

Some selected in situ characterization tools for MBE growth and their complementarity

Alexandre Arnoult, Pierre Gadras, Léo Bourdon, Guilhem Almuneau

▶ To cite this version:

Alexandre Arnoult, Pierre Gadras, Léo Bourdon, Guilhem Almuneau. Some selected in situ characterization tools for MBE growth and their complementarity. European Workshop on Innovative and Advanced Epitaxy, COST OPERA, Jun 2024, Vilnius (Lituanie), Lithuania. hal-04769109

HAL Id: hal-04769109 https://hal.science/hal-04769109v1

Submitted on 6 Nov 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Some selected in situ characterization tools for MBE growth and their complementarity

A. Arnoult, P. Gadras, L. Bourdon and G. Almuneau

LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Vilnius, 13/06/2024

- > In-situ control of growth: a global approach
- > An example structure: the growth of VCSELs
- > Focus on some tools
 - Spectral Reflectivity
 - Atomic Absorption Spectroscopy for direct flux measurement
 - Curvature
- > Complementarity
 - For alloy concentration/growth rates
 - In time scales
- > The case of GaAsBi growth
- > Conclusion

Issues: growth of complex materials

Ex-situ post-growth tools (XRD, SEM, (HR)TEM, PL, ...)

EpiCentre

Non-equilibrium

growth dynamic

processes

(atom mobility, growth rate,

involved energies, oblique

incidence, substrate

temperature....)

Coupled In situ and real-time diagnostics (stress, reflectivity, surface morphology, flux monitoring...)

No diagnostic tool provide a complete picture of the growth process, but coupling them in the same time base maximize their **complementarity**

Probe, understand

and tailor

EpiCentre

In-situ measurements at LAAS

A global approach: complementary tools to get a clear picture of growth processes

MBE412 - 4" III-V chamber

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Spectral reflectivity

- White light source
- CCD sensors

- > Temperature
 - Band-Edge Thermometry EZ-EDGE
 - Pyrometry
- > Fluxes (Atomic absorption Spectroscopy OFM)
 - Original tool (Patent FR1856743)

RIBER EZ-REF

- > RHEED: synchronised to rotation
 - In-plane lattice parameter, streaks intensity
- Roughness (Diffuse Light Scattering)
- > Curvature

RENATECH RENATEC

MIC : original tool (Patent FR175461)
 RIBER EZ-CURVE

In-situ measurements at LAAS

A global approach: complementary tools to get a clear picture of growth processes

- > Spectral reflectivity
 - White light source

RIBER EZ-REF

CCD sensors

Several tools

- synchronized to rotation
- in the same time base
- Inked to MBE control software
 - Roughness (Diffuse Light Scattering)
 - > Curvature

RENATECH RENATE

MIC : original tool (Patent FR175461)
 RIBER EZ-CURVE

MBE412 - 4" III-V chamber

AAS

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

An example structure: the growth of VCSELs

CNRS

RENATECH RENATECH

RENATECH

In-situ characterization tools: Spectral reflectivity

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Optical index evolution with Al concentration and temperature

Données :

M.A.A. Afromovitz, *Solid State Commun. (USA)*, **15**, pp59-63 (1974) K.P. O'Donnell, *Appl. Phys. Lett.* **58**, 2924 (1991)

Spectral reflectivity during the growth of a Bragg mirror

-AAS CNRS

AAS

In situ characterization tools in MBE: Atomic Absorption

In-situ characterization tools: *Atomic Absorption*

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

In situ characterization tools in MBE: Atomic Absorption

In situ characterization tools in MBE: Atomic Absorption

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

In-situ characterization tools: Curvature

In situ characterization tools in MBE: Curvature

Virtual image magnification analysis: MIC (Magnification Inferred Curvature) measures the magnification factor of a virtual image created by a surface (i.e. a wafer)

Curvature and stress are linked

> Usually, **three stress components** are distinguished:

Extrinsic stress

Induced by external factors: external loading, exposure to environment, ...

Stress/Curvature and crystal growth

Extrinsic stress

Wafer free to expand in holder \Rightarrow no <u>extrinsic</u> stress here

Curvature and stress are linked

- > Usually, **three stress components** are distinguished:
- Extrinsic stress here
 Induced by extended by extende

Intrinsic stress

 Stress source introduced during the MBE process : lattice mismatch, growth mode, relaxation, surface and/or interface stress, incorporation or desorption of impurities, phase transformations...

Curvature and stress are linked

- > Usually, **three stress components** are distinguished:
- Extrinsic stress here
 Induced by extended by extende

Intrinsic stress

Stress source introduced during the MBE process : <u>lattice mismatch</u>, growth mode, relaxation, surface and/or interface stress, incorporation or desorption of impurities, phase transformations...

In situ characterization tools in MBE: Curvature

Why thin films are usually in a stressed state?

The stress in the film leads to a bending of the system "film+substrate"

AAS

In situ characterization tools in MBE: Curvature

> Satisfying equilibrium conditions ($\Sigma F = 0$ and $\Sigma M = 0$) leads to the **Stoney equation**

 $\kappa = \frac{1}{\overline{R}_{stoney}} \cong \frac{6\overline{\sigma_f}h_f}{M_s h_s^2} \quad \text{with } Ms = \frac{E}{1-\nu}$

G.G. Stoney, The tensions of metallic films deposited by electrolysis, Proc. R. Soc. Land. A82 (1909) 172-175

LAAS-CNRS

1000

Thickness hf (nm)

RENATECH

1500

-6

-8

-10

0

500

RENATECH

MBE growth of GaAs/AlGaAs on a rotating

350 µm-thick (001) GaAs wafer at 600°C

Intrinsic stress

_AAS

LAAS-CNRS

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

LAAS-CNRS

Intrinsic stress

Intrinsic stress

LAAS CNRS

44

Intrinsic stress

45

Intrinsic stress

Curvature and stress are linked

- > Usually, **three stress components** are distinguished:
- Extrinsic stress here
 Induced by externa Induced by externa

2. Intrinsic stress

Stress source introduced during the MBE process : <u>lattice mismatch</u>, growth mode, relaxation, surface and/or interface stress, incorporation or desorption of impurities, phase transformations...

Thermal stress

Difference in <u>thermal expansion coefficients</u> between film and substrate

Stress/Curvature and crystal growth

Thermal stress

> > Because thermal expansion coefficient is material dependent, any change in temperature induces a change in stress/curvature of an heteroepitaxial stack.

Stress/Curvature and crystal growth

Thermal stress

> > Because thermal expansion coefficient is material dependent, any change in temperature induces a change in stress/curvature of an heteroepitaxial stack.

MIC Robustness to substrate rotation: anisotropy

Wafer : Single-side polished GaAs NID AXT (001) 50mm diameter 350µm thick Measured at 580C Rotation : 12RPM

Because **substrate is rotating**, it is possible to measure the curvature in any direction, and to get a clear view of its shape **in live**

Note : It is also possible to measure this complete shape on non-rotating substrates at normal incidence

-AAS CNRS

In situ characterization tools in MBE: Curvature

CNRS

Patented technique based on white light phase shifting **deflectometry**

RENATEC

RENATECH

No alignment 1 s acquisition 1 min processing

that goes beyond limits

See www.dip-view.com

In situ characterization tools in MBE: Curvature

MIC : some experimental results

RIBER EZ-CURVE

Tunnel jonctions for solar cells

Real-time observation of relaxation

RENATECH

RENATECH

_AAS

Complementarity for alloy concentration / growth rate measurement

> Stoney equation:

 $\kappa \approx \frac{6\overline{\sigma_f}h_f}{M_s h_s^2} = 6\frac{h_f}{h_s^2}\frac{M_f}{M_s}\varepsilon = -6\frac{h_f}{h_s^2}\frac{M_f}{M_s}\frac{a_f - a_s}{a_s} \qquad \text{Avec } M = \frac{E}{1 - \nu}$

Young Modulus

Compositional dependence of the elastic constants and the lattice parameter of AlGaAs Gehristz et al. PRB 60 (16), 1999

$$a_f = a_{AlGaAs} = xa_{AlAs} + (1 - x)a_{GaAs}$$

$$\kappa \approx -\frac{6h_{AlGaAs}}{{h_s}^2} \times x \times \frac{a_{AlAs}(T) - a_{GaAs}(T)}{a_{GaAs}(T)}$$

Growth rate: Curvature

$$k \approx -\frac{6h_{AlGaAs}}{h_s^2} \times x \times \frac{a_{AlAs}(T) - a_{GaAs}(T)}{a_{GaAs}(T)}$$
$$\frac{\Delta \kappa}{\Delta t} \approx -\frac{6 \times G_{AlAs}}{h_s^2} \times \frac{a_{AlAs}(T) - a_{GaAs}(T)}{a_{GaAs}(T)}$$

RENATECH

with
$$h_{AlGaAs} = G_{AlGaAs} \times t$$

= $(G_{GaAs} + G_{AlAs}) \times t$
 $x = \frac{G_{AlAs}}{G_{GaAs} + G_{AlAs}}$

LAAS CNRS

Reflectivity – Curvature complementarity

CNRS

Spectral reflectivity

RFNATE

RENATEC

Amplitude

Spectral reflectivity

RF

RENATEC

ATF

Amplitude

Spectral reflectivity

AAS

RENATE

RENATECI

Spectral reflectivity

AAS

RFNATF

RENATECI

Spectral reflectivity

RENATECH

> Reflectivity, Atomic Absorption and Curvature adress different time scales / thicknesses

	Reflectivity	Curvature	Atomic Abs.
10H / 10µm	+++	+++	+
1H / 1µm	++	+++	+
Minutes / 10 th nm	-	++	++
Seconds / ml	x	+	+++

Case of GaAs_{1-x}Bi_x MBE growth studied with the MIC curvature tool

Wide range of applications for GaAs technology

RENATEC

RENATECH

Bi incorporation in GaAs

→ Under 400°C : Bi incorporation with specific growth conditions

V/III atomic ratio (~1!)

AAS

Substrate temperature

Any small changes in these conditions induce high difference in Bi composition, and different electrical, optical and mechanical properties of the alloy

→ Above 400°C : Bi acts as a surfactant

Surfactant enhanced growth of GaNAs and InGaNAs using bismuth, Tixier and al., 2003

RENATE

RENATECH

Curvature and GaAsBi Growth

→ 350µm thick, 50mm
 diameter substrate
 → V/III atomic ratio near 1
 → G_{GaAs} = 0.3µm/h
 → Tsub = 265°C BandiT
 → 12 RPM rotation

→ Some peculiar events during the growth

.AAS

→ First nm: very low stress and incorporation (Bi segregation)

→ Change of surface reconstruction during GaAsBi layer

Constant growth parameters, two-step incorporation

-AAS

AAS

Better understanding : coupling of in-situ techniques

Rotating substrate:

- (001) GaAs
- 50mm dia.
- 150µm thick

resolution x5.4!

Curvature

Better understanding : coupling of in-situ techniques

Better understanding : coupling of in-situ techniques

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

AAS

 When facing peculiar dynamic conditions, in-situ analysis tools are mandatory

 Curvature measurements provide extremely rich information – MIC makes it accessible to MBE

Coupling in-situ tools

- \rightarrow Further understanding of the growth mechanisms
- Control of growth and properties of epitaxial materials and device structures

