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A B S T R A C T   

This paper presents a discussion on several possibilities to predict the frictional pressure gradient during two- 
phase flow, with both the application of artificial intelligence and the implementation of conventional corre-
lations and predictive methods. To this purpose, a huge database of approximately 8000 data points has been 
collected from 49 sources available in scientific literature, including 23 working fluids and the following ranges 
of parameters: mass fluxes from 32.7 to 2000 kg/m2s, saturation temperatures from -190◦C to +120◦C (reduced 
pressures from 0.021 to 0.780), tube diameters from 0.5 to 14.0 mm. 

This consolidated database has been used to train several artificial neural networks (ANNs), by using only two 
hidden layers (shallow neural networks) and evaluating the effect of: training and testing datasets choice (either 
test data included or outside the training domain), the number of neurons for each hidden layer (from 1 to 50), 
the type of output (either dimensional or non-dimensional), the type and number (from 1 to 22) of input 
parameters. 

The best results (MAPE of 16.8% and 88% of data within ±30%) have been obtained by using the liquid-only 
two-phase multiplier Φ2

LO as non-dimensional output and 12 mixed input parameters. Compared to the statistics 
of well-established literature correlations for frictional pressure drop (best MAPE of 22% and 73% of data points 
predicted within a ±30% error range, provided by Mauro et al. mechanistic method), the ANN demonstrates 
therefore a higher general accuracy. However, the use of Artificial Neural Networks does not guarantee a 
physical trend, which is instead preserved with conventional prediction methods.   

1. Introduction 

Two-phase flow frequently occurs in a wide range of applications of 
any kind, from gas/liquid streams in pipes employed in chemical and 
petroleum industries or natural gas transfer lines, to vapor/liquid flows 
of refrigerants inside tubes during convective evaporation or conden-
sation in refrigeration and air-conditioning systems. Moreover, two- 
phase studies are receiving more and more attention in the last years 
thanks to the increasing demand for efficient and compact systems in 
several applications, such as avionics, electronics, electrical vehicles and 
aerospace [1]. 

The correct prediction of the frictional pressure gradient during two- 
phase flow is therefore of utmost importance for a correct design of 
condensers and evaporators, as well as for the estimation of the pumping 
power required to transport two-phase fluids in all pipelines. On this 
regard, while pressure losses in a single-phase flow are correctly 

modeled with well-known correlations, accurate predictions of the 
frictional pressure gradient in two-phase flow have been proved to be 
more challenging because of added complexities related to the coexis-
tence of the liquid and the vapor phase and their relative motion and 
distribution. 

Over the last decades, different prediction methods have been pro-
posed by several researchers. They can be mainly classified in two cat-
egories, namely homogeneous models and separate flow models, 
including mechanistic approaches and flow pattern-based correlations. 
Homogeneous equilibrium models consider the liquid/vapor or liquid/ 
gas mixture as a single-phase flow in which the thermophysical prop-
erties are averaged over their corresponding liquid and gaseous values. 
The resolution of the momentum equation in thermodynamic equilib-
rium for the estimation of the pressure drop only requires an appropriate 
definition of the homogeneous viscosity and a correlation for the ho-
mogeneous friction factor, which is usually taken from well-known 
single phase approaches [2,3]. On the other hand, separate flow 
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models assume the two phases as flowing with different velocities and 
are mostly based on the original approach of Lockhart and Martinelli 
[4], resulting in semi-empirical correlations aimed at the evaluation of 
two-phase multipliers [5,6,7], two-phase friction factor [8,9], or directly 
of the two-phase frictional pressure gradient through the combination of 
the single-phase contributions [10]. Despite this great effort in devel-
oping an efficient predictive method, the correlation results are still not 
completely accurate if tested outside their original database, since sig-
nificant assumptions of physical phenomena are involved. 

For this reason, the Artificial Intelligence (AI) can emerge as a very 
powerful tool of estimating or predicting data without an explicit un-
derstanding of the physical mechanism and are recommended to high 
non-linear applications and complex engineering problems [11]. Among 
the available AI techniques, Artificial Neural Networks (ANNs) imitate 
the neural aspect of the human brain, in which learning is based on 
experience and repetition rather than the application of principles and 
equations, and consist of a layered network of neurons, each of them 
connected to a large number of others [12]. 

After some pioneering studies [13,14], machine learning methods 
have been implemented in complex fluid-dynamic systems with 
different purposes, including the evaluation of the frictional pressure 
drops. As regards the exclusive use of Artificial Neural Networks, Ali-
zadehdakhel et al. [15] trained an ANN by using only three input pa-
rameters (gas and liquid velocities and tube slope to predict the average 
pressure drop across a 20 mm tube. The authors managed to obtain a 
mean square error with experimental data of 0.043 Pa/m, even if they 
found that a better accuracy could be reached by employing commercial 
CFD codes. Shadloo et al. [16] presented and trained a multiple-layer 
perceptron neural network for the prediction of the frictional pressure 
gradient of non-Newtonian liquid/gas mixture, obtaining a minimum 
Mean Absolute Error (MAE) of 4.58%. Garcia et al. [17] applied artificial 
neural networks for the prediction of pressure drop during evaporation 
of refrigerant R407C in horizontal tubes having diameters of 4.5 mm and 
8.0 mm. The authors considered diameter, mass flux, vapor quality and 
saturation pressure as model input parameters, whereas the ANN 
structure (number of neurons and number of hidden layers) was deter-
mined based on the results accuracy. The proposed ANN, trained with 
127 data points, was able to detect the experimental pressure gradient 
with a Mean Absolute Error (MAE) of 6.11%. Regarding the choice of the 
input parameters, some researchers autonomously identified the most 

influencing factors based on the real physics of the phenomenon, as 
managed by Longo et al. [18] for pressure drop data in a plate heat 
exchanger. The same approach was followed by Barroso-Maldonado 
et al. [19], by using a physics-based rationale to determine dimen-
sional and non-dimensional parameters as inputs of their ANN-based 
correlation for frictional pressure gradient of non-azeotropic mixtures. 
Machine learning tools and pipelines were instead implemented by 
Najafi et al. [20] and by Ardam et al. [21] to identify the most promising 
set of input parameter to obtain frictional pressure drop of air-water data 
and R134a data, respectively. A parametric importance analysis, 
including the Group of Method Data Handling (GMDH), was also chosen 
by Lopez-Belchi et al. [22] and by Khosravi et al. [23] to estimate the 
correct set of parameters to feed their machine learning system trained 
to estimate the pressure gradient of several refrigerants. Swarm plots 
and Kendall coefficient analysis were performed by Qiu et al. [24] to 
graphically provide a sensitivity evaluation on possible input parame-
ters. The authors used a consolidated database of 2787 experimental 
frictional pressure gradient data in mini and micro-channels and criti-
cally developed four different machine learning based regression 
models. They found that their ANN model, conceived with 23 
non-dimensional input parameters, could predict the experimental 
values with an error lower than 10%, whereas other machine learning 
approaches (KNN regressions, Extreme Gradient Boosting, XGBoost, and 
Light Gradient Boosting Machine, Light-GBM) were tougher to be 
implemented with worse outcomes. Similar outcomes were found by 
Khosravi et al. [23] and by Nie et al. [25], who found that ANN models 
for two-phase frictional pressure drop led to a better accuracy when 
respectively compared with Support Vector Regression (SVR) models 
and with XGBoost approaches. 

In this context, the main objective of this work is to evaluate to what 
extent the Artificial Neural Networks can be employed in successfully 
predicting the two-phase frictional pressure gradient, with respect to the 
accuracy of deterministic models. Different neural networks are then 
developed and a critical analysis is carried-out, testing their accuracy 
and sensibility by changing the ANN structure and the number and type 
of the input parameters. The assessment of some benchmark correlations 
and of the developed ANNs is also proposed by using a large database in 
a wide range of operating conditions in terms of mass flux, reduced 
pressure, tube diameter and vapor quality. 

Nomenclature 

Roman 
dp
dz frictional pressure gradient [Pa/m] 
d tube diameter [m] 
f friction factor [-] 
G mass flux [kg/m2s] 
L tube length [m] 
Pred reduced pressure [-] 
Tsat saturation temperature [◦C] 
w weight or bias [-] 
x vapor quality [-] 
X Martinelli parameter [-] 

Greek 
Φ2 two-phase multiplier [-] 
α input value of a neuron 
ε output of a neuron 
μ viscosity [Pa s] 
ρ density [kg/m3] 
σ surface tension [N/m] 

Statistical parameters 
δ30 percentage of data points falling into a ±30% error band 

[%] 
MAPE mean absolute percentage error [%] 
MRPE mean relative percentage error [%] 

Subscripts 
eq equivalent 
h hydraulic 
L liquid 
LO liquid only 
tp two-phase 
V vapor 
VO vapor-only 

Non-dimensional numbers 
La Laplace number 
Fr Froude number 
Pr Prandtl number 
Bd bond number 
We weber number 
Re Reynolds number  
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2. Basic concepts of Artificial Neural Networks (ANNs) 

An Artificial Neural Network (ANN) is a mathematical tool inspired 
by the biological human nervous system. The main characteristics of an 
ANN are: learning adaptation, robustness, massive parallelism, 
abstraction and generalization, and they try to extract linear combina-
tions of one or more input variables, mapping the dependent variable as 
non-linear functions of derived features from the input values. Practi-
cally, as shown in Fig. 1a, they consist of a layer of input variables, 
several (one or more) layers of hidden neurons and one layer of one or 
multiple outputs. Each layer is made up of a series of neurons, that are 
fully connected to the preceding layer (from which the input is received) 
and to the subsequent layer (from which they influence). Fig. 1b shows 
the configuration of a generic k neuron belonging to any of the inter-
mediate layers. The interconnection with all neurons in the neighboring 
cluster is represented by a variable called weight (w), and M is the 
number of neurons located in the previous layer. A bias factor wbias is 
also used to treat the incoming information. With linear accumulation, 
each neuron combines information from weights and bias to produce the 
initial output ε: 

εk =
∑M

m=1
τmwm,k + wbias (1) 

The output ε is then used to feed an activation function, that basically 
executes a nonlinear transformation and determines the output of the 
neuron itself. 

The critical aspect of an ANN is the training step that defines the 
learning process, consisting in having new experience with the modifi-
cation of the strength of the connections among neurons. This procedure 
is generally called algorithm, in which the input values are given to the 
network together with the desired output. The purpose of the training 
algorithm is to minimize the global error level, with weights and biases 
randomly chosen to be progressively adjusted so that the network at-
tempts to obtain the desired output. When a satisfactory level of per-
formance is reached (with respect to statistical parameters such as Mean 

Squared Error MSE or Mean Absolute Percentage Error MAPE), the 
training phase stops, and the network uses the final set of weights as a 
predictive tool. According to the ANN architecture, there are different 
training methods that can perform the learning process according to the 
individual objectives, such as the accuracy of the results, computational 
time and complexity of the algorithm itself. For predicting purposes, the 
most popular technique to perform the learning process is the Error 
Back-Propagation [26]. This tool relies on two steps (forward and 
backward passes) recursively performed until the satisfactory perfor-
mance is reached. In the forward pass, the ANN output is calculated 
according to the sets of input and of weights imposed, therefore 
computing an error with respect to the effective target. This error is then 
used to calculate the weight values of the output layer. In the subsequent 
backward step, the error is propagated towards the input layer 
computing the adjustment of the synaptic weights of the hidden layers. 

This Error Back-Propagation algorithm requires continuous and 
differentiable activation functions. For their choice, linear functions are 
generally used in the output layer, whereas the hyperbolic tangent or the 
sigmoid are the most common transfer functions for the hidden layers, 
since their derivative simplify the implementation of the algorithm. 

3. Database description 

The development of an artificial neural network requires a huge 
amount of data for its correct learning process. For this reason, more 
than 8000 experimental local frictional pressure gradient values have 
been collected from several studies in literature, including vertical and 
horizontal tubes, and covering a wide range of fluids and operating 
conditions in terms of mass flux, reduced pressure and tube diameter. 
The vapor quality range (0-1) is also completely covered in any source. 
The description of the database, including all the ranges related to each 
parameter of interest, along with the working fluids are shown in 
Table 1. Particularly, 47 sources from literature have been reviewed to 
collect 8003 pressure gradient values, since 2000 and up to the present 
days, covering 23 refrigerants and cryogenic fluids (methane, nitrogen), 
mass fluxes from 32.7 to 2000 kg/m2s, saturation temperatures from 
-190 to +120◦C (reduced pressures from 0.021 to 0.780), pipe lengths 
from 70 to 6000 mm. The collected frictional pressure drop data values, 
used as model output, widen from 0.008 to 1322 kPa/m. All data refer to 
smooth circular tube and pure substances or mixtures (all points related 
to the presence of lubricant or taken in enhanced surfaces such as 
microtubes have been discarded and do not belong to the present 
database). Both vertical (2%) and horizontal (98%) configurations are 
included in the dataset, even if in the first case the pressure gain/loss 
related to the liquid head is subtracted from the total measured pressure 
drop values. Also, in case of non-negligible vapor quality variation along 
the tested tube, (if not explicitly done by the original authors) the mo-
mentum contribution was calculated by using the void fraction model of 
Rouhani and Axelsson [27] and subtracted from the whole pressure 
gradient, in order to obtain only the effective frictional contribution. 

In order to consider only reliable data for the subsequent assessment 
operations, the entire database has been filtered to eliminate points 
whose goodness was unsure. Since the uncertainty value for each 
experimental point was not available to this purpose, the Müller-Stein-
hagen and Heck [10] correlation was implemented, with all points 
having a relative error greater than 100% or lower than -100% excluded 
from the analysis. This specific predictive method as filter a-priori was 
chosen because it was developed using a very large database (more than 
9000 points) and thanks to its worldwide proven recognized accuracy in 
a wide range of operating conditions. After this operation, the number of 
remaining points is 7912. 

The qualification of the database is shown in Fig. 2, in terms of 
reduced pressure, tube internal diameter, mass flux, vapor quality, 
vapor-to-liquid density ratio and vapor-to-liquid viscosity ratio. Most of 
the points (more than 70%) have reduced pressures lower than 0.5 and 
mass velocities lower than 500 kg/m2s, reflecting the real application 

Fig. 1. (a) Structure of a generic ANN having 2 hidden layers, with multiple 
input values and a single output; (b) General configuration of a neuron [19]. 
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utility. The vapor quality range is instead well distributed from the onset 
of boiling up to the complete evaporation of the liquid phase. A signif-
icant amount of data (almost 2500 points) is taken for typical com-
mercial diameters used in the refrigeration sector (6.0 mm), even if a 
non-negligible number of data is caught for minichannel geometries 
(lower than 2.0 mm). 

4. ANN development and assessment 

4.1. Imposed settings and conditions 

A critical aspect is the definition of the artificial neural network ar-
chitecture (number of layers, number and types of inputs, the activation 
function of each layer and the training algorithm). For the present 
analysis, the ANN has been developed with MATLAB software and the 
embedded fitnet function is employed with the following settings: the 
maximum number of epochs (training iterations) has been fixed to 2000; 
only 2 hidden layers have been created, since shallow neural networks 
are particularly suitable for regression problems [1]. There is no specific 
procedure to evaluate the optimum number of hidden neurons, and it 
must be identified case by case. For this work, an equal number of 
neurons is considered for both hidden layers, and the chosen amount is 
the result of a sensitivity analysis. The performance indicator (to be 
minimized during the training process) is the Mean Absolute Percentage 
Error (MAPE), defined as follows, where n is the number of points used 
for comparison: 

Table 1 
Summary of the main parameters in the paper for the collected database.  

Authors Fluid(s) G 
[kg/ 
m2s] 

Tsat 

[◦C] 
d [mm] L 

[mm] 
N of 
points 

Wu et al. [28] R744 200; 
400 

15 1.7 1000 20 

Wetzel et al.  
[29] 

R744 300 [-21; 
-10] 

14 256 37 

Pehlivanoglu 
et al. [30] 

R744 100; 
400 

[-30; 
-15] 

6.1 150 36 

Mastrullo et al.  
[31] 

R744 201; 
349 

[-7.8; 
5] 

6 1200 111 

Wu et al. [32] R744 300; 
600 

[-40; 0] 1.42 300 273 

Park and 
Hrnjak [33] 

R744 200; 
400 

[-30; 
-15] 

6.1 150 24 

Cho and Kim  
[34] 

R744 318 0; 5 4; 7.72 5000 12 

Pettersen [35] R744 190; 
380 

0; 20 0.81 500 20 

Pettersen [36] R744 190; 
570 

0; 10 0.81 500 31 

Grauso et al.  
[37] 

R744, 
R410A 

152; 
513 

[-9; 42] 6 1000 1089 

Ono et al. [38] R744 100; 
380 

10 3.76 1000 28 

Kim and Hrnjak 
[39] 

R744 100; 
200 

-15 11.2 1000 11 

Katsuta et al.  
[40] 

R744 400 0; 10 3 500 34 

Del Col et al.  
[41] 

R290 200; 
800 

40 0.96 220 46 

Lillo et al. [42] R290 149; 
300 

25; 35 6 237.5 140 

Charnay et al.  
[43] 

R245fa 300; 
1000 

60; 120 3 350 149 

Sempertegui- 
Tapia and 
Ribatski [44] 

R134a, 
R11234ze 
(E), 
R1234yf, 
R600a 

200; 
1400 

31; 41 0.98 180 404 

Padilla et al.  
[45] 

R1234yf, 
R134a, 
R410A 

300; 
760 

10; 20 10.85 1000 811 

Del Col et al.  
[46] 

R134a, 
R1234yf 

200; 
800 

30; 50 0.96; 
1.23 

440 132 

Longo et al.  
[47] 

R143a, 
R290, 
R1270 

150; 
800 

30; 40 4 1000 170 

Longo et al.  
[48] 

R32 200; 
800 

30; 40 4 1000 85 

Song et al. [49] R14 200; 
650 

[-54; 
-85] 

4 200 104 

Diehl et al. [50] R290, 
R600a 

240; 
480 

25 1 366 121 

Pabon et al.  
[51] 

R1234yf 200; 
400 

20; 30 3.2; 8 1000 83 

Lillo et al. [52] R32 150; 
500 

25; 40 6 237.5 127 

Grauso et al.  
[53] 

R134a, 
R1234ze 
(E) 

149; 
514 

[-2.7; 
12.1] 

6 1000 704 

Ducoulombier 
et al. [54] 

R744 200; 
1400 

[-10; 5] 0.529 191 591 

Fazelnia et al.  
[55] 

R1234yf 95; 
410 

30 8.2 700 196 

Quiben and 
Thome [56] 

R410A, 
R22, 
R134a 

150; 
600 

5 8; 13 2035 288 

Zhuang et al.  
[57] 

R170 101; 
256 

[-32; 2] 4 200 244 

Zhuang et al.  
[58] 

Methane 100; 
254 

[-108; 
-91] 

4 200 133 

Cavallini et al.  
[59] 

R134a, 
R125, R32, 

100; 
750 

30; 50 8 1600 142  

Table 1 (continued ) 

Authors Fluid(s) G 
[kg/ 
m2s] 

Tsat 

[◦C] 
d [mm] L 

[mm] 
N of 
points 

R410A, 
R236ea 

Chen et al. [60] Nitrogen 235; 
560 

[-188; 
-183] 

1.98; 
2.92 

600 90 

Zhang and 
Webb [61] 

R134a, 
R22, 
R404A 

400; 
1000 

25; 65 3.25 914 56 

Longo et al.  
[62] 

R134a, 
R152a, 
R1234yf, 
R1234ze 
(E) 

75; 
600 

30; 40 4 1000 351 

Qi et al. [63] Nitrogen 33; 
262 

-170 1; 2 300 58 

Revellin and 
Thome [64] 

R134a, 
R245fa 

350; 
2000 

26; 35 0.509; 
0.79 

70 244 

Arcasi et al. 
[65] 

R1233zd 150; 
500 

25; 65 6 237 95 

Lima et al. [66] R717 55; 
160 

[-14.7; 
13] 

14 403 54 

Qiu et al. [67] R600a 150; 
300 

20 8 2400 36 

Bashar et al. 
[68] 

R134a, 
R1234yf 

100; 
200 

30 2.14 852 34 

Aprea et al. 
[69] 

R407C, 
R417A 

350; 
500 

2; 26 6 6000 51 

Xu et al. [70] R1234yf, 
R134a, 
R410A 

540; 
870 

21; 31 1.8 200 182 

Yang et al. [71] R1234yf, 
R134a 

200; 
1200 

14 4 600 68 

Zakaria et al. 
[72] 

R1234yf 80; 
320 

31 8.3 670 27 

Chen et al. [73] Nitrogen 140; 
300 

[-190; 
-185] 

2.92; 
3.96 

1000 46 

Maqbool et al. 
[74] 

R717 100; 
500 

23; 43 1.2; 1.7 245 215  
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MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒

dp
dzpred

− dp
dzreal

⃒
⃒
⃒
⃒

dp
dzreal

⋅100 (2) 

For the subsequent statistical analysis, the percentage of data points 
falling into an error range of ±30% and the Mean Relative Percentage 
Error, MRPE, have also been used. Particularly, the definition of the 
MRPE is given as follows: 

MRPE =
1
n

∑n

i=1

(
dp
dzpred

− dp
dzreal

)

dp
dzreal

⋅100 (3) 

The optimization algorithm is the Levenberg-Marquardt back-
propagation one, which is particularly suitable for training small- and 
medium-sized problems. The following conditions have instead been 

Fig. 2. Qualification of the filtered database used for the assessment. Distribution of: (a) reduced pressure; (b) tube internal diameter; (c) mass flux; (d) vapor quality; 
(e) vapor-to-liquid density ratio; (f) vapor-to-liquid viscosity ratio. 
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changed for the sensitivity analysis:  

• Database separation, according to 2 scenarios, graphically shown in 
Fig. 3. Rationale 1: 60% of the points used for training, and 40% used 
for validation and testing. The split process is random inside the 
domain. Rationale 2: 60% of the points used for the training process, 
belonging to the inner area of the domain (reduced pressures 
included between 0.06 and 0.75, tube diameters from 1.5 to 10 mm 
and mass velocities included in the range 150-1600 kg/m2s). In the 
first case, the interpolation ability of the ANN is tested, whereas for 
rationale 2 an extrapolation is instead required.  

• Type (either dimensional or non-dimensional) and number of inputs 
(from 1 to 22) and types of output (among dimensional dp

dzfrand non- 
dimensional parameters).  

• In order to establish the best possible structure, for each setting and 
rationale the network has been trained starting from 1 neuron in 
both hidden layers, increasing this number up to 50. The best 
configuration was chosen as the one providing the lowest Mean 
Absolute Percentage Error (MAPE) when implemented for the inde-
pendent test database. 

4.2. Effect of the number of neurons and of the database rationale, with 
dimensional input/output 

The effect of the number of neurons for the two database splitting 
scenarios is described in this section. For such analysis, the frictional 
pressure gradient dp

dzfr has been chosen as dimensional output, by also 
fixing the dimensional inputs as the minimal set of 8 parameters 
involved in the phenomenon, according to any mechanistic method: 
mass flux G, tube diameter d, vapor quality, density (liquid and vapor ρL,

ρV), viscosity (liquid and vapor μL, μV) and surface tension σ. Fig. 4 
shows the calculated MAPE versus the number of neurons composing the 
two hidden layers, for database splitting rationale 1 (Fig. 4a) and 
database splitting rationale 2 (Fig. 4b). The blue line refers to the MAPE 
index evaluated for the training database and the green line to the MAPE 
index calculated for the testing independent database. As regards 
rationale 1 (randomly 60%/40%, Fig. 4a), the mean error has not a 
particular trend with the number of neurons, and it remains quite stable 
except for some spikes. Moreover, there is not a large difference between 
the training and the testing database, thus encouraging the use of an 
artificial neural network within the extreme values of the training 
domain. For rationale 2 (Fig. 4b), instead, the mean errors related to the 
testing database are significantly higher than those calculated with the 
training set. This implies that the use of an ANN outside the extreme 
values of the training domain can bring to very large errors and there-
fore extrapolation procedures are not recommended. One point worth 
noting is that the MAPE index related to the independent database 
averagely increases with the number of neurons, thus highlighting also 
an overfitting issue in case of rationale 2. 

In each case, the ANN that minimizes the MAPE index is highlighted 

in red in Fig. 4. This analysis on the number of neurons is always per-
formed for any configuration and rationale chosen. All the following 
results shown in Table 2 will be referred to the sole best ANN structure, 
intended as the number of neurons of the hidden layers minimizing the 
MAPE index when used with the independent testing database. 

4.3. Effect of the number and type of input and output 

The analysis and the statistic evaluation of the developed artificial 
neural networks has been carried out for different types and number of 
inputs (dimensional, non-dimensional, mixed) and of output (dimen-
sional dp/dzfr, and non-dimensional parameters). The assessment of the 
ANN is carried out by calculating the Mean Absolute Percentage Error 
(MAPE), Mean Absolute Relative Error (MRPE), and the number of data 
points falling within an error range of ±30% (δ30). Table 2 summarizes 
the main characteristics of the implemented ANNs, indicating also their 
best structure after the node sensitivity analysis (number of neurons in 
the 2 hidden layers). All the statistical parameters refer to the inde-
pendent testing database. The computational time required for the 
training phase has also been indicated (referring to our machine, namely 
a i9-12900K 3.19 GHz core and 64GB of RAM memory), showing that in 
all cases it remains within reasonable values. The time required to run 
any ANN was found instead negligible (less than 10 seconds for all the 
database). 

By using the dimensional output (dp/dz)fr and the minimum number 
of 8 independent variables that influence the phenomenon, the best 
MAPE obtainable with the chosen options is quite high (82.7%), even if 
the 62.2% of the points is predicted within a ±30% error range. A 
graphical evaluation of the calculated error for this ANN as a function of 
the effective experimental frictional pressure gradient is shown in 
Fig. 5a, highlighting that the greatest predicting issues refer to the 
lowest experimental values. As shown in the previous section, by using 
the internal database for training and the external domain for testing 
(rationale 2, see Fig. 3b), the statistic considerably worsens, with a lower 
MAPE, but a significant amount of data out of the fair predictable zone 
(δ30=17.2%). 

The use of a non-dimensional output was seen to increase the accu-
racy of the neural networks. To obtain a non-dimensional pressure drop, 
different options can be pursued, such as the two-phase multiplier Φ2, 
either based on the liquid (Φ2

L , where the reference is the effective liquid 
mass flow rate flowing alone across the entire diameter of the tube) or 
the liquid-only (Φ2

LO, in which the reference is the total mass flow rate, 
considered liquid, flowing alone across the entire diameter of the tube) 
pressure drop. 

Φ2
L =

(dp/dz)fr

(dp/dz)L
(4)  

Φ2
LO =

(dp/dz)fr

(dp/dz)LO
(5) 

Fig. 3. Possible database splitting for training and testing phases. (a) Rationale 1: 60% for training (blue zone), randomly distributed in the entire domain. (b) 
Rationale 2: 60% for training (blue zone), excluding the extreme points of the domain (in terms of tube diameter, reduced pressure and mass flux). 

A.W. Mauro et al.                                                                                                                                                                                                                              



International Journal of Heat and Mass Transfer 221 (2024) 125106

7

By employing the liquid two-phase multiplier, the accuracy of the 
artificial neural network substantially increases when used in interpo-
lating mode (rationale 1): with only one input (Martinelli parameter X, 
in ANN #4 of Table 2) and 8 neurons in the hidden layers, the MAPE 
index is 45.4%, with almost 62.3% of the points predicted within ±30%. 
By increasing the number and type of non-dimensional inputs, from 
ANN #4 to #9, with the last having 22 dimensionless numbers, and 
some of them even not directly involved in the phenomenon (such as 
Laplace number, Prandtl number,…), the accuracy improves only 
slightly, having a MAPE of 33.9% and δ30=64%. The type of input seems 
to have a greater effect than the amount of parameters involved: with 
the minimum number of 8 dimensional and physics-based inputs (ANN 
#3 of Table 2), the MAPE is around 32%, and therefore as good as the 

most complicated and time-consuming non-dimensional input case #9. 
Slightly better results are obtained with mixing dimensional and non- 
dimensional inputs, including only physics-based parameters: ANN 
#10, with 12 mixed inputs and 12 neurons in the hidden layers, provides 
a similar MAPE as ANN #3 of 32.6%, but increases to 67.5% the number 
of points predicted in the ±30% error range. 

Finally, by employing the liquid-only two-phase multiplier, Φ2
LO and 

the same set of mixed parameters, the statistics in rationale 1 (ANN #11) 
is considerably improved (MAPE=16.8% and δ30=87.6%), with a 
reduced number of points reaching very high relative errors, as shown in 
Fig. 5b, probably due to the best fitting ability of the liquid-only two- 
phase multiplier, that is experimentally represented by lower values 
than those of the liquid two-phase multiplier. Moreover, the Φ2

LO output 

Fig. 4. MAPE calculated for the training and the testing databases as a function of the number of neurons, by considering the frictional pressure gradient as output 
and G, d, x, ρL, ρV , μL, μV , σ as model input parameters. The network configuration minimizing the MAPE index for both databases is highlighted in red. (a) Database 
splitting rationale 1 (randomly 60%/40%); (b) Database splitting rationale 2 (60% training with points in the inner domain and 40% testing points outside). 

Table 2 
Summary of the developed ANNs with their main features in terms of output, inputs, database splitting criterion, number of neurons minimizing the MAPE index for the 
testing independent database, and statistical indexes. All ANNs are made up of 2 hidden layers.  

#ANN Output Database splitting 
(rationale 1 or 2) 

Input(s) Best ANN (number of 
neurons) 

Computational time required for 
training [min] 

MAPE 
[%] 

MRPE 
[%] 

δ30 

[%] 

1 dp
dzfr 

1 G,d,x,ρL ,ρV ,μL,μV ,σ 29 3.4 82.7 15.1 62.2 

2 dp
dzfr 

2 G,d,x,ρL ,ρV ,μL,μV ,σ 7 0.8 63.5 -32.2 17.2 

3 Φ2
L 1 G,d,x,ρL ,ρV ,μL,μV ,σ 38 3.6 32.5 -12.5 62.3 

4 Φ2
L 1 X2 8 0.3 45.4 -14.3 42.9 

5 Φ2
L 1 1 − x

x
,
ρV
ρL
,
μV
μL 

9 0.5 43.3 12.6 44.4 

6 Φ2
L 1 1 − x

x
,
ρV
ρL
,
μV
μL

,WeV 
8 0.4 43.0 11.4 43.6 

7 Φ2
L 1 1 − x

x
,
ρV
ρL
,
μV
μL

,WeV ,FrV 
39 3.2 44.2 11.1 50.9 

8 Φ2
L 1 1 − x

x
,
ρV
ρL
,
μV
μL

,WeV ,FrV ,ReL ,ReV ,

ReLO 

8 1.1 40.3 3.8 48.4 

9 Φ2
L 1 Bd, Frtp, FrL, FrLO, FrV , FrVO,

LaL , LaV ,PredPrL,

PrV ,Reeq,ReL ,ReLO,ReV ,ReVO,

Wetp ,

WeL ,WeLO ,WeV ,WeVO ,X 

18 2.4 33.9 -6.4 64.1 

10 Φ2
L 1 G,d,x,ρL ,ρV ,μL,μV ,σ,

1 − x
x

,
ρV
ρL
,
μV
μL

, (ρL − ρV)

8 1.0 32.6 -2.4 67.5 

11 Φ2
LO 1 G,d,x,ρL ,ρV ,μL,μV ,σ,

1 − x
x

,
ρV
ρL
,
μV
μL

, (ρL − ρV)

32 2.9 16.8 -0.5 87.6 

12 Φ2
LO 2 G,d,x,ρL ,ρV ,μL,μV ,σ,

1 − x
x

,
ρV
ρL
,
μV
μL

, (ρL − ρV)

3 0.6 29.5 -5.1 61.3  
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parameter better manages to predict the frictional pressure drop out of 
the training database: the calculated MAPE for rationale 2 (ANN #12 in 
Table 2) is 29.5% and δ30=61.3%. 

5. Assessment of conventional predictive methods and 
comparison 

For comparison purposes, different conventional prediction methods 
have been implemented and tested with the present database. Among 
the numerous tool available in scientific literature, some of the most 
quoted ones (a homogeneous flow model, a two-phase liquid multiplier- 
based model, a two-phase liquid-only multiplier based model, the 
Müller-Steinhagen and Heck correlation and a mechanistic method) are 
here briefly presented and tested with the database at disposal. 

The homogenous model is based on the assumption that no slip oc-
curs between the liquid and the vapor phase, and therefore the two- 
phase flow is treated as a homogeneous mixture of liquid and vapor 
having averaged properties. According to the homogeneous model, the 
frictional pressure drop for a steady-state flow is: 
(

dp
dz

)

fr
=

2ftpG2

dhρtp
(6)  

where dh is the hydraulic diameter; the two-phase density ρtp is obtained 
as: 

ρtp =

(
x

ρV
+

1 − x
ρL

)− 1

(7) 

For the evaluation of the two-phase Fanning friction factor ftp, the 
typical hyperbolic expression for laminar flow and the Blasius equation 
for turbulent flow can be used: 

ftp = 16
/

Retp for Retp < 2300 (8)  

ftp = 0.079⋅Re− 0.25
tp for Retp > 2300 (9) 

Several homogeneous models are then available for the evaluation of 
the two-phase viscosity, needed for the calculation of the two-phase 
Reynolds number. In this work, the simple interpolation method of 
Cicchitti [75] has been employed, together with the modification of the 
homogeneous model by Tibiriçá et al. [74]: 

μtp = x⋅μV + (1 − x)⋅μL (10) 

Different models assuming a non-negligible velocity slip between the 

two phases are generally called separated flow models. On this regard, 
the methods by Lockhart and Martinelli [4], Friedel [7], Moradkhani 
et al. [75] and Kim and Mudawar [75] have been tested in this work. The 
first attempts the calculation of the liquid two-phase multiplier ac-
cording to the Martinelli parameter X: 

Φ2
L = 1 +

C
X
+

1
X2 (11)  

where C is a constant whose value depends on the characteristics of the 
single liquid and vapor phases (whether laminar or turbulent). 

The Friedel correlation [7], instead, aims at the evaluation of the 
liquid-only two-phase multiplier Φ2

LO by taking into account the effects 
of inertia, buoyancy and surface tension with the definition of the 
Froude and Weber non-dimensional numbers: 

Φ2
LO = C1 +

3.24C2C3

Fr0.045We0.035 (12) 

The C1, C2 and C3 parameters are a function of the vapor quality, 
density and viscosity of the liquid and vapor phases. 

The Müller-Steinhagen and Heck [10] correlation proposes instead a 
sort of geometrical average over the liquid-only and vapor-only sin-
gle-phase frictional pressure gradients. Despite its simplicity, it is 
worldwide recognized as one of the most effective predictive methods 
for the evaluation of the frictional pressure gradient during two-phase 
flow within a considerable range of substances and pipe dimensions. 

dp
dzfr

=

{
dp
dzLO

+ 2
[

dp
dzVO

−
dp
dzLO

]

x
}

⋅(1 − x)0.33
+

dp
dzVO

⋅x3 (13) 

Finally, the mechanistic models aim to a better understanding of the 
occurring phenomenon by using mass and momentum balances applied 
over a specific elementary control volume. Among them, the recent 
Mauro et al. [76] prediction method is tested for the present database. 
The resolution algorithm and the complete set of expressions, including 
the closure equations needed for the entrainment ratio, the atomization 
rate, the shear stress at the wall and at the liquid-vapor interface, are 
available in the original reference [76] and are not reported here for 
conciseness purposes. Since this method was developed for annular flow 
regime, all data points have been classified according to the flow pattern 
maps of Cheng et al. [77] in case of CO2 as working fluid and of Wojtan 
et al. [78] otherwise. Only annular flow data have therefore been 
considered to test Mauro et al. [76] mechanistic model. 

All the statistical parameters are summarized in Table 3, whereas a 
graphical comparison for the best methods in shown in Fig. 6, in which 
the red lines refer to an error band of ±30%. Müller-Steinhagen and 

Fig. 5. Error in prediction of the developed ANNs as a function of the experimental frictional pressure gradient. (a) ANN #1 in Table 2 (dimensional output and 8 
dimensional inputs); (b) ANN #11 in Table 2 (non-dimensional Φ2

LO output and 12 mixed inputs). 
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Heck correlation [10] provides the best statistics (although its use as 
outliers filter has conditioned this analysis), followed by the model of 
Tibiriçá et al. [74] and the mechanistic method of Mauro et al. [76] for 
annular flow, that provides the largest discrepancies for low pressure 
gradients, likely to be characterized by a higher relative uncertainty 
and/or probably not originally belonging to annular flow regime. The 
homogeneous model of Cicchitti [75] also works surprisingly well for 
the entire database, whereas the correlation of Lockhart and Martinelli 
[4] for the liquid two-phase multiplier gives high errors and a low 
percentage of data points falling in a ±30% error range. 

5.1. Trends with vapor quality and comparison with ANNs 

Some of the developed ANNs and the chosen correlations have been 
finally tested against an independent dataset not used for the training 
process (R1234ze fluid, mass flux of 200 kg/m2s, saturation temperature 

of -2.6◦C and tube diameter of 6.0 mm, by Grauso et al. [53]), by 
providing the predicted frictional pressure gradient trend versus vapor 
quality, as shown in Fig. 7. Almost any conventional predictive model 
(except for that of Lockhart and Martinelli) is able to catch the experi-
mental increasing and decreasing trend, with some numerical discrep-
ancies whose magnitude depends on the specific method used. As 
summarized also in Table 3, the correlations of Müller-Steinhagen and 
Heck [10] and Friedel [7], and the Mauro et al. [76] mechanistic model 
better cover the experimental values, especially for vapor qualities up to 
0.65. On the contrary, by choosing the best working developed ANNs, 
the physical trend with vapor quality is not preserved, except for the Φ2

LO 
output neural network #11, that fairly covers the experimental values. 
The remaining tools with Φ2

L as non- dimensional output provide a good 
accuracy for low vapor qualities but then the prediction is under-
estimated by a large amount. A non-physical trend is also observed for 
the best neural network developed with the dimensional output 
(dp/dz)fr. 

6. Conclusions 

Both artificial intelligence-based methods (shallow neural networks) 
and conventional correlations have been implemented in this paper to 
evaluate their accuracy in predicting the two-phase frictional pressure 
gradient in smooth tubes. To this purpose, more than 8000 two-phase 
frictional pressure drop experimental points have been collected and 
filtered from 49 independent sources in scientific literature. Several 
artificial shallow neural networks (having two hidden layers with an 

Table 3 
Assessment of the two-phase pressure drop conventional prediction methods.  

Correlation MAPE (%) MRPE (%) δ±30% (%) 

Homogeneous (Cicchitti et al. [75]) 27.8 -18.3 60.2 
Tibiriçá et al. [74] 24.2 +5.7 71.4 
Lockhart and Martinelli [4] 96.1 +86.4 31.1 
Friedel [7] 29.2 +9.3 68.1 
Moradkhani et al. [75] 48.1 -6.7 33.3 
Kim and Mudawar [76] 27.9 -0.9 63.2 
Müller-Steinhagen and Heck [10] 22.4 -8.7 73.0 
Mauro et al. [76] 27.7 -8.1 73.1  

Fig. 6. Experimental versus predicted frictional pressure gradient for the best working conventional predictive methods. (a) Homogeneous model (Cicchitti); (b) 
Tibiriçá et al.; (c) Müller-Steinhagen and Heck; (e) Mauro et al. 

A.W. Mauro et al.                                                                                                                                                                                                                              



International Journal of Heat and Mass Transfer 221 (2024) 125106

10

equal number of neurons each) as predictive tools have therefore been 
developed by changing some key settings such as number and type of 
inputs, type of output and the database shares for training and testing 
processes. The main outcomes of this research are summarized as 
follows:  

• The ANN can be fairly used as interpolation tool (in which the testing 
dataset is included in the training domain), since the MAPE index is 
similar when calculated for both datasets.  

• By using the ANN as extrapolating tool (in which the testing dataset 
is outside the domain of the training set of data) is not recommended, 
since the MAPE index is very different when calculated for the 
training and the testing database.  

• There is not a significant difference in accuracy when increasing the 
number of neurons in the hidden layers from 1 to 50. In this work, the 
best ANN configuration is always chosen as the one that minimizes 
the MAPE index when used with the independent testing database.  

• When using the liquid two-phase multiplier Φ2
L as non-dimensional 

output of the neural network, the accuracy improves only slightly 
by increasing the number of input non-dimensional parameters 
(from 1 to 22, including non-physical ones).  

• The use of the liquid-only two-phase multiplier Φ2
LO as non- 

dimensional output for the neural network and the use of mixed 
input parameters (both dimensional and non-dimensional) provides 
the best accuracy, with a MAPE of 16.8% and almost 88% of the 
testing points within a ±30% error range.  

• Most of the conventional predictive methods have a fair accuracy, 
with a calculated MAPE index between 22% (Müller-Steinhagen and 
Heck correlation [10]) and 29% (Friedel correlation [7]), and be-
tween 60% (homogeneous model with Cicchitti [75] two-phase 
viscosity) and 73% (Mauro et al. [76] mechanistic model) of data 
points falling in an error range of ±30%.  

• Most of the developed ANNs (except for the one with Φ2
LO as non- 

dimensional output) do not provide realistic trends with vapor 
quality, whereas this physical aspect is preserved with almost all the 
conventional predictive methods. 
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