
HAL Id: hal-04769290
https://hal.science/hal-04769290v1

Submitted on 6 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Unitex Getting Started
Denis Maurel, Cvetana Krstev

To cite this version:
Denis Maurel, Cvetana Krstev. Unitex Getting Started. Independently published, 2024,
9798338757444. �hal-04769290�

https://hal.science/hal-04769290v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Summary

Chapter 1: introduction ... 1

1 A short history..1
2 A quick overview of the book ...1
3 Organization of correct files ...2
4 A workbook? ..3
5 Acknowledgement...6

Chapter 2: first steps ... 7

1 Discovering Unitex...7
2 A detailed example ... 16
3 The .snt file.. 35

Chapter 3: corpus annotation ... 45

1 First example: compound verbs using the verb will .. 45
2 Second example: numbers written with words ... 59
3 Third example: annotating Roman numerals ... 63

Chapter 4: CasSys .. 71

1 First example: named entity recognition in a plain text .. 71
2 Second example: named entity recognition in an XML text.. 84
3 Third example: measure recognition .. 88
4 Additional possibilities (only for confident users).. 94

Chapter 5: dictionary creation... 107

1 Introduction .. 107
2 Inflection of monolexical words .. 107
3 Inflection of multi-word units .. 118
4 Some additional remarks ... 123
5 Dictionary graphs.. 128
6 Additional possibilities (only for confident users).. 132

Chapter 6: other tools ... 137

1 Lexicon-grammar .. 137
2 XAlign... 141

Chapter 7: scripts... 149

1 Introduction .. 149
2 Creation of the linguistic package ... 149
3 The command line .. 157
4 An inventory of tag occurrences ... 158
5 Two small remarks on the optimization of a cascade.. 164

1

Chapter 1: introduction

1 A short history

Before introducing the Unitex software, we must go back in time and talk about the LADL,
Laboratoire d’automatique documentaire et linguistique , established in 1968 by the late
Professor Maurice Gross.1

Maurice Gross introduced the notion of lexicon-grammar: he asserted that grammar could

not be formalized without its dependence on the lexicon.2 In collaboration with Professor
Dominique Perrin,3 he proposed the use of the theory of finite state automata (FSA) for some
aspects of linguistic description.4 At the same time, he had entrusted one of his doctoral
students, Max Silberztein, with the task of creating the computer tool allowing such use of
FSA. As part of his thesis, this student designed software called Intex.5

Another doctoral student of Maurice Gross,6 Sébastien Paumier, wanted to test in his thesis7
a different algorithm8 from the one implemented in Intex. As was customary in the nineties,

the license to use Intex was not free and its code was not open. Therefore Sébastien Paumier
had the idea of creating the free and open software, Unitex, based on this new algorithm, in
addition to the features already developed by Max Silberztein.

Since then, Unitex has been enhanced by additions and improvements made by many
different developers and users. The main contributors are listed in the Unitex user manual.9

2 A quick overview of the book

The aim of this book is to help its readers to get started with Unitex. In this, it differs from the

Unitex user manual whose objective is to list the different possibilities of use that Unitex

1 https://en.wikipedia.org/wiki/Maurice_Gross
2 Gross M. (1975), Méthodes en syntaxe, Hermann, Paris.
3 https://en.wikipedia.org/wiki/Dominique_Perrin
4 Gross M., Perrin D. (1989), Electronic Dictionaries and Automata in Computational Linguistics , LNCS 377.
5 Silberztein M. (1989), Dictionnaires électroniques et reconnaissance lexicale automatique, Thèse de doctorat
(Université Paris VII).

6 Unfortunately, Maurice Gross passed away before the defense of the Sébastien Paumier’s thesis.
7 Paumier S. (2003), De la Reconnaissance de Formes Linguistiques à l'Analyse Syntaxique, Thèse de doctorat
(Université de Marne-la-Vallée).
8 Paumier S. (2003), A time-efficient token representation for parsers, FSMNLP 2003, Budapest.
9 The manual is automatically integrated when downloading Unitex (see Chapter 2, Section 1.1.2, page 7). It is
also available at the address: https://unitexgramlab.org/releases/3.3/man/Unitex-GramLab-3.3-usermanual-
en.pdf

https://en.wikipedia.org/wiki/Maurice_Gross
https://en.wikipedia.org/wiki/Dominique_Perrin
https://unitexgramlab.org/releases/3.3/man/Unitex-GramLab-3.3-usermanual-en.pdf
https://unitexgramlab.org/releases/3.3/man/Unitex-GramLab-3.3-usermanual-en.pdf

Unitex Getting Started - Denis Maurel and Cvetana Krstev

2

offers. The objective of this work is an educational approach to Unitex.It covers most of its
possibilities, although not all of them. Namely:

Chapter 2 (first steps), page 7:
Installing and starting to work with Unitex; use of dictionaries; creation of simple graphs.

Chapter 3 (corpus annotation), page 45:
Creation of complex graphs with output; use of weights; morphological mode.

Chapter 4 (CasSys), page 71:
Creation of cascades of graphs; generalization graphs, negative right context, use of
variables; testing variables.

Chapter 5 (dictionary creation), page 107:
Creation of dictionaries; inflectional graphs; dictionary graphs.

Chapter 6 (other tools), page 137:
Creation of graphs based on a lexicon-grammar; aligning texts.

Chapter 7 (scripts), page 149:
Creation of scripts.

This book proposes many exercises and micro-projects that can be implemented step by step
by following the text.10 The different chapters are relatively independent. Screenshots are
taken from the Unitex Windows interface. Some minor differences are possible with Mac or
Linux interfaces.

3 Organization of correct files

The book comes with a zipped file (MyUnitex.zip) including all correct files (graphs, cascades,
dictionaries, scripts and so on) answering the exercises. If the reader does not wish to
construct her/his own graphs or wishes to verify them, she/he may consult them. The early
chapters also include videos detailing the step-by-step construction of the graphs.

10 Work with Elag Grammars and text automata (or FST) is not covered.

Chapter 1: Introduction

3

Since these files often have the same name in one section and another, they are stored in
folders named by the number of the section. Also, before consulting them, the reader must
copy an entire section folder and paste it into the folder hierarchy just above.

For example, the first graph built is in the folder named:

MyUnitex\English\Graphs\UnitexGettingStarted\Will\3.1.1

with an illustrative video. The reader must copy this graph and paste it in the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Will

before opening it with Unitex.

4 A workbook?

For a user already familiar with Unitex, this book can be used differently, as a book of correct
examples.

4.1 Graph exercises

Before starting graph exercises
Open the text:MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon.txt

 Exercise 1

Create a graph that recognizes all forms of the verb meet, including verbs with auxiliaries and
modal auxiliaries, also including negative and interrogative forms.

The correct solution is in Chapter 2, Section 2.3.6, page 28.

 Exercise 2

Create a graph that recognizes and annotates compound verbs using the verbs will and shall.
Use Verb, Adverb and Pronoun tags. Verb tags can have an attribute type for annotation.11

The correct solution is in Chapter 3, Section 1.9.3, page 58.

 Exercise 3

Create a graph that recognizes and annotates numbers written with words, from 2 to 999 999.

Use non-nested Number tags.

The correct solution is in Chapter 3, Section 2.4.2, page 62.

 Exercise 4

Create a graph that recognizes and annotates Roman numerals from 1 to 3 999. Use non-
nested RomanNumeral tags.

The correct solution is in Chapter 3, Section 3.5.2, page 69.

4.2 Cascade exercises

 Exercise 5

Before starting exercise 5
Open the text:MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon.txt

11 Affirmative, negative, interrogative and interro-negative forms.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

4

Create a cascade of graphs that recognizes and annotates measures with six different types:
currencies (pence, sixpence, 12 shilling, pound), duration (minute, hour, day, week, month,
year), lengths (mile, foot, yard), speed (mile an hour), temperature (degree) and weight (ton).
Use Number and Measure tags.

Modify the synthesis cascade to have the Number tags only inside the Measure tags.

The correct solution is in Chapter 4, Section 3, page 88.

 Exercise 6

Before starting exercise 6
Open the text:MyUnitex\English\Corpus\UnitexGettingStarted\jubileePlainText\jubileePlainText.txt

Create a cascade of graphs that recognizes and annotates absolute dates (the year is
specified), relative dates (the year is not specified), names of towns or cities and names of

streets or avenues. Use AbsoluteDate, RelativeDate, Town and Address tags.

Modify the synthesis cascade to have non-nested Address tags.

The correct solution is in Chapter 4, Section 1, page 71.

 Exercise 7

Before starting exercise 7
Open the text:MyUnitex\English\Corpus\UnitexGettingStarted\jubileePlainText\jubileeXmlText.xml

Modify the previous cascades so that the annotation is only in the <body></body> part.

The correct solution is in Chapter 4, Section 2, page 84.

4.3 Dictionary exercises

Before starting Dictionary exercises
Open the text:MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon.txt

Create a dictionary that contains all forms of the following nouns and verbs. Use it to parse
the text.

 Exercise 8

The beginning of the list:

• advantage, agent, firm: nouns with suffix s.
• branch, bus, box: nouns with suffix es.
• accept, connect, work: verbs with suffixes s, ed and ing.

The correct solution is in Chapter 5, Section 2.1, page 107.

Continuation of the list:

• company, complexity, family: nouns with suffix ies.
• leaf, thief, calf: nouns with suffix ves.
• wife, knife, life: nouns with suffix ves.
• mouse, louse: nouns with suffix ice.
• narcissus, terminus, tumulus: nouns with suffix i.

12 Sixpence is the name of an old coin.

Chapter 1: Introduction

5

• phenomenon, criterion, datum: nouns with suffix a.
• love, live, give: verbs with suffixes s, d and ing.
• accompany, try, worry: verbs with suffixes ies, ied and ing.

The correct solution is in Chapter 5, Section 2.2, page 113.

Continuation of the list:

• goose, tooth: nouns with suffix eese or eeth.
• foot: noun with suffix eet.
• man, woman, hypothesis: nouns in which the penultimate letter changes to e.
• jog, plan, stop, prefer: verbs with double consonant.

• slit, split: verbs with suffixes s and ting.
• quiz, gas: nouns with suffix zzes or sses.

• shoot, speed, meet: verbs for which the double letter (oo, ee) disappears in the
simple past and the past participle.

• kneel, sleep, creep: verbs with suffixes s, elt or ept and ing.

The correct solution is in Chapter 5, Section 2.3, page 116.

 Exercise 9

End of the list:

• air of mystery, sort of thing, tree of knowledge: MWUs in which only the first
component is inflected.

• crow's nest, death's-head, hair's breadth: MWUs in which only the last component
is inflected.

• boa constrictor, prince regent, secretary general: MWUs in which only the first
component is inflected.

• altar rail, Anglo-Norman, bad boy: MWUs in which only the last component is
inflected.

• after-life, eye-cup, sky-blue: MWUs in which only the last component is inflected;

word tokens can be written together.
• three quarter, blood red, self glorification: MWUs in which only the last component

is inflected; hyphen can be added.
• carry out, take off, wash out: MWUs in which only the last component is inflected;

hyphen can be added, space can be omitted.
• attorney general, notary public: MWUs in which either the first or the second

component (but not both!) are inflected.

The correct solution is in Chapter 5, Section 3, page 118.

 Exercise 10

Create a dictionary graph that recognizes all Roman numbers from 1 to 3 999. Use it to create
a Word List.

The correct solution is in Chapter 5, Section 5.1, page 128.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

6

4.4 Lexicon grammar exercise

 Exercise 11

Before starting Lexicon exercise 10
Open the text:MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon.txt
Open the particleVerbTable.xlsx Lexicon-grammar in the folder:
 MyUnitex\English\Graphs\UnitexGettingStarted\LexiconGrammar\ParticleVerbs

Create a graph that recognizes all positive forms from the lexicon-grammar

particleVerbTable.xlsx.

The correct solution is in Chapter 6, Section 1, page 137.

4.5 XAlign exercise

 Exercise 12

Align the text:

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSonEng\DombeyAndSonEng.txt

with its translation:

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSonFra\DombeyAndSonFra.txt

The correct solution is in Chapter 6, Section 2, page 141.

4.6 Script exercises

 Exercise 13

Create a script to perform the cascade from Exercise 7, page 4.

The correct solution is in Chapter 7, Section 2, page 149.

 Exercise 14

Complete the previous cascade to get an inventory of tag occurrences with the name of the
file and the information inside title tags.

The correct solution is in Chapter 7, Section 4, page 158.

5 Acknowledgement

The authors sincerely thank all those who helped and advised them while preparing this work:
Laurence Danlos, Bérengère David, Anne Dister, Nathalie Friburger, Cristian Martínez, Alexis
Neme, Benoît Sagot and Duško Vitas. Authors are especially grateful to Éric Laporte and Anne-
Lyse Minard who carefully read the entire manuscript.

7

Chapter 2: first steps

1 Discovering Unitex

1.1 Unitex installation

The Unitex installation file can be found at the URL:

https://unitexgramlab.org

Unitex is a cross-platform software that can be installed on all widely used operating systems
(Windows, Mac, Unix and so on). In the following text, we will describe the installation under
Windows. Some details shown here may be slightly different on a non-Windows system. For
other systems, refer to Section 1.3 of the Unitex user manual downloadable at the URL:13

https://unitexgramlab.org/releases/3.3/man/Unitex-GramLab-3.3-usermanual-en.pdf

1.1.1 Creating a private working folder

Before launching Unitex for the first time, we must create a private working folder in which

we will work. For example, let us go to the Documents folder and create a new folder, called
for example MyUnitex (No spaces and case sensitive):14

C:\Documents\MyUnitex

1.1.2 Installation process

We start by launching the installation file:

13 There is also a French version of the Unitex user manual, downloadable at the URL:
https://unitexgramlab.org/releases/3.3/man/Unitex-GramLab-3.3-usermanual-fr.pdf

14 Unitex is a cross-platform software, so filenames should not contain spaces and diacritics, which only Windows
accepts. Also, calls to these filenames may be case-sensitive.

https://unitexgramlab.org/releases/3.3/man/Unitex-GramLab-3.3-usermanual-en.pdf
https://unitexgramlab.org/releases/3.3/man/Unitex-GramLab-3.3-usermanual-fr.pdf

Unitex Getting Started - Denis Maurel and Cvetana Krstev

8

We will click the Next button, and then twice the I Agree button.15 In the Choose Components
window, we will get this screen and then we will follow the steps:

1. Click on the check box next to the Visual Integrated Environments line to uncheck
it, then on the + sign placed on the left of this line to show possibilities and select
the Unitex Java IDE line. Click on the – sign to the left of the Visual Integrated
Environments line to hide the possibilities.

2. Click on the check box next to the Languages Resources line to uncheck it, then on
the + sign placed to the left of this line to show possibilities and select English and

French.16 Click on the – sign to the left of the Languages Resources line to hide.

3. Click on the check box next to the User Manual line to uncheck it, then on the +
sign placed to the left of this line to show possibilities and select the line English.17
Click on the – sign to the left of the User Manual line to hide.

Unitex programs are written in C language, while its interface is written in Java language. Java
must therefore be installed on the computer, which is frequently the case. In fact, Unitex
favors a certain version of Java, JRE, and tests if it is installed on the computer. However, if it

is not, the following window appears:

We have three choices: install Java ourselves, let Unitex install JRE or continue without
installing it. If we know that Java is installed on the computer and we do not want to

15 The two licenses (for the programs and for the resources) are LGPL licenses that authorize their free use

including the use in commercial products.
16 In addition, some other languages, of course, if you want. We will use French in the chapter dealing with
aligned texts (Chapter 6, Section 2, page 141).
17 You can select the French manual as well if you prefer or check only French.

Chapter 2: First steps

9

additionally install the JRE version, we should choose the third option. Otherwise, we advise
you to choose the second option and let Unitex try to install it during the setup process.

After selecting the second option click on the Next button. If you are the administrator of your
computer, Unitex offers you an installation only for you or an installation for all users of the
computer:

If you choose the just for me option, Unitex offers the installation in the User folder:

C:\Users\userName\AppData\Local\Unitex-GramLab18

If you choose the for anyone option, Unitex offers the installation in the Program Files (x86)
folder:19

C:\Program Files (x86)\Unitex-GramLab\App

18 userName is your name under the Windows system.

19 To choose this option, you must be an IT administrator.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

10

Both options are fine. If you want to change this setting, don't install Unitex in the MyUnitex
folder that you have created: this folder must remain separate from the installation folder.

After choosing the folder for installation that is appropriate for your computer, click on the
Next button, and after that on the Finish button:

Unitex starts automatically; if that does not happen, see Section 1.2.1 that follows.

1.1.3 Initial choices

Unitex will then ask you to choose your private working directory (or working folder):

Select then the MyUnitex folder that you have already created (see Section 1.1.1, page 7):

C:\Documents\MyUnitex

And then choose the language (in this case, English) and click on the OK button:

Chapter 2: First steps

11

1.1.4 Check or modify your private working directory

If you want to check your private working directory, you can open the
Info/Preferences…/Directories menu.

To modify your private working directory, click the Set button to choose a new one, and click
on the OK button. Unitex must then be closed and reopened to take the changes into account.

It is thus possible to have several private working directories, one per project.

The name of your private working directory is saved in a specific file which depends on where
Unitex is installed.

If you chose the just for me option, Unitex save this name in the file:

C:\Users\userName\AppData\Local\Unitex-GramLab\Users\userName.cfg

Else, if you chose the for anyone option, Unitex save this name in the file:

C:\Users\userName\.unitex.cfg

To avoid opening and closing Unitex to change the private working directory, it is possible to
directly modify this file. You can also create a shortcut to it on the desktop.

1.2 Using Unitex

1.2.1 Starting Unitex

It can happen that Unitex is not launched at the end of the setup or that you have accidentally
closed Unitex. It is also possible that you are using a computer on which Unitex is already
installed. In these three cases, you must launch Unitex yourself, as you will always do when

Unitex Getting Started - Denis Maurel and Cvetana Krstev

12

wanting to work with it. The easiest way is to use the shortcut placed on the desktop during
installation and double click it:20

If you do not have this shortcut or it does not work, it is possible to launch Unitex by going to
the folder where the Unitex program has been installed:

C:\Program Files (x86)\Unitex-GramLab\App
or

C:\Users\userName\AppData\Local\Unitex-GramLab\App

Double-click on the file named Unitex having the type Executable Jar File. A permanent
solution should be to send this file to the desktop as a shortcut by right clicking on this file and
choosing the Send to/Desktop option. This will create a shortcut of the Unitex executable jar
file.

1.2.2 The Unitex inteface

Unitex processes different types of files: texts, dictionaries, graphs and so on. In the Unitex
interface, each menu is specific to one of them and therefore has, for instance, an Open sub-

menu (or option).

Menus types of files

Text text to analyze

DELA dictionary

FSGraph graph

Lexicon-Grammar lexicon-grammar

XAlign parallel texts

File Edition textual file to edit

In addition, there are three more menus: Windows, Help and Info. The Unitex user manual can
be opened directly from Unitex, via the Help menu.

20 Whenever you update Java, you will need to redo this shortcut by restarting the installation or changing its
target.

Chapter 2: First steps

13

1.2.3 Opening a text

Before starting this section

Go to the folder: MyUnitex\English\Corpus\UnitexGettingStarted
Create a new folder named DombeyAndSon (without space).
Go to the folder: MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon21
Download the DombeyAndSon.txt file.

We will click the Text/Open… menu to open the file named:

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon.txt

and answer No to the question Do you want to preprocess the text?

Unitex will create a new file: 22

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon.snt

The top bar displays some numbers: 0 sentence delimiter, 803 028 (16 453 diff) tokens,
363 065 (16 434) simple forms, 0 (0) digits.23 Their meaning is:

sentence delimiter: Unitex can insert the special symbol {S} at the end of a sentence during

the preprocessing (see Section 3.3.1, page 37). Since we skipped the preprocessing there are
no such symbols.

21 This file is the novel Dombey and Son, by English author Charles Dickens. According to Wikipedia: “It follows
the fortunes of a shipping firm owner, who is frustrated at the lack of a son to follow him in his footsteps; he
initially rejects his daughter's love before eventually becoming reconciled with her before his death ”.
22 Unitex never works on an original text file.
23 These numbers are recorded in the file named:

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon_snt\stats.n

https://en.wikipedia.org/wiki/Dombey_and_Son

Unitex Getting Started - Denis Maurel and Cvetana Krstev

14

● token: it is either a string of letters24 or any other single character (including spaces).
There are 803 028 tokens in this novel, but only 16 453 different.

● simple form: it is a string of letters. There are 363 065 of them in this novel, but only
16 434 different.

At the bottom left is a reduced window, the Token list, that lists the tokens of the text and

their number of appearances. By double-clicking on it, we obtain this list in decreasing order
of frequency. You can also have it in the alphabetical order by clicking the Char Order button.25

We can notice that this Token list begins with space, punctuation characters and functional
words, which is normal, because they are the most frequently used tokens.

1.2.4 Applying dictionaries

We will open the Text/Apply Lexical Resources… menu. There we will find available
dictionaries, on the left those in the private working folder, on the right those that come with

the Unitex distribution.26 The default dictionaries are preselected (dela-en-public.bin and
Dnum.fst2).

24 Letters of a language are defined in the file:

MyUnitex\English\Alphabet.txt

A sorting order, for arranging concordances and dictionaries, is specified in the file:
MyUnitex\English\Alphabet_sort.txt

If these files are not present, Unitex will not work. In this case you have to open the folder where Unitex is
installed:

C:\Users\maurel\AppData\Local\Unitex-GramLab\English

or
C:\Program Files (x86)\Unitex-GramLab\English

and copy the three files Alphabet.txt, Alphabet_sort.txt and Norm.txt, and then paste them in the private folder
English:

MyUnitex\English
25 These lists are recorded in the three files:

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon_snt\tokens.txt
MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon_snt\tok_by_freq.txt

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon_snt\tok_by_alph.txt.

26 We have not yet dictionaries in the private working folder, see Chapter 5, page 107.

Chapter 2: First steps

15

By clicking the Apply button, we apply the dictionaries to the text and we obtain the WordList.

The WordList is displayed in three windows:27 DLF (22 604 simple forms), DLC (937 compounds

or multiword units) and ERR (580 words that are not in applied dictionaries).

1.2.5 The DLF window

We will first look at the format of the eleventh line of the DLF window (the first line not
displayed in the above screenshot):

abandoning,abandon.V:G

At the beginning of the line is the word from the text, followed by its heading form (or lemma),
after the comma and before the period. After the period comes a word’s part of speech (V for
verb), and it is followed, after the colon, by the inflection code (G for gerund). This word from

the text is recognized as possibly being the gerund of the verb to abandon. If the lemma form

27 These windows correspond to the following files:

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon_snt\dlf
MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon_snt\dlc

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon_snt\err

They come with three additional files:
MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon_snt\dlf.n
MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon_snt\dlc.n

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon_snt\err.n

These contain just the number of entries in the corresponding files.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

16

does not appear, which is the case on the line just above the analyzed one where the period
comes right after the comma, it means that the lemma is identical to the text word itself; in
this case the lemma of the noun abandoning is simply abandoning.

It may seem strange to see two lines beginning with abandoning. We must keep in mind that
words out of context are ambiguous, and abandoning can be the noun abandoning or the
gerund of the verb to abandon.

It is possible to force one analysis rather than another by modifying the text. For instance, by
replacing after abandoning herself with after {abandoning,abandon.V:G} herself, we explicitly
assign the verb category to the word abandoning. This expression between curly braces is

counted as a single token and is called a lexical tag (However, if you want to do that manually,
you shall have to close the text with Unitex, edit the .txt file, save it and reopen it with Unitex).

A line can also contain one or more features for the entries, which are preceded by a plus sign.
One example can be seen in the first line of the DLF window where the Dind features is used
to indicate that the determiner is indefinite:

a,. DET+Dind:s

1.2.6 The DLC window

The DLC window has the same format as the DLF window. If the multiword form contains a
character used as a delimiter (comma, period, plus, colon and slash),28 it must be preceded by
a backslash. Such a case does not occur in our DLC window.

1.2.7 The ERR window

The words that were not recognized by the applied dictionary are mostly proper names

(Aldgate, Alfred, Alraschid …); but also foreign language words: Anno (Latin), Roman numbers,
unusual orthography (adwentures), parts of contracted verbal forms (didn, hasn…) or simply

words that were not recorded in the applied dictionaries (nevyless,29 unbusiness,
undauntable…).

2 A detailed example

Before starting this section

Go to the folder: MyUnitex\English\Graphs
Create a new folder named UnitexGettingStarted (without space).
Go to the folder: MyUnitex\English\Graphs\UnitexGettingStarted

Create a new folder named Meet.

2.1 Concordances with one word query

Suppose, for example, that we want to study the use of the verb to meet in our novel. In order
to do that we will open the Text/Locate Pattern menu, select the Regular expression option
and type meet in the corresponding field.

28 The slash enables comments, see Chapter 5, Section 4.3.1, page 125.

29 The word nevy is an old form of nephew.

Chapter 2: First steps

17

We will launch the search by clicking the Search button, which will yield 58 matches.

Clicking the OK button will open the Located sequences dialog box. In order to obtain
concordances, we need to click the Build concordance button (situated at the bottom right of
the Located sequences dialog box).

Unitex Getting Started - Denis Maurel and Cvetana Krstev

18

The produced list is a hypertext file in which each recognized sequence leads to the
corresponding location in the text.30 For instance, if we click on the first line, this opens the
following window (right):

As the verb to meet has conjugated forms meets, met and meeting, we would have to repeat
what we have just done three more times in order to obtain a concordance of these three
forms as well.

If we look closely at the concordance of the word meeting, we can see that some lines
represent a form of the verb to meet (Mrs Miff, meeting Mr Dombey’s eye…), while others
represent the noun meeting (This is indeed a meeting!). You will remember that in
Section 1.2.5, page 15, we explained that some words can have several interpretations.

2.2 Concordances with a lemma

Instead of launching four different searches, we could have obtained the same result with one

query in the form of the regular expression meet+meets+meeting+met. With this query, we

30 These concordances are registered in the file:

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon_snt\concord.html

With each new search and concordance produced, this file is replaced, but you can save it using a different name
if you want to keep it. The saved concordance can be reopened by the Text/Open Concordance menu.

Chapter 2: First steps

19

would obtain a list of 131 concordance lines, containing all the lines previously obtained in
four subsequent runs (58+1+46+26). However, all these queries ignore the fact that Unitex
uses dictionaries, containing among other entries, all forms of the verb to meet.31

…
meet,.A
meet,.N:s
meet,.V:W:P1s:P2s:P1p:P2p:P3p
meeting,.N:s
meeting,meet.V:G
meets,meet.N:p
meets,meet.V:P3s
…
met,meet.V:K:I1s:I2s:I3s:I1p:I2p:I3p
…

Instead of launching four searches, or listing all forms of the verb, we can use one query with
the lemma form of the verb, <meet>.32

With this query, we will obtain the same result, a list of 131 concordance lines.

2.3 Concordances with a graph query

Until now, only simple forms of the verb to meet, one of the four possible forms, appeared in
the concordances. But we might like to highlight longer sequences in concordance lines: the
sequences containing, beside forms of the verb to meet, also words that we see in the left
context of concordance lines: did meet, should meet, would meet, shall meet, will meet, would
seldom meet, may ever meet, had met, have met, being met, had been met, have been met,
had ever met, had never met and has met. The reason to switch from regular expressions to
using Unitex graphs will become obvious with these examples.33

31 Note that the noun meetings (plural form of meeting) is not present in this text.
32 Note that this does not remove the ambiguity, because <meet> is also the lemma of a noun and an adjective.

33 For the sake of simplicity, we will omit the modal form (may ever meet) and the emphatic past (did meet).

Unitex Getting Started - Denis Maurel and Cvetana Krstev

20

2.3.1 A first graph

Let us open the FSGraph/New menu. We will get a window with a starting point on the left
and an ending point on the right.

We will now create in five steps a graph that recognizes four word forms meet, meets, met
and meeting:

1. Click on the starting point (start box).

2. Position the cursor a little more to the right, click the right mouse button and select
Create box from the displayed menu.

3. Type without any space meet+meets+met+meeting34 and finish with clicking the
Enter key.

34 These words will appear in the formula bar, just below the task bar of the graph window. They will replace the

<E> symbol, which means empty. The plus sign means or.

Chapter 2: First steps

21

4. Click on the meet+meets+met+meeting box and then the ending point (the end
box).

5. Click on the Save button (the leftmost in the task bar). Unitex will open the Graph
folder to save it.35

Go to the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Meet

And save this graph in it using the name meet. Unitex will add the .grf extension.

35 The whole process is shown in the video 2.2.3.1.meet.mp4 which is in the folder:
MyUnitex\English\Graphs\UnitexGettingStarted\Meet\2.2.3.1

Unitex Getting Started - Denis Maurel and Cvetana Krstev

22

Notes

1. Clicking on a box, then on another one creates a path between them or, if it already exists,
removes it.

2. To delete a box, you must delete its content (by using the Delete key, for example), then

validate with clicking the Enter key.

2.3.2 Concordances

In order to produce a concordance with our first graph, we will open the Text/Locate Pattern
menu and click the Set button next to the Graph field. The Graphs folder will open and we will
move to the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Meet

where we will find and select the meet.grf file.

We will launch the search, as before, by clicking the SEARCH button. Finally, we will obtain the
same list of 131 concordance lines.36

As before, we can replace four word forms with their common lemma.

36 Note that Locate Pattern creates a new file, meet.fst2: it is a compiled version of the meet.grf graph. If we used
the compiled version of a graph in Locate Pattern after modifying it, the modified version would not be used for
search.

1. Select the meet+meets+met+meeting box, type <meet> instead of meet+meets+met+meeting
then press the Enter key.

2. Click the diskette icon, at the left end of the task bar, to save the graph.

Chapter 2: First steps

23

Now, we will begin to highlight longer sequences in concordance lines by adding the future
tense and the conditional, i.e. four examples in our concordance: shall meet, will meet, should
meet and would meet.

2.3.3 Adding the future tense and the conditional

The future and the conditional use the forms of the auxiliaries, will, would, shall and should,

which can be represented by two lemmas <will> and <shall>. We will add two boxes to our
graph:

37 Pay attention: meet without angle brackets.

1. Click on the starting box, then move the cursor up and to the right, click the right mouse button
and select Create box from the displayed menu.

2. Type <will>+<shall>, then press the Enter key.
3. Click on the <will>+<shall> box, then move the cursor right, click the right mouse button and

select Create box from the displayed menu.
4. Type meet, then press the Enter key.37
5. Click on the meet box and then on the final box.
6. Rearrange the graph.
7. Click the Save button.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

24

The concordance produced with this new meet.grf graph contains again 131 lines and among
them lines with highlighted shall meet, should meet, will meet and would meet. You will find
these occurrences at the end of the concordance list.

Let us move to the perfect tenses. They consist of the verb to have followed by the past

participle, met. Three such forms can be spotted in our concordance, in the left context of the
form met: had met, have met and has met.

2.3.4 Adding the perfect tenses

The perfect tenses use the auxiliary forms have, has, had and having, which can be
represented by the lemma <have>. We will enhance our graph by using the copy-paste

Chapter 2: First steps

25

technique. We will add four boxes to our graph, one for the <have> lemma, one for the have
form, and two for the met form:

The concordance produced with this graph contains the lines with five highlighted sequences
had met, two sequences has met and three sequences have met.

1. Click on the starting box, then move the cursor down and to the right, click the right mouse
button and select Create box from the displayed menu.

2. Type <have>, then press the Enter key.
3. Click on the <have> box, then move the cursor right, click the right mouse button and select

Create box from the displayed menu.
4. Type met, then press the Enter key.
5. Click on the met box and then on the end box.
6. Select the <have> box and the met box by drawing with the mouse a rectangle that encloses

both boxes, then click the Copy button (or use CTRL-C on the keyboard).
7. Click the Paste button (or use CTRL-V on the keyboard): the two boxes appear twice.
8. Move the copied boxes to the top of the graph. Click outside the graph to deselect them.
9. Click on the top <have> box and delete the angular brackets (have replaces <have>), then press

the Enter key.
10. Click on the <will>+<shall> box and then on the have box.
11. Click on the met box and then on the end box.
12. Rearrange the graph.
13. Click the Save button.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

26

Two important notes on how copy-paste functions in Unitex

1. If only one box is selected, the box is not copied, only its content is. In order to copy-paste a
single box, you have to copy the box, create a new one and paste the content.

2. Copying and pasting multiple boxes does not use the usual clipboard. Therefore, there may be
competition between pasting text and pasting boxes. If some operation pastes boxes when you
wanted to paste text, just erase the unwanted boxes by clicking the Delete key, then the Enter
key. If you have copied both boxes and text and if you want to paste the text into some box,
there is a trick that ensures that what is pasted is the text and not the boxes: just type or erase
some character in the box before pasting the text.

It remains to insert the passive forms to our graph. They consist of the verb to be followed by
the past participle, met. Three such forms can be found in our concordance, if we look at the
left context of met: being met, had been met and have been met.

2.3.5 Adding the passive forms

The passive forms use the forms of the auxiliary to be (am, are, was, were, be and being) which
can be represented by their lemma <be>.

Chapter 2: First steps

27

We will add five boxes to our graph, one for the <be> lemma, one for the be form and one for
the met form, two for the been form:

The concordance produced with this graph highlights sequences being met, had been met and
twice have been met.

38After the selection of two boxes by drawing with the mouse a rectangle that encloses both.

1. Select the whole graph by drawing with the mouse a rectangle that encloses all the boxes (or
use CTRL-A38 on the keyboard) and then move it down. Click somewhere outside the graph to
deselect it.

2. Click on the starting box, then move the cursor down and to the right, click the right mouse
button and select Create box from the displayed menu.

3. Type <be>, then press the Enter key.
4. Click on the <be> box and then on the met box.
5. Click on the <have> box, then move the cursor up on the right, click the right mouse button

and select Create box from the displayed menu.
6. Type been, then press the Enter key.
7. Click on the been box, then click on the met box.
8. Click on the have box, then move the cursor up and to the right, click the right mouse button

and select Create box from the displayed menu.
9. Click the Paste button (or use CTRL-V on the keyboard): been is pasted. Press the Enter key.
10. Click on the been box and then on the met box.
11. Click on the <will>+<shall> box, then move the cursor down and to the right, click the right

mouse button and select Create box from the displayed menu.
12. Type be, then press the Enter key.
13. Click on the be box, then move the cursor to the right, click the right mouse button and select

Create box from the displayed menu.
14. Type met, then press the Enter key.
15. Click on the met box and then on the end box.
16. Click the Save button.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

28

If we look closer at our concordance, we will notice that sometimes an adverb is inserted
between an auxiliary and a main verb, as in the sequences would seldom meet, had ever met
and had never met which are therefore not recognized.

2.3.6 Adding adverbs

In order to retrieve these sequences as well, we can insert in our graph a box containing

seldom, ever and never. However, we should try to be more general because almost any
adverb can occur at this position. If we look closer at the Word List (see Section 1.2.4, page 14),
we will see that its third line is:

aback,.ADV

We learn from it that the code for adverbs used in dictionaries is ADV. We will therefore add

a box containing <ADV> at appropriate positions in our graph.

Chapter 2: First steps

29

39 Remember that the <E> symbol means empty.

40 This will remove the existing path.

1. Click on the <be> box, then move the cursor to the right, click the right mouse button and
select Create box from the displayed menu.

2. Type <ADV>, then press the Enter key.
3. Click on the <ADV> box and on the met box.
4. Rearrange the graph.
5. Click on the <have> box, then click the Copy button (or use CTRL-C on the keyboard). Click

somewhere in the blank space to deselect it.
6. Click on the start box, then move the cursor down and to the right, click the right mouse button

and select Create box from the displayed menu.
7. Click the Paste button (or use CTRL-V on the keyboard): <have> is pasted. Then press the Enter

key.
8. Click on the previous <have> box and type <E>.39
9. Click on the new <have> box and on the empty box.
10. Click on the start box and on the empty box. 40
11. Click on the <have> box, then move the cursor up and to the right, click the right mouse button

and select Create box from the displayed menu.
12. Type <ADV>, then press the Enter key.
13. Click on this new <ADV> box and on the empty box.
14. Rearrange the graph.
15. Click on the <will>+<shall> box, then click the Copy button (or use CTRL-C on the keyboard).

Click somewhere in the blank space to deselect it.
16. Click on the start box, then move the cursor up and to the right, click the right mouse button

and select Create box from the displayed menu.
17. Click the Paste button (or use CTRL-V on the keyboard): <will>+<shall> is typed. Then press the

Enter key.
18. Click on the previous <will>+<shall> box and type <E>.
19. Click on the start box and on the new empty box.
20. Click on the <will>+<shall> box and on the new empty box.
21. Click on the <will>+<shall> box, then move the cursor up and to the right, click the right mouse

button and select Create box from the displayed menu.
22. Type <ADV>, then press the Enter key.
23. Click on the new <ADV> box and on the new empty box.
24. Rearrange the graph.
25. Click the Save button.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

30

Finally, the concordance produced with this graph highlights the sequences had ever met, had
never met and would seldom meet.

2.4 Contexts

2.4.1 Left context

2.4.1.1 The verb to meet preceded by a pronoun

Suppose that instead of displaying all occurrences of the verb to meet, we only want to display
occurrences in which the verb is preceded on the left by a pronoun (or a pronoun followed by
an adverb). We will erase one box and add two boxes in our graph:

41 Or select any two boxes by drawing with the mouse a rectangle that encloses both, then select the whole graph
by typing CTRL-A on the keyboard and then move it right. Click somewhere in the blank space to deselect it. Click
on the starting box, then move it left.

42 To align boxes vertically (or horizontally), we can also select them and right-click to open the
Format/Alignment... menu.

1. Open the FSGraph/Save as… menu to rename the graph to meetLeft.grf.
2. Select the whole graph by drawing with the mouse a rectangle that encloses all the boxes,

except the starting box, and then move it to the right. Click somewhere in the blank space to
deselect it.41

3. Rearrange the graph to align vertically the <will>+<shall> box, the <meet> box, the <have> box
and the <be> box.42

4. Select the <will>+<shall> box, the <have> box and the <be> box, then click the Reversed link
between boxes button in the tool bar, in the third group of options, fifth in the group. Click on
the starting box (this will remove three paths).

5. Click the Normal editing mode button in the same third group of options, first in the group.
6. Click on the starting box, then move the cursor to the right, click the right mouse button and

select Create box from the displayed menu.

Chapter 2: First steps

31

This graph will produce the concordance with forty matched sequences.44

43 If you wish to use the corpus Ivanhoe.txt, distributed with Unitex, you must add to this list the second person
singular, thou. However, thou never precedes a form of the verb to meet in the text we use.

44 Do not forget to use the new meetLeft.grf graph in Locate pattern.

7. Click on the newly created box and type I+you+he+she+it+we+they, then press the Enter key.43
8. Click on the I+you+he+she+it+we+they box, then move the cursor to the right, click the right

mouse button and select Create box from the displayed menu. This box will remain empty.
9. Click on the I+you+he+she+it+we+they box, move the cursor up and to the right, then click the

right mouse button and select Create box from the displayed menu.
10. Click on the newly created box and type <ADV>, then press the Enter key.
11. Click on the <ADV> box and on the empty box.
12. Select the <will>+<shall> box, the <meet> box, the <have> box and the <be> box.
13. Click the Reversed link between boxes button. Click on the empty box (this will create three

paths).
14. Click the Normal editing mode button.
15. Click the Save button.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

32

2.4.1.2 The verb to meet preceded by a pronoun and a left context

The concordance we obtained is not like the previous ones, because pronouns are part of the

highlighted sequences. It is possible to avoid this if we use the so-called left context:

We obtain nearly the same concordance: pronouns are not highlighted anymore, but

occurrences are still displayed only when the pronoun is present.

2.4.2 Right context

It is possible to do the same thing on the right. It is done in a slightly different way. We will

start from the meet.grf graph and suppose that we want to highlight only the left context of
the verb to meet (the auxiliaries) and not the verb itself.

1. Select the <will>+<shall> box, the <meet> box, the <have> box and the <be> box.
2. Click the Reversed link between boxes button in the tool bar, in the third group of options,

forth in the group.

3. Click the first green button ($*, Inserts left context mark before box selection) situated at the
right end of the graph editor toolbar.

4. Rearrange the graph.
5. Click the Save button.

Chapter 2: First steps

33

The concordance obtained by applying this graph contains 28 matches (among 131 matches
obtained by the meet.grf graph, 103 recognize only the main verb to meet in its various forms).
In the recognized sequences, the verb to meet is not highlighted.

1. Open the meet.grf graph.
2. Open the FSGraph/Save as… menu to rename the graph as meetRight.grf.
3. Click on the <meet> box and type Delete and Enter.

4. Select the meet box and click the second green button ($[, Surround box selection with right
context tags) situated at the right end of the graph editor toolbar.

5. Select the met box and click again the Surround box selection with right context tags button
(three times).

6. Rearrange the graph.
7. Click the Save button.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

34

2.4.3 Lexical masks

We have already introduced two types of lexical masks: for instance, <meet> matches all forms
of the lemma meet (see Section 2.2, page 18) while <ADV> matches all adverbs (see
Section 2.3.6, page 28). These masks rely on the dictionaries used.

There are other masks depending on the use of upper and lower case letters:45 <UPPER> for a
word in uppercase, <FIRST> for a word starting with uppercase and <LOWER> for a word in
lowercase. Besides them, the mask <WORD> corresponds to a sequence of letters; the mask
<NB> to a sequence of digits; the mask <DIC> to any dictionary entry; and the mask <TOKEN>
to any token (see Section 1.2.3, page 13).46

We will now transform the meetLeft.grf graph to recognize all forms of the verb to meet that
are preceded by a word starting with uppercase. We will name this graph meetLeftRight.grf:

Now, the concordance displays only twenty-one lines.

45 The uppercase and lowercase letters are defined in the Alphabet.txt file, see Section 3.3.3.1, page 41.
46 There are some other masks, see the Unitex user manual, Section 4.3.1. Beware that for the preprocessing,

the topic of the next section, different masks are valid (see Section 2.5.2 in the Unitex user manual).

1. Open the meetLeft.grf graph.
2. Open the FSGraph/Save as… menu to rename the graph as meetLeftRight.grf.
3. Click on the I+you+he+she+it+we+they box and type <FIRST>.
4. Select the <ADV> box and the empty box by drawing the rectangle over these boxes, then type

Delete and Enter.
5. Click on the <FIRST> box and the $* box.
6. Rearrange the graph.
7. Click the Save button.

Chapter 2: First steps

35

3 The .snt file

3.1 Document transformation

3.1.1 Standard normalization

Before splitting the text into tokens (see Chapter 2, Section 1.2.3, page 13), Unitex normalizes
the text. This new text is saved with the same name as the original text, but with the .snt.

extension. It is constructed as follows:

1. Any sequence of spaces and tabulation characters is replaced by a single space

(recognized by a path between two boxes).

2. Any series of line breaks (possibly with spaces and tabs) is replaced by a single line

break (also recognized by a path between two boxes).47

3. Braces are replaced by square brackets, unless they correspond to a dictionary entry
(a lexical tag, see Section 1.2.5, page 15).

3.1.2 The Norm.txt file

The Norm.txt file in the Unitex distribution is important:

MyUnitex\English\Norm.txt

We are going to open this file using the File Edition/Open/Other files menu. It only contains
two lines.

47 The No separator normalization option, in the Preprocessing dialog box, only works for preprocessing graphs.
For other graphs, a path on a graph between two boxes may pass not only through one space or one line break,
but also through a series of spaces, tabs and line breaks.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

36

These two lines define the rule for transforming braces into brackets. Each line consists of a
character string (the text to be replaced), followed by the tabulation character, then another
character string (the replacement text) and finally a line break (Enter).

Note that this file is strictly speaking not necessary, because this rule applies anyway, even if
the Norm.txt file is not present. It is actually there to indicate how to add more lines.

3.1.2.1 The standardization of dashes and quotation marks

There are two types of dashes in our text: 2 034 hyphens (‐) and 2 378 em dashes (—).

Similarly, there are three types of quotation marks in our text: 7 766 left double quotation
marks (“), 7 824 right double quotation marks (”) and 2 quotation marks (").48 If we would like

to normalize them to hyphens (‐) and quotation marks ("), we can add three lines to our
Norm.txt file:49

Now, close Unitex and reopen it. Open the text (the original .txt text, not the already
processed .snt text) and skip all preprocessing to get 4 412 hyphens (‐) and 15 592 quotation
marks ("). However, if we look at the number of different tokens, we can notice that we have
three unique tokens less than when processing the text with the old Norm.txt file: 16 450.
Three unique characters were replaced with two existing unique characters.

3.1.2.2 The standardization of apostrophes

Looking closer, we see that the novel uses the right single quotation mark (’) as an apostrophe
and not the keyboard character, the punctuation apostrophe ('). The novel also uses the left

single quotation mark (‘). If we want to normalize these two single quotation marks to
punctuation apostrophe, we can add two new lines to our Norm.txt file:

1. Open the Norm.txt file.
2. Type ’, Tab, ' and Enter.
3. Type ‘, Tab, ' and Enter.
4. Click the Save button.

48 There are more than two types of dashes and three types of quotation marks according to the Unicode

standard; however only those mentioned here appear in our text. If you do not know how to type these
characters, the best thing is to locate them in the text and copy and paste them.
49 In order to apply the modified Norm.txt file, it is necessary to close Unitex and then to reopen it.

50 For example, by copying and pasting non-ASCII characters from the novel.

1. Open the Norm.txt file.
2. Type —, Tab, – and Enter.50
3. Type “, Tab, " and Enter.
4. Type ”, Tab, " and Enter.
5. Click the Save button.

Chapter 2: First steps

37

Now, close Unitex and reopen it. Open the text (the original .txt text, not the already
processed .snt text) and skip all preprocessing.

If we compare the .snt text from Section 1.2.3, page 13, we can see that five tokens are missing
(16 453 different tokens versus 16 448).

3.2 The preprocessing

Unitex offers two possibilities of preprocessing:

1. Switch on one or two graphs, one working in Merge mode and one in Replace
mode. These graphs can recognize a line break, which is represented by <^> in a
box. After normalization, the line break will not be distinguished from the space

and will be recognized by a path between two boxes.

2. Launch the default dictionaries (see Section 1.2.4, page 14).

By default, switching on Merge mode will use the graph:

MyUnitex\English\Graphs\Preprocessing\Sentence\Sentence.grf

while switching on Replace mode will use the graph:

MyUnitex\English\Graphs\Preprocessing\Replace\Replace.grf

3.3 Material (only for confident users)

3.3.1 The Sentence.grf graph

The Sentence.grf graph inserts the Unitex symbol {S} (sentence delimiter) at the end of the
sentence.

We will open the file:

MyUnitex\English\Corpus\UnitexGettingStarted\UnitexGettingStarted\
DombeyAndSon\DombeyAndSon.txt

Unitex Getting Started - Denis Maurel and Cvetana Krstev

38

by using the Text/Open… menu and then answer Yes to the question Do you want to
preprocess the text? By default, two boxes are checked. If we check only the box next to Apply
graph in MERGE mode

the displayed information for the file:

MyUnitex\English\Corpus\UnitexGettingStarted\UnitexGettingStarted\
DombeyAndSon\DombeyAndSon.snt

will change.

Unitex has inserted 16 515 sentence delimiters.51

A sentence delimiter can be placed and recognized in a box of a graph. For instance, create the

sentenceWithoutDot.grf graph and record it in the same folder as the Meet.grf graph:

51 Since the last sentence is not followed by the sentence delimiter, there are therefore 16 516 recognized
sentences. The number of tokens is now 803 028+16 515=819 543, because {S} counts as one token. There is also
one more different token.

1. Open the FSGraph/New menu.
2. Click on the starting box, then move the cursor to the right, click the right mouse button and

select Create box from the displayed menu.
3. Click on the newly created box and type ?+!, followed by Enter.
4. Click on the ?+! box, then move the cursor to the right, click the right mouse button and select

Create box from the displayed menu.
5. Click on the newly created box and type {S}, followed by Enter.
6. Click on the {S} box and on the final box.
7. Click the Save button.

Chapter 2: First steps

39

In order to produce a concordance with this graph, we will open the Text/Locate Pattern menu

and click the Set button next to the Graph field. The Graphs folder will open, and we will move
to the folder

MyUnitex\English\Graphs\UnitexGettingStarted\Meet

where we will find and select sentenceWithoutDot.grf. The search with this graph has more
than 200 matches; therefore, we must modify the Search limitation option by checking Index
all occurrences in text. When we click the SEARCH button, we obtain 1 316 sentence delimiters

preceded by a question mark or an exclamation mark.

If we select the Regular expression option and type ?+! in the search field, we obtain 4 469
question marks or exclamation marks in the text, difference due to the presence of direct

speech.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

40

This may seem confusing, but if we look at the following sequence: Dear Mama! what is…

(among the first matched sequence in the concordance), we can see that the sentence
delimiter is not inserted after each question or exclamation mark by the applied Sentence.grf.
The users may modify the sentence graph supplied by the Unitex distribution or write their
own sentence graph.

3.3.2 The Replace.grf graph

The Replace.grf graph modifies the text by replacing the contracted verb forms with the
corresponding full forms, for instance I'm is replaced by I am.

We will open the file

MyUnitex\English\Corpus\UnitexGettingStarted\UnitexGettingStarted\
DombeyAndSon\DombeyAndSon.txt

by using the Text/Open… menu and then answer Yes to the question Do you want to

preprocess the text? If we check only the box next to Apply graph in REPLACE mode

the displayed information for the file:

MyUnitex\English\Corpus\UnitexGettingStarted\UnitexGettingStarted\
DombeyAndSon\DombeyAndSon.snt

does not change from the text without preprocessing (Section 3.1.2.2, page 36), because the
number of tokens remains the same; however, frequencies of some tokens change. We can

see, at the thirteenth paragraph, the first transformation: couldn't is replaced by could not.

Chapter 2: First steps

41

The both sequences have the same number of tokens, three; that is the reason that the
number of tokens in the whole novel has not changed. On the other hand, could already
existed in the text, so the number of different tokens decreases (16 448 to 16 434).

3.3.3 The two alphabet files

3.3.3.1 The Alphabet.txt file

Recall (see Section 1.2.3, page 13) that a token is either a string of letters or any other single

character. What is considered a letter is defined by the Alphabet.txt file:

MyUnitex\English\Alphabet.txt

Since there are two cases in English, all letters are presented in pairs: uppercase and
lowercase. We can open this file using the File Edition/Open/Other Files menu.

The pairs mean that a word in a box written in lowercase recognizes the same word with
uppercase letters in a text. The reverse is not true; that is, if we place uppercase letters in a

Unitex Getting Started - Denis Maurel and Cvetana Krstev

42

box, only words with uppercase at that position are recognized. It is also possible to enforce
case-sensitive matching using quotation marks.52

This box recognizes

 word, Word, WORD, but also wOrd, etc.

 Word, WORD, WOrd…, but not word, wORD, etc.

 WORD and nothing else

 Word and nothing else

The same is true when a dictionary is consulted; the entry:

word,.N:s

matches words word, Word, WORD, but also wOrd, etc., while the imaginary entry

WORD,.N:s

would match only the word WORD.

3.3.3.2 The Alphabet_sort.txt file

The Alphabet_sort.txt file:

MyUnitex\English\Alphabet_sort.txt

defines the sort order of the letters of the alphabet. It is used to sort concordances and
dictionaries, when presented in alphabetical order. The alphabetical sort implemented in

Unitex is very fast, even on very large files. We will open this file by using the File
Edition/Open/Other Files menu.

52 Or, as we have seen in Section 2.4.3, page 34, by using lexical masks.

Chapter 2: First steps

43

In this file, letters are also represented in pairs, uppercase and lowercase. The sort order is
defined in two levels. The first level is defined by lines, meaning that, for instance, each A is
preceding each B, whether it is written in uppercase or not, whether it is accented or not. The
second level is defined by each line. Consider the line:

EÉÈÊËeéèêë

It imposes that an E without an accent precedes an É with an acute accent, and also that an É
with an acute accent precedes an È with a grave accent, and so on. For instance, in French,
PÊCHER or pêcher (to fish) and PÉCHER or pécher (to sin) are ranked as follows:

PÉCHER, PÊCHER, pécher, pêcher

However, the whole group of letters has its own order in relation to other groups of letters.
Thus, the words ÉTÉ or été (summer) and ÈRE or ère (era) and EUROPE or Europe are ranked:

ÈRE, ère, ÉTÉ, été, EUROPE, Europe

because the Rr group precedes the Tt group and the Tt group precedes the Uu group.

45

Chapter 3: corpus annotation

Before starting this chapter

Go to the folder: MyUnitex\English\Graphs\UnitexGettingStarted

Create three new folders named Will, Numbers and RomanNumerals.

1 First example: compound verbs using the verb will

We will start this chapter by opening the text DombeyAndSon.txt (Text/Open menu) in the

folder:

MyUnitex\English\Corpus\UnitexGettingStarted\UnitexGettingStarted\DombeyAndSon

and by answering Yes to the question Do you want to preprocess the text. A window will open
in which we will remove the first two checkmarks, leaving just the last one Apply All default
Dictionaries.

1.1 First step: the simplest graph

Let us create a first graph that we will save, like all graphs in this chapter, in the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Will

We will name it willV.grf. This graph will recognize all forms of the verb will (forms will and
would) followed by a verb in the infinitive (the future tense) and insert the XML tags

<verb>…</verb> for the recognized forms. To insert an annotation into a box, add a trailing
slash and type the desired annotation. This annotation will be placed just before the text

recognized by the box. To place an annotation after the box, you must therefore add an empty
box after it (with the annotation).

Generally, the lexical mask <will> represents all forms of the lexeme will. However, there are
two lexemes <will>, a verb (will) and a noun (a will, wills). In order to avoid the recognition of
nominal forms of will, we have to precise its part-of-speech with an appropriate code
<will.V>.53

53 Pay attention to the fact that information inside a lexical mask is case sensitive.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

46

In the English dictionary distributed with Unitex, the code for infinitive forms of verbs is W.
The lexical mask that recognizes an infinitive form of any verb is <V:W>.

Start the search (Text/Locate patterns) using the willV.grf graph (Set button in the Graph line)

with options Merge with input text and Index all occurrences in text. Click the Search button
and then click the OK button. We get 1 146 matches. To make the concordance easier to read,

we are going to slightly modify the display parameters by choosing to display 20 characters on
the left and 255 characters on the right of the matched sequences. Finally, click on the
Build concordance button.

You will see that at the beginning of the concordance list there are some false recognitions.
Namely, in a text segment could I do more than render up my whole will and being to you, will
is a form of a noun and and is a conjunction. This is because, in the English dictionary
distributed with Unitex a form will has two interpretations: a noun and a verb, while and has

Chapter 3: Corpus annotation

47

also two interpretations: a conjunction and a verb.54 We will see in the section devoted to
dictionaries how some cases of ambiguities can be avoided.

1.2 Second step: future passive and future perfect tense

When looking at the produced concordance we observe that in several cases will be and will
have were recognized as a form of future tense, but the recognition was not complete. Now
we will modify our graph so that it recognizes also passive tenses and forms of the future
perfect tense. In the English dictionary distributed with Unitex, past participles are encoded
with K and a lexical mask for retrieval of past participle word forms is <V:K>. In order to extend
our graph, we will add a new path that exits from the <will:V> box. In this path, a form of a

past participle must be preceded by be or have. Note that in this case, we use strings and not
lexical masks, because these are exact forms that have to be recognized. We could have also
used <be.V:W> and <have.V:W> but these masks correspond to exactly one form each.

Open the Text/Locate Pattern… menu and click the Search button. We will obtain again 1 146

matches. Instead of producing concordances, we will click the Show differences with previous
concordances button in the Locate sequences dialog box. We will obtain the parallel list of
matches obtained by the previous graph and matches obtained by the modified graph.

Open the Text/Located sequences… menu and click the Build concordance button. You will
obtain the new concordance list.

54 An intransitive verb with dialectal use, meaning: to breathe; whisper; devise; imagine (source: Wiktionary).

Unitex Getting Started - Denis Maurel and Cvetana Krstev

48

You should note that, in the Locate pattern dialog box, we used the default option Index
longest matches, which means that shortest matches at the same position will not be indexed
or listed in concordances. In order to understand what it means, open the
Text/Locate pattern… menu, change the default option to Index all matches and click the
Build concordance button. Now, you will obtain 1 382 matches and among them are both

shorter and longer matches, for instance will be associated and will be. You may wonder why
two concordance lines containing these two matches are far apart in the concordance list.
When building concordances, we used the default option for sorting concordance lines
(Located sequences/Sort according to) which is Center, Left. This option means that
concordances are first sorted according to matches (from left to right) and then according to
the left context (from right to left). In this case, the occurrence <verb>will be
associated</verb> will be listed before <verb>will be</verb> associated.

1.3 Third step: recognizing the future perfect passive

We will modify our graph to recognize more compound verb forms with the lexeme <will.V>.
Now we must split the be+have box because the forms been and had can follow have but not
be.

Chapter 3: Corpus annotation

49

Open the Text/Locate Pattern… menu, return to the original indexing option: Longest matches

and click the Search button. By clicking the Build concordances button in the Locate sequences
dialog box, you will obtain the new concordance. This list again contains 1 146 lines. Note that
the added forms been and had are also past participles of verbs to be and to have respectively,

so now some longer (complete) compound forms are recognized instead of shorter ones: for
instance, would have been (before) is replaced by would have been added (now).55

1.4 Fourth step: recognizing continuous forms

In order to recognize continuous forms: future continuous and future perfect continuous, we
will modify our graph again. Continuous forms are built using the present participle for which

we use the lexical mask <V:G>. This mask will be used in two new boxes, once for the future
continuous tense and once for the future perfect continuous tense. We must split the

been+had box because the present participle can follow will have been, but not will have had.

55 You can analyze all differences obtained by this new graph if you use the Show differences with previous
concordances option in the Located sequences dialog box.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

50

Now the concordance highlights four new sequences:56 will be giving, would be dancing, would
be enchanting and would be obliging.

1.5 Fifth step: insertion of an adverb after will or would

1.5.1 A single adverb

Now we will take into account that an adverb can be inserted after the verb <will.V>. Since
the code used for adverbs in the English dictionary distributed with Unitex is ADV, we will use
for them the lexical mask <ADV>. The tags around them in a text will be <adverb>...</adverb>.

Save the modified graph and use it in Locate pattern. You will obtain now 1 330 concordance
lines. This time, they contain new matches, because occurrences with an adverb after <will.V>
could not be retrieved with the previous version of the graph. Some of the occurrences can
be seen in the following figure.

56 The number of matches remains the same because the previous graph recognized will be.

Chapter 3: Corpus annotation

51

1.5.2 Several adverbs

However, it sometimes happens that an adverb is followed by another adverb or even more.
We will add a loop between the two boxes concerned.

The new concordance shows 13 new matches. You can also use the Show differences with
previous concordance option in the Located sequences menu to spot them.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

52

1.6 Sixth step: insertion of an adverb after be

The position after the verb <will.V> is not the only one where an adverb can occur. It can also
be inserted between the verb to be and the present or past participle.

This should be added as optional after the been and be boxes in our previous graph. Therefore,
we will modify our graph once again. However, rather than duplicating the boxes and loop of
the previous section, we will create a subgraph to recognize adverbs.

1.6.1 A graph that recognizes and annotates adverbs

We observe that adverbs can appear at two positions in a verb group, so the same boxes for
recognition and annotation would appear twice. In such situations, it is good to use subgraphs.

First, the same problem of recognizing and annotating adverbs can appear in some other
graph and then the subgraph can be reused.57 Second, the graph that recognizes verb groups

with will/would becomes less complex and easier to read and to develop further.

The easiest way to create a subgraph named adverb.grf from the existing graph is to use the

Export as new graph option (select boxes that will belong to a subgraph and use the right
mouse button). Here we select the <ADV>/<adverb> and <E>/</adverb> boxes, then we right-
click to choose the Export as new graph option. We call this graph adverb.grf.

The boxes of the main graph, which recognize and annotate the adverbs, must then be
replaced by a call to the subgraph (name preceded by a colon, here :adverb). In the main
graph, boxes that call a subgraph have a gray background.

The concordance obviously remains the same.

1.6.2 The main graph

Let us modify our graph again to recognize occurrences of adverbs after the verb to be (in two
places).

57 See Chapter 4, Section 4.3, page 95 (only for confident users).

Chapter 3: Corpus annotation

53

We obtain the same number of concordance lines, but longer sequences are recognized and
highlighted.

1.6.3 A new subgraph

Before continuing to improve our graph, we will simplify it by creating a new subgraph. Since
the next steps will enhance the beginning of the graph without changing anything in its second
part, we will create a new subgraph from it. In order to make the main graph easy to
understand we will leave the insertion of the end-tag </verb> in the main graph. We will give
the name infinitiveVerb.grf to the new subgraph.

If you apply this modified graph to the text, you will again obtain the same concordances,
because we have only reorganized the graph.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

54

1.7 Seventh step: negative adverbs

1.7.1 The main graph

In the concordance, you can see two special adverbs, never and not, which mark negative
forms.

We will now treat them separately, as a negation. They usually follow another adverb,
although sometimes they can precede it. We will create a subgraph for negation, but before

doing that we will put a call to a future subgraph named negation.grf at the right place in the
main graph. This graph does not exist yet, so this box has a red background.

1.7.2 The negation subgraph

We can easily create this new subgraph from the main graph: we need to click on the :negation

box, click the right mouse button and select Open subgraph from the menu displayed, then
we need to click the Yes button to create the new graph.

After creating and saving the negation graph, the background of the :negation box in the main
graph becomes gray.

Notes

A call to a subgraph has a red background if:
1. The subgraph exists, but the main graph has not yet been saved.
2. The subgraph exists but it is not in the same folder as the main graph.
3. The subgraph does not exist, it will be created later.
4. The subgraph does not exist because the call contains a spelling error.
If not, the call to a subgraph has a grey background.

Chapter 3: Corpus annotation

55

1.7.3 Negative right context

If we look closely at the concordance obtained, we may be surprised to see 93 more lines, a
total of 1 436 lines.58 These are lines in which never and not are annotated as negation; they
appear in addition to the 93 lines annotated as adverb. The Longest matches option does not
allow for choosing between the two annotations; they are therefore both displayed.

If we look at the list of differences between the two concordances (see Section 1.2, page 47),
we will see that the new concordance includes all forms of adverbs never and not labeled also

as negation.

This is normal, because never and not are both adverbs and negations, but that is not what we
want. To force the negation tag, we will use a negative right context in the adverb.grf
subgraph, which is not to be confused with the right context seen in Chapter 2, Section 2.4.2,

page 32.

58 There is the same number of matches as before, 1 343, but more concordance lines, 1 436.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

56

Now, never and not are always annotated as negation. There are again 1 343 lines in the
produced concordance.

1.8 Eighth step: adding the verb shall

The verb shall follows the same rules as the verb will, making it easy to add it in the main
graph. Since this verb is not ambiguous with a noun or some other category, as will is, it is not
necessary to add its category in a lexical mask, so we will use <shall>.59

The new concordance contains 1 948 lines.

59 Keep in mind that the lexical mask <shall.V> would not be incorrect; these two masks produce the same results.

Chapter 3: Corpus annotation

57

1.9 Continuation of this graph (only for confident users)

Before starting this section

In order to retrieve all results you should use the Norm.txt file introduced in Chapter 2,
Section 3.1.2, page 35. If you have not used it when you preprocessed the text, download it, then
close and reopen Unitex.
Open the original DombeyAndSon.txt file, process it by applying the default dictionaries (do not
use Sentence or Replace graphs).

1.9.1 Addition of contracted forms

In the willV graph, we have omitted the recognition of contracted forms won't, wouldn't,

shan't and shouldn't. We need a separate path for them because, in the case of contractions
with not, additional negations are not allowed.

If you now apply the new willV graph to the text, you will get 2 069 lines, including 121
contracted forms, and among them all four possibilities.

1.9.2 Affirmative and negative constructions

We can now distinguish between affirmative and negative forms. We will add the attribute

construction with possible values affirmative/negative to the XML start tag <verb>.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

58

When you apply this graph to the text, you will obtain the same number of concordance lines,
2 069. The output is different since recognized verb groups are now annotated as affirmative
or negative.

1.9.3 Interrogative constructions

In order to recognize interrogative constructions as well it is enough to create a subgraph for

personal pronouns60 and to duplicate several paths. The attribute type will now have two
more possible values: interro-negative and interrogative.

60 We add to the list of common pronouns the old form of the second person singular, thou.

Chapter 3: Corpus annotation

59

If you apply this graph to the text you will obtain 2 224 concordance lines, some of which are
represented below.

2 Second example: numbers written with words

Our second exercise will deal with the annotation of numerals written using only words (not
digits). We will proceed step-by-step using subgraphs in each of them. We will save this graph
in the Numbers folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Numbers

2.1 First step: from 2 to 9

We will start with numbers two to nine. We will skip the number one because it is ambiguous
with the pronoun one. We will save this graph using the name NB2-9.grf.

When we apply this graph to our text Dombey and son in Merge mode and without the search
limitation (Index all occurrences in text), we obtain 565 concordance lines, some of which are
displayed in the screenshot.

2.2 Second step: from 2 to 99

2.2.1 A subgraph without output

We would like to use the previous graph as a subgraph. It is possible to do it for numbers from

2 to 9; for numbers from 21 to 29 it is also possible to use the previous graph as a subgraph

Unitex Getting Started - Denis Maurel and Cvetana Krstev

60

but the result would contain some unwanted nesting: for instance, twenty-two would be
annotated as <number>twenty-<number>two</number></number>. In order to avoid this,
we will create, based on NB2-9 graph, an NB1-9-subgraph graph that produces no output and
contains the number one. Note that one that follows other numbers written in words is no
longer ambiguous. This graph annotates twenty-two as <number>twenty-two</number>.

2.2.2 The NB2-99.grf graph

Now we can produce a graph that recognizes numerals from 2 to 99. It will have one path for
the recognition of numbers two to nine: this path will consist of a box that calls the NB2-9.grf

subgraph, which means that the annotation will also be performed by the subgraph. Another
path will contain the box that recognizes numbers ten to nineteen. The box that recognizes
these numbers will insert the start tag <number>. The third path will recognize numbers
twenty to ninety, which can be followed by numbers one to nine. For this recognition, the
subgraph NB1-9-subgraph.grf will be used. A hyphen can be used between numbers written
in words. The box that will recognize numbers twenty to ninety will insert the start tag
<number>, while the end tag </number> will be produced by an empty box common to the

second and third paths (but not the first one). We will save this graph under the name NB2-
99.grf.

A few of the 709 concordance lines produced when applying this graph to the text are
displayed in the screenshot.

Chapter 3: Corpus annotation

61

2.3 Third step: from 2 to 999

2.3.1 The NB1-99-subgraph.grf graph

For the same reason as before, we will produce a graph that recognizes numbers two to
ninety-nine but does not insert any tag. Namely, we want to use it as a subgraph of the graph
that will recognize numbers from two to nine hundred ninety-nine. We will base this graph on
the already developed NB2-99 graph and name it NB2-99-subgraph.grf.

2.3.2 The NB2-999.grf graph

In this graph we will use as a subgraph NB2-99.grf to recognize and annotate all numbers in
the interval from 2 to 99. For numbers in the interval from 100 to 199, the word hundred must

be present and can be preceded by an indefinite article a or by a number one. For numbers in
the interval 200 to 999, the word hundred has to be preceded by a number from 1 to 9
(possibly followed by a hyphen); for that, we will use the appropriate subgraph that does not

insert tags. The previously produced NB1-99-subgraph.grf subgraph recognizes numbers from
1 to 99, without annotating them. Note that numbers from 1 to 99 that follow hundreds can

be preceded with the conjunction and.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

62

The application of the main graph to the text produces 719 concordance lines.

2.4 Fourth step: from 2 to 999 999

2.4.1 The NB100-999-subgraph.grf graph

We will produce a graph named NB100-999-subgraph.grf that recognizes numbers from 100
to 999 without annotating them. It presents the modification of the previously developed
NB2-999.grf graph, but the path recognizing numbers from 2 to 99 has been deleted. The
reason why this path was deleted will become clear when observing the next graph, which
recognizes numbers from 2 to 999 999.

2.4.2 The NB2-999999.grf graph

This graph will look similar to the NB2-999.grf graph, except that here the word thousand has
to be used, optionally preceded by a or a number between 1 to 99 (NB1-99-subgraph.grf, see
Section 2.3.1, page 61) or between 100 to 999 (NB100-999-subgraph.grf). The word thousand
can be followed by a number between 1 to 99 (subgraph NB1-99-subgraph.grf), which can be

preceded by a conjunction and. The word thousand can also be followed by a number
between 100 to 999 (NB100-999-subgraph.grf), but in that case, the conjunction and is not

Chapter 3: Corpus annotation

63

used and that is the reason that we separated the cases of numbers between 1 to 99 and
between 100 to 999.

If we apply this graph to the text, we will obtain 736 concordance lines for numbers from 2 to

999 999.

3 Third example: annotating Roman numerals

We will now continue with Roman numerals which we want to tag as romanNumeral. We want
to describe them, as number written in words in the previous section, with graphs. However,
we encounter a problem if we use graphs in a similar way to before. Namely, with three
successive boxes containing the letter I, we can recognize three successive words I I I and not
one word III. In order to solve this problem, we use the morphological mode that allows for
matching a word, that is, a sequence of letters.

3.1 First step: from 2 to 9

We will start with the graph that recognizes Roman numerals with values 2 to 9. As before,

we will skip the numeral I because it is ambiguous with the pronoun I. We will name this graph
RN2-9.grf. We will build this graph bearing in mind the rules for constructing Roman numerals.

Once we have done that we will select all boxes, except the start box and the end box. Then
we will click the Surround box selection with morphological mode tags button (you will find
this button at the right end of the toolbar represented as violet angular brackets). The graph

is now surrounded with two boxes that contain codes $< and $>. Inside this morphological
part, the content of boxes is read as concatenated.

In order to obtain a tidy graph, we will align the left and right parts of the graph. This can be
done by opening the FSGraph/Format/Alignment/Horizontal/Center menu option. This menu
can be accessed by the menu bar or by a click with the right mouse button.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

64

When applying this graph to the text we obtain a concordance with the numbers of the first

eight chapters of our novel Dombey and Son (except the first one, which we omitted on
purpose).

3.2 Second step: from 2 to 99

3.2.1 The subgraph from 1 to 9

As before, we will use the previously created RN2-9.grf graph to create a subgraph that does
not insert tags. We will also cancel the morphological mode (by deleting the boxes that contain
$< and $>), because it will have been introduced by the invoking graph, and nesting of
morphological modes is not allowed. We will add a path that recognizes the roman numeral I,
because in the context it will be used. We will name this graph RN1-9-subgraph.grf.

3.2.2 The graph from 2 to 99

Roman numerals are constructed very regularly. Therefore, in order to recognize numbers
greater than 10 and up to 99, we can use the preceding RN2-9.grf graph, and replace in it I
with X, V with L and X with C. Then we have to add a path for X, a call to the RN2-9.grf subgraph
outside the morphological mode (this to recognize numerals from 2 to 9), and a call to the
RN1-9-subgraph.grf (inside the morphological mode) for numerals from 1 to 9 when they are
added to numerals greater or equal to ten. We will name this graph RN2-99.grf.

Chapter 3: Corpus annotation

65

When we apply this graph to our text, we obtain 63 concordance lines. Note that this text

(novel) has 64 chapters designated with Roman numerals. With the RN2-99.grf graph we
recognize 63 of them (we do not recognize the first chapter “I”).

3.3 Third step: from 2 to 999

3.3.1 The subgraph from 1 to 99

We will repeat the same procedure to produce the RN2-9-subgraph.grf, namely, we will cancel
the morphological mode and the insertion of tags. We should not forget to replace the call to
the RN2-9.grf subgraph with RN1-9-subgraph.grf because the later subgraph does not insert

tags, does not impose morphological mode and recognizes I (this subgraph is never used
independently).

Unitex Getting Started - Denis Maurel and Cvetana Krstev

66

3.3.2 The graph from 2 to 999

In order to recognize Roman numerals between 2 and 999, we will again use the already
developed RN2-99.grf graph in which we will replace X with C, L with D and C with M. Again,
we will replace the call to the RN2-9.grf subgraph with RN2-99.grf outside the morphological
mode (for numerals between 2 and 99), and a call to the subgraph with RN1-99-subgraph.grf
(inside the morphological mode) for numerals between 1 to 99, when they are added to
hundreds. We will name this graph RN2-999.grf.

When we apply this graph to our text, we will obtain 76 concordance lines. But there are no

Roman numerals greater than 62 (the last chapter) in this novel, so these thirteen new lines
are due to false recognitions: The Roman numerals for 100 and 500 are confused:

- With the letters C and D.61

- With abbreviations, i.e. K.C.B.: Knight Commander of the Bath (see the Wikipedia).62

61 He acquitted himself very well, nevertheless; and Miss Blimber, commending him as giving promise of getting
on fast, immediately provided him with subject B; from which he passed to C, and even D before dinner .

62 If that had been Joe’s character, Joe might have been, by this time, Lieutenant -General Sir Joseph Bagstock,
K.C.B., and might have received you in very different quarters .

https://en.wikipedia.org/wiki/Order_of_the_Bath

Chapter 3: Corpus annotation

67

Unfortunately, without linguistic analysis, the ambiguity of the language prevents us from
distinguishing a letter from a Roman numeral. However, one could assume that in general
(except at the end of a sentence!), a Roman numeral is not followed by a period or an

apostrophe (as D’ye want for Do you want). We could add this rule to our graph, with a
negative right context (see Section 1.7.3, page 55). In fact, we were lucky so far, because we
could have had in the concordances, from the first graph, a confusion either with the letters
V or X, possibly used in an abbreviation. Let us finish our complete recognition of all the Roman
numerals and we will see later what we can do about ambiguities (Section 3.5, page 68).

3.4 Fourth step: from 2 to 3 999

The numbers greater than 3 999 are generally not written as Roman numerals because there
are no symbols for 5 000 and 10 000.

3.4.1 The subgraph from 1 to 999

We will repeat the same procedure for the third time. Starting with the RN2-999.grf graph we
will modify it by canceling the morphological mode and the insertion of tags. We should not
forget to replace the call to the RN2-99.grf subgraph with RN1-99-subgraph.grf because the
later subgraph does not insert tags, does not impose morphological mode and recognizes I.

3.4.2 The graph from 2 to 3 999

In order to recognize thousands (one, two and three thousand) it is enough to take the graph
RN2-999.grf, to replace in it, C with M, and to delete all other paths. As before, we will replace

Unitex Getting Started - Denis Maurel and Cvetana Krstev

68

a call to the subgraph with RN2-999.grf outside the morphological mode (for numerals
between 2 to 999), and a call to the subgraph with RN1-999-subgraph.grf (inside the
morphological mode) for numerals between 1 to 999 when the are added to thousands. We
will name this graph RN2-3999.grf.

The application of this graph to our text yields 81 matches. Five new false recognitions are
added to those previously detected by the occurrence of “M” with abbreviations, i.e. M.A..:

Master of Arts (see the Wikipedia).63

The continuation of this exercise (Section 3.5) is only for confident users.

3.5 Ambiguities of Roman numerals (only for confident users)

Before starting this section

If you have not modified the Norm.txt file as explained in Chapter 2, Section 3.1.2, page 35, do so,

or download it, then close and reopen Unitex.

As we said in Section 3.3.2, page 66, Roman numerals are ambiguous with letters or

abbreviations; and it is almost impossible to disambiguate them. We can reduce these
ambiguities by assuming that a Roman numeral is not followed by a full stop or an apostrophe.
However, false annotations cannot be completely avoided, because a Roman numeral can
occur at the end of a sentence and thus be followed by a period. Let us also add a list of seven
common words that are ambiguous with a number written in Roman numerals: CD (compact

63 the Reverend Alfred Feeder, M.A., who was to perform the ceremony .

https://en.wikipedia.org/wiki/Master_of_Arts

Chapter 3: Corpus annotation

69

disc), CI (criminal investigation), CM (College of Medicine), CV (curriculum vitae), DC (District
of Columbia), MI (Michigan) and MM (abbreviation of month or of millimeter).64

3.5.1 The subgraph of ambiguous Roman numerals

Let us create a graph based on the above remarks. This graph, named ambiguousRN.grf does
not insert tags.

3.5.2 The use of weights

If we create a graph with two subgraphs, RN2-3999 and ambiguousRN, and if we use it to
recognize, for instance, the sequence CD, we do not know if the result will be
<romanNumeral>CD</romanNumeral> (:RN2-3999 path) or CD (:ambiguousRN path). We
would not like to annotate CD as a Roman numeral. The Longest matches option cannot help
here, because both annotations are equally long. In order to get what we want, we have to
use weights. We will save this graph as nonAmbiguousRN.grf.

One can assign a weight to a box by inserting ${weight}$ in its output where weight is a
positive integer or zero (weight ≥ 0). The path with the highest last weight has the priority.
The use of weights is interesting for graphs that produce output because it enables choosing
an output when there are several possibilities (as in our case). One must keep in mind that
weights apply only to cases when two (or more) graph paths recognize exactly the same
sequence of tokens; otherwise, the Longest matches option reduces the range of possibilities
to those paths that recognize the longest sequence. If one path has several weights, only the
last one is applied. A path with a weight always has priority over a path without any weight.

If you apply the nonAmbiguousRN graph to the text, you will obtain 81 concordance lines, but

only 65 with the romanNumeral tags. Of these, only the seven capital letters are errors while

64 This list is language dependent. For example, for French, DIX is the number ten, and so on.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

70

the other tags correspond to 58 chapters (the first is not counted, but also the fifth, tenth and
fiftieth, due to the period after the Roman numeral).

71

Chapter 4: CasSys

Before starting this chapter

1. Go to the folder:MyUnitex\English\Corpus\UnitexGettingStarted\UnitexGettingStarted
Create three new folders named (without space): JubileePlainText and JubileeXmlText.
Go to the folder:
 MyUnitex\English\Corpus\UnitexGettingStarted\UnitexGettingStarted\JubileePlainText

Download the jubileePlainText.txt file.
Go to the folder: MyUnitex\English\Corpus\UnitexGettingStarted\JubileeXmlText

Download the JubileeXmlText.xml file.65

2. Go to the folder: MyUnitex\English\Graphs\UnitexGettingStarted

Create two new folders named Entities and Measures.
Go to the folder: MyUnitex\English\Graphs\UnitexGettingStarted\Entities

Create two new folders named Analysis and Synthesis.
Go to the folder: MyUnitex\English\Graphs\UnitexGettingStarted\Measures

Create two new folders named Analysis and Synthesis.

3. Go to the folder: MyUnitex\English\CasSys
Create a new folder named UnitexGettingStarted (without space).
Go to the folder: MyUnitex\English\CasSys\UnitexGettingStarted

Create three new folders named PlainTextEntities, XmlTextEntities and Measures.

1 First example: named entity recognition in a plain text

We will introduce cascades that analyze texts with aim to annotate named entities in a text
(dates and places). First, we will use the text jubileePlainText.txt.

This week we celebrate the Platinum Jubilee of the Queen of England: seventy years of reign! The
party will start on June 2, 2022 and end on June 5. The Queen ascended the British throne on
February 6, 1952.
Our small town of Nearlondon will also celebrate this event. Nearlondon has always been a loyal
subject of Her Majesty. Although the city of London is dear to us, on Thursday June 2 we will
change the name of London Street to Queen Elizabeth Street.
Everyone will fondly remember 2022!

God Save the Queen!

We will open this text in Unitex and answer Yes to the question Do you want to preprocess the
text. A window will open in which we will remove the first two checkmarks, leaving just the
last one, Apply All default Dictionaries.

1.1 Analysis cascade

All graphs in the Section 1.1 will be saved in the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Entities\Analysis

65 These two texts were prepared specifically to illustrate this chapter.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

72

1.1.1 The absoluteDate.grf graph

Let us create a first graph, which will recognize dates where the year is specified; we will call
such dates absolute. In order to simplify this graph, we will not describe the days of months
and years in detail but will instead use the lexical mask <NB>, which recognizes strings
consisting of digits. We will put the recognized date between symbols { and ,.AbsoluteDate}.
By doing so, we are producing a lexical tag.66 Assuming that a date in a text is June 23, 2022,

the graph we are building will recognize it and replace it with a lexical tag {June 23\,
2022,.AbsoluteDate}. This text segment does not consist of eight tokens anymore, but just
one, June 23, 2022 and this token is classified as AbsoluteDate; in other words, the part-of-
speech field in the lexical tag contains AbsoluteDate, in the same way as June was classified
before as N (noun) by the application of dictionaries.67

In this graph, we will duplicate the box containing the names of months in order to avoid
opening braces twice in the same path. We will add a tracing feature to the recognized
sequence: the name of the graph itself +grf=absoluteDate, which can be useful in the

debugging process. We will save this graph as absoluteDate.grf. In order to use the graph in a
cascade (see Section 1.1.3, page 73), the saved graph must be compiled by clicking the

Compile graph button at the left corner of the graph processing toolbar, next to the Save graph
button.

We will create a concordance with this graph. After clicking the SEARCH and OK buttons, the
Located sequences window appears. At the bottom right of this window, we will open the Sort
according to drop-down menu and choose the Text order option, instead of Center, Left. We
will click on the Build concordance button and the concordance lines, in this case two lines,
will be displayed in the order in which matched sequences appear in the text.

66 See Chapter 2, Section 1.2.5, page 15. The common way to insert a { character is by the box that recognizes
the beginning of the phrase you want to tag. If the { character is inserted just before, by a separate <E> box, the
inserted { character can be followed by a space in the output, which is unsatisfactory because the braces are
supposed to delimit a precise phrase.
67 Remember that each alphabetic string is one token (June in this case), a punctuation one token (, in this case),

and each digit is a separate token (2, 3, 2, 0, 2, 2 in this case).

Chapter 4: CasSys

73

1.1.2 The relativeDate.grf Graph

We will now create the graph that recognizes relative, or incomplete, dates, when the year is
not mentioned. We will use the previously constructed absoluteDate.grf graph, remove in it
the boxes for year and separating comma and save it under the new name relativeDate.grf
(we will use the FSGraph/Save as… menu). Do not forget to modify the output as well:
,.AbsoluteDate+grf=absoluteDate} should be replaced by ,.RelativeDate+grf=relativeDate}.
After compiling the graph, we will apply it to the text.

Now we will obtain four concordance lines in which all dates will be annotated as relative
dates, including two recognized by the previous graph (note that in these cases, the years are
outside the scope of the lexical tags). In order to correct this, we will apply these two graphs
one after the other, using what is known as a cascade of graphs.

1.1.3 The analysis.csc cascade

Now we will build a small cascade containing both graphs. We will open the
Text/Apply CasSys Cascade… menu and click the New button. The Cascade configuration
frame will open. Then we must find the location of the graphs that we want to put into the
cascade, in this case:

MyUnitex\English\Graphs\UnitexGettingStarted\Entities\Analysis

Unitex Getting Started - Denis Maurel and Cvetana Krstev

74

We will notice that the left window shows only files with the .fst2 extension that is only graphs
that have been compiled. It means that we can put into a cascade only already compiled
graphs.68

With the mouse, we can drag and drop the absoluteDate.fst2 graph into the right window;
and we will repeat the same with the relativeDate.fst2 graph. Alternatively, we can select a
graph and click the Add button when we want to add it to a cascade. We will save this cascade

as analysis.csc in the folder:

MyUnitex\English\CasSys\UnitexGettingStarted\PlainTextEntities

by using the Save button.

We will close this frame by clicking the Close button.

Now we will select our cascade and click the Launch button, which will initiate the analysis.
When analysis is over, we can build concordances. We will obtain four concordance lines, but

now the dates will be correctly annotated. Why is it so? Because the first graph in the cascade,
absoluteDate.grf, has annotated all absolute dates and produced lexical tags. As we explained

before, a lexical tag is treated as one token, and the subsequently applied graph
relativeDate.grf cannot analyze inside its content.

1.1.4 The town.grf graph

We will now prepare the graph that will recognize names of towns and cities and annotate

them as Town.69 We will presume that any sequence of letters of the English alphabet

68 If we use subgraphs, only the main graph needs to be compiled, not the subgraphs.
69 One has to be careful when choosing the annotation tags in order to avoid ambiguity with dictionary lemmas.

For instance, if we had chosen town instead of Town as a tag for inhabited places, then the lexical mask <town>
would correspond to recognized names of towns, but also the lemma town, that is, its forms town and towns.
On the contrary, the lexical mask <Town> corresponds only to the annotated names of towns (remember that
lexical masks are case sensitive).

Chapter 4: CasSys

75

(<LETTER>) starting with an uppercase letter (<UPPER>) and following the sequences city of or
town of is the name we want to annotate. In order to recognize such a sequence, we must use
the morphological mode in order to describe the structure of a single word.70 We will save this
graph as town.grf and compile it.

We will drag and drop this graph to the last position in the cascade. As a reminder: open the

Text/Apply CasSys Cascade… menu, then, find the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Entities\Analysis

select the analysis.csc cascade, click the Edit button, move to the folder containing the graphs,
then drag and drop the town.fst2 graph to the list of graphs. Save the cascade.

After launching this cascade two new concordance lines will be produced by the town.grf

graph with Nearlondon and London annotated as Town.

1.1.5 Generalization graphs

If you look at the short text we are annotating, you will notice that Nearlondon in the sequence
Nearlondon has always been… was not annotated as Town because it was preceded neither
with town of nor city of. Moreover, Nearlondon is not even in the dictionary of the text, it is
an unknown word.

In order to solve this problem we will use a generalization graph which will annotate a word
(or a sequence of words) even when it does not appear in a required context, if the same word
appeared somewhere else in the same text in the required context, and was annotated by
some graph in a cascade. We have such a situation with the word Nearlondon in our text: it
was annotated once as Town by the town.grf graph, because it occurred in the required
context, so its second occurrence will be annotated as Town by the townGeneralization.grf
graph.

In order to create a simple generalization graph it is enough to introduce a box with the output
consisting of the annotation that has to be generalized (in our case ,.Town), select this box and

70 See Chapter 3, Section 3.1, page 63. In CasSys cascades, the <FIRST> or <UPPER> lexical mask does not always
detect if a word has an uppercase initial letter, because some words or expressions may have been replaced by
lexical tags, as in the preceding examples. This is why we show another way of detecting words with an uppercase
initial.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

76

click to the Insert generic graph mark before the selected box button at the far right end of the
toolbar.71

After compiling this graph, we will add it as the last one in the list of graphs in the analysis.csc
cascade (remember that it has to be in the list after the town.grf graph) in the same way as

we have done before.72 We must do one more thing: the configuration panel offers options
for the modes of graph application. By default, this option is Merge mode, which suited us so
far for all the graphs in our list. However, for this last graph we have also to check the

Generaliz… box in order to signal that this is a generalization graph.

After launching our cascade, we will obtain a concordance with two new lines, one of them

with Nearlondon annotated although it was preceded neither with city of nor town of. We can
see that the second occurrence of London was annotated as well, although we did not want
that, since the context is change the name of London Street to Queen Elizabeth Street.

1.1.6 The street.grf graph

We will now create a graph that recognizes names of streets with the Address category. We
will recognize two patterns before the words street and avenue: (1) a date or a town name
already recognized by the cascade and tagged as <AbsoluteDate>, <RelativeDate> or
<Town>;73 (2) one or more upper-case words. In order to make the loop for uppercase words,
we can duplicate two boxes (the big angular bracket and the lexical mask <UPPER>), but
without the opening braces as output. Alternatively, we can add the new <UPPER> box,
surround it with morphological mode angular brackets by clicking the Surround box selection
with morphological mode tags button, and then delete the unnecessary closing bracket and
connect the box with <LETTER>.

71 Generalization graphs for annotation can be more sophisticated; see the Section 4.5.2, page 104.

72 The townGeneralization.grf file must be compiled before we place it in the cascade, but the program uses also
the .grf file which must therefore also be present in the folder, whereas this is not obligatory for other graphs.

73 This enables recognition of May 8, 1945 Avenue.

Chapter 4: CasSys

77

After saving the graph with the name street.grf we will compile it and add it as the last graph
in our analysis.csc cascade to be used in the Merge mode. After launching the cascade and
producing a concordance, we will obtain nine concordance lines. One new line contains the

match Queen Elizabeth Street recognized by the second rule in the street.grf graph (two
upper-case words). The first rule is applied to London Street since London was already tagged
as Town. If we look at that line in the concordance list (it is the second-to-last line in the Text
Order option), we will see that there we have nested tagging, that is a lexical tag inside another
lexical tag.74

1.1.7 Created files

The role of the Cassys program is not only to produce concordances; it produces as output
numerous files. If we open the folder:

MyUnitex\English\Corpus\UnitexGettingStarted\jubileePlainText

we will see in it, besides the original jubileePlainText.txt file, also jubileePlainText.snt and the
jubileePlainText_snt folder, as for all texts processed by Unitex. Besides this, we will see four
more files with the suffix _csc and one new folder.

1.1.7.1 The _csc files

The jubileePlainText_csc.raw file contains the text modified by the cascade. Namely, all
sequences recognized by cascade graphs are replaced by lexical tags enclosed in braces.

74 In order to do that the delimiting characters of the internal lexical tag ({,.+}) are protected by the backslash

character.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

78

This week we celebrate the Platinum Jubilee of the Queen of England: seventy years of reign! The
party will start on {June 2\, 2022,.AbsoluteDate+grf=absoluteDate} and end on {June
5,.RelativeDate+grf=relativeDate}. The Queen ascended the British throne on {February 6\,
1952,.AbsoluteDate+grf=absoluteDate}.
Our small town of {Nearlondon,.Town+grf=town} will also celebrate this event.
{Nearlondon,.Town+grf=townGeneralization} has always been a loyal subject of Her Majesty.
Although the city of {London,.Town+grf=town} is dear to us, on {Thursday June
2,.RelativeDate+grf=relativeDate} we will change the name of
{\{London\,\.Town\+grf=townGeneralization\} Street,.Address+grf=street} to {Queen Elizabeth
Street,.Address+grf=street}.
Everyone will fondly remember 2022!
God Save the Queen!

The jubileePlainText_csc.txt file is a quasi XML version of the same output in which the braces
are replaced by XML tags <csc></csc>, the recognized text is surrounded by tags
<form></form>, while the code in the POS field and its additional features appear in tags
<code></code>.75

This week we celebrate the Platinum Jubilee of the Queen of England: seventy years of reign! The
party will start on <csc><form>June 2,
2022</form><code>AbsoluteDate</code><code>grf=absoluteDate</code></csc> and end on
<csc><form>June 5</form><code>RelativeDate</code><code>grf=relativeDate</code></csc>.
The Queen ascended the British throne on <csc><form>February 6,
1952</form><code>AbsoluteDate</code><code>grf=absoluteDate</code></csc>.
Our small town of
<csc><form>Nearlondon</form><code>Town</code><code>grf=town</code></csc> will also
celebrate this event.
<csc><form>Nearlondon</form><code>Town</code><code>grf=townGeneralization</code></cs
c> has always been a loyal subject of Her Majesty. Although the city of
<csc><form>London</form><code>Town</code><code>grf=town</code></csc> is dear to us, on
<csc><form>Thursday June
2</form><code>RelativeDate</code><code>grf=relativeDate</code></csc> we will change the
name of
<csc><form><csc><form>London</form><code>Town</code><code>grf=townGeneralization</c
ode></csc> Street</form><code>Address</code><code>grf=street</code></csc> to
<csc><form>Queen Elizabeth
Street</form><code>Address</code><code>grf=street</code></csc>.
Everyone will fondly remember 2022!
God Save the Queen!

The remaining two files contain offsets corresponding to two previously described files. 76

1.1.7.2 The _csc folder

The folder with the name ending with _csc contains all intermediary files, which are very useful
in debugging cascades.

75 <lemma></lemma> is one more pair of XML tag that can appear in the content of <csc></csc>. It does not
appear in our case because in the description of all lexical tags the lemma field (between the comma and the
period) is empty. If it were not the case, this field would be copied here enclosed in <lemma></lemma> tags.
76 See the Unitex user manual, Section 15.13.10.

Chapter 4: CasSys

79

The original text is copied in this folder and renamed as jubileePlainText_0_0.txt. The result of
the first graph in the cascade is given the name jubileePlainText_1_0.txt, and so on. If some
graph in the cascade is used in the until fix point mode (this will be explained in the following
sections) it means that it will be repeatedly used and the second number in a file’s name tells
which iteration produced the file (in our present example it is always 0).

1.2 Synthesis cascade

We have seen in the previous section that there are two outputs of an analysis cascade.

1. The _csc.raw

In the _csc.raw version of the text the recognized matches are transformed into lexical tags
that can be subsequently used in Unitex for further text exploration. It can be used in Unitex

for searching in the usual way. We can open the text jubileePlainText_csc.raw, without
preprocessing, and then launch with Locate pattern a search using classical as well as new
categories.77 For instance, a pattern <Address> retrieves two matches:

2. The _csc.txt

The _csc.txt version of the text is the resulting text where the lexical tags are replaced by XML

tags. This format is used to transform the output of an analysis cascade into whatever other
format needed.

We will now open (with the Text/Open menu) the file:

MyUnitex\MyUnitex\English\Corpus\UnitexGettingStarted\
jubileePlainText\jubileePlainText_csc.txt

and reply No to the question Do you want to preprocess the text.

We will delete tags <csc>, <form> and so on, and replace them with tags that we have chosen,
namely, <AbsoluteDate></AbsoluteDate>, <RelativeDate></RelativeDate>, <Town></Town>
and <Address></Address>.

1.2.1 The tag.grf graph

Let us create the first graph, which we will save in the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Entities\Synthesis

77 That is to say <N>, <V> or <ADV>, but also, <AbsoluteDate>, <Town> or <Address>.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

80

In this folder we will save the rest of the graphs for synthesis that we will introduce in this
section. The aim of this graph that we will use in Replace mode is:

1. delete tags csc, form and code;
2. save the matched text in a variable $text$ and its category in a variable tag;
3. replace all that with the tagged text: <tag>$text$</tag>; that is, everything

recognized is replaced (thus the graph must be used in the Replace mode) by the

recognized entity ($text$) enclosed in appropriate tags (<tag></tag>).

An input variable in Unitex stores the part of a text recognized by boxes inside (big red)
parentheses. These parentheses are placed in the same way as context and morphological

mode brackets by clicking on the Surround box selection with an input variable button (red
parentheses at the right-hand side of the toolbar).

The user can freely choose the name of the variable. If the value of a variable is used in output,
then it is surrounded by a pair of $ character.

1.2.1.1 A first attempt

In order to collect the text we will use a loop that recognizes a continuous sequence of tokens
(lexical mask: <TOKEN>) except that it will exclude </form> (the tag at the end of the
recognized text).78 After the loop, the graph will match one of the used categories, followed
by everything until the end of the coded sequence that we are analyzing (</csc>).

A very important note: in Unitex queries, angle brackets have the special meaning, so if we
want to recognize an angle bracket in a text, we have to protect it by preceding it with a
backslash.79 For instance, if we want to recognize <csc> in a text we have to write \<csc\>
(otherwise it would be interpreted as a lexical mask recognizing all forms of the lemma csc).
Similarly, since a slash also has a special meaning in Unitex graph boxes (it marks the beginning
of an output) if we want to recognize it in a text, it also has to be preceded by a backslash. For

instance, in order to recognize </csc> we must write \<\/csc\>.

In order to make this complex graph easier to understand, we will provide an example inside

a comment box (a box starting with a slash and not connected with any other boxes). Text in
such a box will appear in green.

78 The negative right contexts (see Chapter 3, Section 1.7.3, page 55) are interpreted like this: <TOKEN> is

recognized if it is not the < character, followed by /form> (first negative right context), respectively /csc> (second
negative right context).
79 See the Unitex user manual, Section 5.2.7. We do not have to take care about this in the output text - no

protection is needed there.

Chapter 4: CasSys

81

We will now save the graph as tag.grf; compile it; create the new cascade in which we will add
in the first position this graph; and choose the Replace mode by checking the appropriate box.

We will call this cascade synthesis.csc and we will save it in the same folder as the analysis.csc
cascade.

After launching this cascade, we will obtain a new text file:80

MyUnitex\MyUnitex\English\Corpus\UnitexGettingStarted\
jubileePlainText\jubileePlainText_csc_csc.txt

This week we celebrate the Platinum Jubilee of the Queen of England: seventy years of reign! The
party will start on <AbsoluteDate>June 2, 2022</AbsoluteDate> and end on <RelativeDate>June
5</RelativeDate>. The Queen ascended the British throne on <AbsoluteDate>February 6,
1952</AbsoluteDate>.
Our small town of <Town>Nearlondon</Town> will also celebrate this event.
<Town>Nearlondon</Town> has always been a loyal subject of Her Majesty. Although the city of
<Town>London</Town> is dear to us, on <RelativeDate>Thursday June 2</RelativeDate> we wil l
change the name of <Town><csc><form>London</Town>
Street</form><code>Address</code><code>grf=street</code></csc> to <Address>Queen
Elizabeth Street</Address>.
Everyone will fondly remember 2022!

God Save the Queen!

We can observe in the resulting text that the transformation of annotations of non -nested

elements was done successfully. For instance, the occurrence of the first date in the text
became <AbsoluteDate>June 2, 2022</AbsoluteDate>. However, for nested elements, the
result is surprising: <Town><csc><form>London</Town> Street</form><code>Address
</code><code>grf=street</code></csc>! What happened is that the graph generated the
opening tag using the internal markup <Town>.

80 Because the graph in this cascade is used in the Replace mode, it is difficult to visualize the output as a
concordance. We will therefore from now on display the file obtained as a result, which is in this case
jubileePlainText_csc_csc.txt.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

82

1.2.1.2 A second attempt

To avoid this, we will add <csc> (the beginning of a nested coded sequence) in the first

negative context box in order to avoid deletion and replacement in cases when an entity has
nested entities in its content.

We will compile the graph and relaunch the cascade on jubileePlainText_csc.snt.

This week we celebrate the Platinum Jubilee of the Queen of England: seventy years of reign! The
party will start on <AbsoluteDate>June 2, 2022</AbsoluteDate> and end on <RelativeDate>June
5</RelativeDate>. The Queen ascended the British throne on <AbsoluteDate>February 6,
1952</AbsoluteDate>.
Our small town of <Town>Nearlondon</Town> will also celebrate this event.
<Town>Nearlondon</Town> has always been a loyal subject of Her Majesty. Although the city of
<Town>London</Town> is dear to us, on <RelativeDate>Thursday June 2</RelativeDate> we wil l
change the name of <csc><form><Town>London</Town>
Street</form><code>Address</code><code>grf=street</code></csc> to <Address>Queen
Elizabeth Street</Address>.
Everyone will fondly remember 2022!

God Save the Queen!

We can now observe in the resulting text that, this time, the nested element was well
transformed: <csc><form><Town>London</Town> Street</form><code>Address</code>

<code>grf=street</code></csc>.

1.2.1.3 The Until fix point option

In order to transform the annotations of the external element it would be enough to launch
the same graph for the second time (add it to the cascade). However, if we had a three-level
nesting, then we would have to launch (and add to the cascade) the graph a third time. In

order to avoid this, we will check the Until Fix Point box that will launch the tag.fst2 graph as
long as it makes some changes to the text.

After launching again this cascade (applying it to the text jubileePlainText_csc.txt) the resulting
text jubileePlainText_csc_csc.txt becomes correct, and all annotations have been correctly
transformed: <Address><Town>London</Town> Street</Address>.

Chapter 4: CasSys

83

This week we celebrate the Platinum Jubilee of the Queen of England: seventy years of reign! The
party will start on <AbsoluteDate>June 2, 2022</AbsoluteDate> and end on <RelativeDate>June
5</RelativeDate>. The Queen ascended the British throne on <AbsoluteDate>February 6,
1952</AbsoluteDate>.
Our small town of <Town>Nearlondon</Town> will also celebrate this event.
<Town>Nearlondon</Town> has always been a loyal subject of Her Majesty. Although the city of
<Town>London</Town> is dear to us, on <RelativeDate>Thursday June 2</RelativeDate> we wil l
change the name of <Address><Town>London</Town> Street</Address> to <Address>Queen
Elizabeth Street</Address>.
Everyone will fondly remember 2022!

God Save the Queen!

If we open the JubileePlainText_csc_csc folder, we will find in it four files (and four
corresponding folders): the original text jubileePlainText_csc_0_0.snt, the result of the first
run of the graph (resolves outer-level and one-level annotations),
jubileePlainText_csc_1_0.snt, the result of the second run of the graph (resolves second-level
annotations), jubileePlainText_csc_1_1.snt, the result of the third run of the graph,
jubileePlainText_csc_1_2.snt, that establishes that the text was not modified (the last two files
are identical).

1.2.2 The internalDeletion.grf graph

In some cases, we do not want nested annotations. For instance, annotating a date or a city
occurring in an address is not obligatorily relevant. While recognizing dates and inhabited
places has been essential for recognizing addresses, we would like to remove the date and
town tags now that we have used them.

The internalDeletion.grf graph that will remove nested tags in the <Address> element begins
with the recognition of the start tag <Address>, which is followed by the recognition of a date
tag or a city tag; the content of this second element (start tag and end tag excluded) becomes
the value of the variable $inside$. The end tag </Address> is then searched for and everything
found between the end tag of the nested annotation and the end tag </Address> is
remembered in the variable $outside$. The output of this graph, which works in the Replace

mode, are tags <Address></Address> surrounding the content of the nested element
($inside$) followed by the content of the <Address> element itself ($outside$).

Unitex Getting Started - Denis Maurel and Cvetana Krstev

84

After saving and compiling the graph, we will add it as the second graph in the synthesis.csc
cascade (do not forget to check the Replace box).

After launching this cascade, we will get the desired result.

This week we celebrate the Platinum Jubilee of the Queen of England: seventy years of reign! The
party will start on <AbsoluteDate>June 2, 2022</AbsoluteDate> and end on <RelativeDate>June
5</RelativeDate>. The Queen ascended the British throne on <AbsoluteDate>February 6,
1952</AbsoluteDate>.
Our small town of <Town>Nearlondon</Town> will also celebrate this event.
<Town>Nearlondon</Town> has always been a loyal subject of Her Majesty. Although the city of
<Town>London</Town> is dear to us, on <RelativeDate>Thursday June 2</RelativeDate> we wil l
change the name of <Address>London Street</Address> to <Address>Queen Elizabeth
Street</Address>.
Everyone will fondly remember 2022!
God Save the Queen!

2 Second example: named entity recognition in an XML text

We will work now with the same text but prepared in the XML format, jubileeXmlText.xml.
This text is in the folder:

MyUnitex\English\Corpus\UnitexGettingStarted\jubileeXmlText

Please note that despite being an XML text it should not have the .xml extension because

Unitex automatically removes in preprocessing all XML tags from a text having an.xml
extension. In order to avoid this, we will rename our text to jubileeXmlText.xml.txt.

Chapter 4: CasSys

85

<xml>
<title>The municipal newspaper of the city of Nearlondon</title>
<date>Posted on Wednesday June 1, 2022</date>
<body>
<p>This week we celebrate the Platinum Jubilee of the Queen of England: seventy years of reign!
The party will start on June 2, 2022 and end on June 5. The Queen ascended the British throne on
February 6, 1952.</p>
<p>Our small town of Nearlondon will also celebrate this event. Nearlondon has always been a
loyal subject of Her Majesty. Although the city of London is dear to us, on Thursday June 2 we will
change the name of London Street to Queen Elizabeth Street.</p>
<p>Everyone will fondly remember 2022!</p>
<p>God Save the Queen!</p>
</body>

</xml>

We will open the text jubileeXmlText.xml.txt in Unitex (Text/Open) and answer Yes to the
question Do you want to preprocess the text. A window will open in which we will remove the
first two checkmarks, leaving just the last one Apply All default Dictionaries. We will launch
the analysis.csc cascade (Text/Apply CasSys Cascade), then open the resulting text,
jubileeXmlText.xml_csc.txt, and launch the synthesis.csc cascade. We will get as a result the
jubileeXmlText.xml_csc_csc.txt file. Let us look at it:

<xml>
<title>The municipal newspaper of the city of <Town>Nearlondon</Town></title>
<date>Posted on <AbsoluteDate>Wednesday June 1, 2022</AbsoluteDate></date>
<body>
<p>This week we celebrate the Platinum Jubilee of the Queen of England: seventy years of reign!
The party will start on <AbsoluteDate>June 2, 2022</AbsoluteDate> and end on
<RelativeDate>June 5</RelativeDate>. The Queen ascended the British throne on
<AbsoluteDate>February 6, 1952</AbsoluteDate>.</p>
<p>Our small town of <Town>Nearlondon</Town> will also celebrate this event.
<Town>Nearlondon</Town> has always been a loyal subject of Her Majesty. Although the city of
<Town>London</Town> is dear to us, on <RelativeDate>Thursday June 2</RelativeDate> we will
change the name of <Address>London Street</Address> to <Address>Queen Elizabeth
Street</Address>.</p>
<p>Everyone will fondly remember 2022!</p>
<p>God Save the Queen!</p>
</body>
</xml>

The result of annotating the element <body> was the same as before. However, we see that
Nearlondon and Wednesday June 1, 2022 appearing in the header were annotated as well
although they are not part of the text. We would like to avoid this, because we do not want
to annotate the header.

We will use the cascades developed before to which we will add some new graphs. We will
copy two cascades (analysis.csc and synthesis.csc) from the folder:

MyUnitex\English\CasSys\UnitexGettingStarted\PlainTextEntities

and paste them in the folder:

MyUnitex\English\CasSys\UnitexGettingStarted\XmlTextEntities

Unitex Getting Started - Denis Maurel and Cvetana Krstev

86

2.1 Analysis cascade

We will open the text jubileeXmlText.xml.txt in Unitex (Text/Open) and answer No to the
question Do you want to preprocess the text.

We will build two new graphs, saved in the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Entities\Analysis

2.1.1 The toolXml.grf graph

We will assume that the name in an XML tag is a sequence of letters that can be recognized in
Unitex with the lexical mask <WORD>.81 The toolXml.grf graph recognizes XML tags,
transforms them into brace-enclosed lexical tags, with Xml in the part-of-speech (POS) field
and with as features the name of the recognized tag and the indication whether it was an
opening or closing tag.82

2.1.2 The toolHidden.grf graph

The role of the toolHidden.grf graph is to hide and protect the XML elements that can be found
in the text header.83 By doing this, we disable the annotation of entities in the content of
hidden elements. This graph transforms the recognized content, together with the opening
and closing tags, into a lexical tag categorized as Hidden in the POS field.

We will put these two new graphs at the beginning of the analysis.csc cascade, which will now
consist of seven graphs. These two graphs will work in the Merge mode like the rest of the
analysis graphs. Do not forget to apply the analysis.csc cascade to the original
jubileeXmlText.xml.snt file.

81 Of course, XML names can be more complex, but we want to keep our example simple. It would be possible to
call in this box a subgraph that describes possible names more precisely.
82 This graph is designed for the simple XML document that we are using in our examples. A general graph that
would recognize all possible XML tags, including their attributes, would be more complex.
83 This graph only works if the text to hide is not too long. Otherwise, see Section 4.4.1, page 98 (for confident

users).

Chapter 4: CasSys

87

The result of the first graph in the cascade (toolXml.grf), jubileeXmlText.xml_1_0.snt file, is
recorded in the folder:

MyUnitex\English\Corpus\UnitexGettingStarted\JubileeXmlText\jubileeXmlText.xml_csc

We can see that all XML tags in the text have been transformed into lexical tags with Xml in
the POS field (only the first line is displayed here).

{<xml>,.Xml+name=xml+openTag+grf=toolXml}

The result of the second graph is recorded in the jubileeXmlText.xml_2_0.snt file. We can see

that two tag-enclosed XML elements, <title>/</title> and <date>/</date>, which appear in the
header, have been transformed into lexical tags Hidden (only the second and third lines are
displayed here). Note that in order to preserve the literal meaning of the special characters

(period, comma, parentheses and so on), they are protected by an escape character backslash
when they appear inside the first field of a lexical tag. These escape characters are inserted

before the special characters only if the application of the graph has been launched as an item
in a cascade.

{\{<title>\,\.Xml\+name=title\+openTag\+grf=toolXml\}The municipal newspaper of the city of
Nearlondon\{</title>\,\.Xml\+name=title\+closeTag\+grf=toolXml\},.Hidden+grf=toolHidden}
{\{<date>\,\.Xml\+name=date\+openTag\+grf=toolXml\}Posted on Wednesday June 1\,

2022\{</date>\,\.Xml\+name=date\+closeTag\+grf=toolXml\},.Hidden+grf=toolHidden}

2.2 Synthesis cascade

Now, we will open the text jubileeXmlText.xml_csc.txt in Unitex (Text/Open) and answer No
to the question Do you want to preprocess the text.

We will open (Graphs/Open menu or Graphs/Open Recent menu) the existing tag.grf graph

that lists all annotation categories that must remain (the output is <tag>$text$</$tag>).
We will modify this graph by adding a path where we list the annotation categories to be
removed (Xml and Hidden); the output is $text$.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

88

We will save the tag.grf graph, compile it and launch the synthesis.csc cascade. The resulting
jubileeXmlText.xml_csc_csc.txt file will contain exactly what we expected.

<xml>
<title>The municipal newspaper of the city of Nearlondon</title>
<date>Posted on Wednesday June 1, 2022</date>
<body>
<p>This week we celebrate the Platinum Jubilee of the Queen of England: seventy years of reign!
The party will start on <AbsoluteDate>June 2, 2022</AbsoluteDate> and end on
<RelativeDate>June 5</RelativeDate>. The Queen ascended the British throne on
<AbsoluteDate>February 6, 1952</AbsoluteDate>.</p>
<p>Our small town of <Town>Nearlondon</Town> will also celebrate this event.
<Town>Nearlondon</Town> has always been a loyal subject of Her Majesty. Although the city of
<Town>London</Town> is dear to us, on <RelativeDate>Thursday June 2</RelativeDate> we will
change the name of <Address>London Street</Address> to <Address>Queen Elizabeth
Street</Address>.</p>
<p>Everyone will fondly remember 2022!</p>
<p>God Save the Queen!</p>
</body>

</xml>

3 Third example: measure recognition

We will now go back to the text DombeyAndSon in the folder:

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon

with the idea of recognizing measures in it. We will do that in two phases: first, we will

recognize numbers and then units. In order to keep things simple, we will produce graphs that
recognize only units that occur in the novel: currencies (pence, sixpence, shilling and pound),
duration (minute, hour, day, week, month and year), lengths (mile, foot and yard), speed (mile
an hour), temperature (degree) and weight (ton).

Chapter 4: CasSys

89

Sixpence is the name of an old coin. We will check its presence in the Unitex distribution
dictionary. We will open the Dela/Lookup… menu, select the dela-en-public.bin dictionary and
type sixpence in the Word field. Unitex displays:

sixpence,.N:s:p

Unitex considers sixpence as both singular and plural, but Charles Dickens uses a plural form
with an s. Sure enough, if we use the Dela/Lookup…menu again for the form sixpences, we will
not find it.84

Therefore, in the graph of Section 3.1.3, page 90, we cannot use the <sixpence> mask, but
sixpence+sixpences.85

3.1 Analysis cascade

Most probably, we will be able to use the Text/Open Recent menu and open directly
DombeyAndSon.snt. If this file is not in the offered list, we will use the Text/Open menu, find
the DombeyAndSon folder, and choose the All Files option in the Files of Type drop-down

menu. If DombeyAndSon.snt exists in it, we will open it because it means that it has already
been preprocessed. Otherwise, we will open DombeyAndSon.txt and answer Yes to the
question Do you want to preprocess the text. A window will open in which we will remove the
first two checkmarks, leaving just the last one Apply All default Dictionaries.

3.1.1 The number.grf graph

We will copy the NB2-999999.grf graph and all the subgraphs (*-subgraph.grf) from the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Numbers

and paste them in the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Measures\Analysis

Then we will rename NB2-999999.grf as number.grf. We should remember that this graph
recognizes all numbers between 2 and 999 999.86

We must make a final modification to the number.grf graph.

1. We replace the call to the NB2-999 graph by a call to the two subgraphs, NB1-99-
subgraph and NB100-999-subgraph (these two subgraphs produce no output and the

first one recognizes number one).

2. We modify the two paths leading to and from this box (because the subgraphs don't
produce output).

3. We remove the box :NB100-999-subgraph after the box thousand and replace the
subgraph NB1-99-subgraph by the subgraph NB100-999-subgraph.

4. Since we are going to use it in a cascade, we will change its output to produce lexical
tags belonging to the category Number: the opening brace will replace the opening

84 The Merriam-Webster Dictionary records that this noun has two forms of plural: sixpence and sixpences
(https://www.merriam-webster.com/dictionary/sixpence). In the Unitex distribution dictionary only the first
possibility is recorded.

85 The <sixpence> mask only matches the sixpence form present in the dictionary.

86 See Chapter 3, Section 2.4.2, page 62.

https://www.merriam-webster.com/dictionary/sixpence

Unitex Getting Started - Denis Maurel and Cvetana Krstev

90

XML tag <number> and the rest of the lexical tag including the closing brace will replace
the closing XML tag </number>.

This graph recognizes all numbers between 1 and 999 999. We will compile it.

3.1.2 Cascade

We will now produce a new analysis cascade that will initially contain only one graph,
number.grf. Remember that in order to add it to the cascade this graph must be compiled. We
will save the cascade in the folder

MyUnitex\English\CasSys\UnitexGettingStarted\Measures

and name it analysis.csc. The graph will work in the Merge mode.

When we launch this cascade, we will obtain 1 652 lines: the same 736 matches that we
obtained with the NB2-999999.grf graph (the only difference is the output, the matches are
in lexical tags now) and 916 matches for the ambiguous word one, which we previously
omitted.

3.1.3 The measure.grf graph

We will now build a graph that recognizes and classifies measurement entities, that is numbers
followed by measurement units. As explained before, it will recognize only those units that
occur in the novel. The graph classifies the recognized entities as Measure and sub-classifies

them as Currencies, Durations, Lengths, Speed, Temperature and Weight. Note that we have
added the Part-Of-Speech code N in the lexical masks for the units when corresponding

lemmas are ambiguous with verbs or adjectives.

Chapter 4: CasSys

91

We will now compile this graph and add it as the second graph in the analysis cascade. This

graph will also be applied in the Merge mode.

After launching this cascade, the result will be again a list of 1 652 concordance lines, some of

which contain measurement entities and the other just numbers or the word one (tagged as
a number as well).

3.2 Synthesis cascade

Our next step is to produce the cascade that will transform lexical masks into XML tags. We
will open the text DombeyAndSon_csc.txt from the folder:

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon

without preprocessing.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

92

3.2.1 The tag.grf graph

We will create a tag.grf graph that will be similar to the graph with the same name that we
produced for the named entity recognition problem. So, we can copy this graph from the
folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Entities\Synthesis

and paste it in the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Measures\Synthesis

We will delete the upper part of the previous tag.grf (the part used to recognize Hidden and
Xml codes) and modify the rest. We will replace the old names of the tags (Measure and
Number will replace AbsoluteDate, RelativeDate, Town and Street) and add the recognition of
subclasses that will be values of the attribute type. Note that subclasses are optional (class

Measure have them, while class Number does not) and that these codes are also inside tags
<code> and </code> produced by the analysis.csc cascade. Two paths that lead to the ending

node after the recognition of codes for classes (Measure and Number) need to have weights,
otherwise the recognition may just randomly skip everything up to the closing tag of a

matched </csc>.87 That is why the path for the recognition of subclasses has the higher priority
2.

3.2.2 Cascade

We will now create a new cascade containing only the tag.grf graph that we have just built
and compiled. This graph will work in the Replace mode and it will iterate until it comes to a

fixed point (no change made). Therefore, we must check these two options. We will save this
cascade in the folder:

MyUnitex\English\CasSys\UnitexGettingStarted\Measures

87 See the Chapter 3, Section 3.5.2, page 69.

Chapter 4: CasSys

93

giving it the name synthesis.csc.

After launching this cascade, we will get the resulting DombeyAndSon_csc_csc.txt file in the
folder:

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon

Here is an excerpt from this file in which we see that numbers are tagged both by themselves
and inside <Measure></Measure> tags. In addition, Measure tags have the attribute type with
a value indicating the type of measurement unit.

We will take the following sentence as an example:

Dombey was about <csc><form>eight</form><code>Number</code><code>grf=number</code>
</csc>-and-<csc><form><csc><form>forty</form><code>Number</code>
<code>grf=number</code></csc> years</form><code>Measure</code>
<code>Duration</code><code>grf=measure</code></csc> of age.

After applying the cascade, this sentence becomes:

Dombey was about <Number>eight</Number>-and-<Measure type="Duration"><Number>forty
</Number> years</Measure> of age.

3.2.3 The numberDeletion.grf graph

We would like to annotate only measurement entities and not numbers unless they are part
of them. We will thus create a numberDeletion.grf graph that removes Number tags found
outside Measure tags.

We will compile this graph and add it as the second in the synthesis.csc cascade to be used in

the Replace mode.

This cascade applied to the text DombeyAndSon_csc.txt gives us the desired result. Now, the

annotation of the first number is deleted.

Dombey was about eight-and-<Measure type="Duration"><Number>forty</Number> years
</Measure> of age.

However, we see that a number-and-number sequence actually represents one number, while

only the second number has been included in the Measure entity. We need to correct this.

3.2.4 The numberAndNumber.grf graph

We will just add a new graph, numberAndNumber.grf, between the two previous graphs of
the synthesis cascade, to include the whole sequence in Measure tags. We have to take care
to recognize the type of the Measure entity.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

94

The previous example is now correctly annotated. The text obtained as a result of the tag.fst2

graph:

Dombey was about <Number>eight</Number>-and-<Measure
type="Date"><Number>forty</Number> years</Measure> of age.

becomes now:

Dombey was about <Measure type="Duration"><Number>eight-and-forty</Number> years
</Measure> of age.

4 Additional possibilities (only for confident users)

4.1 How does a generalization graph work?

The generalization graph developed in Section 1.1.5, page 75, enables the automatic creation
of a graph which will replace it in the cascade and which is constructed on the basis of
occurrences found in a text. This graph, having the same name townGeneralization.grf, is in

the folder (this graph is the fourth graph in the analysis cascade):

MyUnitex\English\Corpus\UnitexGettingStarted\
JubileePlainText\jubileePlainText_csc\jubileePlainText_4_0_snt

After rearrangement, this graph looks like this:

As compared to the generalization graph, the automatically generated graph contains an
additional box with the list of all words that were previously tagged as Town (London and
Nearlondon). The G box is replaced by a negative right context in order to avoid tagging again

as Town words that were already tagged Town.

4.2 Testing the variables

In the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Measures\Synthesis

Chapter 4: CasSys

95

we can observe in the numberDeletion.grf graph, Section 3.2.3, page 93, that some part is
written twice (recognition of the element tags and the content). In order to avoid this, we
could create a subgraph. However, we will instead explore another solution, the possibility to
test variables.

We will create a new graph named numberDeletionWithTest.grf from the previous
numberDeletion.grf graph. In this graph we recognize the element only once, but we decide

what output will be produced based on the variable tag (value of the open tag of a
measurement entity with its attribute). In this graph the $tag.SET$ box is successful only if the
tag variable is not empty, that is, the Number tag is inside a Measure tag. On the other
hand, the path through the $tag.UNSET$ box is successful only if the tag variable is empty,
that is, the Number tag is outside a Measure tag.

If we compile this graph and replace the second graph in the synthesis.csc cascade with it, the
cascade will produce the same result as before when applied to the text
DombeyAndSon_csc.txt. To do the substitution, we can use the Disabled column that enables
switching on and off some graphs in a cascade.

4.3 Reuse the same graph

Redears can recall that we have constructed the number.grf graph from the NB2-999999.grf
graph (see Section 3.1.1, page 89). We will now propose another solution, a single graph that
can be used to annotate both with XML tags and with lexical tags. We will copy the number.grf

graph and paste it in the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Numbers

We will name it numberXmlOrLt.grf and we will remove the insertion of an opening tag <E>/{
and replace it with an empty box (<E>); and similarly, we will remove the insertion of a closing

tag <E>/,.Number+grf=number} and replace it by an empty box (<E>).

Unitex Getting Started - Denis Maurel and Cvetana Krstev

96

We will now describe how to use this graph for both types of annotation: We will use output

variables.

4.3.1 Output variable

We will create a new graph, numberTest.grf, and place it in the same folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Numbers

In this graph, the call to the numberXmlOrLt.grf graph follows a test on an output variable
$test$.

A new graph named numberXml.grf will replace the NB2-999999.grf graph created in
Chapter 3, Section 2.4.2, page 62. In this graph, the <E>/XML empty box is surrounded by
special blue output parentheses, which you can insert by clicking the Surround box selection
with an output variable button. The value of the output variable $test$ is the output of the
path enclosed in the blue parentheses, here XML.88 To tag only numbers greater than 1, as we
saw in Chapter 3, Section 3.4.2, page 67, we will use weights.

If we apply this graph to the novel text, we will obtain 1658 concordance lines, but only 736

lines with <Number></Number> tags, as in the precedent chapter.

88 See Unitex user manual, Section 6.8.

Chapter 4: CasSys

97

In the same way, a new graph named numberLt.grf will replace the number.grf graph, created
in Section 3.1.1, page 89.

4.3.2 Graph repository

This solution can be improved by using a graph repository. For this, let us create a new folder,
Repository, inside the folder:89

MyUnitex\English\Graphs\UnitexGettingStarted

In order to make this folder our graph repository, we have to open the
Info/Preferences/Directories menu, click the Set button next to the Graph repository option in
order to choose this specific folder, and finish the action by clicking the OK button.90

We will copy the numberXmlOrLt.grf graph and its three subgraphs91 from the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Numbers

and paste them in the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Repository

89 This folder is not necessarily located in the MyUnitex folder. It can be common to several projects, each
corresponding to a particular private working directory. See Chapter 2, Section 1.1.4, page 11.

90 This action adds a line to the configuration file located in the folder:
MyUnitex\English

91 NB1-9-subgraph.grf, NB1-99-subgraph.grf and NB100-999-subgraph.grf.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

98

A call to a subgraph that is in the repository is obtained by preceding its name with two colons;
the box will have yellow background. It doesn't matter in which folder the main graph is, since
it calls a subgraph that is in the repository.

We will create two new graphs in the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Numbers

The first graph, named numberXmlRepository.grf, annotates numbers with
<Number></Number> tags, while the second graph named numberLtRepository.grf

transforms numbers in lexical tags.

4.4 Hiding or deleting part of a text

Before starting this section

Go to the folder: MyUnitex\English\Corpus\UnitexGettingStarted
Create a new folder named (without space): JubileeLoremIpsum.
Go to the folder:MyUnitex\English\Corpus\UnitexGettingStarted\JubileeLoremIpsum

Download the JubileeLoremIpsum.xml file.

4.4.1 Hiding part of a text

As mentioned in Section 2.1.2, page 86, the toolHidden.grf graph causes an error if the text to
be hidden is too long. Actually, a Unitex graph analyzes a text by traversing all the possible
paths (between the initial box and the final box) before deciding which path to choose.
However, the maximum length of this run is set at 1,000 tokens. This value can be increased
by using a script (see Chapter 7, page 149), but there is still a limit.

We will use a text that we prepared specifically for this exercise, JubileeLoremIpsum.xml. You
will find it in the folder:

MyUnitex\English\Corpus\UnitexGettingStarted\JubileeLoremIpsum

This file contains 596 sequences of letters and 750 other tokens between tags <title></title>.

As we explained before, we will rename this file as JubileeLoremIpsum.xml.txt, open it in
Unitex and answer Yes to the question Do you want to preprocess the text. A window will open

in which we will remove the first two checkmarks, leaving just the last one Apply All default
Dictionaries.

Now we will open the Text/Apply CasSys Cascade… menu and select the analysis.csc file in the
folder:

MyUnitex\English\CasSys\UnitexGettingStarted\XmlTextEntities

When we click the Launch button, we obtain an error message.

Chapter 4: CasSys

99

We have to modify the toolHidden.grf graph that caused the error. We will open it
(Graphs/Open menu) in the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Entities\Analysis

and save it under the new name toolHiddenDateTag.grf (we will use the FSGraph/Save as…
menu). We should not forget to modify the tracing feature as well: ,.Hidden+grf=toolHidden
should be replaced by ,.Hidden+grf=toolHiddenDateTag. We will delete the first path, leaving
only the path that hides the content between the <date></date> tags. We will compile this
graph.

We will create another new graph, named toolHiddenTitleTag.grf, to hide the content
between the <title></title> tags.

The notation $[1,300]$ above the box that calls this subgraph controls the number of
iterations (from one to 300 tokens).92 The patternNotHiddenNotTitleCloseTag.grf subgraph

uses the negative right context to recognize a token only if it is neither a hidden text (token
classified as “Hidden”), nor the title closing tag.93

We will modify the analysis cascade in which we will replace the previous toolHidden.grf graph

with the two graphs: the toolHiddenDateTag.grf graph followed by the toolHiddenTitleTag
graph. The latter graph will be applied until the fixed point is reached.

92 Like all output, these interval boundaries are written after a slash character. The box actually contains
:patternNotHiddenNotTitleCloseTag/$[1,300]$.
93 See Chapter 3, Section 1.7.3, page 55, for more details about negative right context.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

100

We will explain in detail how the toolHiddenTitleTag.grf graph works: Unitex detects the
opening title tag, then it iterates and recognizes 300 tokens at most. If it does not come upon
the closing title tag, as will be the case with our example text, it tags these 300 tokens as a

text to be hidden (Hidden) with an additional feature (Hidden=insideTag) stating that the end
of a text was not yet reached. The graph is launched again. In the second run, the graph
detects the new token that we created in the previous step, followed by some regular tokens
and after that it loops again over at most 300 tokens.94 When the closing title tag is recognized
before reaching the upper limit of iterations 300, the text collected as a title is categorized as

Hidden with the additional atribute Hidden=endTag.

As we saw in Section 1.1.7.2, page 78, the cascade created a new folder:

MyUnitex\English\Corpus\UnitexGettingStarted\
JubileeLoremIpsum\JubileeLoremIpsum.xml_csc

containing a new file for each graph or iteration of graph.

The toolHiddenTitleTag.grf graph is the third graph of the cascade and it is iterated four times.

So the cascade created four new files named:

1. JubileeLoremIpsum.xml_3_0.snt,
2. JubileeLoremIpsum.xml_3_1.snt,
3. JubileeLoremIpsum.xml_3_2.snt,
4. JubileeLoremIpsum.xml_3_3.snt.

To check the result, we will open these files. If we search with name=title to gain insight only
into interesting categories, we will find:

JubileeLoremIpsum

.xml_3_0.snt

{name=title+openTag}{Hidden=insideTag} Aliquam convallis

sollicitudin purus…{name=title+closeTag}

JubileeLoremIpsum
.xml_3_1.snt

{name=title+openTag}{Hidden=insideTag}{Hidden=insideTag} augue.
Integer id felis…

JubileeLoremIpsum
.xml_3_2.snt

{name=title+openTag}{Hidden=insideTag}{Hidden=insideTag}{Hidden
=endTag}{name=title+closeTag}95

The JubileeLoremIpsum.xml_3_2.snt and JubileeLoremIpsum.xml_3_3.snt files are identical,
which means that the fixed point has been reached and that the iteration of the
toolHiddenTitleTag graph stops.

The synthesis cascade (the same as before, see Section 2.2, page 87) will rewrite this text
without any internal annotation, whereas, if the hiding graphs had not been used, Wednesday

94 Actually, the 300 tokens surrounded with braces have become a single token of a category Hidden.
95 Which means that at this point our text, inside <title>/</title> tags, consists of only 5 tokens.

Chapter 4: CasSys

101

June 1, 2022 would be tagged as an AbsoluteDate inside the <date></date> tags and
Nearlondon would be tagged as a Town inside the <title></title> tags.96

<xml>
<date>Posted on Wednesday June 1, 2022</date>

<title><p>From Nearlondon:</p><p>Lorem ipsum…

4.4.2 Deleting part of a text

4.4.2.1 The deleting graphs

Instead of hiding the date and title tags, suppose we want to remove their content.

For the date tag, presumably with a short content, we can write a graph that replaces

everything recognized with <date></date>. We will name this graph toolEraseDateTag.grf.

For the title tag, which can have a very long content in the number of tokens, we will use a

loop limited to 300 tokens. We will name this graph toolEraseTitleTag.grf.

This graph uses a subgraph that we will name patternNotCloseTitle.grf.

These two graphs are similar to graphs developed in the previous section; they differ only in
the produced output. We will build now the cascade. The toolEraseDateTag graph and the
toolEraseTitleTag graph are in Replace mode; the toolEraseTitleTag graph is repeatedly used
until a fixed point.

We will open the JubileeLoremIpsum.xml.snt text and launch the analysis cascade; we will

open the JubileeLoremIpsum.xml_csc.txt text (without applying dictionaries) and launch the

96 Now that we no longer have to care about the length of the text, we can directly hide the whole preamble,
between the <xml> and <body> tags, instead of hiding inside the <date> and <title> tags separately.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

102

synthesis cascade. The beginning of the resulting text JubileeLoremIpsum.xml_csc_csc.txt is
now:

<xml>
<date></date>
<title></title>
<body>…

4.4.2.2 Comparing the variables

To stick to common XML practice, we will add to the synthesis cascade a new graph that
transforms two successive tags, opening and closing, into a self-closing tag. We will name this
graph selfClosing.grf. We will use two variables $tag1$ and $tag2$ and compare them with
the formula $tag1.EQUAL=tag2$.97 A self-closing tag is output only if two successive opening
and closing tag contain the same element name.

The new graph is added as the third in the synthesis cascade and marked to be used in Replace
mode.

After applying the synthesis graph to JubileeLoremIpsum.xml_csc.snt, we will get what we
wanted.

<xml>
<date/>
<title/>
<body>…

4.5 Sub-categorization with cascades

We will work here on the JubileePlainText text.

4.5.1 Three modified graphs

We will take the first two graphs of Section 1.1, page 71, named absoluteDate.grf and
relativeDate.grf; we will modify them by introducing sub-categories. Either DayName,

DayNumer (as in graphs) or name of a day, number of a day.98

97 It is also possible to compare a variable to a character string either in a case-sensitive or case-insensitive way.
See the Unitex user manual, Section 6.9.2.

98 Care must be taken that, on each path, a closing brace corresponds to an opening brace. In a complex graph,
we can verify this by using the FSGraph/Tools/Verify braces option.

Chapter 4: CasSys

103

Then, we must also modify the tag graph of the synthesis cascade, adding the new
categories.99

When we run the analysis and synthesis cascades with these three new graphs (don’t forget
to compile the modified graphs!), we get the desired result, a subcategorization of dates.

99 When the categories have been added in the corresponding box, it is possible to sort them in alphabetical
order by the FSGraph/Tools/Sort Node Label option.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

104

This week we celebrate the Platinum Jubilee of the Queen of England: seventy years of reign! The
party will start on <AbsoluteDate><Month>June</Month> <DayNumber>2</DayNumber>,
<Year>2022</Year></AbsoluteDate> and end on <RelativeDate><Month>June</Month>
<DayNumber>5</DayNumber></RelativeDate>. The Queen ascended the British throne on
<AbsoluteDate><Month>February</Month> <DayNumber>6</DayNumber>,
<Year>1952</Year></AbsoluteDate>.
Our small town of <Town>Nearlondon</Town> will also celebrate this event.
<Town>Nearlondon</Town> has always been a loyal subject of Her Majesty. Although the city of
<Town>London</Town> is dear to us, on <RelativeDate><DayName>Thursday</DayName>
<Month>June</Month> <DayNumber>2</DayNumber></RelativeDate> we will change the name
of <Address>London Street</Address> to <Address>Queen Elizabeth Street</Address>.
Everyone will fondly remember 2022!
God Save the Queen!

4.5.2 Generalization graphs with restrictions

4.5.2.1 Without substitution of a category

A single number should not be recognized as a year, even if it has 4 digits. This could cause
too many errors. This is why 2022 in the penultimate sentence Everyone will fondly remember
2022 was not tagged as a Year (nor as a date). We will use a generalization graph to decide

that since 2022 has already been recognized as a date, it has to be recognized again as a
date.100 We will name this graph yearGeneralization.grf. Note that the subcategory Year is in
the box, while category AbsoluteDate is the output of the box.

We will place this graph in the third position of the analysis cascade. Don't forget to check the
Generaliz... box.

When we run this new analysis cascade and the same synthesis cascade, the desired result is

as expected (We display only the penultimate line).

Everyone will fondly remember <AbsoluteDate><Year>2022</Year></AbsoluteDate>!

As explained in Section 4.1, page 94, the generalization graph is automatically replaced in the
cascade by a generated graph, having the same name yearGeneralization.grf, which is in the

folder:

MyUnitex\English\Corpus\UnitexGettingStarted\
JubileePlainText\jubileePlainText_csc\jubileePlainText_3_0_snt

After rearrangement, this graph looks like this:

100 See Section 1.1.5, page 75. Remember that the .grf file must stay in the same folder as the .fst2 file.

Chapter 4: CasSys

105

4.5.2.2 With substitution of a category

It is also possible to modify the category obtained. For example, if we will want to categorize

YearDate years recognized in this way, we must write in the box
Year.YearDate/,.AbsoluteDate. Save this graph.

Of course, this will only work if the tag.grf graph of the synthesis cascade is also modified to
recognize the new tag YearDate.

The result is now different (don’t forget to compile the modified graphs!).

Everyone will fondly remember <YearDate><Year>2022</Year></YearDate>!

After rearrangement, the replaced generalization graph looks like this:

107

Chapter 5: dictionary creation

Before starting this chapter

Go to the folder: MyUnitex\English\Inflection
Select and copy the two files named Equivalences.txt and Morphology.txt.
Create a new folder named UnitexGettingStarted (without space).
Go to the folder: MyUnitex\English\Inflection\UnitexGettingStarted

Paste the two files Equivalences.txt and Morphology.txt.101

1 Introduction

We have already discussed the use of the dictionaries from the Unitex distribution in

Chapter 2, Section 1.2.4, page 14.

Before we begin, we will open in Unitex our novel, DombeyAndSon.txt, located in the folder:

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon

We will answer No to the question Do you want to preprocess the text.

In this chapter, we will create a new dictionary following these three steps:

1. We will manually create a dictionary of representative (principal) forms (or lemmas)
and rules for their inflection;

2. We will create automatically a dictionary of inflected forms, that is, all forms that can
occur in texts, like singular and plural forms of nouns;

3. We will automatically create a dictionary in format .bin that will appear in the User

resources field.

For the first step, we will use the Unitex editor. We will open the File Edition/New File menu
and save the file in the Dela folder using the name myDictionary.dic. We will make a difference
between the inflection of monolexical words and polylexical words.102

2 Inflection of monolexical words

2.1 Inflection by simple suffixation

2.1.1 The nouns with s in the plural

We will enter the following three lines in the myDictionary.dic file. Note that these entries
should not contain spaces. In addition, we will finish the third line (the last line) by clicking the
Enter key.

101 These two files define the morphological codes used by Unitex for a specific language. It is not recommended
to modify them, except if a user wants to use different morphological codes or wants to create resources for a
new language.
102 It is also possible to create the inflection rules based on word stems, which is convenient for the Semitic

languages; see the Unitex user manual, Section 3.5.4.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

108

advantage,N1
agent,N1
firm,N1

Each line represents a dictionary entry consisting of a lemma (representative form), followed
after a comma by the associated inflectional graph (in the case of our entries N1.grf). In the
name of this graph, N represents the grammatical category (Part-Of-Speech) noun. We will
now create this graph and save it in the folder:

MyUnitex\English\Inflexion\UnitexGettingStarted

We will save and close the myDictionary.dic file.

The N1 graph enables the inflection of nouns for which the plural is obtained by adding an s

to the singular form. We will use, although it is not mandatory, the same codes used by the
dictionary provided with the Unitex distribution dela-en-public.bin. One can see these codes
in the Word List window: s is used for the singular forms and p for the plural forms. We will
add a comment (a box starting with the slash /) with some examples of nouns that can be
inflected by this graph.

This inflectional graph is read like this: in the upper part, there is an empty box, signifying that
a word (lemma) to which it applies does not change; in the lower part, there is a box containing

an s, signifying that it is concatenated to the word to which it applies. The output of these
boxes are values of grammatical categories associated with inflected forms.

This graph must be compiled, so we will click the Compile graph button. We will obtain an
error message: Main graph matches epsilon! Error: the main graph N0 recognize <E>. The
meaning of this message is that we cannot use this graph for search (the Locate pattern
option) because it recognizes an empty symbol.103 Since we have not developed this graph for
search, we can ignore this message. We will simply click the OK button.

We will now launch the inflection program. This program will create a dictionary of all inflected
forms, named myDictionaryflx.dic (flx is automatically added to the file name). In order to do
this, we will open the myDictionary.dic file in the DELA menu, which gives access to programs

103 Which would cause an infinite loop and crash the computer.

Chapter 5: Dictionary creation

109

dealing with dictionaries. Note that now we will not use the File Edition menu, because we are
not going to create or modify a dictionary of lemmas.104

We will now inflect the myDictionary.dic dictionary by using the DELA/Inflect menu option.
First, we will set the folder in which the inflectional graphs are stored. Click the SET button,
select the folder:105

MyUnitex\English\Inflexion\UnitexGettingStarted

and click the Open button. Next, click the Inflect Dictionary button.

The myDictionaryflx.dic dictionary is created and displayed on the screen.

If we want to use this dictionary on our novel (or any other text), one more step is necessary.
We must choose the DELA/Compress into FST menu option and confirm by clicking OK. This

will create two more files: myDictionaryflx.bin and myDictionaryflx.inf.106 Note that if you want
to use this dictionary on some other computer you need to copy both files.

We will now close both windows containing the myDictionary.dic and myDictionaryflx.dic
dictionaries. We want to apply our newly created dictionary to the novel (already open). We
will open the Text/Apply Lexical Resources menu and click the Clear button (in order to cancel
all previous selections). We will choose the myDictionaryflx.bin file (appearing in the left field)
and click the Apply button. As a result, the Word List window will be displayed.

104 If you detect an error in your myDictionary.dic file, you have to close it in the DELA menu and reopen it in the
File Edition menu.
105 If you are not going to go through this entire section in one session, remember to set the folder containing
the inflectional graphs when you start to work again.
106 The myDictionaryflx.bin file contains words, but it is a binary file and a text editor cannot read it. The

myDictionaryflx.inf file contains the factorization of tags associated with entries: it is readable.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

110

Since five of our six inflected forms (two for each lemma) appear in this novel, they will be
listed in the DLF area. DLC area is empty, while the ERR area lists 16 427 unknown simple

words. This is natural since we applied only our tiny dictionary to the text.

We will close the Word List window.

2.1.2 Two more examples

We will open the myDictionary.dic file again, using the File Edition/Open…/Dictionaries menu

and answer OK to the warning This is not necessarily the text being processed by Unitex stating
that this file cannot be used for the text analysis.107 We will add to our dictionary of lemmas
some more illustrative examples:

• for the inflection of the nouns branch, bus, box having plural forms produced by
adding es to the singular form we will use the N2 graph;

• for the inflection of the verbs accept, connect, work having forms produced by
adding s, ed and ing to the infinitive form we will use the V1 graph.108

We will use the same format as before – remember that you should not use spaces and to

press the Enter key after the last entry.

advantage,N1
agent,N1
firm,N1
branch,N2
bus,N2
box,N2
accept,V1
connect,V1
work,V1

We will save and close the myDictionary.dic file.

107 Except if we close it and reopen using the menu Text/Open.

108 We saw in the Chapter 2, Section 1.2.5, page 15, that G codes the gerund of a verb. We saw in the Chapter 3,
Section 1.2, page 47, that K codes the past participle and W codes the infinitive of a verb. We also need to know
that the code P is used for the present tense, I for the perfect tense, while 1, 2 and 3 are codes for persons.

Chapter 5: Dictionary creation

111

We will create and compile the N2 et V1 graphs. We can notice that the N2 graph is very similar
to the previous N1 graph (the content of the lower box is es instead of s); so we can facilitate
our work by opening N1.grf, using the FSGraphs/Save as… menu to rename it as N2.grf; and
then changing the content of this box. Do not forget to replace the comment as well by typing
new examples and to compile graphs.

N2 V1

We can now open the myDictionary.dic dictionary by using the DELA/Open Recent menu and

inflect it using the DELA/Inflect option. The new dictionary named myDictionaryflx.dic will be
displayed in a separate window with its 57 entries. You can see below the content of this

window with some of the produced inflected forms.

We will verify the inflected forms and, if we find them correct, we can sort them by using the
DELA/Sort Dictionary option.109

109 Note that we could have inflected this dictionary after saving the first graph, N1.grf. The inflection program
issue error notifications for all entries using graphs that do not exist and produces a dictionary of inflected forms
only for those entries for which inflectional graphs exist.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

112

When inflecting a dictionary of lemmas, we can check the Sort and factorize inflectional codes
option in the DELA/Inflect menu. A more compact dictionary of inflected forms will be
produced. Namely, there will be only one entry for each form of a lemma, followed by a

sequence of all possible values of grammatical codes. If we apply this to our myDictionary.dic
dictionary, we will get the myDictionaryflx.dic dictionary of inflected forms consisting of 24
entries, some of which are displayed in the figure below.

In order to make this dictionary functional, we must apply the DELA/Compress into FST option.
We will now close the windows containing myDictionary.dic and myDictionaryflx.dic. We will
test this new dictionary by applying it to our novel (do not forget to click the Clear button in
the Text/ApplyLexical Resources) menu. In the DLF zone of the Word List window, 19 entries
will be listed (the word forms accepts, bus and buses do not occur in the novel) compared to
the five entries obtained by the previous version of the dictionary. Therefore, there are less

entries in the ERR zone: 16 411. Close the Word List window.

Chapter 5: Dictionary creation

113

2.2 The L operator

In order to concatenate the suffix to a substring of a word, that is, not after its last letter (e.g.
compan from company, see below), we use the L operator (standing for Left) in order to move
from right to left starting from the end of a word.

2.2.1 The nouns with final y

Plural forms of the nouns company, complexity, family are produced by replacing the final y
with the suffix ies. Starting from the end of the word, we move one letter to the left (operator
L) and then we add ies. This rule will be written as Lies in the box for plural forms in the N3
graph.110

We will now add three more lines to the myDictionary.dic file (having now 12 entries).
Remember to open it in the Unitex editor by using the File Edition/Open…/Dictionaries menu.

…
company,N3
complexity,N3
family,N3

We will save this dictionary and close the editor. Now we will create the N3 graph, using as a
base the N1.grf graph, modifying it and saving with the Save as… menu option under the name
N3.grf. Remember to replace the comment with new examples and compile the graph.

In order to use this new version of the dictionary we have to inflect and compress it. These
are the steps to follow: open the myDictionary.dic file (the DELA/Open Recent menu) and
inflect it (the DELA/Inflect menu, Sort and factorize inflectional codes option). The new version
of the myDictionaryflx.dic dictionary will be displayed containing 30 lines. If inflected forms

110 Since the inflection endings are written in lower-case letters, the upper-case letters are reserved for

operators.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

114

are correct, we can proceed with the production of the dictionary version that can be used in
text analysis: the DELA/Compress into FST menu. We will close the windows displaying
myDictionary.dic and myDictionaryflx.dic. We can now apply the new dictionary to our text:
the Text/ApplyLexical Resources menu (do not forget to click the Clear button). The DLF zone
of the Word List window shows that 23 words have been recognized by the myDictionaryflx.dic
dictionary. We can also see that the word complexity does not occur in our text. Before

proceeding with new examples, we will close the Word List window.

2.2.2 Several more examples

We will again open the myDictionary.dic file in the Unitex editor (File

Edition/Open…/Dictionaries). We will add to the dictionary some more examples of inflections
requiring the L operator once or several times.

● leaf, thief, calf are nouns in which the final f is replaced by ves in plural (N4.grf
graph).

● wife, knife, life are nouns in which the final fe is replaced by ves in plural (N5.grf
graph, the L operator is applied twice).

● mouse, louse are nouns in which the final ouse is replaced by ice in plural (N6.grf
graph, the L operator is applied four times).

● narcissus, terminus, tumulus are nouns in which the final us is replaced by i in
plural (N7.grf graph, the L operator is applied twice).

● phenomenon, criterion, datum are nouns in which the two final letters are
replaced by a in plural (N8.grf graph, the L operator is applied twice).

● love, live, give are verbs for which the final e is deleted before adding the ending
ing (V2.grf graph, the L operator is applied once for this inflected form).

● accompany, try, worry are verbs for which the final letter y is replaced by i in all
inflected forms (V3.grf graph, the L operator is applied once for all inflected

forms).

We will now add entries for these nouns and verbs into the myDictionary.dic dictionary (do
not forget to press the Enter key after the last entry). This dictionary now has 32 entries.

…
leaf,N4
…
worry,V3

We will save the dictionary and close the Unitex editor. After that, we will create and compile
new graphs for the inflection of nouns and verbs.

N4 N5

Chapter 5: Dictionary creation

115

N6 N7

N8 V2

V3

As the last step, we will open the myDictionary.dic file using the DELA/Open Recent option and
inflect it choosing DELA/Inflect. The new myDictionaryflx.dic dictionary contains 82 lines (if the
Sort and factorize inflectional codes option is on). After compressing this dictionary
(DELA/Compress into FST menu), we will close both windows (myDictionary.dic and
myDictionaryflx.dic). We will open the Text/ApplyLexical Resources menu (do not forget to
clear all preselected dictionaries by clicking the Clear button and select the myDictionary.bin
dictionary). The Word List now displays 57 recognized words. We will close Word List.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

116

2.3 Operators R, C and D

We use the R operator (Right) in combination with the L operator, when we need to substitute
part of a lemma while preserving another part on the right.

What do the nouns goose and tooth have in common? In the plural, the last two letters remain
as they are while the string oo is replaced by ee. It means that starting from the end of a
lemma, we have to move to the left by four letters (LLLL), then write ee, and then move to the
right by two letters (RR). This procedure is used by the N9.grf graph.

Let us see how it works. The vertical bar indicates the current position in the processed word
(the position of the cursor) at each step in the sequence of operations.

|LLLLeeRR goose| tooth|

L|LLLeeRR goos|e toot|h

LL|LLeeRR goo|se too|th

LLL|LeeRR go|ose to|oth

LLLL|eeRR g|oose t|ooth

LLLLe|eRR ge|ose te|oth

LLLLee|RR gee|se tee|th

LLLLeeR|R gees|e teet|h

LLLLeeRR| geese| teeth|

Other examples:

● foot is a noun for which the last letter remains in the plural while the string oo is
replaced by ee (N10.grf graph).

● man, woman, hypothesis are nouns for which the penultimate letter becomes e in the
plural (N11.grf graph).

N10 N11

Chapter 5: Dictionary creation

117

The C operator (Copy) duplicates the current letter, that is the letter situated on the left of the
cursor, which permits the inflection with a single graph of the verbs jog, plan, stop, prefer for
which the final consonant is duplicated in the past tense, the past participle and the gerund
(V4.grf graph).

Other examples:

● past tense is identical to the present tense for verbs slit, split while their final
consonant is duplicated in the gerund (V5.grf graph).

● the final consonant is duplicated in the plural before adding es for the nouns quiz or
gas (N12.grf graph).

V4 V5

N12

The D operator (Delete) deletes the current letter (and shifts the right-hand part of the word
to the left), that is the letter situated to the left of the cursor, which permits the inflection
with a single graph of the verbs shoot, speed, meet for which the double letter (oo, ee) is
simplified in the past tense and the past participle (V6.grf graph).111 We will demonstrate step
by step how the pattern LDR used in the V6.grf graph works.

111 Note that some other operators exist that are described in the Unitex user manual, Section 3.5.1.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

118

|LDR shoot| meet|

L|DR shoo|t mee|t

LD|R sho|t me|t

LDR| shot| met|

Other examples:

● the verbs kneel, sleep, creep for which the double letter (oo, ee) is simplified in the past
tense and the past participle and the letter t is added (V7.grf graph).

V6 V7

We will now add these eight nouns and twelve verbs into the myDictionary.dic dictionary (do
not forget to press the Enter key after the last one). This dictionary now has 52 entries.

…
goose,N9
…
creep,V7

We will save the dictionary and close the Unitex editor.

After opening the myDictionary.dic file, using the DELA/Open Recent menu, and inflecting it,
choosing the DELA/Inflect menu, the new myDictionaryflx.dic dictionary contains 144 lines (if
the Sort and factorize inflectional codes option is on). After compressing this dictionary

(DELA/Compress into FST menu), we will close both windows (myDictionary.dic and
myDictionaryflx.dic). We will apply the new myDictionaryflx.bin dictionary (Text/ApplyLexical

Resources menu). The Word List now displays 103 recognized words. We will close the Word
List.

3 Inflection of multi-word units

Before starting this section

If you have not modified the Norm.txt file as explained in Chapter 2, Section 3.1.2, page 35, do so,

or download it, then close and reopen Unitex.

Chapter 5: Dictionary creation

119

In order to inflect multi-word units (MWU), or compound words, we will create graphs that
have as many boxes as there are tokens in an MWU with the addition of one box for the result.
One has to remember that processing units, or tokens, for Unitex are strings of alphabetic
characters (letters) and any other individual character, including the space.112

3.1 Example of the MWU air of mystery

MWUs air of mystery, sort of thing and tree of knowledge, each comprised of five tokens (three
alphabetic strings and two spaces), of which only the first one is inflected to obtain the plural
form. We will inflect these MWUs with the graph named NC_XWW1.113

We will now add three entries to the myDictionary.dic file (and click ENTER after the third line)

using the Unitex editor (File Edition/Open…/Dictionaries; answer OK). These entries contain
the information about the inflection of the MWU as a whole (in this case NC_XWW1) and

between parentheses (without any space) information about the inflection of each word
token (if it inflects): lemma, inflectional graph and inflectional information of a simple word
form used in a MWU being described.

…
air(air.N1:s) of mystery,NC_XWW1
sort(sort.N1:s) of thing,NC_XWW1
tree(tree.N1:s) of knowledge,NC_XWW1

The NC_XWW1.grf graph consists of six boxes: the first five boxes refer to the five tokens in a
MWU, while the sixth box is empty, it is used only for output.

The second (<$2>) and the fourth (<$4>) token correspond to spaces, so they do not inflect.

The third (<$3>) and the fifth (<$5>) token refer to word tokens that do not inflect in described
MWUs. Only the first token inflects in number. In order to indicate this, we will use the

keyword Nb representing the grammatical category of number.114 The formula Nb=$n means
that the variable $n is instantiated to all possible values of the keyword Nb, in this case, s and
p. This means that the single path in the graph corresponds to both singular and plural forms

of a MWU being inflected. This formula in the first box indicates that all forms (actually two)
of the first word token will be taken in turn, while its use in the sixth box indicates that the

corresponding values will be assigned to the inflected MWU forms in the output.

112 See Chapter 2, Section 1.2.3, page 13.
113 The prefix NC_ in this name indicates that a noun to be inflected is a compound. The suffix is free.
114 The keywords and their possible values are given for each language in the Morphology.txt file that has to be

in the same folder as the inflectional graphs.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

120

We will close this graph after compiling it. We will open the myDictionary.dic file using the
DELA/Open Recent menu and inflect it using the inflectional graphs in the folder:

MyUnitex\English\Inflection\UnitexGettingStarted

The new myDictionaryflx.dic dictionary has 150 entries, two for each of the newly added MWU
lemmas. After its transformation (DELA/Compress into FST menu), we will close the windows
with the myDictionary.dic and myDictionaryflx.dic dictionaries; and open the
Text/ApplyLexical Resources menu, click the Clear button, select the myDictionaryflx.dic
dictionary and then click the Apply button. The number of recognized simple words listed in
Word List is still 103 (DLF), but there are also three MWUs (DLC).

We will close the Word List.

3.2 Some other examples

We will open for the last time the myDictionary.dic file using the File
Edition/Open…/Dictionaries menu, and clicking the OK button. We will add to it lemmas for
some other illustrative examples of MWUs.

● crow's nest, death's-head, hair's breadth; these are MWUs composed, like before, of
five tokens, but this time only the last one is inflected (NC_WWX1.grf graph); the only

difference between this graph and the NC_XWW1.grf graph is that now the fifth
instead of the first box contains the formula Nb=$n indicating the inflection in number.

● boa constrictor, prince regent, secretary general; these are three token MWUs in which
only the first word token inflects (NC_XW1.grf graph).

● altar rail, Anglo-Norman, bad boy; only the last word token inflects (NC_WX1.grf
graph).

● after-life, eye-cup, sky-blue; these MWUs inflect like the previous except that the first

and the third word tokens can be written together (NC_WX2.grf graph); the fact that
two words can be written without the hyphen is indicated by the new path that

connects directly the first and the third token.

Chapter 5: Dictionary creation

121

● three quarter, blood red, self glorification;these MWUs inflect like the previous except
that the first and the third token can be connected with a hyphen (NC_WX3.grf graph);
the new path is added to the NC_WX3.grf graph which connects the <$1> and <$3>
boxes with a hyphen in between.

● carry out, take off, wash out are MWU which unites two previous cases, namely, two
word tokens can be either written together or separated by a hyphen or a space, while

only the last word inflects (NC_WX4.grf graph).
● attorney general, notary public are MWUs that allow inflection of either the first or the

second word (but not both!) (NC_XX1.grf graph); this graph has two paths, the upper
taken from the NC_XW1.grf graph and the lower from the NC_WX1.grf graph. 115

We will get the final version of the myDictionary.dic dictionary by adding these twenty entries:

…
crow's nest(nest.N1:s),NC_WWX1
death's-head(head.N1:s),NC_WWX1
hair's breadth(breadth.N1:s),NC_WWX1
boa(boa.N1:s) constrictor,NC_XW1
prince(prince.N1:s) regent,NC_XW1
secretary(secretary.N3:s) general,NC_XW1
altar rail(rail.N1:s),NC_WX1
Anglo-Norman(Norman.N1:s),NC_WX1
bad boy(boy.N1:s),NC_WX1
after-life(life.N5:s),NC_WX2
eye-cup(cup.N1:s),NC_WX2
sky-blue(blue.N1:s),NC_WX2
three quarter(quarter.N1:s),NC_WX3
blood red(red.N1:s),NC_WX3
self glorification(glorification.N1:s),NC_WX3
carry out(out.N1:s),NC_WX4
take off(off.N1:s),NC_WX4
wash out(out.N1:s),NC_WX4
attorney(attorney.N1:s) general(general.N1:s),NC_XX1
notary(notary.N3:s) public(public.N1:s),NC_XX1

We will construct and compile these seven inflectional graphs.

NC_WWX1

115 We thank Agata Savary for these three examples: carry out, take off and attorney general.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

122

NC_XW1

NC_WX1

NC_WX2

NC_WX3

NC_WX4

NC_XX1

Chapter 5: Dictionary creation

123

We will now close all graphs using the Graphs/Close all option. Like before, we will open the
myDictionary.dic file using the DELA/Open Recent menu and inflect it (DELA/Inflect menu).
The final myDictionaryflx.dic dictionary consists of 216 entries. After transforming it
(DELA/Compress into FST menu), we will close both myDictionary.dic and myDictionaryflx.dic
windows. We will apply our dictionary to the text (Text/ApplyLexical Resources, clear all pre-
selections and select myDictionaryflx.dic). The number of recognized MWUs listed in the Word

List is now 21 (DLC).

4 Some additional remarks

4.1 Adding features in dictionary entries

Features with additional information can be added to Unitex dictionaries. In the Unitex user
manual, these features are referred to as semantic codes. In a dictionary of lemmas these
features follow an inflectional class (a name of an inflectional graph) and are preceded by the
+ character. Features that are added to the entries in a dictionary of lemmas are transferred

to the entries of a dictionary of inflected forms.

Let us turn again to our dictionary of lemmas (myDictionary.dic) that we will modify by adding
semantic codes: abstract for abstract nouns, animal for nouns denoting animal, concrete for
concrete inanimate nouns and human for nouns denoting human.

advantage,N1+abstract
agent,N1+human
firm,N1+concrete
…
wash out(out.N1:s),NC_WX4+abstract
notary(notary.N3:s) public(public.N1:s),NC_XX1+human
attorney(attorney.N1:s) general(general.N1:s),NC_XX1+human

If you add one of these semantic codes to all noun entries in the lemma dictionary, then our
form dictionary (myDictionaryflx.dic) will have 133 semantically described entries.

Anglo-Norman,Anglo-Norman.N+human:s
Anglo-Normans,Anglo-Norman.N+human:p
…
advantage,advantage.N+abstract:s
advantages,advantage.N+abstract:p
after-life,after-life.N+abstract:s
after-lifes,after-life.N+abstract:p
afterlife,after-life.N+abstract:s
afterlifes,after-life.N+abstract:p
agent,agent.N+human:s
agents,agent.N+human:p
…

These semantic codes can be used to refine a lexical mask, for instance by writing
<N+abstract>.

4.2 Direct creation of inflected entries

It is possible to add entries directly into the myDictionaryflx.dic dictionary, which can be
useful, for instance, for words that do not inflect. However, one has to be careful because if

Unitex Getting Started - Denis Maurel and Cvetana Krstev

124

the myDictionaryflx.dic dictionary is recreated from myDictionary.dic, these manually added
entries would be lost. It is better thus to have a new inflectional graph, named N13.grf,
describing nouns that do not change in plural, like moose, sheep or aircraft.

…
moose,N13+animal
sheep,N13+animal
aircraft,N13+concrete

On the other hand, one can directly create a dictionary of inflected forms, which can be useful,
for instance, for a dictionary of proper names that usually do not inflect in number. For
instance, a myProperNameDictionary.dic dictionary can be created directly containing the
following entries, collected on the text as you go.

Dombey,.N+surname:ms:fs
Paul,.N+forename:ms
Florence,.N+forename:fs
Peps,.N+surname:ms:fs

This dictionary can then be sorted by the Dela/Sort Dictionary menu.

Dombey,.N+surname:ms:fs
Florence,.N+forename:fs
Paul,.N+forename:ms
Peps,.N+surname:ms:fs

After transforming it (DELA/Compress into FST menu), we will close the
myProperNameDictionary.dic window. We will apply our two dictionaries to the text
(Text/ApplyLexical Resources, clear all pre-selections and select myDictionaryflx.dic and

myProperNameDictionary.dic by CTRL-clicking the mouse button). The number of recognized
simple word listed in the Word List is now 108 (DLF).

Chapter 5: Dictionary creation

125

4.3 Adding comments

4.3.1 Adding comments to entries

It is possible to add comments to entries in a dictionary of inflected forms. They are placed at
the end of a line, after a slash “/”. For instance, we can supply some explanatory information
in the myProperNameDictionary.dic dictionary. This information does not appear in the Word
List.

Dombey,.N+surname:ms:fs
Florence,.N+forename:fs/the daughter of Mr Dombey
Paul,.N+forename:ms/the son of Mr Dombey
Peps,.N+surname:ms:fs/the doctor

It is also possible to add comments to the dictionary of lemmas, but these comments are not

transferred to the inflected dictionary. It can be sometimes important to memorize who added

an entry and when. If we use instead of myDictionary.dic the following dictionary of lemmas

with added comments, we would still obtain the same flx dictionary. Let us modify, for
example, the first three lines, then inflect the dictionary. The comments are not in the
dictionary of inflected forms.

advantage,N1+abstract/ Cvetana, 2022/07/12
agent,N1+human/ Denis, 2022/07/13
firm,N1+concrete/ Cvetana, 2022/07/14
…

Unitex Getting Started - Denis Maurel and Cvetana Krstev

126

4.3.2 Documenting dictionaries

Finally, we can provide a description of our two dictionaries in two files, myDictionaryflx.txt
and myProperNameDictionary.txt, which placed in the same folder as dictionaries themselves.
For instance (for both):

Unitex Getting Started
Denis Maurel
University of Tours
Cvetana Krstev
University of Belgrade

This information can be displayed by accessing the Text/ApplyLexical Resources menu and
right-clicking the name of the dictionary.

4.4 Automatically verifying the format of a dictionary

4.4.1 Inflected dictionary

After adding new entries to a dictionary, we can verify if it is well formed, that is, in the format
expected by Unitex. Let us take, for example, the myDictionaryflx.dic dictionary and open it
using the DELA/Open Recent menu. If we select the DELA/Check Format menu and click the
Check Dictionary button, the file named CHECK_DIC.TXT will appear in the DELA folder and its
content will be displayed in a window.

The content of this file in the case of our dictionary will be:

1. Quantitative information: 219 lines read, 159 simple entries for 61 distinct lemmas, 60
compound entries for 23 distinct lemmas.

2. The list of used characters and their UTF8 code.
3. The used grammatical and semantic codes: 6 grammatical/semantic codes used in

dictionary: N, human, V, abstract, concrete and animal.
4. The used morphological codes: 17 inflectional codes used in dictionary, s, p, P1p, P1s…

However, if we have not manually added anything to the myDictionaryflx.dic dictionary, that

is, if it has been automatically produced from myDictionary.dic, there is no need to verify its
format, since it must be correct.

4.4.2 Lemma dictionary

What we can do is to check the correctness of the dictionary of lemmas (myDictionary.dic).

After opening it in the DELA menu and choosing DELA/Check Format we can verify its format
by checking the DELAS/DELAC option.116 After applying this option to our dictionary of
lemmas, the content of the CHECK_DIC.TXT file displayed on the screen will contain the similar
information (and replace the previous one):

1. Quantitative information: 78 lines read, 55 simple entries for 55 distinct lemmas, 23
compound entries for 23 distinct lemmas.

2. The list of used characters and their UTF8 code.
3. The used grammatical and semantic codes: 32 grammatical/semantic codes used in

dictionary: N1, abstract, human, concrete…

116 This option corresponds to dictionaries of lemmas, while the DELAC/DELACF option that is selected by default

corresponds to dictionaries of inflected forms.

Chapter 5: Dictionary creation

127

4. The used morphological codes: 0 inflectional codes used in dictionary.

4.5 Morphological-mode dictionary (only for confident users)

Before starting this section

Go to the folder: MyUnitex\English\Graphs\UnitexGettingStarted

Create a new folder named Dictionaries.

Dictionary information can be inserted into a text by a graph, for example, to tag it. To do this,

you must know how to insert the morphological mode (see Chapter 3, Section 3, page 63) and
use variables (see Chapter 4, Section 1.2, page 79).

We will use the myProperNameDictionary.dic dictionary to markup proper names.

First (don't forget this point!), this dictionary must be allowed for use in the morphological
mode: open the Info/Preferences…/Morphological mode dictionaries menu and click the Add
button to select the myProperNameDictionary.bin dictionary.

We will also use the myProperNameDictionaryTag.grf graph below, saved in the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Dictionaries

PN is a dictionary-entry variable, placed as output text. In the second output,
$PN.CODE.SEM$ is the semantic code corresponding to the dictionary entry (forename or

surname); $PN.INFLECTED$ is the inflected form corresponding to the dictionary entry (i.e.
the proper noun itself).117

This graph will produce, in Replace mode and with the Text Order option, the concordance
with 3 493 proper names displayed below. If graphs that you will produce and use later no
longer use this dictionary in morphological mode, remember to remove it from the list.

4.6 Priorities

If we use multiple dictionaries, we can set up three priority levels. To do this, we will add the

symbols - (maximum priority) or + (minimum priority) to the name of the dictionary file.118

117 See the Unitex user manual, Section 6.4.4, for more information on dictionary-entry variables.

118 We have to change the name of two files (.bin and .inf). If it exists, we have to do the same for the .txt file.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

128

For instance, if we want to use our two dictionaries, myDictionary.dic and
myProperNameDictionary.dic:

With the dictionary selection:
A word present in both dictionaries will be
labeled

myDictionaryflx.bin
myProperNameDictionary.bin

by each dictionary

myDictionaryflx.bin
myProperNameDictionary+.bin

only by the myDictionary.bin dictionary

myDictionaryflx.bin
myProperNameDictionary-.bin

only by the myProperNameDictionary-.bin
dictionary

4.7 Additional notes

The inflectional morphology of English is relatively simple. In French, common nouns inflect,
not only in number, but some of them also in gender, and adjectives inflect too. In Serbian,

nouns have gender, animacy, number and case, while all these categories inflect for
adjectives, in addition to definiteness and comparison. All this can be modeled using the

inflectional graphs introduced before.

When inflection also touches the prefix, then the more complex rules introduced in Section 6,
page 132 must be used.

For Semitic languages, like Arabic, Hebrew and so on, in which inflection often operates
between consonants in the root, specific rules were developed (see the Unitex user manual,

Section 3.5.4).

5 Dictionary graphs

5.1 Example of Roman Numeral dictionary

You will recall that we have constructed the RN2-3999.grf graph to tag Roman numerals (see
Chapter 3, Section 3.4.2, page 67). We now propose to create a dictionary graph for Roman
numerals. We will name it RomanNumeralDictionary.grf and we will base it on the RN2-
3999.grf graph. So, we can copy the four graphs: RN1-9-subgraph.grf, RN1-99-subgraph.grf,
RN1-999-subgraph.grf and RN2-3999.grf from the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\RomanNumerals

and paste them in the folder:

MyUnitex\English\Dela

then rename the RN2-3999.grf graph as RomanNumeralDictionary.grf.

We are going to remove the insertions of an opening tag <romanNumeral> and a closing tag
</romanNumeral>; and we replace them with empty boxes (<E>). We will also replace the call

to :RN2-999 with a call to:RN1-999-subgraph and place this call inside morphological tags as
well. We will add a new box at the end of the graph with the output ,.RN.

Chapter 5: Dictionary creation

129

We will compile this graph, open the Text/Apply Lexical Resources menu and click the Clear
button (in order to cancel all previous selections). We will choose the
RomanNumeralDictionary.fst2 file (appearing in the left field) and click the Apply button.119 As

a result the Word List window will be displayed.

5.2 Morphological extension of the used dictionaries (only for confident
users)

5.2.1 Morphological-mode dictionary declaration

It is also possible to extend the used dictionaries by creating morphological extensions of some
entries. The root dictionary must be declared as a morphological-mode dictionary (don’t
forget this point!). See Section 4.5, page 127.

If we consider that the default English dictionary, dela-en-public, is the root dictionary, we
have to open the Info/Preferences…/Morphological mode dictionaries menu and click the Add
button to select the dela-en-public.bin file. This file is located in your installation folder (see
Chapter 2, Section 1.1.2, page 7):

C:\Users\userName\AppData\Local\Unitex-GramLab120

or

C:\Program Files (x86)\Unitex-GramLab\App

119 We can also create a text file to write a documentation of the dictionary graph, RomanNumeralDictionary.txt,
see Section 4.3.2, page 126.

120 userName is your name under the Windows system.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

130

5.2.2 Example of the -less suffix

Generally, a noun can generate an adjective with the addition of the -less suffix. For instance,
in our novel some such adjectives occur: remorseless from remorse, restless from rest,
colourless from colour and so on. Many of these adjectives are entries in the default English
dictionary, dela-en-public, as we can see if we use the Dela/Lookup… menu (see Chapter 4,
Section 3, page 88). However, in our novel, three adjectives derived from nouns with -less

suffix occur that are not in this dictionary: brotherless, nevyless121 and whiskerless. The
Nless.grf dictionary graph recognizes and tags them appropriately. In addition to the POS tag
A, it adds two tags: Derivative to indicate that this is an input constructed by a graph and
Root=$n.LEMMA$ to specify the root.122

This graph should be added in the list of resources used to analyze the text: we must save and
compile it in the folder:

MyUnitex\English\Dela

It recognizes adjectives composed of a noun (in a morphological-mode dictionary, not

necessarily present in the applied dictionaries) and the -less suffix. We will now apply lexical
resources to our text, this time adding to preselected dictionaries the NLess.fst2 dictionary

graph.123 The number of simple-word lexical entries is now 22 674 (compared to 22 604
obtained before).124

121 The word nevy is an old form of nephew.

122 The dictionary-entry variables are explained in Section 4.5, page 127.

123 We can also create a text file to document the dictionary graph, NLess.txt, see Section 4.3.2, page 126.

124 See Chapter 2, Section 1.2.3, page 13.

Chapter 5: Dictionary creation

131

We notice that our graph recognized two of the three afore-mentioned adjectives. It could
not recognize the adjective nevyless because the noun nevy itself is not in the applied
dictionary.

This dictionary graph adds seventy entries to the Word List. We found two, what are the other
sixty eight?

First, two errors, from the b,.N entry.

bless,bless.A+Derivative+Root=b
Bless,bless.A+Derivative+Root=b

Second, four entries starting with an uppercase letter, although already present in

lowercase.125

Homeless,homeless.A+Derivative+Root=home
Restless,restless.A+Derivative+Root=rest
Speechless,speechless.A+Derivative+Root=speech
Supperless,supperless.A+Derivative+Root=supper

Third, sixty four duplications of entries already present.

artless,.A
artless,artless.A+Derivative+Root=art
…
voiceless,.A

voiceless,voiceless.A+Derivative+Root=voice

We will now make a small addition to our graph. The NlessCorrected.grf dictionary graph only
recognizes the two adjectives ending with -less that are not already in applied dictionaries
(brotherless and whiskerless). It uses a negative right context (see Chapter 3, Section 1.7.3,
page 55) and a <DIC> mask (see Chapter 2, Section 2.4.3, page 34).

We will now apply lexical resources to our text, this time adding to preselected dictionaries
the NlessCorrected.fst2 dictionary graph.

125 If the graph does not add a lemma (the output ,.A instead of the output ,$n.LEMMA$less.A), the graph creates
four new lemmas, Homeless, Restless, Speechless and Supperless, which is best avoided.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

132

The number of simple-word lexical entries is now 22 606 entries.

6 Additional possibilities (only for confident users)

6.1 A test on a suffix

By testing the last letter of a verb, we can join the V2.grf and V3.grf graphs into one graph,
named V101.grf. In order to illustrate this, we will create the myAdvancedDictionary.dic file
containing the following six entries (remember that there should be no spaces, and that you
should press the Enter key at the end of the last line). You will remember that the first three
of these verbs were inflected with the V2.grf graph in our myDictionary.dic dictionary, while
the last three verbs were inflected with the V3.grf graph.

love,V101
live,V101
give,V101
accompany,V101
try,V101
worry,V101

In the new V101.grf graph, we will use tests on the verb suffixes and inflect all six verbs. The
occurrence of <e> in an inflectional graph means that the test is made on the verb suffix; if
this suffix is e, it is removed and the inflection proceeds further. For instance, in order to
produce forms of the third person singular of the present tense:

● the <e> box reads the suffix e, removes it and the next box adds es:P3s

● the <y> box reads the suffix y, removes it and the following boxes write first i and then
es:P3s

which yields, for instance, lovees:P3s and accompanyies:P3s.

Chapter 5: Dictionary creation

133

Now we can inflect the myAdvancedDictionary.dic dictionary by choosing the DELA menu and
the Inflect option. The file containing the myAdvancedDictionaryflx.dic inflected dictionary will
be created and displayed on the screen.

6.2 Use of variables

6.2.1 Example of goose, tooth, foot

Let us look at these three nouns: goose, tooth, foot. With the N9.grf graph we can inflect the
first two nouns, but not the third for which a new graph should be written in which the rule
LLLLeeRR would be replaced by LLLLeeR (there is one consonant, instead of two at the end of
the noun). There is another way to formulate the rules that is more complex but also more
powerful. It is based on two variables, £n and $n, that memorize the longest and the shortest
strings, respectively, that occur where they are placed in the pattern (put in angular brackets)

Unitex Getting Started - Denis Maurel and Cvetana Krstev

134

in a box of the graph. This pattern is matched with the input word, starting from the right
end.126 Several such variables can be used and numbered from n=1 to n=9.

In the N101.grf graph the first box contains the pattern <£1oo£2> which means that the
variable £2 will be assigned the longest string preceded by oo in the processed word (that is,
se, th, t, respectively), then the variable £1 will be assigned the longest string before oo (that
is, g, t, f, respectively). In the case of the singular, the word is rewritten, while for the plural

oo is replaced by ee keeping everything before and after it as it was, which seems as the most
natural way to express this rule.127

6.2.2 Example of bring, fight, think

The use of variables can be further illustrated with the inflection of the verbs bring, fight, think
for which the letters before i are suffixed by ought in the past tense and the past participle
(V102.grf graph).

126 For detailed explanation of the meaning and use of these variables, see the Unitex user manual, Section 3.5.2.

127 Note that in the string £1oo£2, which is not inside angular brackets, variables £1 and £2 are not assigned
values, but their previously assigned values are used.

Chapter 5: Dictionary creation

135

We will add to our myAdvancedDictionary.dic dictionary the following six entries (without
spaces and with clicking the Enter key at the end of the last line):

goose,N101
tooth, N101
foot, N101
bring,V102
fight,V102
think,V102

We will follow the preceding steps to inflect the myAdvancedDictionary.dic dictionary. The
created file named myAdvancedDictionaryflx.dic will be displayed on the screen.

137

Chapter 6: other tools

1 Lexicon-grammar

Before starting this section

Go to the folder: MyUnitex\English\Graphs\UnitexGettingStarted
Create a new folder named LexiconGrammar (without space).
Go to the folder: MyUnitex\English\Graphs\UnitexGettingStarted\LexiconGrammar
Create a new folder named ParticleVerbs (without space).
Go to the folder:MyUnitex\English\Graphs\UnitexGettingStarted\LexiconGrammar\ParticleVerbs
Download the particleVerbTable.xlsx file.

1.1 Example: particle verbs

We will click the Text/Open… menu to open the file:

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSon\DombeyAndSon.txt

Then answer Yes to the question Do you want to preprocess the text? A window will open in
which we will remove the first two checkmarks, leaving just the last one (Apply All default
Dictionaries).

The aim of this section is to automatically transform a lexicon-grammar table into a graph. We
will prepare in some spreadsheet program a table that describes how some verbs combine

with a set of particles to obtain particle verbs. This table particleVerbTable.xlsx is in the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\LexiconGrammar\ParticleVerbs

The A column in the table contains particle verbs. The plus sign in B column indicates that the

verb can be used without particles (all verbs in our table can be used without a particle as
well). The C to L columns signal particles with which a verb can be used. The plus sign in a cell
indicates that the verb and the particle form a particle verb, while the minus sign means the
opposite.

1.2 Transformation of the spreadsheet table

The table that we prepared in a spreadsheet program must be transformed into a Unitex
lexicon-grammar table.

First, in the particleVerbTable.xlsx spreadsheet, verbs in A column must be enclosed in angular
brackets so that they should match all forms of the listed verbs. B2 cell is empty because it is
the header of the column about the use of the verbs without a particle; we will write here the

symbol <E> that corresponds to an empty box in a graph.This file should consist only of table

Unitex Getting Started - Denis Maurel and Cvetana Krstev

138

data with only one header line. We will therefore select A2:K9 (the 2 to 9 lines and the A to K
columns) and copy its content. We will now open the Unitex editor (the File Edition/New File
menu) and paste the content from the table.128

We will save this file with the name particleVerbTable.txt in the same folder:

MyUnitex\English\Graphs\UnitexGettingStarted\LexiconGrammar\ParticleVerbs

1.3 Parameterized graphs

We will write a graph that retrieves in a text the constructions described in the table and we

will save it in the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\LexiconGrammar\ParticleVerbs

using the name particleVerbParameterized.grf. This graph uses variables @A, @B, @C… in
which the content of cells A, B, C… will be stored. If the variables contain a text it will be copied
in the working graph produced from this parameterized graph. If the value of the variable is a
plus or a minus sign, the box functions as a test: with +, the test is passed and the graph

proceeds with what follows, while with - the path is interrupted. There is one more variable,
@%, that contains the number of the line, which we will use for the name of subgraphs.

1.4 Generation of graphs

We will make Unitex generate a graph from this parameterized graph and the table. This graph
will invoke one subgraph for each line in the table. In order to do this, we must open the

128 By using the Unitex editor, we are sure that the lines and columns are in the Tabulation/Line break format

and that the text is in UTF-8.

Chapter 6: Other tools

139

Lexicon-Grammar/Open menu and select the particleVerbTable.txt table. Next, we must use
the Lexicon-Grammar/Compile to GRF… menu to open (by clicking the SET button in the first
line) the particleVerbParameterized.grf parameterized graph. In the second line, we can
choose the name of this graph and modify it to particleVerb.grf. In the third line, we will
choose the previous graph name and change it to particleVerb@%.grf (remember that @% is
the special variable containing the line number). Finally, we will click the Compile button.

Now we can open the particleVerb.grf graph. It invokes seven subgraphs, one for each line in
our table (except the header line) which are numbered 0001 to 0007.

We can open the first subgraph by selecting it and clicking the right mouse-button and

choosing the Open subgraph option. We see that this graph has six paths for six particles used
by the verb break and one path for the verb without a particle.

By using the produced particleVerb.grf graph in the Text/Locate Pattern menu we will get
1 983 concordance lines.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

140

1.5 Annotations

The parameterized graph can be more complex than the previous example. For instance, the
particleVerbAnnotationParameterized.grf graph annotates the recognized verbs (with
particles or not).

After repeating the process of graph generation, and its application to the text in the Merge
mode, we will obtain a new concordance.

Chapter 6: Other tools

141

2 XAlign

2.1 Installation

The aim of this software that is integrated into Unitex is to align two similar texts, for instance
two drafts of the same document or a text and its translation. We will demonstrate how to
use this software with the example of a text and its translation.

It is important to note that in order to reproduce the exercises from this chapter one should

have downloaded the French resources for Unitex. If that is not the case, one should repeat
the process of the installation of Unitex. However, it is not necessary to repeat the whole

installation.

One should only add a language.

2.2 The French folder

After automatically creating the French folder:

• if Unitex is closed, we should open it by choosing French as the working language;

• if it is already open, we will choose French as the working language by using the
Text/Change Language… menu.

It is of course possible to create the French folder yourself, before launching Unitex. But, in
this case, Unitex will not copy the three files necessary for its operation (Norm.txt,

Unitex Getting Started - Denis Maurel and Cvetana Krstev

142

Alphabet.txt and Alphabet_sort.txt).129 You must do this yourself before running Unitex (or
after closing and restarting it).

Before proceeding with this section
1. Go to the folder: MyUnitex\English\Corpus\UnitexGettingStarted
Create a new folder named DombeyAndSonEng (without space).
Go to the folder:MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSonEng
Download the DombeyAndSonEng.txt file.

2. Go to the folder: MyUnitex\French\Corpus\UnitexGettingStarted
Create a new folder named DombeyAndSonFra (without space).
Go to the folder:MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSonFra
Download the DombeyAndSonFra.txt file.

3. Go to the folder: MyUnitex
Create a new folder named XAlign (without space).
Go to the folder: MyUnitex\XAlign
Create two new folders named Corpus and Sentence.
Go to the folder: MyUnitex\XAlign\Corpus\UnitexGettingStarted
Create a new folder named DombeyAndSonEngFra.

2.3 File preparation

We will use files from three folders: English, French and XAlign. We will choose English as the
working language by using the Text/Change Language… menu.

2.3.1 English folder

We will open the file (File Edition/Open/Text files menu):130

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSonEng\DombeyAndSonEng.txt

We will ignore the message This is not necessarily the text being processed by Unitex. We will
save this file using the name DombeyAndSonEng.xml (we will change from the .txt format to
.xml format).

We will add TEI tags at the beginning and at the end of this file:131

<tei>
<teiHeader/>
<body>
<text>
<div>
Dombey and Son by Charles Dickens
…
A transient flush of faint surprise overspread the sick lady’s face as she raised her eyes towards
him.
</div>
</text>
</body>

</tei>

129 About the Norm.txt file, see Chapter 2, Section 3.1.2, page 35; about the Alphabet.txt and Alphabet_sort.txt
files, see Chapter 2, Section 3.3.3, page 41.

130 We produced these samples of text in English and French just in order to illustrate the alignment process.
131 XAlign does not handle correctly files with a TEI header, since it will delete it and replace it with the empty

tag <teiHeader/>. If we want that our result files have a header, we can add it after the alignment.

Chapter 6: Other tools

143

We will save this file and close the editor.

2.3.2 French folder

Now we will repeat the process for the French version of the text: we will open the file
(File Edition/Open/Text files menu):

MyUnitex\French\Corpus\UnitexGettingStarted\DombeyAndSonFra\DombeyAndSonFra.txt

We will save this file using the name DombeyAndSonFra.xml. Finally, we will add the same
tags at the beginning and the end of this file.

<tei>
<teiHeader/>
<body>
<text>
<div>
Dombey et fils traduit de Charles Dickens
…
Une rougeur passagère, causée par la surprise, colora légèrement les joues de la malade qui leva
les yeux vers son mari.
</div>
</text>
</body>
</tei>

We will save this file and close the editor.

2.3.3 XAlign folder

We will now open a new file using the editor File Edition/New File. In this file, we will copy the

following lines:

<tei>
<teiHeader/>
</tei>

We will save this file (Save text button), using the name DombeyAndSonEngFra.xml, in the
folder:

MyUnitex\XAlign\Corpus\UnitexGettingStarted\DombeyAndSonEngFra

During the alignment XAlign uses a file for sentence splitting for the source language (which
is, in our case, English); we will use the graph that comes with the Unitex distribution. We will
copy the Sentence.fst2 file from the folder

MyUnitex\English\Graphs\Preprocessing\Sentence

And paste it in the folder:

MyUnitex\XAlign\Sentence

Once this is done, we will rename this file into SentenceXAlign.fst2.

2.4 Automatic alignment

We will click the Text/Open… menu to open the file:

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSonEng\DombeyAndSonEng.txt

Unitex Getting Started - Denis Maurel and Cvetana Krstev

144

and answer Yes to the question Do you want to preprocess the text. A window will open in
which we will remove the first two checkmarks, leaving just the last one Apply All default
Dictionaries.

We will open the Xalign/Open Files menu and fill the first line (by selecting the Set button)
with the file:

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSonEng\DombeyAndSonEng.txt

And we fill the second line with the file:

MyUnitex\French\Corpus\UnitexGettingStarted\DombeyAndSonFra\DombeyAndSonFra.txt

We will click the OK button. A window will ask us to choose the XML file that corresponds to
the text file in the first line (source file). After clicking OK, we will choose the first of the
previously developed files:

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSonEng\DombeyAndSonEng.xml

Again, another window will open asking us to select an XML file corresponding to the text file
given in the second line (target file). We will choose the second previously developed file:

MyUnitex\French\Corpus\UnitexGettingStarted\DombeyAndSonFra\DombeyAndSonFra.xml

The new window will open:

We will click the Align button that will initiate the alignment process. A new window will ask
us to select the XML file for the result. We will choose the third and the last file that we created
before, namely the file:

MyUnitex\XAlign\Corpus\UnitexGettingStarted\
DombeyAndSonEngFra\DombeyAndSonEngFra.xml

Chapter 6: Other tools

145

After the alignment process is finished, some error messages will be displayed, which we will
ignore, and click the OK button

Click the Save alignment button.

You should note that if you close Unitex after saving the alignment, you can open them again
by filling all three lines with the appropriate XML files.

2.5 Reading and manual correction

We have done the first alignment. It is necessary now to read and correct it. It is enough to
click the English sentence (or phrase) and then the French sentence (or phrase) to establish
the link, if it does not exist, or to remove it if it exists:132

132 In order to remove the link it is enough to simply click on it.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

146

remove 4-6;
add 4-5;
remove 5-7;
add 5-6;
remove 6-8;
remove 6-9;
add 6-7;
add 7-8;
add 8-14;
remove 9-14;
add 9-15;
add 10-16;
remove 11-16;
remove 11-17;
add 12-15.

Click the Save alignment button.

Generally, a sentence is translated into another sentence: (0-0), (5-6), (6-7) (9-15) and (13-18).
However, there are exceptions:

● three sentences in the source file, 1, 2 and 10, are translated into two sentences: (1-
1, 1-2), (2-3, 2-4) and (10-15, 10-16);

● three sentences in the source file, 7, 8 and 12, are translated into three sentences: (7-
8, 7-10, 7-11), (8-12, 8-13, 8-14) and (12-15, 12-16, 12-17);

● a sentence in the target file, 9, is added;

● a sentence in the source file, 11, is not translated;

● two sentences in the source file, 3 and 4, are translated together into a single sentence:
(3-5, 4-5);

● two sentences in the source file, 10 and 12, are reversed: (10-16, 12-15).

2.6 Search performed on one of two texts

In XAlign we can use Unitex search functions via Text/Locate Pattern and get as a result the
visualized alignment. For instance, we can be interested in whether the name of Mr Dombey
was systematically represented in the French translation. We will click the Locate… button,
that can be found on the left side of the XAlign window, and then answer Yes to the question
that appears. Unitex proposes to open a text deduced from the XML file, text which it names
with the suffix _xalign (DombeyAndSonEng_xalign.txt).

We will type Dombey in the Regular expression line and click the SEARCH button. The _xalign

file will be processed by Unitex and the result will appear in the XAlign window, after checking
the All sentences/HTML option (at the left-hand side). If the Matched sentences option is
chosen only the sentences that correspond to our search query will be displayed.

Chapter 6: Other tools

147

In the obtained results we can see that, in the translation (12-16), the proper name was
translated by son épouse (his wife).

We will choose the All sentences/Plain text option at the left side of the XAlign window in
order to start a new search. This time we will use a graph, for instance the willV.grf graph that

we developed in Chapter 3, Section 1.8, page 56.133 We will search for this graph (Set button)
in the Graph line and click the SEARCH button. We will select the Matched sentences option
and we will get only one match in the source file sentence 7.

The same options exist on the right of the XAlign window. It is therefore possible to search in
the target language.

However, it is not possible to launch a cascade on an aligned text, except if we proceed as
explained in the next section (only for confident users).

2.7 Cascade search and XAlign (only for confident users)

The main idea is to launch cascades on the DombeyAndSonEng.xml file without touching the
<p> and <s> tags placed by XAlign.

2.7.1 Launching cascades

We will go to the folder:

MyUnitex\English\Corpus\UnitexGettingStarted\DombeyAndSonEng

and rename the DombeyAndSonEng.xml file as DombeyAndSonEng.xml.txt (see Chapter 4,
Section 2, page 84). We will open this text (Text/Open menu) and answer Yes to the question
Do you want to preprocess the text. A window will open in which we will remove the first two
checkmarks, leaving just the last one Apply All default Dictionaries. We will find the analysis
cascade (Apply CasSys Cascade… menu) in the folder:

MyUnitex\English\CasSys\UnitexGettingStarted\Measures

And we will launch this cascade. The result file is the DombeyAndSonEng.xml_csc.txt file. We
will open this text with Unitex, without processing it, and launch the synthesis cascade. This
second result file is the DombeyAndSonEng.xml_csc_csc.txt file with two recognized measures
(sentences 4 and 5).

133 Or Chapter 3, Section 1.9.3, page 58, if you have done this section.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

148

<s id="n4" xml:id="d1p1s4">Dombey was about <Measure type="Duration"><Number>eight -
and-forty</Number> years</Measure> of age. </s><s id="n5" xml:id="d1p1s5">Son about
<Measure type="Duration"><Number>eight-and-forty</Number> minutes</Measure>. </s>

2.7.2 File transformation

We will rename the DombeyAndSonEng.xml_csc_csc.txt file as DombeyAndSonEng.xml. If we
open this file with XAlign, the tags disappear. To keep them, we will use the HTML codes <
for < and > for >. We will pay attention to modify only our tags (Measure and Number) and
not the <p> and <s> tags produced by XAlign.

<s id="n4" xml:id="d1p1s4">Dombey was about <Measure
type="Duration"><Number>eight-and-forty</Number> years</Measure> of
age. </s><s id="n5" xml:id="d1p1s5">Son about <Measure
type="Duration"><Number>eight-and-forty</Number> minutes</Measure>.
</s>

We will save this file.

2.7.3 Using XAlign

If we open XAlign with this new file:

We obtain the desired result.

149

Chapter 7: scripts

Before reading this chapter, please, read this caution:

This chapter requires some computer knowledge.
You must at least be comfortable with the notion of scripts.

Before starting this chapter:134

1. Go to the folder: MyUnitex
Create a new folder named Scripts.
Go to the folder: MyUnitex\Scripts
Create a new folder named ScriptEntities (without space).
Go to the folder: MyUnitex\Scripts\ScriptEntities
Create three new folders named Input, Output and ScriptEntitiesLingpkg.
Go to the folder: MyUnitex\Scripts\ScriptEntities\ScriptEntitiesLingpkg

Create two new folders named Resources and Scripts.

2. Go to the folder:MyUnitex\English\Corpus\UnitexGettingStarted\JubileePlainText

Copy the jubileePlainText.txt file.
Go to the folder: MyUnitex\Scripts\ScriptEntities\Input
Paste this file.

3. Go to the folder:MyUnitex\English\Corpus\UnitexGettingStarted\JubileeXmlText

Copy the jubileeXmlText.xml file.
Go to the folder: MyUnitex\Scripts\ScriptEntities\Input
Paste this file.

1 Introduction

The Unitex interface is a tool for developing graphs and graph cascades. Once these resources
have been developed and tested, it is possible to create Unitex scripts which apply the

developed tools on a corpus of several documents stored in several files. These Unitex scripts
are launched from a command line and they access a compressed file that can contain all types
of resources: Unitex scripts, graphs, cascades and dictionaries. We will take as an example the
cascades developed in Chapter 4, Section 1, page 71 and Section 2, page 84. If you have
allowed a dictionary for use in the morphological mode, please, remove them now from the
list (see Chapter 5, Section 4.5, page 127).

In general, users will copy in the Input folder all texts they want to process, as we have done.

2 Creation of the linguistic package

The linguistic package (scriptEntitiesLingpkg folder) will contain everything needed to launch
the analysis and synthesis cascades.

134 Remember that file names should not contain spaces and are case sensitive. The same goes for folder names.
See Chapter 2, Section 1.1.1, page 7.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

150

2.1 The Resources folder

We will replicate our personal working folder in the Resources folder.

1. Go to the folder:MyUnitex\Scripts\ScriptEntities\ScriptEntitiesLingpkg\Resources
Create a new folder named English.
Go to the folder:MyUnitex\Scripts\ScriptEntities\ScriptEntitiesLingpkg\Resources\English
Create three new folders named CasSys, Dela and Graphs.

2. Go to the folder: MyUnitex\English

Copy the three Alphabet.txt, Alphabet_sort.txt and Norm.txt files.
Go to the folder:MyUnitex\Scripts\ScriptEntities\ScriptEntitiesLingpkg\Resources\English

Paste these files.

In general, one will copy in the CasSys folder the cascades that one wants to use for the
processing.

Go to the folder: MyUnitex\English\CasSys\UnitexGettingStarted\XmlTextEntities

Copy the two analysis.csc and synthesis.csc files.
Go to the folder:MyUnitex\Scripts\ScriptEntities\ScriptEntitiesLingpkg\Resources\English\CasSys
Paste these files.

In general, users copy the graphs used by cascades in the Graphs folder. In fact, it is enough
to copy the compiled files (.fst2). However, the presence of source graph files (.grf) makes it
possible to use the language package as a backup of one’s work.

1. Go to the folder:
 MyUnitex\Scripts\ScriptEntities\ScriptEntitiesLingpkg\Resources\English\Graphs
Create a new folder named UnitexGettingStarted.

2. Go to the folder: MyUnitex\English\Graphs\UnitexGettingStarted

Copy the folder Entities.
Go to the folder: MyUnitex\Scripts\ScriptEntities\ScriptEntitiesLingpkg\

Resources\English\Graphs\UnitexGettingStarted
Paste this folder.

Neither of the cascades use dictionaries, so we do not need to copy anything to the folder:

MyUnitex\Scripts\ScriptEntities\ScriptEntitiesLingpkg\Resource\English\Dela

Otherwise, if the cascades used dictionaries, see Section 2.4.1, page 155.

2.2 The scripts folder

2.2.1 Using the console

The scripts folder will contain the Unitex scripts. The scripts can be developed manually, but
the Unitex console will help us.

If Unitex is already open, we need to close and reopen it in order to clean the console. After
that, everything we do with the menu will be recorded by the console. We will launch our two
cascades.

1. We will use the Text/Open menu (answering No to the question Do you want to
preprocess the text) to open the file:

MyUnitex\English\Corpus\UnitexGettingStarted\JubileePlainText\jubileePlainText.txt

Chapter 7: Scripts

151

2. We will use the Text/ApplyCasSysCascade… menu, then subsequently double-click
theUnitexGettingStarted and XmlTextEntities folders to open them; we will select the
analysis.csc cascade and click the Launch button (do not build the concordance).135

3. We will use the Text/Open menu (answering No to the question Do you want to
preprocess the text) to open the file:

MyUnitex\English\Corpus\UnitexGettingStarted\JubileePlainText\JubileePlainText_csc.txt

4. We will use the Text/ApplyCasSysCascade… menu, then select the synthesis.csc

cascade and click the Launch button (do not build the concordance).

5. We will use the Info/Console menu and copy its content (CTRL-C).

6. We will use the File Edition/New File menu, then paste the commands recorded in the
console.

7. We will use the Save text button and save this file with the name
scriptEntities.uniscript, placed in the folder:

MyUnitex\Scripts\ScriptEntities\ScriptEntitiesLingpkg\Scripts

135 We will use the XmlTextEntities cascade, as we will later parse also the XmlTextEntities.xml file.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

152

This file contains eight commands, which look like this:136

mkdir "C:\Documents\MyUnitex\English\Corpus\UnitexGettingStarted\JubileePlainText\
JubileePlainText_snt"

"C:\Program Files (x86)\Unitex-GramLab\App\UnitexToolLogger.exe" Normalize
"C:\Documents\MyUnitex\English\Corpus\UnitexGettingStarted\JubileePlainText\
jubileePlainText.txt"
"-rC:\Documents\MyUnitex\English\Norm.txt" "--output_offsets=C:\Documents\MyUnitex\
English\Corpus\UnitexGettingStarted\JubileePlainText\JubileePlainText_snt\
normalize.out.offsets" -qutf8-no-bom

"C:\Program Files (x86)\Unitex-GramLab\App\UnitexToolLogger.exe" Tokenize
"C:\Documents\MyUnitex\English\Corpus\UnitexGettingStarted\JubileePlainText\
JubileePlainText.snt"
"-aC:\Documents\MyUnitex\English\Alphabet.txt" -qutf8-no-bom

"C:\Program Files (x86)\Unitex-GramLab\App\UnitexToolLogger.exe" CasSys
"-aC:\Documents\MyUnitex\English\Alphabet.txt"
"-tC:\Documents\MyUnitex\English\Corpus\UnitexGettingStarted\JubileePlainText\
JubileePlainText.snt"
"-lC:\Documents\MyUnitex\English\CasSys\UnitexGettingStarted\XmlTextEntities\analysis.csc" -v
"-rC:\Documents\MyUnitex\English\Graphs\"
"--
input_offsets=C:\Documents\MyUnitex\English\Corpus\UnitexGettingStarted\JubileePlainText\
JubileePlainText_snt\normalize.out.offsets" -qutf8-no-bom

mkdir "C:\Documents\MyUnitex\English\Corpus\UnitexGettingStarted\JubileePlainText\
JubileePlainText_csc_snt"

"C:\Program Files (x86)\Unitex-GramLab\App\UnitexToolLogger.exe" Normalize
"C:\Documents\MyUnitex\English\Corpus\UnitexGettingStarted\JubileePlainText\
JubileePlainText_csc.txt"
"-rC:\Documents\MyUnitex\English\Norm.txt"
"--
output_offsets=C:\Documents\MyUnitex\English\Corpus\UnitexGettingStarted\JubileePlainText\
JubileePlainText_csc_snt\normalize.out.offsets" -qutf8-no-bom

"C:\Program Files (x86)\Unitex-GramLab\App\UnitexToolLogger.exe" Tokenize
"C:\Documents\MyUnitex\English\Corpus\UnitexGettingStarted\JubileePlainText\
JubileePlainText_csc.snt"
"-aC:\Documents\MyUnitex\English\Alphabet.txt" -qutf8-no-bom

"C:\Program Files (x86)\Unitex-GramLab\App\UnitexToolLogger.exe" CasSys
"-aC:\Documents\MyUnitex\English\Alphabet.txt"
"-tC:\Documents\MyUnitex\English\Corpus\UnitexGettingStarted\JubileePlainText\
JubileePlainText_csc.snt"
"-lC:\Documents\MyUnitex\English\CasSys\UnitexGettingStarted\XmlTextEntities\synthesis.csc"
-v "-rC:\Documents\MyUnitex\English\Graphs\"
"--
input_offsets=C:\Documents\MyUnitex\English\Corpus\UnitexGettingStarted\JubileePlainText\
JubileePlainText_csc_snt\normalize.out.offsets" -qutf8-no-bom

136 Users can obtain a different content if the location and names of the folders in question differ. Do not forget

this when preparing a script.

Chapter 7: Scripts

153

2.2.2 File adjustment

We must adjust this file because of differences between the operating systems Windows,
MacOs and Unix:

1. We will remove the 56 quotation marks;

2. We will replace the 148 backslashes (\) with slashes (/).137

3. We will add two lines at the beginning of the script to create a virtual working folder

where the files will be processed one after the other (CURRENT_WORK_DIR). The
virtual folder and its virtual files will not be stored on the disk, but in random-access
memory, which will speed up the processing.

CURRENT_WORK_DIR = {CORPUS_WORK_DIR}/{UNIQUE_VALUE}
DuplicateFile -p {CURRENT_WORK_DIR}

4. We will delete the two lines starting with mkdir command and replace them by these
two lines at the beginning of the script, after the previous two inserted lines.

DuplicateFile --make-dir {CURRENT_WORK_DIR}/corpus_snt
DuplicateFile --make-dir {CURRENT_WORK_DIR}/corpus_csc_snt

2.2.3 Script generalization

In order to make this script more general, we will transform this sequence of commands in

the following way:

1. We will add a line (it will become the fifth line) to process a file from our folder.

DuplicateFile -i {INPUT_FILE_1} {CURRENT_WORK_DIR}/corpus.txt

2. We will replace the ten occurrences of the beginning of the text file name:

C:/Documents/MyUnitex/English/Corpus/JubileePlainText/jubileePlainText

with:

{CURRENT_WORK_DIR}/corpus

3. We will add a line (the penultimate of the script) to save the result file.

DuplicateFile -i {CURRENT_WORK_DIR}/corpus_csc_csc.txt {OUTPUT_FILE_1}

4. We will remove the six calls to the UnitexToolLogger program and the path that leads
to it:

C:/Program Files (x86)/Unitex-GramLab/App/UnitexToolLogger.exe

5. We will replace the ten paths that lead to our personal Unitex working folder:

C:/Documents/MyUnitex

with the folder of resources of the package

137 This is due to the inversion of these symbols between Windows, on the one hand, and MacOs or Unix, on the
other. If you are not using Windows, you can therefore ignore this step. You may have a different number of
backslashes if the hierarchy of folders on your computer is different.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

154

{PACKAGE_DIR}/Resources

6. We will modify the two paths leading to our cascades (the two Cassys lines) by
removing (before analysis.csc and synthesis.csc):

UnitexGettingStarted/XmlTextEntities/

7. We will add a line at the end of the script, to free up some space before processing the
next file in the input folder.

DuplicateFile --recursive-delete {CURRENT_WORK_DIR}

Our script file (thirteen lines) will now look like this:

CURRENT_WORK_DIR = {CORPUS_WORK_DIR}/{UNIQUE_VALUE}

DuplicateFile -p {CURRENT_WORK_DIR}

DuplicateFile --make-dir {CURRENT_WORK_DIR}/corpus_snt

DuplicateFile --make-dir {CURRENT_WORK_DIR}/corpus_csc_snt

DuplicateFile -i {INPUT_FILE_1} {CURRENT_WORK_DIR}/corpus.txt

Normalize {CURRENT_WORK_DIR}/corpus.txt -r{PACKAGE_DIR}/Resources/English/Norm.txt --
output_offsets={CURRENT_WORK_DIR}/corpus_snt/normalize.out.offsets -qutf8-no-bom

Tokenize {CURRENT_WORK_DIR}/corpus.snt -a{PACKAGE_DIR}/Resources/English/Alphabet.txt -
qutf8-no-bom

Cassys -a{PACKAGE_DIR}/Resources/English/Alphabet.txt -t{CURRENT_WORK_DIR}/corpus.snt -
l{PACKAGE_DIR}/Resources/English/CasSys/analysis.csc -v -
r{PACKAGE_DIR}/Resources/English/Graphs/ --
input_offsets={CURRENT_WORK_DIR}/corpus_snt/normalize.out.offsets -qutf8-no-bom

Normalize {CURRENT_WORK_DIR}/corpus_csc.txt -r{PACKAGE_DIR}/Resources/English/Norm.txt
--output_offsets={CURRENT_WORK_DIR}/corpus_csc_snt/normalize.out.offsets -qutf8-no-bom

Tokenize {CURRENT_WORK_DIR}/corpus_csc.snt -
a{PACKAGE_DIR}/Resources/English/Alphabet.txt -qutf8-no-bom

Cassys -a{PACKAGE_DIR}/Resources/English/Alphabet.txt -
t{CURRENT_WORK_DIR}/corpus_csc.snt -
l{PACKAGE_DIR}/Resources/English/CasSys/synthesis.csc -v -
r{PACKAGE_DIR}/Resources/English/Graphs/ --
input_offsets={CURRENT_WORK_DIR}/corpus_csc_snt/normalize.out.offsets -qutf8-no-bom

DuplicateFile -i {CURRENT_WORK_DIR}/corpus_csc_csc.txt {OUTPUT_FILE_1}

DuplicateFile --recursive-delete {CURRENT_WORK_DIR}

This script successively launches two cascades on a file and will produce the final result
without writing on the disk numerous intermediate files, which are processed in RAM instead.
It is the DuplicateFile command which allows access to a virtual folder and its virtual files.

2.2.4 Final touches

Since the corpus.txt file has already been normalized, the file resulting from the first cascade,
corpus_csc.txt, is also normalized. Therefore, it is not necessary to do it again, although it
would not be wrong. Since the second cascade uses the corpus_csc.snt file, we must rename
the corpus_csc.txt file produced by the first cascade.

Chapter 7: Scripts

155

We are therefore going to replace the second Normalize command which follows the first
CasSys command, on line 9, by:

DuplicateFile -i {CURRENT_WORK_DIR}/corpus_csc.txt {CURRENT_WORK_DIR}/corpus_csc.snt

In this case, the offset file is that of the first, and now only, Normalize command.

Normalize {PACKAGE_DIR}/Resources/corpus.txt
-r{PACKAGE_DIR}/Resources/English/Norm.txt
--output_offsets={CURRENT_WORK_DIR}/corpus_snt/normalize.out.offsets
-qutf8-no-bom

We need to replace the input_offsets option of the second CasSys command with the
output_offsets option of the Normalize command.

Cassys -a{PACKAGE_DIR}/Resources/English/Alphabet.txt
-t{PACKAGE_DIR}/Resources/corpus_csc.snt
-l{PACKAGE_DIR}/Resources/English/CasSys/synthesis.csc -v
-r{PACKAGE_DIR}/Resources/English/Graphs/
--input_offsets={CURRENT_WORK_DIR}/corpus_snt/normalize.out.offsets
-qutf8-no-bom

With these modifications we obtain the last version of our script.

2.3 Compression

The scriptEntitiesLingpkg folder is now complete. The only thing that remains to be done is to
create the compressed file. In order to do that we have to open this folder, select the two

subfolders, named Resources and Scripts, compress them together and name the compressed
scriptEntitiesLingpkg.zip file.138 We will cut this compressed file and paste it in the

MyUnitex\Scripts\ScriptEntities folder.

2.4 Another possibility (only for confident users)

2.4.1 The use of dictionaries

2.4.1.1 The default English dictionary

If the cascades use the default English dictionary, dela-en-public:

Go to the folder where Unitex is installed:139
 C:\Users\userName\AppData\Local\Unitex-GramLab

or C:\Program Files (x86)\Unitex-GramLab\App

Copy the three files named dela-en-public.bin, dela-en-public.inf and dela-en-public.txt.
Go to the folder:MyUnitex\Scripts\ScriptEntities\ScriptEntitiesLingpkg\Resources\English\Dela
Paste these files.

We must add to our script five new lines between the first Tokenize command and the first
Cassys command. The first one for the Dico command and the other four for the SortTxt
commands that create four files dlf.n, dlc.n, err.n and tags_err.n.

138 It must be a .zip file, .rar files are not accepted.

139 See Chapter 2, Section 1.1.2, page 7.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

156

Dico -t{CURRENT_WORK_DIR}/corpus.snt -a{PACKAGE_DIR}/Resources/English/Alphabet.txt
{PACKAGE_DIR}/Resources/English/Dela/dela-en-public.bin
SortTxt {CURRENT_WORK_DIR}/corpus_snt/dlf -l{CURRENT_WORK_DIR}/corpus_snt/dlf.n -
o{PACKAGE_DIR}/Resources/English/Alphabet_sort.txt
SortTxt {CURRENT_WORK_DIR}/corpus_snt/dlc -l{CURRENT_WORK_DIR}/corpus_snt/dlc.n -
o{PACKAGE_DIR}/Resources/English/Alphabet_sort.txt
SortTxt {CURRENT_WORK_DIR}/corpus_snt/err -l{CURRENT_WORK_DIR}/corpus_snt/err.n -
o{PACKAGE_DIR}/Resources/English/Alphabet_sort.txt
SortTxt {CURRENT_WORK_DIR}/corpus_snt/tags_err -
l{CURRENT_WORK_DIR}/corpus_snt/tags_err.n -

o{PACKAGE_DIR}/Resources/English/Alphabet_sort.txt

2.4.1.2 A private dictionary

If the cascades use a private dictionary of forms, for example the myProperNameDictionary.dic
dictionary, created in Chapter 5, Section 4.2, page 123.

Go to the folder MyUnitex\English\Dela

Copy the two files named myProperNameDictionary.bin and myProperNameDictionary. inf.
Go to the folder:MyUnitex\Scripts\ScriptEntities\ScriptEntitiesLingpkg\Resources\English\Dela

Paste these files.140

Just the Dico command changes.

Dico -t{CURRENT_WORK_DIR}/corpus.snt -a{PACKAGE_DIR}/Resources/English/Alphabet.txt
{PACKAGE_DIR}/Resources/English/Dela/myProperNameDictionary.bin

2.4.1.3 Several dictionaries

If the cascades use both the default English dictionary and the private dictionary, the both
dictionaries are placed in the same line.

Dico -t{CURRENT_WORK_DIR}/corpus.snt -a{PACKAGE_DIR}/Resources/English/Alphabet.txt
{PACKAGE_DIR}/Resources/English/Dela/dela-en-public.bin {PACKAGE_DIR}/Resources/English/

Dela/myProperNameDictionary.bin

2.4.1.4 A morphological dictionary

It is also possible to allow the use of dictionaries in the morphological mode (see Chapter 5,
Section 4.5, page 127). For example, if the private dictionary used in the previous section,
myProperNameDictionary.dic, is to be declared also as a morphological dictionary, its name
must be written a second time, preceded by the -m prefix.

Dico -t{CURRENT_WORK_DIR}/corpus.snt -a{PACKAGE_DIR}/Resources/English/Alphabet.txt
{PACKAGE_DIR}/Resources/English/Dela/dela-en-public.bin {PACKAGE_DIR}/Resources/English/
Dela/myProperNameDictionary.bin -m{PACKAGE_DIR}/Resources/English/Dela/
myProperNameDictionary.bin

In any case, if the user's cascades use dictionaries, the user can always repeat the procedure
described in Section 2.2.1, page 150, which consists of applying the cascades through the

Unitex interface, copying the console to the editor and adjusting the resulting commands.

140 Optionaly, you can also copy and paste the myProperNameDictionary.dic file and, if it exists,
myProperNameDictionary.txt, if you want the language package to be also a backup of your work.

Chapter 7: Scripts

157

2.4.2 The last file from the _csc folder

It is possible to retrieve the last file from the _csc folder. This is useful because a bug has crept
into the stable version 3.3 of Unitex: the output files are not correct if the cascade annotates
categories with graphs, then deletes them with other graphs. This rarely happens, but in order
to be sure that we have the correct output, the right file to recover is the last file from the
_csc folder.

For that:

1. Add, at the beginning of the script, a new DuplicateFile line.

DuplicateFile --make-dir {CURRENT_WORK_DIR}/corpus_csc_csc

2. Modify the output file.

DuplicateFile -i {CURRENT_WORK_DIR}/corpus_csc_csc/corpus_0_0.snt {OUTPUT_FILE_1}

Since intermediate files are not kept, the number of the last file processed is always 0_0.

3 The command line

3.1 The batch launching file

We will use the File Edition/New File menu to create a file that will contain the following
command line (it has to be adapted for each computer, depending on where the Unitex
software is installed):141

"C:\Program Files (x86)\Unitex-GramLab\App\UnitexToolLogger.exe" { BatchRunScript -i .\Input
-e -o .\Output -t1 .\scriptEntitiesLingpkg.zip -f -s Scripts\scriptEntities.uniscript }

We will save this file, naming it multiLaunchEntities.bat, in the folder:

MyUnitex\Scripts\ScriptEntities

3.2 Running the script

We will now open the command prompt window and choose as the working folder:

MyUnitex\Scripts\ScriptEntities

And then launch the multiLaunchEntities.bat batch file.

As a result, we will obtain two files (jubileePlainText.result.txt and
JubileePlainText.xml.result.txt) in the folder:

MyUnitex\Scripts\ScriptEntities\Output

141 A space is obligatory after the opening brace and before the closing brace. The t1 option means that you are
working with one core. If your computer has several and your corpus is very large, you can work by parsing the
texts of the corpus in parallel, by modifying this option: t2, t3…

Unitex Getting Started - Denis Maurel and Cvetana Krstev

158

3.3 A command line with comments and several possible outputs

The command line above has two drawbacks: errors are not reported and only one file is
possible as output. To overcome this, it is possible to launch the files one by one with the
command line below which can be saved under the name launchEntities.bat in the folder:142

MyUnitex\Scripts\ScriptEntities

"C:\Program Files (x86)\Unitex-GramLab\App\UnitexToolLogger.exe"
{ SelectOutput --output=on }143 { InstallLingResourcePackage
-p C:\Documents\MyUnitex\Scripts\ScriptEntities\scriptEntitiesLingpkg.zip
-x $:UnitexPkgResource -v } { RunScript -v
-a INPUT_FILE_1=C:\Documents\MyUnitex\Scripts\ScriptEntities\Input\jubileePlainText.txt
-a CORPUS_WORK_DIR=$:UnitexPkgWork -a PACKAGE_DIR=$:UnitexPkgResource
-a OUTPUT_FILE_1=
C:\Documents\MyUnitex\Scripts\ScriptEntities\Output\jubileePlainText.result1.txt
-a OUTPUT_FILE_2=
C:\Documents\MyUnitex\Scripts\ScriptEntities\Output\jubileePlainText.result2.txt
$:UnitexPkgResource\Scripts\scriptEntities.uniscript } { InstallLingResourcePackage
-p C:\Documents\MyUnitex\Scripts\ScriptEntities\scriptEntitiesLingpkg.zip
-x $:UnitexPkgResource -u -v }

If you want to get a single output file, but without comments, you need to remove the -v
option. It can also be used to have comments with a single output file by removing the -a
OUTPUT_FILE_2 command. Finally, we can also add the commands -a OUTPUT_FILE_3, and so
on, to have more than two output files.

But the use of this script is not mandatory.

4 An inventory of tag occurrences

In a cascade that processes XML-like input text, the standoff option launches the creation of

an inventory of tag occurrences. For example, a standoff cascade can be used after the
annotation with two cascades (analysis and synthesis). These standoff cascades are not

integrated in the interface version of Unitex and can therefore be launched only by a script.
To illustrate their use, we will create a new script by modifying the previously developed script.

The data used for this step is a cascade of graphs (which may possibly consist of only one
graph) and a template file for formatting the results.

In order not to lose the results of the previous section (the annotated files), we will create a
new folder for the results of the standoff cascade: StandoffOutput in the Scripts folder:

MyUnitex\Scripts\ScriptEntities

4.1 The standoff cascade

The standoff cascade graphs indicate which tags we would like to count. For these graphs we
will create a Standoff folder in the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Entities

142 Do not forget to adapt it for your computer, e.g. the paths to Unitex and to your personal Unitex folder.

143 This script can also be used without comment with the { SelectOutput --output=off } option.

Chapter 7: Scripts

159

If we want to process the same examples where we have inserted the tags
<AbsoluteDate></AbsoluteDate>, <RelativeDate></RelativeDate>, <Town></Town> and
<Address></Address>,144 we need four graphs that we can combine into one, with four
subgraphs, which we will name grfStandoff.grf.145 The graph and its subgraphs will be
recorded in the folder:

MyUnitex\English\Graphs\UnitexGettingStarted\Entities\Standoff

Each subgraph recognizes the start tag, the end tag and the content between them, and at
the same time prevents nesting of tags of the same type.

We will now create a cascade that consists of only one graph (grfStandoff.fst2 in Merge mode).

We will record it using the name standoff.csc in the folder:

MyUnitex\English\Cassys\UnitexGettingStarted\XmlTextEntities

4.2 The template file

The template file sets the design of the report that inventories the tag occurrences. It is
divided into three parts, the second part being itself divided into two.

144 Chapter 4, Section 1, page 71 and Section 2, page 84.
145 This grouping makes it possible to process the text only once, which saves time. There may be a bias in case

of nesting.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

160

Introduction
Inventory (#LINE… #REST): to be repeated for each type and type+subtype combination
Inventoried item: {TYPE} or {TYPE} <<and {SUBTYPE}>>146
Inventoried term: {TERM} and its number of occurrences in the document: {COUNT}

Conclusion

We will use the File Edition menu to create a new file with the name standoffPattern.txt in the

folder:147

MyUnitex\Scripts\ScriptEntities\ScriptEntitiesLingpkg\Resources\English

<xml>
#LINE
 <listAnnotation type="{TYPE}" <<subtype="{SUBTYPE}">>>
#BLOCK
 <term frequency="{COUNT}">{TERM}</term>
#END
 </listAnnotation>
#REST
</xml>

4.3 The script

We will use the final version of the script we developed in Section 2.2.4, page 154. We will
rename this file under the name standoffScriptEntities.uniscript in the folder:

MyUnitex\Scripts\ScriptEntities\scriptEntitiesLingpkg\Scripts

We will add in it a line before Normalize to indicate the location of the template file:

RunScript {PACKAGE_DIR}/Resources/English/standoffPattern.txt -R -o
{CURRENT_WORK_DIR}/patternResult.txt --no_translate_separator

This line uses a specific Unitex function RunScript, which loads the standoffPattern.txt file

under the name patternResult.txt. The no_translate_separator option prohibits replacement
of slashes by backslashes.

We will copy the last three lines DuplicateFile, Tokenize and Cassys; we will paste them right
after. We will modify them: the working file is now corpus_csc_csc.snt; the standoff option
replaces the input_offsets option; and the name of cascade to be used is standoff.csc. The
result of the standoff cascade, the corpus_csc_csc_standoff.txt file, replace the previous
output in the ultimate line of the new script.

DuplicateFile -i {CURRENT_WORK_DIR}/corpus_csc_csc.txt
{CURRENT_WORK_DIR}/corpus_csc_csc.snt
Tokenize {CURRENT_WORK_DIR}/corpus_csc_csc.snt
-a{PACKAGE_DIR}/Resources/English/Alphabet.txt -qutf8-no-bom
Cassys -a{PACKAGE_DIR}/Resources/English/Alphabet.txt
-t{CURRENT_WORK_DIR}/corpus_csc_csc.snt
-l{PACKAGE_DIR}/Resources/English/CasSys/standoff.csc -v
-r{PACKAGE_DIR}/Resources/English/Graphs/
--standoff={CURRENT_WORK_DIR}/patternResult.txt -qutf8-no-bom

DuplicateFile -i {CURRENT_WORK_DIR}/corpus_csc_csc_standoff.txt {OUTPUT_FILE_1}

146 The text between double angle brackets will only be written in the presence of a subtype.

147 This example of template file is in XML format, which is not the obligatory format.

Chapter 7: Scripts

161

4.4 The new linguistic package

We will now copy graphs in the linguistic package.

Go to the folder: MyUnitex\English\Graphs\UnitexGettingStarted\Entities

Copy the Standoff folder.
Go to the folder: MyUnitex\Scripts\ScriptEntities\ScriptEntitiesLingpkg\

Resources\English\Graphs\UnitexGettingStarted\Entities
Paste this folder.

As well as the new cascade.

Go to the folder: MyUnitex\English\Cassys\UnitexGettingStarted\XmlTextEntities

Copy the standoff.csc file.
Go to the folder:MyUnitex\Scripts\ScriptEntities\ScriptEntitiesLingpkg\Resources\English\CasSys
Paste this file.

We will create the scriptEntitiesLingpkg.zip file in the same way as in Section 2.3, page 155.

4.5 The new batch file

We will save the multiLaunchEntities.bat file under the name multiLaunchStandoffEntities.bat.
We need to change in this file the name of the script and name of the folder for results (bold
and underlined):

"C:\Program Files (x86)\Unitex-GramLab\App\UnitexToolLogger.exe" { BatchRunScript -i .\Input -e -o .\StandoffOutput -t1

.\scriptEntitiesLingpkg.zip -f -s Scripts\standoffScriptEntities.uniscript }

As a result of running this script, we will obtain two identical files (jubileePlainText.result.txt
and JubileePlainText.xml.result.txt) in the folder:148

MyUnitex\Scripts\ScriptEntities\StandoffOutput

Note that with the command line with several possible outputs in Section 3.3, page 158, you
could merge both the script of Section 2.2.4, page 154, and the script of Section 4.3, page 160,
to output the tagged file and the inventory of tag occurrences file.

148 These two files are identical since the entities are the same in both.

Unitex Getting Started - Denis Maurel and Cvetana Krstev

162

<xml>
 <listAnnotation type="AbsoluteDate">
 <term frequency="1">June 2, 2022</term>
 <term frequency="1">February 6, 1952</term>
 </listAnnotation>
 <listAnnotation type="Address">
 <term frequency="1">Queen Elizabeth Street</term>
 <term frequency="1">London Street</term>
 </listAnnotation>
 <listAnnotation type="RelativeDate">
 <term frequency="1">Thursday June 2</term>
 <term frequency="1">June 5</term>
 </listAnnotation>
 <listAnnotation type="Town">
 <term frequency="2">Nearlondon</term>
 <term frequency="1">London</term>
 </listAnnotation>
</xml>

4.6 Some additional information

It is possible to add information to the standoff file by using specific variables. We can retrieve
the name of the file and, if it is in XML format, also information from its header.149

4.6.1 The name of the input file

The file name can be included in the template file. To do this, we must add the {FILENAME}

variable to the standoffPattern.txt file, which is in the folder:

MyUnitex\Scripts\ScriptEntities\ScriptEntitiesLingpkg\Resources\English

<xml>
<sourceFile>
 <fileName>{FILENAME}</fileName>
</sourceFile>
#LINE
 <listAnnotation type="{TYPE}" <<subtype="{SUBTYPE}">>>
#BLOCK
 <term frequency="{COUNT}">{TERM}</term>
#END
 </listAnnotation>
#REST
</xml>

Besides this, we must add the option -a FILENAME={INPUT_FILE_1} to the RunScript line of the
file:

MyUnitex\Scripts\ScriptEntities\ScriptEntitiesLingpkg\Scripts\standoffScriptEntities.uniscript

149 It is also possible to retrieve the Unitex version and its data by using a specific Unitex function VersionInfo,

but we will not go into details here.

Chapter 7: Scripts

163

RunScript {PACKAGE_DIR}/Resources/English/standoffPattern.txt -R -o
{CURRENT_WORK_DIR}/patternResult.txt -a FILENAME={INPUT_FILE_1}
--no_translate_separator

After repeating the compression explained in Section 2.3, page 155, and running the script,
we again get two identical files. These files contain at the beginning the name of the processed
file.

4.6.2 Extracting information from the XML header

When the source file is in XML format, some information located before the body of the text
can be interesting to include in the standoff file.

For instance, if we want to retrieve the content inside tags <title></title> of the
jubileeXmlText.xml.txt file, we must:

1. Create a file containing the path of the XML element we want to retrieve.150 This file,

which we will name, for instance pathTitle.txt, must be recorded in the folder:

Unitex\Scripts\ScriptEntities\ScriptEntitiesLingpkg\Resources\English

/xml/title

2. Add to the script just before the RunScript line a new line that invokes the specific

Unitex function Unxmlize that copies the content of a tagged element:

Unxmlize -x --selxpath_file={PACKAGE_DIR}/Resources/English/pathTitle.txt -o
{CURRENT_WORK_DIR}/title.txt -n IGNORE {CURRENT_WORK_DIR}/corpus.txt

3. Also add the option -c TITLE={CURRENT_WORK_DIR}/title.txt to the RunScript line:

RunScript {PACKAGE_DIR}/Resources/English/standoffPattern.txt -R -o
{CURRENT_WORK_DIR}/patternResult.txt -a FILENAME={INPUT_FILE_1} -c

TITLE={CURRENT_WORK_DIR}/title.txt --no_translate_separator

4. Add the variable {TITLE} in the standoffPattern.txt file:

<xml>
<sourceFile>
 <fileName>{FILENAME}</fileName>
 <title>{TITLE}</title>
</sourceFile>
#LINE
 <listAnnotation type="{TYPE}" <<subtype="{SUBTYPE}">>>
#BLOCK
 <term frequency="{COUNT}">{TERM}</term>
#END
 </listAnnotation>
#REST

</xml>

150 The path structure follows the XPath syntax: this path indicates how XML tags are nested in the document.
Since the <date> tag is at the same level as the <title> tag, the path to this tag will be /xml/date and not
/xml/title/date. If the information to be retrieved is in a tag with a specific value of an attribute, for instance
<title type="newspaper">, the path to it becomes: /xml/title[@type="newspaper"].

Unitex Getting Started - Denis Maurel and Cvetana Krstev

164

After repeating the compression process and launching the script, we get two different files,
one with empty <title>{TITLE}</title> tags and the other with the extracted text, enclosed in
<title></title> tags. For the jubileeXmlText.xml file:

<xml>
 <sourceFile>
 <fileName>.\Input\jubileeXmlText.xml</fileName>
 <title>The municipal newspaper of the city of Nearlondon</title>
 </sourceFile>
 <listAnnotation type="AbsoluteDate">
 <term frequency="1">June 2, 2022</term>
 <term frequency="1">February 6, 1952</term>
 </listAnnotation>
 <listAnnotation type="Address">
 <term frequency="1">Queen Elizabeth Street</term>
 <term frequency="1">London Street</term>
 </listAnnotation>
 <listAnnotation type="RelativeDate">
 <term frequency="1">Thursday June 2</term>
 <term frequency="1">June 5</term>
 </listAnnotation>
 <listAnnotation type="Town">
 <term frequency="2">Nearlondon</term>
 <term frequency="1">London</term>
 </listAnnotation>

</xml>

5 Two small remarks on the optimization of a cascade

Let us say we want to launch our cascade over a very large number of texts, all placed in the
same directory. Cascade time, even with multiple cores, can become an important parameter.

5.1 Number of graphs

Each time a graph of a cascade is applied, the whole text is reread. If two graphs are not
ambiguous or if the first does not prepare data to be processed by the second, it is therefore
better to merge them into a single graph which calls two subgraphs.

For instance, the five graphs of the analysis cascade of Chapter 4, Section 1.1, page 71, cannot
be merged.

The two absoluteDate.grf and relativeDate.grf graphs are ambiguous and they must be
applied in this order; the town.grf graph uses the previous two; the townGeneralization.grf
graph uses the previous one; and the street.grf graph uses all previous graphs.

5.2 Number of boxes

It takes a little longer to read two boxes of a graph than one, It is therefore better to merge
them, if it is possible.

Chapter 7: Scripts

165

For instance, the month.grf graph below:

could be replaced by the optimizedMonth.grf graph:

Note that such adjustments reducing the number of graphs or boxes for optimization may
hinder the development of the entire work. It is therefore recommended to do it near the end
of the elaboration, only if the number of files to process is large.

167

Contents

Chapter 1: introduction ... 1

1 A short history..1
2 A quick overview of the book ...1
3 Organization of correct files ...2
4 A workbook? ..3

4.1 Graph exercises...3
Exercise 1 ..3
Exercise 2 ..3
Exercise 3 ..3
Exercise 4 ..3

4.2 Cascade exercises ...3
Exercise 5 ..3
Exercise 6 ..4
Exercise 7 ..4

4.3 Dictionary exercises..4
Exercise 8 ..4
Exercise 9 ..5
Exercise 10 ..5

4.4 Lexicon grammar exercise ...6
Exercise 11 ..6

4.5 XAlign exercise ..6
Exercise 12 ..6

4.6 Script exercises ...6
Exercise 13 ..6
Exercise 14 ..6

5 Acknowledgement...6

Chapter 2: first steps ... 7

1 Discovering Unitex...7
1.1 Unitex installation...7

1.1.1 Creating a private working folder ..7
1.1.2 Installation process ...7
1.1.3 Initial choices.. 10
1.1.4 Check or modify your private working directory... 11

1.2 Using Unitex ... 11
1.2.1 Starting Unitex ... 11
1.2.2 The Unitex inteface.. 12
1.2.3 Opening a text .. 13
1.2.4 Applying dictionaries ... 14
1.2.5 The DLF window... 15
1.2.6 The DLC window .. 16
1.2.7 The ERR window .. 16

2 A detailed example ... 16
2.1 Concordances with one word query .. 16
2.2 Concordances with a lemma... 18
2.3 Concordances with a graph query.. 19

2.3.1 A first graph .. 20
2.3.2 Concordances ... 22
2.3.3 Adding the future tense and the conditional... 23

Unitex Getting Started - Denis Maurel and Cvetana Krstev

168

2.3.4 Adding the perfect tenses ... 24
2.3.5 Adding the passive forms .. 26
2.3.6 Adding adverbs .. 28

2.4 Contexts ... 30
2.4.1 Left context .. 30

2.4.1.1 The verb to meet preceded by a pronoun .. 30
2.4.1.2 The verb to meet preceded by a pronoun and a left context ... 32

2.4.2 Right context .. 32
2.4.3 Lexical masks .. 34

3 The .snt file.. 35
3.1 Document transformation .. 35

3.1.1 Standard normalization ... 35
3.1.2 The Norm.txt file .. 35

3.1.2.1 The standardization of dashes and quotation marks ... 36
3.1.2.2 The standardization of apostrophes.. 36

3.2 The preprocessing ... 37
3.3 Material (only for confident users) .. 37

3.3.1 The Sentence.grf graph ... 37
3.3.2 The Replace.grf graph.. 40
3.3.3 The two alphabet files ... 41

3.3.3.1 The Alphabet.txt file ... 41
3.3.3.2 The Alphabet_sort.txt file .. 42

Chapter 3: corpus annotation ... 45

1 First example: compound verbs using the verb will .. 45
1.1 First step: the simplest graph ... 45
1.2 Second step: future passive and future perfect tense.. 47
1.3 Third step: recognizing the future perfect passive ... 48
1.4 Fourth step: recognizing continuous forms ... 49
1.5 Fifth step: insertion of an adverb after will or would ... 50

1.5.1 A single adverb ... 50
1.5.2 Several adverbs .. 51

1.6 Sixth step: insertion of an adverb after be .. 52
1.6.1 A graph that recognizes and annotates adverbs ... 52
1.6.2 The main graph .. 52
1.6.3 A new subgraph ... 53

1.7 Seventh step: negative adverbs.. 54
1.7.1 The main graph .. 54
1.7.2 The negation subgraph.. 54
1.7.3 Negative right context ... 55

1.8 Eighth step: adding the verb shall .. 56
1.9 Continuation of this graph (only for confident users) .. 57

1.9.1 Addition of contracted forms.. 57
1.9.2 Affirmative and negative constructions ... 57
1.9.3 Interrogative constructions... 58

2 Second example: numbers written with words ... 59
2.1 First step: from 2 to 9 .. 59
2.2 Second step: from 2 to 99 ... 59

2.2.1 A subgraph without output ... 59
2.2.2 The NB2-99.grf graph .. 60

2.3 Third step: from 2 to 999 .. 61
2.3.1 The NB1-99-subgraph.grf graph ... 61
2.3.2 The NB2-999.grf graph .. 61

2.4 Fourth step: from 2 to 999 999 .. 62
2.4.1 The NB100-999-subgraph.grf graph ... 62
2.4.2 The NB2-999999.grf graph .. 62

3 Third example: annotating Roman numerals ... 63

Contents

169

3.1 First step: from 2 to 9 .. 63
3.2 Second step: from 2 to 99 ... 64

3.2.1 The subgraph from 1 to 9 .. 64
3.2.2 The graph from 2 to 99.. 64

3.3 Third step: from 2 to 999 .. 65
3.3.1 The subgraph from 1 to 99.. 65
3.3.2 The graph from 2 to 999.. 66

3.4 Fourth step: from 2 to 3 999... 67
3.4.1 The subgraph from 1 to 999.. 67
3.4.2 The graph from 2 to 3 999... 67

3.5 Ambiguities of Roman numerals (only for confident users)... 68
3.5.1 The subgraph of ambiguous Roman numerals .. 69
3.5.2 The use of weights ... 69

Chapter 4: CasSys .. 71

1 First example: named entity recognition in a plain text .. 71
1.1 Analysis cascade .. 71

1.1.1 The absoluteDate.grf graph .. 72
1.1.2 The relativeDate.grf Graph ... 73
1.1.3 The analysis.csc cascade.. 73
1.1.4 The town.grf graph .. 74
1.1.5 Generalization graphs.. 75
1.1.6 The street.grf graph ... 76
1.1.7 Created files ... 77

1.1.7.1 The _csc files ... 77
1.1.7.2 The _csc folder .. 78

1.2 Synthesis cascade .. 79
1.2.1 The tag.grf graph.. 79

1.2.1.1 A first attempt ... 80
1.2.1.2 A second attempt.. 82
1.2.1.3 The Until fix point option ... 82

1.2.2 The internalDeletion.grf graph ... 83
2 Second example: named entity recognition in an XML text.. 84

2.1 Analysis cascade .. 86
2.1.1 The toolXml.grf graph.. 86
2.1.2 The toolHidden.grf graph .. 86

2.2 Synthesis cascade .. 87
3 Third example: measure recognition .. 88

3.1 Analysis cascade .. 89
3.1.1 The number.grf graph.. 89
3.1.2 Cascade ... 90
3.1.3 The measure.grf graph .. 90

3.2 Synthesis cascade .. 91
3.2.1 The tag.grf graph.. 92
3.2.2 Cascade ... 92
3.2.3 The numberDeletion.grf graph ... 93
3.2.4 The numberAndNumber.grf graph ... 93

4 Additional possibilities (only for confident users).. 94
4.1 How does a generalization graph work?.. 94
4.2 Testing the variables ... 94
4.3 Reuse the same graph ... 95

4.3.1 Output variable .. 96
4.3.2 Graph repository .. 97

4.4 Hiding or deleting part of a text ... 98
4.4.1 Hiding part of a text ... 98
4.4.2 Deleting part of a text.. 101

4.4.2.1 The deleting graphs .. 101

Unitex Getting Started - Denis Maurel and Cvetana Krstev

170

4.4.2.2 Comparing the variables .. 102
4.5 Sub-categorization with cascades .. 102

4.5.1 Three modified graphs .. 102
4.5.2 Generalization graphs with restrictions ... 104

4.5.2.1 Without substitution of a category ... 104
4.5.2.2 With substitution of a category ... 105

Chapter 5: dictionary creation... 107

1 Introduction .. 107
2 Inflection of monolexical words .. 107

2.1 Inflection by simple suffixation .. 107
2.1.1 The nouns with s in the plural... 107
2.1.2 Two more examples .. 110

2.2 The L operator.. 113
2.2.1 The nouns with final y ... 113
2.2.2 Several more examples ... 114

2.3 Operators R, C and D ... 116
3 Inflection of multi-word units .. 118

3.1 Example of the MWU air of mystery .. 119
3.2 Some other examples.. 120

4 Some additional remarks ... 123
4.1 Adding features in dictionary entries ... 123
4.2 Direct creation of inflected entries .. 123
4.3 Adding comments.. 125

4.3.1 Adding comments to entries... 125
4.3.2 Documenting dictionaries ... 126

4.4 Automatically verifying the format of a dictionary ... 126
4.4.1 Inflected dictionary .. 126
4.4.2 Lemma dictionary .. 126

4.5 Morphological-mode dictionary (only for confident users) ... 127
4.6 Priorities ... 127
4.7 Additional notes... 128

5 Dictionary graphs.. 128
5.1 Example of Roman Numeral dictionary ... 128
5.2 Morphological extension of the used dictionaries (only for confident users) 129

5.2.1 Morphological-mode dictionary declaration ... 129
5.2.2 Example of the -less suffix... 130

6 Additional possibilities (only for confident users).. 132
6.1 A test on a suffix .. 132
6.2 Use of variables.. 133

6.2.1 Example of goose, tooth, foot .. 133
6.2.2 Example of bring, fight, think .. 134

Chapter 6: other tools ... 137

1 Lexicon-grammar .. 137
1.1 Example: particle verbs ... 137
1.2 Transformation of the spreadsheet table.. 137
1.3 Parameterized graphs ... 138
1.4 Generation of graphs .. 138
1.5 Annotations.. 140

2 XAlign... 141
2.1 Installation ... 141
2.2 The French folder... 141
2.3 File preparation ... 142

2.3.1 English folder.. 142
2.3.2 French folder .. 143
2.3.3 XAlign folder ... 143

Contents

171

2.4 Automatic alignment ... 143
2.5 Reading and manual correction ... 145
2.6 Search performed on one of two texts .. 146
2.7 Cascade search and XAlign (only for confident users) .. 147

2.7.1 Launching cascades ... 147
2.7.2 File transformation .. 148
2.7.3 Using XAlign.. 148

Chapter 7: scripts... 149

1 Introduction .. 149
2 Creation of the linguistic package ... 149

2.1 The Resources folder ... 150
2.2 The scripts folder ... 150

2.2.1 Using the console... 150
2.2.2 File adjustment .. 153
2.2.3 Script generalization .. 153
2.2.4 Final touches .. 154

2.3 Compression .. 155
2.4 Another possibility (only for confident users) ... 155

2.4.1 The use of dictionaries .. 155
2.4.1.1 The default English dictionary.. 155
2.4.1.2 A private dictionary .. 156
2.4.1.3 Several dictionaries... 156
2.4.1.4 A morphological dictionary .. 156

2.4.2 The last file from the _csc folder .. 157
3 The command line .. 157

3.1 The batch launching file .. 157
3.2 Running the script.. 157
3.3 A command line with comments and several possible outputs .. 158

4 An inventory of tag occurrences ... 158
4.1 The standoff cascade... 158
4.2 The template file.. 159
4.3 The script .. 160
4.4 The new linguistic package ... 161
4.5 The new batch file ... 161
4.6 Some additional information .. 162

4.6.1 The name of the input file... 162
4.6.2 Extracting information from the XML header.. 163

5 Two small remarks on the optimization of a cascade.. 164
5.1 Number of graphs .. 164
5.2 Number of boxes ... 164

173

Index

Alphabet.txt .. 41
Build concordance .. 17
CODE.SEM ... 127
Copy operator... 117
correct files ..2
DELA/Compress into FST...................................... 109
DELA/Inflect .. 109
Dela/Lookup…... 89
dela-en-public.bin .. 14
Delete operator .. 117
DIC ... 34
dictionary graph ... 128
DLC... 15
DLF ... 15
Dominique Perrin ..1
EQUAL ... 102
ERR... 15
File Edition .. 35
FIRST .. 34
FSA ..1
FSGraph/New ... 20
generalization graph .. 75
graph repository ... 97
INFLECTED ... 127
input variable .. 80
installation ...7
Intex..1
inventory of tag occurrences............................... 158
LADL..1
left context.. 30
Left operator... 113
LEMMA .. 130
lexical mask ... 34
lexicon-grammar .. 1, 137
linguistic package ... 149
Located sequences ... 17
LOWER... 34
Maurice Gross..1
Max Silberztein ..1
Menus ... 12

morphological mode .. 63
Morphological mode dictionaries 127
NB .. 34
negative right context .. 55
Norm.txt file.. 35
output variable ... 96
preprocessing ... 37
private working directory 10
private working folder...7
Regular expression ... 16
Replace.grf .. 40
Reversed link between boxes 30
right context ... 32
Right operator .. 116
script.. 149
Sébastien Paumier...1
semantic code... 123
sentence delimiter ... 13
Sentence.grf.. 37
SET ... 95
Show differences with previous concordances.... 47
simple form ... 14
standoff ... 158
subgraph ... 52
template file.. 159
Text/Apply CasSys Cascade…................................. 73
Text/Apply Lexical Resources… 14
Text/Change Language…...................................... 141
Text/Locate Pattern ... 16
Text/Open… .. 13
token ... 13
TOKEN ... 34
Token list ... 14
UNSET .. 95
Until Fix Point.. 82
UPPER .. 34
variable.. 80
weight.. 69
WORD .. 34
WordList .. 15

Denis Maurel

is emeritus professor at the University of Tours, member of Lifat
(Laboratory of Fundamental and Applied Computer Science of
Tours) and associate member of the LLL (Laboratory of Ligerian
Linguistics).

He defended his thesis in 1989 under the supervision of Professor
Maurice Gross.

His research focuses on NLP (Natural Language Processing),

mainly using Unitex, as well as the creation of linguistic
resources: Proper Names Processing (Prolex project), Named

Entity Recognition (CasEN project), scientific documents mining
(Istex and Abliss projects).

He taught Unitex in linguistics and digital humanity masters
courses, as well as in computer science engineering schools. He
gave several tutorials to doctoral students and researchers.

Cvetana Krstev

served as a professor at the University of Belgrade, Faculty of
Philology from 1998 to 2020. She is a co-founder and current
president of the Language Resources and Technologies Society

JeRTeh.

Her research focuses on the development of NLP resources and
tools. She developed e-dictionaries of Serbian as well as
numerous tools for Unitex. These tools, which target Serbian
texts, include the named entity recognition system, correction of

OCR errors, restoration of diacritics, extraction of definitions, and
many more.

She gave tutorials on using Unitex to researchers and PhD

students studying Linguistics, Philology and Information Sciences.

