〉
=

(
π∏
θ=0

Tmov
(θ)

T

) 1
π

= exp

[
1

π

∫ π

θ=0

ln

( √
1− β2

1 + β cos θ

)
dθ

] (55)

But one can also start directly with products, using
two-by-two geometric averages between points symmetri-
cally positioned apart from π/2 by an angle ξ ranging from
0 to π/2.

〈
Tmov

T

(π
2
± ξ
)〉

=

√
1− β2√[

1 + β cos
(
π
2 − ξ

)] [
1 + β cos

(
π
2 + ξ

)]
=

√
1− β2

1− β2 sin2 ξ

(56)

This half geometric averaging minimizes the inequality
between the global geometric mean and the residual arith-
metic mean, which is obtained by summing the geometric
means of all symmetric ξ,

〈
Tmov

T

〉
<

2

π

√
1− β2

∫ π
2

ξ=0

dξ√
1− β2 sin2 ξ

(57)

whose last term is Legendre’s complete elliptic integral of
the first kind [26]. The right side of Eq.(57) is less than
one since the square root of the elliptic integral should be
removed to obtain 1.

2

π

√
1− β2

∫ π
2

ξ=0

dξ

1− β2 sin2 ξ
= 1 (58)

More precisely,

〈
Tmov

T

〉
<

2

π
K

(
β2

β2 − 1

)
∼ 1− β2

4
− 7β4

64
(59)

Perceived time appears globally contracted, contrary to a
time dilation. 〈

Tmov

T

〉
< 1

7.3 Mean Galilean Doppler effect

The geometric mean of the Galilean Doppler effects ob-
tained before and after the nearest point is independent
of θ and less than 1. Using Eq.(38) and for periods,

〈
Tmov

T

〉
=

(
π∏
θ=0

Tmov
(θ)

T

) 1
π

=
√

1− β2 ∼ 1− β2

2
− β4

8

(60)

7.4 Comparison of the mean Galilean and
relativistic values

For the Galilean circle, the situation is geometrically clear.
On the axis crossing the source and orthogonal to its tra-
jectory, the wavefronts are narrowed by

√
1− β2, nar-

rower in front of this axis and wider behind it, with an
overall average equal to the transverse axis. Strikingly,
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the properties of this axis are exactly the same for the
ellipse (compare the yellow lines between Table 1 and Ta-
ble 2 in Appendix B). However, since the ellipse is longer
at the back, the global average of the distances between
successive wave crests is slightly higher.

8 Discussion

Although electromagnetic and Galilean waves are funda-
mentally different in nature, it is instructive to compare
their properties. Their differences in terms of aberration
and Doppler effect are more subtle than expected and
depend entirely on their respective received wavefronts:
ellipsoidal for electromagnetic waves and spherical for
Galilean waves. This joint study also suggests some ex-
planations for the maintenance of an erroneous classical
Doppler formula in the recent literature and in university
courses. In fact, the currently accepted Doppler equa-
tion has been strangely shaped by the knowledge of the
relativistic one, while the two Doppler effects obey radi-
cally different laws. It suffers from unproven assumptions
widely used in textbooks such as: (1) there is no trans-
verse classical Doppler effect; (2) the relativistic Doppler
effect corresponds to the Galilean Doppler effect modi-
fied by the Lorentz dilation factor. Einstein himself took
the previous formula of the Doppler effect (not yet called
classical) for granted, which logically led him to believe
that the transverse effect he had discovered was specific
to the relativistic Doppler effect. His contributions were
so important that he cannot be asked to verify the previ-
ous formulas. The timing of perceived durations, like the
Doppler and aberration effects, is a receiving process that
depends on the velocity vector. Unlike the time dilation of
special relativity, perceived time is not uniform in a global
inertial frame. The appropriate tool for converting proper
to proper durations is the Doppler effect, which applies
not only to wave periods, to which it is usually limited, but
to any duration. The Doppler effect is generally consid-
ered to be a long-established phenomenon, corresponding
to a dead branch of fundamental physics, now confined
to general education. According to the historical recollec-
tions of [27], one of the difficulties Christian Doppler had
in convincing the scientific community in 1842 was that
his theory seemed too mathematically simple to describe
physics. As this study suggests, using only elementary
algebra, the Doppler effect seems to remain both mathe-
matically simple and physically subtle.
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Appendices

A Classical Doppler measurement

The relativistic Doppler effects predicted by Einstein
have been perfectly verified experimentally in their lon-
gitudinal [22] and transverse [23] versions, but curiously
the angular Doppler effect, which predates relativity, has
remained little studied. Moreover, the study of [23] was
based on the unverified idea that the so-called classical
Doppler effect has no transverse effect, which is disputed
here. Any ordinary movie is a joint recording of image
and sound, but since these two types of waves reach the
camera and microphone at different speeds, they actually
describe separate moments in the recent past (Fig.6). To
illustrate this subtlety, let us analyze the shift in sound
frequency during the passage of an airplane by analyzing
image and sound in parallel.

A.1 Determination of an airplane speed
and rest frequency

The asymptotic values of the apparent frequencies heard
when the source arrives, written fa and those measured

when the source recedes, written fr, are sufficient to deter-
mine the source velocity, even without knowing the source
frequency f0. Indeed, fa and fr are related by

f0 = fa (1− β) = fr (1 + β) (A.1a)

from which

β =
fa − fr
fa + fr

(A.1b)

The frequencies given by the spectrogram fa=6750 Hz
and fr=4338 Hz, give β = 0.2175 (at 15◦C, 74 m/s or 266
km/h). Once β is known, the equalities of Eq.(A.1a) allow
us to find the rest frequency: f0 = 5282 Hz. Note that
although it is called rest frequency, f0 may not exist when
the aircraft is stopped with the engines on, for example
if this sound is generated by the flow of the apparent wind.

Figure A1. Doppler effect illustrated by a dominant frequency recorded during the passage of an airplane at low altitude. The

blue lines connecting the images of the planes to the spectrogram indicate the actual coincidence of sound and image on the

film, while the red lines connect the recorded frequencies to their actual points of emission.
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A.2 Doppler formulas as a function of dis-
tance

Angular Doppler formulas are not very practical for ana-
lyzing experimental results because they compress the far
zones and induce a distortion between the linear recording
of the moving source at constant speed. The correspon-
dence between any angle ϑ and the distance is

D = −X tanϑ (A.2)

where D is the shortest source-observer distance over the
whole source trajectory, andX is the distance of the source
from this closest point.

X

D
= x = − cosϑ√

1− cos2 ϑ
(A.3)

cosϑ = − x√
1 + x2

(A.4)

By applying this relation to the angles θ and θ′ pre-
sented previously, we obtain, for the classical Doppler for-
mula (

fmov

f

)
classical

=
1

1 +
βx′√

1 + x′2

(A.5)

and for the formulas deduced from the spherical wave-
front, the Doppler effects are described as functions of the
coordinates of the position of the source (P ) and of the
emission point (E), by setting ϑ = θ or θ′ respectively.(

fmov

f

)
P

=

√
1 + x2

βx+
√

1− β2 + x2
(A.6)

and (
fmov

f

)
E

=
1√

1 + β2 + 2β
x′√

1 + x′2

(A.7)

As a check, we can verify that Eq.(A.6) gives the av-
erage Doppler effect determined with its angular counter-
part Eq.(60). The geometric mean of the Galilean Doppler
effect is

∀x,
〈
f(−x)

f0
,
f(+x)

f0

〉
=

1√
1− β2

(A.8)

The Doppler effect of the sound is naturally carried
by the acoustic wave but the information about the posi-
tion of the source is generally visual, i.e. carried by light
(Fig.6). When the wave emitted in X reaches the receiver,
the source has traveled a distance that depends on the du-
ration ∆t of the flight of the wave from the source to the
receiver. This path, of length c∆t, is the hypotenuse of a
right triangle whose other two sides are the shortest dis-
tance D, and the distance X separating the source from
the nearest point. So Pythagoras says

(c∆t)2 = D2 +X2 (A.9a)

from which

∆t =

√
D2 +X2

c
= D

√
1 + x2

c
(A.9b)

During this time, the source will have traveled

∆X = v∆t = βD
√

1 + x2 (A.9c)

or in normalized distance

∆x = β
√

1 + x2 (A.9d)

Figure A2. Plots of Galilean angular aberration as a function

of distance. Dashed curve: Angle θ between the trajectory

of the source and the source-receiver direction according to

Eq.(A.10). Solid line curve: angle θ′ between the trajectory of

the source and the line connecting the emission point to the

receiver.

The point of emission can be calculated from the actual
position of the source when the Doppler effect is detected.

The angle θ′ = cos−1
(
− x√

1 + x2

)
whose origin is the

point of emission, is expected to become θ when replacing
x by x+ ∆x,

θ = cos−1

 −(x+ β
√

1 + x2)√
1 + (x+ β

√
1 + x2)2


which can be rewritten

= cos−1


(
− x√

1 + x2

)
− β√

1 + β2 − 2β

(
− x√

1 + x2

)


(A.10)

Expectedly in this form, Eq.(A.10) is analogous to
the aberration formula Eq.(37c). These functions are
shown in Fig.A2. The introduction of Eq.(A.10) into
the Doppler formula Eq.(38), gives back the curve of
Eq.(A.7). Conversely, the introduction into the Doppler
formula Eq.(39) of the angle θ obtained by conversion of

cos−1
(
− x√

1 + x2

)
by the aberration formula Eq.(37b),

gives the curve of Eq.(A.6). The Doppler functions derived
from this approach are shown in Fig.A3.
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Figure A3. Doppler effect of the sound as a function of the relative position of a moving source on its path, for a stationary

receiver in the absence of wind, expressed as a function of either the coordinate of the emitting point (lower red curve drawn

to Eq.(A.7)), or of the visually detected source (upper blue curve drawn to Eq.(A.6)). The dashed black curve shown for

comparison is that of the classical Doppler formula drawn to Eq.(A.5). The increment of the coordinate x is the minimum

distance between the source and the receiver.

A.3 Curve fitting and conclusions

The theoretical equation combining the simultaneously
recorded image and sound is Eq.(A.6) where the ordinate
is the sound Doppler shift and the abscissa x is the spatial
coordinate of the source determined visually. Inserting the
previously measured value of β into this equation gives the
horizontal increment x = 1. At x = 0 (5156 Hz, Doppler
effect of 1.025) the observer’s line of sight is perpendicular
to the plane trajectory. The Doppler effect for x = 0 is
expected to be

fmov

f0 orthogonal

=
1√

1− β2

As explained in the main text, this is not the transverse
Doppler effect which is

fmov

f0 transverse

=
1√

1 + β2

This latter effect (5156 Hz, Doppler effect of 0.977) is
received only when the plane has moved away from the
transverse position by a distance βD from the nearest
point. Given the delay of 0.323 seconds measured from
the video, it corresponds to 110 m from the transverse

position. In summary, the accuracy of the curve fit shown
in Fig.A3 can be verified by checking the frequencies for
the following two points:

• x = 0→ fmov = f0/
√

1− β2

• x = β → fmov = f0/
√

1 + β2

In addition, for image and sound to match, x = 0 must
coincide with the most transverse position of the source.
This can be seen in Fig.A1 in the apparent orientation of
the wings and the alignment of the side windows of the
cockpit. Once these three criteria are met, the rest of the
curve fits remarkably well (Fig.A1). The blue lines con-
nect the images and the sounds which are superimposed
on the video. But this apparent simultaneity is only an
illusion of reception, as shown by the red lines that con-
nect the sound to the position of the plane where it was
actually emitted. This offset is, of course, due to the dif-
ference in speed between light and sound to get from the
plane to the camera [28]. The sound received when the
plane is seen perfectly in profile was sent at the position
x = −β/

√
1 + β2, which would belong to the curve drawn

to Eq.(A.7) if added to the same diagram.
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B Points of comparison between relativistic and Galilean angular Doppler
effects

Table 1: Some relativistic correspondences between angles, distances and Doppler effects. The line highlighted in green
corresponds to the transverse Doppler effect and that highlighted in yellow color is the only common point with the Galilean
Doppler effect of Table 2.

Origin of the angle Distance to the nearest point of the Doppler effect

source point of emission source position sound emission

θ θ′ x x′ fmov/f

0 0 −∞ −∞
√

1 + β

1− β

π

2
cos−1 β 0 − β√

1− β2

1√
1− β2

cos−1−1−
√

1− β2

β
cos−1

1−
√

1− β2

β

1√
2

√
1√

1− β2
− 1 − 1√

2

√
1√

1− β2
− 1 1

cos−1−β π

2

β√
1− β2

0
√

1− β2

π π +∞ +∞
√

1− β
1 + β

18



Table 2: Some Galilean correspondences between angles, relative distances and Doppler effects. The unit of angle is radian
and the unit of distance is the minimum distance between the mobile source and the stationary receiver. The line highlighted
in green corresponds to the transverse Doppler effect and that highlighted in yellow color is the only common point with the
relativistic Doppler effect (Table 1).

Origin of the angle Distance to the nearest point of the Doppler effect

source point of emission source position sound emission

θ θ′ x x′ fmov/f

0 0 −∞ −∞ 1

1− β

π

2
cos−1 β 0 − β√

1− β2

1√
1− β2

cos−1−β
2

cos−1
β

2

β√
4− β2

− β√
4− β2

1

cos−1− β√
1 + β2

π

2
β 0

1√
1 + β2

π π +∞ +∞ 1

1 + β
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