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Abstract

In 5G networks, physical resources can be virtualized and
allocated to separate virtual networks (or network slices),
with distinct requirements. The Virtual Network Embed-
ding (VNE) problem consists in finding the optimal map-
ping of virtual resources (virtual links and nodes) onto a
physical infrastructure. A recent trend consists in virtu-
alizing 5G networks using Kubernates (K8s), a popular
virtualization technology.

In this paper we perform an experimental study to show
the limit of using the standard K8s deployment strategy
when dealing with dynamically arriving slices in a heavy
loaded setting. By deploying the virtual components of
a slice one by one, standard K8s is prone to wasting re-
sources and energy due to partially deploying slices that,
at the end, are found to be infeasible, due to lack of avail-
able resources. We propose an alternative K8s deployment
strategy that first solves VNE via a Genetic Algorithm and
then, for each slice, deploys either all its components or
none. Our experimental results show a notable improve-
ment in slice acceptance, energy efficiency and deploy-
ment time. Our work shows that it is necessary to adapt

cloud native technologies to the specific requirements of
telecommunication scenarios, as they are different from
the cloud ones for which such technologies were origi-
nally developed.

Keywords— 5G, Network Slicing, Virtualization, Ku-
bernetes, Energy Consumption, Acceptance Ratio, OAI,
UERANSIM

1 Introduction
Network slicing consists in creating multiple independent
virtual networks, called slices on top of a shared physical
infrastructure. Each slice can have different requirements
and be owned by different tenants. Network virtualiza-
tion and slicing can leverage containerization. Containers
package an application along with its dependencies into a
single portable unit. The different software components
of a slice can thus be packaged into containers. The net-
work operator, owning the physical infrastructure, aims to
determine the placement of the slices’s components to ap-
propriate physical nodes, in order to maximize the number
of deployed slices while minimizing the overall energy
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Table 1: Experimental Approaches
References Experiment/Approach Focus and Contributions

[1] Containerized Applications Designing applications for slices using K8s and
Amazon services.

[2] 5G Core Emulation Platform Experimental framework on K8s for 5G core net-
work.

[3] Greedy Algorithm Deploying 5G network slices using the greedy
algorithm.

[4] VM Deployment and Scheduling Experiments involving scheduling slices on dif-
ferent VM flavors.

[5] Prototype 4G Core on K8s Implementing 4G core networks as slices on K8s
with scheduling.

[6] Cloud-Native Telecom Functions Introducing cloud-native telecom functions on
K8s.

This Paper Scheduling 5G VNFs using a Genetic Algorithm
(GA)

Leveraging K8s for network slicing, experiments,
and 5G core integration, considering the entirety
of pods within the slice during the orchestration
phase.

consumption, subject to physical resource capacity and
slices’ requirements. This problem is referred to as Virtual
Network Embedding (VNE). Kubernetes (K8s) has been
recently used as a virtualization technology for slicing [6].
In this framework, a slice consists of a set of virtualized
network functions, each packaged into a container running
inside a pod. Several slices arrive and depart over time.
The deployment strategy is implemented into a K8s sched-
uler, which is the agent that decides in which physical node
each pod of each slice must be placed.

We pinpoint that K8s has been developed for cloud
environments, where resources are abundant and can be
practically assumed unconstrained, since one can get as
much resource as needed as long as one pays for it. In
the cloud, the main question is thus where to place pods.
However, such assumption may not hold in a telecommu-
nication scenario, where network operators may not have
the economic ability or willingness to over-dimension the
deployed physical resources. In this case, in certain pe-
riods resources might be too scarce to accommodate all
arriving slices. Therefore, the question of whether it is
possible to place all pods of a slice arises. This imposes a
change in the standard K8s scheduling discipline. While
the standard K8s scheduler places the different pods of a
slice one after another, we propose a strategy that takes a
comprehensive view of all pods within a slice and decides
whether to place them all (and where) or to place none.
The decision is based on a Genetic Algorithm (GA).

We emphasize that the core idea of our approach is
quite simple: before starting to deploy a slice, the sched-
uler must compute a feasible placement for the entire slice.
If it does not exist, it does not deploy any of its pods (as
standard K8s would do), as this would just waste time, en-

ergy and resources, which could instead be used for pods
of other feasible slices arriving in the near future. There-
fore, the contribution of this paper does not lie in some
intricate algorithmic solution. It instead mainly consists
in showing, in an experimental setting, that the re-use of
a Cloud technology, such a K8s (popular nowadays for
virtualizing 5G networks) requires an appropriate adapta-
tion to be effective in telecommunication scenarios. The
adaptation we propose is materialized in our scheduler,
which brings improvement in energy efficiency, slice ac-
ceptance and deployment time, also thanks to intelligent
placement decisions based on a GA. We release the code
of the scheduler and the experiments as open source.1

The paper is organized as follows: Sec. 2 discuss the
related work. Sec. 3 presents the detailed virtualization
environment. In Sec. 4, we discuss slice deployment on a
physical infrastructure and describe the proposed schedul-
ing strategy. Sec. 5 shows our experiments and Sec. 6
concludes the paper.

2 State of the Art

In this section, we provide an overview of the existing re-
search in the realm of network slicing and VNE. The first
subsection discusses practical experiments and empirical
investigations in the context of network slicing orchestra-
tion. The second subsection delves into the theoretical
underpinnings of VNE algorithms.

1https://github.com/AIDY-F2N/setpod-scheduler
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Table 2: Summary of Related Works in VNE
Methodology or Algorithm References Focus and Contributions

ILP, MILP [7], [8] Optimization algorithms for VNE, ex-
plores ILP and MILP formulations.

Genetic Algorithm [9], [10], this work Application of Genetic Algorithm for
near-optimal VNE.

Simulated Annealing [11] Utilizing Simulated Annealing to tackle
VNE challenges.

Ant Colony Optimization [12], [13] Investigating Ant Colony Optimization
for VNE optimization.

Survey [14], [15], [16] Early and extended surveys providing in-
sights into VNE problem.

Reinforcement Learning [17]„ [18] Exploration of Reinforcement Learning
for addressing VNE.

Graph Theory [19] Usage of graph theory-based solutions
for addressing VNE.

2.1 Experimental Work
Two papers describe, from a system-level point of view,
how network slicing can be realized using K8s. The plat-
form described in [6] is able to host cloud-native tele-
com functions, using K8s and Openshift Operator, and
to perform 5G network automation. in a cloud environ-
ment. Similar to [6], our previous preliminary paper [5]
describes how to prototype 4G core network slices on a
K8s cluster. Since the aforementioned two articles focus
on the architectural and procedural aspects, they do not
provide any performance evaluation.

In [1], an approach to realize network slicing based on
K8s and Amazon’s services is presented, together with a
scaling algorithm. The authors of [2] introduced an exper-
imental framework using an emulation platform with the
5G core architecture running on a K8s cluster. Their work
highlighted the monitoring and lifecycle management of
5G networks. While we also use K8s for containeriz-
ing a 5G network (using the Open Air Interface (OAI)
code [20]), we focus on scheduling algorithms rather than
scaling or lifecycle management strategies, i.e., we are in-
terested in correctly deciding whether to deploy a slice and,
if yes, in which nodes to deploy each of its components. A
greedy algorithm for mapping Virtual Network Functions
(VNFs) on physical machines is presented in [3]. Eval-
uation is performed in simulation, which cannot capture
the waste of energy and deployment time related to the
scheduler decision, which is instead central to our work.

In [4], the authors conduct a series of experiments to
test different virtual machines’ capabilities that may suit
different slices. Slices are deployed on different virtual
machine flavors using OAI 4G Evolved Packet Core (EPC)
code, including the radio part and Commercial Off The
Shelf (COTS) UEs. However, in their work slices are
considered fixed, while we assume a dynamic scenario,

where slices arrive and depart. It is in such scenario that
we can assess the unsuitability of standard K8s scheduling
for a resource constrained telecommunication operator.

Previous experimental efforts are summarized in Ta-
ble 1. We observe that experimental work on the per-
formance of scheduling, in terms of energy, time-of-
deployment and slice acceptance, in a scenario with dy-
namic slice arrivals and departures and in a cloud-native
environment is missing. This paper aims to fill this gap.

2.2 Virtual Network Embedding (VNE)
Virtual Network Embedding (VNE) consists in finding the
optimal mapping of virtual network functions (VNFs) and
the virtual links connecting them onto a physical network.
A VNF is mapped onto a physical node (representing, for
instance, a machine) and a virtual link is mapped into a
path of physical links. The objective is usually to minimize
resource usage, i.e., bandwidth and/or CPU cycles [18], or
energy [21]. The mapping should satisfy the requirements
of the slices, which can be expressed in terms of minimum
resources to be allocated [18] or in terms of minimum
latency requirements [21]. Moreover, the CPU and the
bandwidth capacities of the physical nodes and links must
not be exceeded.

Among the large corpus of surveys on VNE, we bring
to the reader’s attention some representative ones, such
as [14–16].

The state-of-the-art solutions for VNE problem are
mainly based on optimization algorithms such as Inte-
ger Linear Programming (ILP) [7], Mixed Integer Linear
Programming (MILP) [8]. However, the VNE problem is
proven to be NP-hard [14,16], which precludes exact solu-
tions in large scale cases. Metaheuristics such as Genetic
Algorithms (GAs) [9,10], Simulated Annealing (SA) [11]

3



and Ant Colony Optimization (ACO) [12,13] are thus em-
ployed to find near-optimal mappings. Other solutions are
based on graph theory [19]. Recently, Montecarlo Tree
Search [18] and Reinforcement Learning [17] have been
applied to VNE.

Observe that in VNE, slice tenants are usually assumed
to specify a-priori the amount of CPU and bandwidth they
require to be allocated to their virtual functions and virtual
links. This is also the assumption we will adopt in this
paper. It is also possible to assume, instead, that tenants
just require a certain latency requirements to be satisfied
and that it is up to the network operator to decide how
much CPU cycles and bandwidth to allocate to each virtual
components in order to meet such requirements. This point
of view, complementary to VNE, is adopted in [22].

Table 2 summarizes the work on VNE.

3 Virtualization environment
Our work is based on K8s. K8s is a widely used and
popular orchestration platform for managing containerized
applications. Other container orchestration tools are avail-
able, such as Docker Swarm, Apache Mesos, and Amazon
ECS. K8s may be preferred over the others due its large
community and ecosystem and its support for multi-cloud
or hybrid cloud deployments. Although K8s is the orches-
trator to which we refer, this choice does not represent a
limit in the generality of the proposed approach, which
could be replicated in other platforms.

In K8s, a node is a worker machine that runs container-
ized applications. It is a physical or virtual machine that
is part of a cluster managed by the K8s control plane.
Each node in a physical network infrastructure (K8s clus-
ter) requires resources like CPU, memory, and storage,
and also incurs operational costs such as electricity, cool-
ing, and maintenance. Nodes are responsible for running
one or more containers, which are packaged and deployed
as pods. A pod in K8s is the smallest and simplest unit
in the K8s object model. It represents a single instance
of a running process in a cluster and can contain one or
more containers that share the same network namespace
and storage volumes and are deployed on the same host.
Containers within a pod are scheduled to run on the same
physical or virtual machine. Pods provide an isolated envi-
ronment for containers to run in, encapsulating the appli-
cation’s processes, storage, and networking. Pods can be
created, updated, and scaled by using K8s manifests, which
are configuration files written in YAML or JSON format.
Pods can be automatically rescheduled on different nodes
in case of node failure or during scaling operations. K8s
manages pods by scheduling them to appropriate nodes,
monitoring their health, scaling them, managing their net-
working, handling updates and rollbacks, and performing

clean-up tasks during termination.
In a network slicing scenario, where a single physical

network infrastructure is partitioned into multiple virtual
networks (slices), in order to cater to different services
or applications, pods can be used to deploy and manage
containerized applications within those slices. The pods
can be configured with the necessary resources, such as
CPU and memory requests, based on the service require-
ments of the network slice. The CPU request specifies
the minimum amount of CPU required for the pod to run,
while the memory request specifies the minimum amount
of memory required. These requests are used by the K8s
scheduler to ensure that pods are deployed on nodes with
sufficienrandomlyt reserved resources to run them. By re-
serving the requested resources on the node, the scheduler
ensures that the pod has access to those resources when it
is scheduled to run. Additionally, pods can be used to en-
able multi-tenancy within network slices, where different
tenants or users can have their own isolated containerized
applications running within separate pods while sharing
the same network slice infrastructure. This allows for
efficient resource utilization, isolation of tenant-specific
applications, and simplified management of containerized
applications within network slices.

In this work, we assume that a slice consists of a set
of pods that host network functions. Pods may have de-
pendencies that require a specific order of deployment to
ensure proper communication between them. We assume
that we have several slices to deploy on a physical network
infrastructure managed by a network operator. A slice is
deployed if all the pods of the slice have been deployed
in the physical network infrastructure, respecting the ap-
propriate order of deployment and the CPU and memory
requests. Our objective is to maximize the acceptance
ratio by deploying as many slices as possible while min-
imizing the energy consumption of the physical network
infrastructure. It is worth noting that modeling the prob-
lem of network slicing can vary depending on the specific
requirements, constraints, and goals of the network slic-
ing scenario, and may require further customization or
refinement based on the specific context of the network in-
frastructure and services being provided. Furthermore, the
optimization of the network slicing process may be based
on other goals, such as minimizing resource utilization and
minimizing latency.

4 Deploying slices on a K8s cluster
In this section, we discuss slice deployment on a physi-
cal network infrastructure and describe the K8s standard
scheduler and our proposed scheduler. Kube-scheduler
is a key component of the K8s control plane responsible
for scheduling pods to run on specific nodes within a K8s
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cluster. It ensures that pods are deployed to appropriate
nodes based on the defined constraints, such as resource
requirements, affinity rules, and other scheduling policies.
In the following, the default scheduling algorithm used by
Kube-scheduler is presented.

4.1 Default K8s scheduler
The default scheduling algorithm used by Kube-scheduler
in K8s is known as the “default scheduler” or “predicate-
based scheduler” [23]. This algorithm follows a two-step
process:

1. Predicates: During the first step, the scheduler applies
a series of predefined filtering rules called “pred-
icates” to determine which nodes are eligible for
placing a pod. Predicates consider factors such as
resource requirements (e.g., CPU, memory), node
conditions (e.g., node capacity, node readiness), and
other scheduling constraints (e.g., node selectors,
taints/tolerations) [24].

2. Priorities: After applying predicates, the scheduler
assigns a priority score to each eligible node based
on a set of predefined rules called “priorities”. Pri-
orities are used to rank the eligible nodes by order of
preference.

After ranking the nodes, the scheduler selects the
highest-scoring node as the optimal placement for the pod.
If multiple nodes have the same highest score, the sched-
uler may use additional tie-breaking rules to make the final
decision [23].

4.2 Disadvantage of deploying a slice pod by
pod

For a given slice of 𝑛𝑠 pods, the “default scheduler” de-
ploys the slice pod by pod, deciding for each pod the node
on which it will be deployed independently of the other
pods. When deploying a given slice using the “default
scheduler”, some problems may arise:

• Inappropriate resource exploitation: Deploying pod
by pod can lead to inappropriate resource exploita-
tion. Indeed, because the scheduler makes decisions
based on incomplete information, local optima are
easily reached. The placement of a pod may seem
optimal in terms of resource usage at a given instant,
but it may turn out to be inefficient when other pods
need to be scheduled in the future and may lead to the
impossibility of scheduling a full slice using the re-
maining resources. For example, assuming we want
to deploy a slice consisting of 4 pods to a platform of
two physical nodes, each with the capacity to provide

8 cores. Pods 1 and 2 have a CPU request of 2 cores,
and pods 3 and 4 have a request of 5 cores. Figure 1
shows a first deployment, pods 1 and 2 are deployed
on node 1 and pod 3 on node 2.

Figure 1: Deployment of 3 pods out of 4.

The new CPU capacities of the two nodes after de-
ploying the first 3 pods are 4 cores for node 1 and 3
cores for node 2. The deployment of pod 4 is there-
fore impossible because neither of the two nodes has
the 5-core capacity required by pod 4. A better as-
signment of pods to nodes would be the deployment
shown in Figure 2. The remaining CPU available on
the two nodes after deploying the slices is 1 core for
node 1 and 1 core for node 2.

Figure 2: Deployment of 4 pods out of 4.

This example shows that the “default scheduler” fo-
cuses only on the pod level. However, such a method,
no matter what strategy is used, can lead to sub-
optimal solutions from the perspective of a slice de-
ployment. In other words, a feasible slice deployment
might need to consider the deployment of all the pods
within a slice holistically.

• More nodes than necessary are used: Deploying pod
by pod may lead to the utilization of more nodes
than necessary, because the choice of deploying some
pods can saturate the resources of some nodes in a
way that the rest of the pods of the slice will need
other nodes for their deployments, thus increasing the
overall cost of operating the cluster. In the example
shown in Figure 1, pod 4 would need a 3rd node for
its deployment, while it would have been possible to
deploy all the pods using only two nodes (Figure 2).
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• Deployment of unnecessary pods: a slice is deployed
if all its pods are deployed. However, by deploy-
ing the slice pod by pod, it is possible that after the
deployment of the first pods, the available resources
will not be sufficient for the deployment of the re-
maining pods, the slice is then refused. However,
some pods have already been deployed and thus have
to be deleted as they are not needed by any valid slice.
This implies a waste of time and unnecessary energy
consumption related to the deployed pods.

4.3 Proposed scheduler
K8s uses a scheduling framework that allows different
scheduling algorithms to be implemented and used with
the Kube-scheduler component. To avoid the above-
mentioned problems, we have proposed a new scheduler.
Unlike the “default scheduler”, the proposed scheduler first
checks whether it is possible to find a feasible assignment
of the pods to the cluster nodes respecting resources and
labels constraints. Only if such an assignment is found,
the scheduler starts the deployment of the pods compos-
ing the slice. Otherwise, it rejects the slice and no pod is
deployed.

4.4 Virtual Network Embedding problem
We consider a simplified VNE model and we do not con-
sider the links between pods and the links between nodes.
Scheduling pods on a K8s cluster can thus be viewed as a
bin packing problem [25] where the main goal is to deploy
a set of items (the pods of the slices in our case) using
a minimum number of bins (physical nodes in our case).
However, while bin packing problems are generally de-
fined in a static scenario, where all the items to be placed
are known in advance, we consider instead a dynamic sce-
nario, where slices (which can be viewed as a set of pods)
arrive and depart. In such a dynamic scenario, our goal is
to maximize the acceptance ratio. The acceptance ratio is
1 minus the rejection ratio, which is the fraction of slices
that have arrived but have not been placed. This occurs
when no mapping of virtual nodes onto physical nodes
has been found that is feasible, i.e., that respects the node
capacity constraints.

4.5 Genetic algorithm run by the proposed
scheduler

The algorithm used for pod assignment to the nodes is
a Genetic Algorithm (GA). GA is a metaheuristic that
takes inspiration from the biological processes that drive
evolution. We chose GA since they are powerful in opti-
mizing complex problems and also relatively easy to im-
plement. Their ability to efficiently explore large solution

spaces makes them an ideal choice for tackling intricate
optimization challenges with impressive runtime perfor-
mance. Recall that the main focus of this paper is not in
the algorithm used for deciding pod mapping, rather it is on
studying a deployment discipline, alternative to standard
K8s, which takes into consideration the requirements of
the entire slice before deploying nodes one after another.
In order to study such deployment discipline, it is sufficient
to adopt any intelligent algorithm to decide mapping, and
GA was a perfect fit for this. Other work may focus, in the
future, in replacing GA with any other mapping algorithm,
complex or advanced at will. The details of each step are
explained in the following.

Begin

Initial population

Calculate the fitness value

Selection

Crossover

Mutation

Is this
termination

criteria
satisfied?

End

no

Yes

Figure 3: The different steps of a classical genetic algo-
rithm.

4.5.1 Initial population

We define a chromosome as a solution that contains an
assignment of each pod to a physical node. The selection
of the initial population of chromosomes is a very impor-
tant step for the GA, which could significantly impact the
solutions obtained in the next steps. A chromosome is
built by following two steps:

• Firstly, we select the set of possible physical nodes
for each pod. To be selected, the physical node must
have sufficient available resources, such as CPU and
memory, and must have the necessary software de-
pendencies installed to support the containers of the
pod. The physical node must not already be running
any other pods that would cause conflicts or exceed
its capacity and must be labeled with the appropri-
ate labels that match the pod’s selector so that it can
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be scheduled to the correct node. Labels in K8s are
key-value pairs that are attached to resources such
as nodes, pods, services, and deployments. They
are used to organize and categorize resources in a
meaningful way, making it easier to manage and ma-
nipulate them. Labels can be used to select a specific
set of resources based on their characteristics, such
as their role, environment, version, or owner. A de-
fault number of labels is defined by K8s for each pod
(hostname, role, OS, etc.). If a pod specification in-
cludes a node selector or specific rules that require
specific labels to be present on the node, the sched-
uler will only consider nodes that have those labels
as candidates for scheduling the pod. Finally, the set
of selected nodes must be in a healthy state and able
to communicate with the rest of the cluster to ensure
the proper functioning of the pod.

• Secondly, we assign each pod to exactly one physical
node randomly using a uniform probability distribu-
tion.

4.5.2 Calculate the fitness value

The fitness function takes a chromosome as input and
evaluates how “fit” or “good” the solution is with respect to
the different constraints of the problem. The fitness value
of each chromosome is calculated according to the number
of pods that can be deployed without violating the resource
constraints, and the number of labels of the selected nodes
to which each pod is deployed. For each chromosome 𝑐ℎ𝑘 ,
first, we calculate 𝑛(𝑐ℎ𝑘) the number of pods that can
be deployed according to the assignment defined in the
previous step without violating the resource constraints.
If all pods can be deployed, the chromosome represents
a feasible solution. Secondly, for the 𝑛(𝑐ℎ𝑘) pods that
can be deployed without violating the resource constraint,
we compute 𝑙 (𝑐ℎ𝑘) the sum of the labels of the selected
nodes for their deployment. For each chromosome 𝑐ℎ𝑘 ,
the fitness value 𝑓 (𝑐ℎ𝑘) is then defined as follows:

𝑓 (𝑐ℎ𝑘) = 𝑛(𝑐ℎ𝑘) +
1

𝑙 (𝑐ℎ𝑘)
. (1)

We consider that the best chromosome is the one with
the highest value 𝑓 (𝑐ℎ𝑘). So, if several chromosomes rep-
resent feasible solutions, the chromosome that uses nodes
with the minimum number of labels is the best. The idea
is to minimize the usage of nodes that have a high pod
coverage (that can host pods with many labels), in order to
maintain sufficient specific resources for future slices.

4.5.3 Parent selection

Parent selection is the process of selecting the fittest chro-
mosomes and allowing them to pass their genes to the next

generation. We select the best 𝑁
2 chromosomes as parents

for a population of 𝑁 chromosomes.

4.5.4 Crossover

Crossover is a genetic operation used to make the program-
ming of some chromosomes vary from one generation to
the next. Two chromosomes (parents) are selected us-
ing selection operators, while crossover sites are chosen
randomly. The genes at these crossover sites are then ex-
changed, creating a completely new chromosome. From
the best 𝑁

2 chromosomes previously selected, 𝑁
2 new chro-

mosomes are generated following the steps outlined below:

• First, we form 𝑁
2 pairs of chromosomes from the best

chromosomes randomly.

• For each pair, we randomly generate a crossover point
𝑐 between 1 and 𝑛𝑠, where 𝑛𝑠 is the number of pods
in the slice. We then concatenate the 𝑐 first selected
physical nodes of the first parent and the last 𝑛𝑠 − 𝑐

selected physical nodes of the second parent to form
the selected physical nodes of the new chromosome.

4.5.5 Mutation

Mutation occurs to maintain diversity within the popula-
tion and prevent premature convergence. The key idea is
to insert random genes into offspring to maintain popu-
lation diversity. At each iteration, we generate a random
number 𝑘 between 1 and 𝑁

4 . Then, 𝑘 chromosomes are
selected randomly from the new population to be modified
in this iteration. For each selected chromosome, 𝑛𝑠

4 muta-
tion pods are chosen randomly, and the selected physical
nodes of these pods are modified (generating a new node
assignment for each pod), thus creating a new chromo-
some.

4.5.6 Termination

First, we check whether the set of possible physical nodes
for each pod contains at least one physical node. If this is
not the case, we stop the algorithm because it is impossi-
ble to find a feasible solution. Otherwise, after selecting
the initial population, the different steps of the algorithm
(Fitness value, Selection, Crossover, Mutation) are exe-
cuted over 𝐼𝑡 iterations. The algorithm terminates when
we reach the number of iterations 𝐼𝑡. For a slice of 𝑛𝑠

pods and a cluster of 𝑛𝑐 nodes, the population size 𝑁 is
set to 𝑁 = 𝑉𝐴𝑅 × 𝑛𝑐 × 𝑛𝑠, and the number of iterations
𝐼𝑡 is set to 𝐼𝑡 = 2 × 𝑉𝐴𝑅 × 𝑛𝑐 × 𝑛𝑠 = 2𝑁 . The parameter
𝑉𝐴𝑅 plays a crucial role in determining the trade-off be-
tween solution quality and computation time. By default,
𝑉𝐴𝑅 is set to 15. Adjusting the value of 𝑉𝐴𝑅 allows for
a fine-tuning of the algorithm’s behavior. If 𝑉𝐴𝑅 is set
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to a larger value, the genetic algorithm may yield a more
accurate solution due to an increased exploration of the
solution space. However, it is important to note that this
may come at the cost of extended computation time. On
the other hand, setting𝑉𝐴𝑅 to a smaller value can expedite
the convergence of the algorithm, leading to faster results.
Nevertheless, there is a potential risk that the algorithm
may not find a good solution, as a smaller 𝑉𝐴𝑅 may limit
the exploration of the search space.

If a feasible solution is found, the scheduler deploys
the slice pod by pod respecting the imposed deployment
order. The proposed scheduler is designed to manage
applications composed of a set or group of pods. We have
named it Setpod-scheduler (check Algorithm 1).

Algorithm 1 GA-Based algorithm run by Setpod-
scheduler

0: Initial Populations: For each pod,

• Select the set of possible physical nodes.

• Assign the pod to exactly one physical node ran-
domly.

0: if (each pod contains at least one physical node) then
0: for (𝑖 = 0 to 𝐼𝑡) do
0: Calculate the fitness value of each chromosome
0: Select the best chromosomes as parents
0: Perform crossover
0: Perform mutation
0: end for
0: else
0: No feasible solution.

5 numerical results
To evaluate our scheduler, we compare Setpod-scheduler
and Kube-scheduler in several scenarios, using a K8s clus-
ter, and a 5G platform composed of a 3GPP-Compliant 5G
core network and a simulated RAN. Figure 4 shows the
experimental scheme, we detail each part in the following.

5.1 Description of physical network infras-
tructure

In our lab, the physical network infrastructure consists of
a K8s cluster consisting of one master and two workers.
Each worker consists of an Intel Core i7-6600U processor
and 16GB of system memory. The master includes an
11th Gen Intel(R) Core(TM) i7-11850H processor, which
is equipped with 16 cores, and features 32GB of system
memory.

5.2 Description of the platform used
We deploy in our platform the code of the Open Air Inter-
face (OAI 5G) Core Network [20]. All the features of the
OAI 5G core network components are continuously tested
with professional testers, commercial gNBs (with COTS
UE), and open-source RAN simulators. Furthermore, we
are considering slices with multiple pods, each pod repre-
senting a VNF of the 5G core. OAI code is open-source
and cloud-native. It implements the 5G Release 16 Core
Network virtual functions as pods on the top of K8s clus-
ter [20]. A total of 8 pods ensure the operations of the OAI
Core Network (MySQL, NRF, UDR, UDM, AUSF, AMF,
SMF, SPGW-U) [26]. In addition, we connect the code of
the UERANSIM simulator [27] to the 5G OAI Core Net-
work. UERANSIM is the open source 5G UE and RAN
(gNodeB) simulator considered as a 5G mobile phone and
a base station in basic terms. We use it to generate the
traffic inside the slice and measure the performance and
energy consumption. The two worker nodes are used to
run the OAI Core Networks. The master node is used to
run the simulated GNB and the UEs of UERANSIM with
traffic generated for each UE. A wattmeter is used to mea-
sure the power consumption of both workers, as shown in
Figure 4. The used code is available online [28].

Nevertheless, due to the novelty of 5G and network
slicing concepts, we are implementing a slice as a whole
5G core network including one control plane and one data
plane. Therefore, the notion of multiple data paths sharing
the same control plane is not considered in this paper.

5.3 Description of the emulation scenario
We compare Kube-scheduler and Setpod-scheduler across
50 distinct scenarios involving arrivals and departures of
independent 12 slices. To generate the arrivals and depar-
tures of the slices, a uniform random variable 𝑥 is sampled
from the range [0, 1]. We introduce a parameter 𝑃 to serve
as a threshold for distinguishing between new arrivals and
departures. Specifically, if 𝑥 > 𝑃, we generate an ’arrival
of a slice’ event; otherwise, we generate a ’departure of a
slice’ event. The parameter 𝑃 can be interpreted as the de-
partures/arrival ratio. We vary 𝑃 across different scenarios
to demonstrate its impact on the acceptance rate.

Figure 4 shows a scenario containing the arrivals and
departures of 5 slices. (0,’arrival’,5) means that the slice
number 5 arrives at time 0.

For each slice, we randomly generate the CPU request
of each pod between 100𝑚(equivalent to 0.1 CPU or 100
milliCPU) and 300𝑚 using a uniform probability distri-
bution. The memory request of each pod is generated
between 128 Mebibytes and 512 Mebibytes using a uni-
form probability distribution. In practice, the CPU de-
mands of pods in cloud or containerized environments
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Figure 4: Experimental scheme used to compare the two schedulers.

often vary between minimal usage (e.g., for lightweight ap-
plications) and higher usage (e.g., for resource-intensive
computations). Therefore, the range of 100𝑚 to 300𝑚
for CPU requests allows for the simulation of a diverse
set of pod workloads, encompassing both lightweight and
more computationally intensive applications. Similarly,
for memory, the selected range of 128 Mebibytes to 512
Mebibytes aligns with the diverse memory requirements
of pods in practical deployments. This range accommo-
dates the needs of pods ranging from those with modest
memory footprints to those with more substantial memory
demands, reflecting the heterogeneity often encountered
in real-world scenarios. The use of a uniform probability
distribution within these specified ranges ensures that each
potential value is equally likely, providing a fair represen-
tation of the spectrum of possible resource demands. This
approach aims to capture the inherent variability in work-
load characteristics, contributing to a robust and realistic
simulation environment for our experiments.

We set the 𝑉𝐴𝑅 parameter value to 15 for the genetic
algorithm. Leveraging just two nodes for deploying the
core network of each slice, comprising 8 pods, the popula-
tion size is equal to 𝑁 = 15× 2× 8 = 240, and the number
of iterations 𝐼𝑡 is equal to 𝐼𝑡 = 2 × 𝑁 = 480.

5.4 Experimental results
Figures 5, 6 and 7 show the comparison results between
Kube-scheduler and Setpod-scheduler for 𝑃 = 1, 𝑃 = 3
and 𝑃 = 5 respectively.

We employ three criteria for conducting comparisons:

• Acceptance ratio: The percentage of slices success-
fully deployed on the physical network infrastructure.

• Average energy consumption: The energy consump-
tion generated by the deployment of a slice.

• Average deployment time: Comparison of the aver-
age time taken for deployment per slice.

We notice that by decreasing the value of 𝑃, the ac-
ceptance ratio decreases for both schedulers, moving from
19% for 𝑃 = 1 to 64% for 𝑃 = 5. This is quite log-
ical, because the smaller the value of 𝑃, the higher the
number of simultaneous slice arrivals. Deploying several
slices without releasing them saturates the resources of
both workers, which implies the rejection of several slices,
thus giving a low acceptance ratio. The acceptance ratio
of the two schedulers is identical for 𝑃 = 1, with a small
advantage for Setpod-scheduler for 𝑃 = 3 and 𝑃 = 5.
Regarding energy consumption, it is crucial to highlight
the potential impact of the deployment strategy on re-
source efficiency. The risk of deploying unnecessary pods
poses a challenge to resource optimization. When employ-
ing Kube-scheduler, which tends to deploy slices even in
resource-constrained scenarios, this may contribute to in-
creased energy consumption, averaging around 80 𝑘𝐽. In
contrast, the Setpod-scheduler, with its more efficient de-
ployment approach, demonstrates a lower average energy
consumption of approximately 55 𝑘𝐽. This efficiency not
only results in energy savings but also correlates with a
shorter average deployment time per slice, taking only
about 155 seconds, compared to the approximately 240
seconds required by Kube-scheduler. The observed time
difference is not attributed to the genetic algorithm which
gives a solution in less than 0.1 second for deploying a
slice on the used platform; instead, it is associated with
kube-scheduler deploying pods that are deemed unneces-
sary when the available resources cannot accommodate
all pods within the slice. This phenomenon leads to time
inefficiencies, resulting in an elevated average deployment
duration. It is worth noting that the genetic algorithm’s re-
markable speed in generating solutions is attributed to its
inherent parallelism and efficient exploration of the solu-
tion space. Genetic algorithms, by nature, excel in parallel
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Figure 5: Kube-scheduler vs Setpod-scheduler for 𝑃 = 1.

Figure 6: Kube-scheduler vs Setpod-scheduler for 𝑃 = 3.
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Figure 7: Kube-scheduler vs Setpod-scheduler for 𝑃 = 5.

processing and can swiftly converge towards feasible so-
lutions. However, as the complexity of the optimization
problem increases or the solution space becomes more
intricate, the algorithm’s execution time may experience
variations. In our specific scenario, the relatively sim-
ple deployment task contributes to the genetic algorithm’s
rapid performance. Nevertheless, the efficiency of genetic
algorithms remains subject to the intricacy and scale of
the optimization problem at hand.

6 Conclusion and Future Perspec-
tives

In this work, K8s is used as a virtualization technology
to abstract physical resources into virtual resources, and
two schedulers are compared to deploy the virtualized re-
sources of different slices on a common physical infras-
tructure. The goal is to maximize the acceptance ratio by
deploying as many slices as possible while minimizing the
energy consumption of the physical infrastructure. The
experimental results demonstrate the importance of using
a good slice scheduler for efficient network slicing orches-
tration. Unlike the default K8s scheduler that deploys the
pods of a slice one by one, Setpod-scheduler deploys all
the pods within a slice holistically (all pods or nothing).
Setpod-scheduler has shown its efficiency in terms of en-
ergy consumption and average deployment time per slice
compared to Kube-scheduler, with a good acceptance ra-
tio. Setpod-scheduler is available online and can be tested
on various platforms [29].

There are several extensions that we can see to this
work. In the context of network slicing, it would be in-
teresting to add more constraints, such as bandwidth and

latency on the links between pods, and to observe the be-
havior of the scheduler in terms of QoS. Moreover, we
used only a small cluster of 3 machines to compare the
two schedulers. We plan to conduct larger-scale experi-
ments in the future to determine the behavior of the GA
by increasing the population size and the number of iter-
ations. Also, we are interested in investigating other use
cases that have a dependency within the pods of a slice.
This helps in ensuring the generality of our scheduler to
any use case of a multi-pod slice deployment (other than
the 5G core). Finally, a dedicated scheduler for network
slicing should manage the orchestration of slices without
having the information related to the arrival and departure
of slices in advance. Thus, an efficient scheduler should
deploy a slice in a way that facilitates the scheduling of
later arriving slices. It would therefore be interesting to
integrate highly adaptable and intelligent behavior algo-
rithms, capable of learning and making decisions through
trial-and-error interactions with their environment, such
as reinforcement learning-based methods.
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