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Quantum K-theory of projective spaces and

confluence of q-difference equations

Abstract. Givental’s K-theoretical J-function can be used to

reconstruct genus zero K-theoretical Gromov–Witten invariants.

We view this function as a fundamental solution of a q-difference

system. In the case of projective spaces, we show that we can use

the confluence of q-difference systems to obtain the cohomological

J-function from its K-theoretic analogue. This provides another

point of view to one of the statements of Givental–Tonita’s quan-

tum Hirzebruch–Riemann–Roch theorem. Furthermore, we com-

pute connection numbers in the equivariant K-theoretic setting.
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Keywords: Gromov–Witten invariants, Quantum K-theory, Quantum D-module,

q-difference equations, Givental’s formalism.

2020 Mathematics Subject Classification: 14N35, 39A45, 53D45.

The author would like to thank Étienne Mann for his clear advice and guidance

while the author was a Ph.D. student, as well as the Japanese Society for the Promo-

tion of Science (JSPS) for giving them the wonderful opportunity to conduct research

in Tokyo. The author also thanks the referee for the careful reading and the valuable

remakrs.



Résumé. La fonction J de Givental K-théorique peut être utilisée

pour reconstruire les invariants de Gromov–Witten K-théorique

de genre 0. Cette fonction peut être vue comme une solution fon-

damentale d’un système d’équations aux q-différences. Dans le

cas des espaces projectifs, nous montrons que la confluence des

équations aux q-différences peut être utilisée pour obtenir la fonc-

tion J cohomologique à partir de son analogue K-théorique. Ce

procédé donne un autre point de vue à un des résultats contenu

dans l’énoncé du théorème de Hirzebruch–Riemann–Roch quan-

tique de Givental–Tonita. De plus, nous calculons les matrices de

connexion dans le contexte de la K-théorie équivariante.

1. Introduction

1.1. Some context

Gromov–Witten invariants are rational numbers that, in some situa-

tions, count the number of curves satisfying some incidence conditions in-

side a projective algebraic variety. Let X be a smooth projective variety,

and fix g, n ∈ Z≥0, d ∈H2(X;Z). Denote byMg,n(X,d) the moduli space

of stable maps [Kon95], and let [Mg,n(X,d)]
vir

be the virtual fundamen-

tal class constructed in [BF97], Definition 5.2. We recall that this moduli

space comes with n evaluation maps evi ∶Mg,n(X,d) → X and with n

(orbifold) vector bundles Li called the cotangent line bundles. We also

introduce the cohomological classes ψi ∶= c1 (Li) ∈H2 (Mg,n(X,d);Q).

Definition ([Kon95, BF97]). — Let g, n ∈ Z≥0, d ∈ H2(X;Z). Let
k1, . . . , kn ∈ Z≥0 be some integers, and let α1, . . . αn ∈H∗(X;Q). The as-

sociated Gromov–Witten invariant is defined by the intersection product

⟨ψk1

1 α1, . . . , ψ
kn
n αn⟩cohg,n,d = ∫

[Mg,n(X,d)]
vir⋃

i

(ψki

i ∪ ev
⋆
i (αi)) ∈ Q,
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QK OF PROJECTIVE SPACES AND CONFLUENCE

where ∫[Mg,n(X,d)]
vir denotes the cap product in cohomology with the vir-

tual fundamental class.

More recently, in 2004, Y.-P. Lee defined new invariants by replac-

ing the cohomological constructions in the above definition by their K-

theoretic analogues. Denote by Ovir
g,n,d the virtual structure sheaf, con-

structed in [Lee04], Subsection 2.3.

Definition ([Lee04]). — Let g, n ∈ Z≥0, d ∈ H2(X;Z). Consider

k1, . . . , kn ∈ Z≥0 to be some integers, and let ϕ1, . . . ϕn ∈ K(X). The

associated K-theoretic Gromov–Witten invariant is given by the Euler

characteristic

⟨Lk1

1 ϕ1,⋯,Lkn
n ϕn⟩

Kth

g,n,β
= χ(Mg,n (X,d) ;Ovir

g,n,d

n

⊗
i=1

Lki

i ev∗i (ϕi)) ∈ Z.

A natural question to ask upon reading these two definitions is to

understand how these two invariants are related. An algebraic geometer

would rightfully expect them to be related by a Riemann–Roch theorem.

Due to the highly sophisticated geometry of the moduli spaces of stable

maps, such formula is not easy to obtain. In 2014, A. Givental and V.

Tonita [GT14] found a general result saying that genus zero K-theoretic

Gromov–Witten invariants can be expressed with genus zero cohomo-

logical Gromov–Witten invariants (this result has been extended to all

genera in [Giv17]). However, this formula is very technical and there-

fore has not seen many applications. One of its known consequences has

been that a key power series expressed withK-theoretic Gromov–Witten

invariants, called Givental’s K-theoretic J-function, satisfies a system

q-difference equations ([GT14], Section 9, Theorem, see also [IMT15],

Proposition 2.12), like it had been verified on some examples, e.g. in

[GL03], Theorem 2.
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Remark. — Another approach to obtain a comparison between co-

homological and K-theoretic Gromov–Witten invariants using derived

algebratic geometry has been initiated by A. A. Khan, see [Kha19].

1.2. Goal of the article

The aim of this paper is to propose another point of view to com-

pare K-theoretic Gromov–Witten invariants with their cohomological

analogues, using the theory of q-difference equations.

We will focus on the q-difference equations satisfied by Givental’s

small K-theoretic J-function of the projective space. In general, these

functional equations satisfy a property called confluence, according to

which we can take some limit q → 1 of the q-difference to obtain a

differential equation. A quick illustration of the confluence of q-difference

equations is this identity, in which k ∈ Z,

lim
q→1

qQ∂Q − Id
q − 1 ⋅Qk = lim

q→1

qk − 1
q − 1 ⋅Q

k = kQk = Q∂Q ⋅Qk.

Therefore, we will say that the q-difference operator qQ∂Q−Id
q−1

converges

formally to the differential operator Q∂Q. Our goal is to obtain similar

limits for the following data:

Definition ([Giv96],[Giv15a]). — Consider X = PN with its usual

toric action of the torus TN+1 = (C∗)N+1. Let P = Oeq(1) ∈KTN+1 (PN)
be the anti-tautological equivariant bundle, and denote by λ0, . . . , λN

(resp. Λ0, . . . ,ΛN ) the equivariant parameters in cohomology (resp. K-

theory).

– 4 –
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(i) Let H = c1 (Oeq(1)) ∈ H2
TN+1 (PN ;Q) be the equivariant hy-

perplane class. Givental’s small equivariant cohomological J-

function of PN is given by the expression

Jcoh,eq(z,Q) = QH
z ∑

d≥0

Qd

∏d
r=1 (H − λ0 + rz)⋯ (H − λN + rz)

∈H∗TN+1 (PN)⊗C[z, z−1][[Q]],

where

Q
H
z =

N

∑
k=0

1

k!
(H
z
log(Q))

k

(ii) Givental’s small equivariant K-theoretic J-function is the func-

tion

JKth,eq(q,Q) = P −ℓq(Q)∑
d≥0

Qd

(qΛ0P −1, . . . , qΛNP −1; q)d
∈KTN+1 (PN)⊗C[q, q−1][[Q]],

where

(qΛ0P
−1, . . . , qΛNP

−1; q)
d
=

N

∏
i=0

d

∏
r=1

(1 − qrΛiP
−1),

and P −ℓq(Q) is some K-theoretic function corresponding to the

function Q
H
z , that we will introduce in Definition 3.4.

Proposition ([Giv15b, CK99]). — For the projective space PN ,

(i) The cohomological J-function Jcoh,eq is a solution of the differ-

ential equation

(3.1.1) ∶ [(−λ0 + zQ∂Q)⋯(−λN + zQ∂Q) −Q]Jcoh,eq(z,Q) = 0.

(ii) The K-theoretic J-function JKth,eq is a solution of the q-difference

equation

(3.1.3) ∶ [(1 −Λ0q
Q∂Q)⋯ (1 −ΛNq

Q∂Q) −Q]JKth(q,Q) = 0.

– 5 –
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Applying the confluence of the q-difference equations to this data,

we want to first compare the q-difference equation satisfied in K-theory

with the differential equation satisfied in cohomology, then compare the

two J-functions as solutions of their respective functional equations. We

would like to expect that the following informal statements hold:

(i) The confluence of the q-difference equation (3.1.3) defines a dif-

ferential equation limq→1(3.1.3) which is the same as the differ-

ential equation (3.1.1) satisfied by the cohomological J-function.

(ii) As a solution of the q-difference equation (3.1.3), Givental’s K-

theoretic J-function JKth,eq satisfies

lim
q→1

JKth,eq = Jcoh,eq.

To give a rigorous meaning to these informal identifications, we state

the following theorem, which is the first goal of this article:

Theorem (Theorem 3.12). — Consider the algebraic torus TN+1 ∶=
(C∗)N+1 acting on X = PN . Recall that Equation (3.1.3) (resp. (3.1.1))

refers to the q-difference (resp. differential) equation satisfied by the K-

theoretic (resp. cohomological) J-function JKth,eq (resp. Jcoh, eq). Let

q ∈ C,0 < ∣q∣ < 1 and z ∈ C∗. Assume that the relation Λi = q
−λi
z ∈ C

holds for all i ∈ {0, . . . ,N}, and that for i ≠ j, λi − λj ∉ Z. The following

statements hold:

(i) Consider the application φq,z defined by

φq,z ∶
RRRRRRRRRRRRRR

C C

Q ( z
1−q
)
N+1

Q

Then, the pullback by φq,z of the q-difference equation (3.1.3)

is a confluent q-difference equation. Moreover, its formal limit

when q → 1 is the differential equation (3.1.1).
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(ii) Consider the isomorphism of rings γeq ∶ KTN+1 (PN) ⊗ C →
H∗TN+1 (PN ,C) defined by, for all i ∈ {0, . . . ,N}

γeq
⎛
⎝∏j≠i

1 −ΛiP
−1

1 −ΛiΛ−1j

⎞
⎠
=∏

j≠i

H − λi
λj − λi

Let Eq be the complex torus C∗/qZ and let M (Eq) be the space

of meromorphic functions on said complex torus. Then, there

exists a change of fundamental solution Pq,z ∈ GLN+1 (M (Eq)) ,
whose formula is explicit, such that the fundamental solution

JKth,eq is related to the cohomological J-function Jcoh,eq by

γeq (lim
t→0

Pqt,z ⋅ (φ∗qt,zJKth,eq (qt,Q))) = Jcoh,eq(z,Q).

Once this comparison result is established, one could be interested in

attempting to compute the (local) monodromy data of this q-difference

equation and to compare it with the cohomological case. In the q-difference

case, the monodromy data is a connection matrix, relating the solution

at Q = 0 given by the J-function with a fundamental solution at Q =∞,

which we will construct in Proposition 4.12. The second main goal of

this article to compute this connection matrix in the equivariant setting,

as below.

Theorem (Theorem 4.13). — Let w = 1/Q and denote by gk the

fundamental solution at Q = ∞ constructed in Proposition 4.12. Then,

the fundamental solutions at 0 and ∞ are related by the identity

gk(w) =
N

∑
j=0

R
[λ;qN+1]
k,j (q,w)JKth, eq

∣P=Λj
(q, 1

w
)

Where the coefficients R
[λ;qN+1]
k,j are some explicit qN+1-constant func-

tions.

In order to compare with quantum cohomology, one could hope that

the limit when q → 1 of this connection matrix would be related to the

connection matrix in the cohomology case, c.f. [CDG19], Theorem 6.7.

– 7 –
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Remark. — After the appearance of this article as a preprint on the

arXiv, similar confluence questions (solutions, connection numbers) were

investigated by Y. Wen for quintic threefold in [Wen20]; confluence of

the J-function has also been proved for any smooth projective variety

whose anti-canonical bundle is nef in [MR21].

1.3. Structure of the article

The Section 2 will be a survey on the theory of q-difference equations,

which the reader might not be familiar with. The aim of the first two

subsections is to introduce the definitions required to understand the

statement of the main theorem, as well as the special functions that will

be useful to us in quantum K-theory. Then, in a last subsection, we will

explain the confluence properties of q-difference equations in the regular

singular case.

In the Section 3, the reader should now have the necessary background

to understand the statement of the Main Theorem. In the first subsec-

tion, we will recall the definitions of Givental’s equivariant J-functions,

whose expressions are obtained by using virtual localisation theorems.

Then, we will give their functional equations. In the second subsection,

we state the Main Theorem and give its proof. Our proof is split in two

parts: first we check the confluence of the q-difference equation, then

we check the confluence of the K-theoretic J-function as a solution of

the confluent q-difference equation. In the third subsection, we will ex-

plain what happens when one tries to adapt the main theorem for non

equivariant J-functions.

In the Section 4, we will compute the q-monodromy of our q-difference

equation in the equivariant case. In the first subsection, we construct an-

other fundamental solution, this time at Q =∞, at which the q-difference

equation is irregular singular. In the second subsection, we prove a base
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change formula from the J-function to this new fundamental solution,

obtaining connection numbers in the equivariant case. Unfortunately,

we are not able to prove a non equivalent analogue of these connection

numbers, but we will be able to conjecture some formula.

2. q-difference equations

This section is structured in three subsections. In the first subsection,

we give some introductory definitions regarding q-difference equations.

The second section is dedicated to the resolution of regular singular q-

difference equations. The last section deals with confluence of regular

singular q-difference equations.

2.1. General definitions

In this subsection we recall general notions of the theory of q-difference

equations from the analytical point of view.

Definition 2.1. — LetM(C) be the field of meromorphic functions

on C. Fix q ∈ C,0 < ∣q∣ < 1 and n ∈ Z>0. Let qQ∂Q be the q-difference

operator acting on functions f ∶ C → C by (qQ∂Qf) (Q) = f(qQ). A

linear q-difference system is a functional equation

qQ∂QXq(Q) = Aq(Q)Xq(Q),

where Xq is a column vector of n functions of input Q, and the matrix

Aq ∈ GLn(M(C)).

From now on we will work locally at Q = 0. More precisely, we will

look for solutions in the space of C{Q} [Q−1] of Laurent series that are
convergent on a punctured disk centered at Q = 0. The definitions and

the results below would also hold for Q =∞ after replacing Q with Q−1.

– 9 –
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Definition 2.2. — Let (‡q) ∶ qQ∂QXq(Q) = Aq(Q)Xq(Q) be a q-

difference system, with Aq ∈ GLn (M(C)). We define the solution space

of this q-difference equation by

Sol (‡q) = {Xq ∈ (C{Q} [Q−1])
n ∣ qQ∂QXq(Q) = Aq(Q)Xq(Q)} .

Example 2.1.1 (q-constants). — Consider the q-difference equation

qQ∂Qfq(Q) = fq(Q).

Constant functions are obvious solutions to this q-difference equation.

Denote by qZ the multiplicative group qZ ∶= {qk ∣k ∈ Z} and choose τ ∈
H ⊂ C such that q = e2iπτ . The meromorphic solutions of this q-difference

equation can be identified with meromorphic functions on the torus

C∗/qZ, where the action is given by the multiplication qk ⋅z = qkz and the

complex (torus) structure comes from the exponential (z ↦ exp(2iπz)),
as in the diagram below.

C C∗

C
Z+τZ

C∗
qZ

exp

ẽxp
∼

Solutions to this q-difference equation will be called q-constants. We

denote by Eq the complex torus Eq ∶= C∗/qZ. The space M (Eq) of

meromorphic functions on the complex torus C∗/qZ plays a role for

q-difference equations similar to the space of constant functions C for

differential equations.

Definition 2.3. — Let qQ∂QXq(Q) = Aq(Q)Xq(Q) be a q-difference
system of rank n ∈ Z>0. A fundamental solution of this system is an

invertible matrix Xq ∈ GLn (C{Q} [Q−1]) such that

qQ∂QXq(Q) = Aq(Q)Xq(Q).

Definition 2.4. — Let qQ∂QXq(Q) = Aq(Q)Xq(Q) be a q-difference
system. Consider a matrix Fq ∈ GLn (C{Q} [Q−1]). The gauge transform

– 10 –
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of the matrix Aq by the gauge transformation Fq is defined to be the

matrix

Fq ⋅ [Aq] ∶= (qQ∂QFq)AqF
−1
q .

A second q-difference system qQ∂QXq(Q) = Bq(Q)Xq(Q) is said to be

equivalent by gauge transform to the first one if there exists a matrix

Fq ∈ GLn (C{Q} [Q−1]) such that

Bq = Fq ⋅ [Aq].

Definition 2.5. — Let (‡q) ∶ qQ∂QXq(Q) = Aq(Q)Xq(Q) be a q-

difference system and let φq ∶ C → C be an isomorphism. The q-pullback

(φ∗q‡q) of (‡q) by φq is the q-difference system given by

φ∗q(‡q) ∶ qQ∂QXq(Q) = Aq(φ−1q (Q))Xq(Q).

Definition 2.6. — (1) A system qQ∂QXq(Q) = Aq(Q)Xq(Q)
is said to be regular singular at Q = 0 if there exists a q-gauge

transform Pq ∈ GLn (C{Q} [Q−1]) after which the matrix Aq

evaluated at Q = 0 is well-defined and invertible, i.e. (Pq ⋅ [Aq]) (0) ∈
GLn(C).

(2) A regular singular system is said of the first kind if Aq(0) is

defined and invertible.

2.2. Fundamental solution for regular singular q-difference sys-

tems

We will now mention the results regarding the fundamental solution

of regular singular q-difference equations. The practical use of this part is

to introduce various special functions related to the theory of q-difference

equations, which will also appear in the next section dealing with quan-

tum K-theory: Definitions 2.7 and 2.10.

– 11 –
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Definition 2.7. — The q-Pochhammer symbol is the complex func-

tion defined for d ∈ Z≥0 by

(Q; q)0 ∶= 1,

(Q; q)d ∶=
d−1

∏
r=0

(1 − qrQ),

(Q; q)∞ ∶=∏
r≥0

(1 − qrQ).

Definition 2.8 ([Mum83]). — Jacobi’s theta function θq is the com-

plex function defined by the convergent Laurent series

θq(Q) ∶= ∑
d∈Z

q
d(d−1)

2 Qd ∈ O(C∗)

Proposition 2.9. — Jacobi’s theta function θq is a solution of the

q-difference equation

qQ∂Qθq(Q) =
1

Q
θq(Q).

Definition 2.10 ([Sau00]). — The q-logarithm is the function ℓq ∈
M(C∗) defined by

ℓq(Q) ∶=
−Qθ′q(Q)
θq(Q)

.

Lemma 2.11 ([Sau00]). — The function ℓq is a solution of the q-

difference equation

qQ∂Qℓq(Q) = ℓq(Q) + 1.

Definition 2.12 ([Sau00]). — A first kind regular singular q-difference

system qQ∂QX = Aq(Q)X is said to be non resonant if any couple of two

different eigenvalues λi ≠ λj of the matrix Aq(0) satisfies the condition

λiλ
−1
j ∉ qZ.

Before stating a theorem of Sauloy, we need to recall some notations.

Let A ∈ GLn(C) a constant matrix. Recall from [Sau00, §1.1.2.3]. There
exists a canonical solution, denoted by eq,A, of the equation q

Q∂QXq(Q) =
AXq(Q) such that

– 12 –
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(1) qQ∂Qeq,A = A.eq,A = eq,A.A;
(2) for the multiplicative Dunford decomposition A = D.U , with D

semi-simple and U unipotent, we have eq,A = eq,D.eq,U
(3) We have the following equivalence

[M,A] = 0⇔ [M,D] = [M,U] = 0⇔ [M,eq,D] = [M,eq,U ] = 0

⇔ [M,eq,A] = 0

Notice that these eq,A is a generalization of eq,λ (See 3.8).

Theorem 2.13 ([Sau00], Subsection 1.1.4). — Let qQ∂QXq(Q) =
Aq(Q)Xq(Q) be a first kind regular singular q-difference system which

is non resonant. There exists a canonical fundamental solution of Xq ∈
GLn (M(C∗)) of this q-difference equation of the form Meq,Aq(0) with

M(0) = In.

2.3. Confluence of regular singular q-difference equation

In this subsection we introduce Sauloy’s confluence phenomenon. One

of the main ingredient is the following asymptotic for the q-logarithm ℓq.

Notation. — Let q0 ∈ C∗. Choose τ0 ∈ C∗ such that Im(τ0) > 0 and

q0 = e2iπτ0 . Notice that ∣q0∣ = e−2πIm(τ0) < 1. Denote by q = qt0 = e−2iπt.τ0

for t ∈ R. The set qR0 is a spiral. Note that its complementary in C∗ is

simply connected.

Proposition 2.14 ([Sau00], Subsections 3.1.3 and 3.1.4). — Fix q0 ∈
C∗, ∣q0∣ < 1, let qt0, t ∈ (0,1]. Denote by log the determination of the

logarithm on C∗ − (−1)qR0 such that log(1) = 0. We have the uniform

convergence, on any compact of C∗ − (−1)qR0 ,

lim
t→0
(qt0 − 1)ℓqt0(Q) = log(Q).

– 13 –
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Remark 2.15. — Let δq = qQ∂Q−Id
q−1

. We recall that the formal limit of

this q-difference operator is the differential operator Q∂Q. A motivation

to consider the function (q − 1)ℓq instead of the usual q-logarithm ℓq is

that we have

δq
⎛
⎝

1

(q − 1)ℓq(Q)
⎞
⎠
=
⎛
⎝
0 0

1 0

⎞
⎠
⎛
⎝

1

(q − 1)ℓq(Q)
⎞
⎠

Notice that the formal limit of this q-difference system is the differential

system satisfied by the logarithm, while the matrix associated to the

q-difference equation of ℓq has no limit when q → 1.

Confluence of the q-difference equation

Firstly, we work study the local case (i.e on C) then the global case

(i.e on P1).

Recall that we say q = qt0 for t ∈ R. So when we write q → 1 it means

that t→ 0.

We follow the section 3.2 of [DVRSZ03] (see also section 3.3 of [Sau00]).

Let consider a regular singular q-difference equation

qQ∂QX = Aq(Q)X

Assume that

(1) Bq ∶= Aq−In
q−1

has limit B̃ ∈Mn(C(Q)) when q → 1.

(2) The poles of Aq goes to the poles, denoted by Q1(q), . . . ,Qk(q),
of B̃ when q → 1.

(3) The differential system Q∂QX = B̃X is fuchsian and non reson-

nant at Q = 0.
(4) There exists an invertible matrix Pq such that Bq(0) = Pq

−1JqPq

that converge when q → 1 to B̃(0) = P̃ −1J̃ P̃ , where Jq and J̃

are Jordan matrices with P̃ invertible.

– 14 –
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Denote by U0 = C∗ ∖⋃r
i=1Qi(q)qR

−
0 ∖ qR0 .

Theorem 2.16 ([Sau00], Theorem 3.6). — Assume that Bq → B̃

uniformly on any compact in U0. The canonical solution of Theorem

2.13, Xq converge uniformly on any compact of U0 to the canonical so-

lution X̃ of the differential system given by the Fuchs-Frobenius method.

Now we go to the ”global case” i.e P1.

We assume that the hypothesis (1), (2), (3) and (4) of Theorem 2.16

are also satisfied at ∞ that is for Q−1 = 0. We put

U = U0 ∩U∞ = C∗ ∖
k

⋃
i=0

Qi(q)qR0 , with Q0 = 1

We also assume that the spiral Qi(q)qR0 are pairwise distinct.

Corollary 2.17 (Section 3.4 in [DVRSZ03]). — We the assump-

tion (1)-(4) and the one above, the canonical solution, X (0)q and X (∞)q

of the q-difference system converge to the solution X̃ (0) and X (∞) of the
differential system of matrix B̃ on U0 and U∞.

Remark 2.18. — Notice that not any fundamental solution of a con-

fluent q-difference system has immediately a well defined limit when

q → 1. Let us give an concrete example. Consider the q-difference equa-

tion

qQ∂Qfq(Q) = fq(Q). (2.3.1)

The function gq(Q) = 1
q−1

or hq(Q) = 1 are both solutions of (2.3.1). The

q-difference equation is confluent to the differential equation

∂Qf̃ = 0. (2.3.2)

However the function gq does not have a limit when q → 1 whereas hq

does. The latter is the canonical of Theorem 2.13.
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3. Confluence for quantum K-theory of projective spaces

3.1. Equivariant J-functions

Definitions.

Let N ∈ Z>0 be some positive integer and consider the projective

space X = PN with the action of the torus TN+1 ∶= (C∗)N+1 given by

(λ0, . . . , λN) ⋅ [z0 ∶ ⋯ ∶ zN ] = [λ0z0 ∶ ⋯ ∶ λNzN ].

The elementary representations, indexed by i ∈ {0, . . . ,N},

ρi ∶
RRRRRRRRRRRR

(C∗)N+1 C∗

(t0, . . . , tN) ti

,

define N + 1 classes in equivariant K-theory Λ0, . . . ,ΛN ∈ KTN+1(pt),
where −Λi is the line bundle on the point with the action of the group

TN+1 given by ρi. Denote by P = Oeq(1) ∈ KTN+1 (PN) the equivariant

anti-tautologic bundle, H = c1(Oeq(1)) the equivariant hyperplane class

and λi = c1(Λi) ∈H2
TN+1(pt). We recall that we have

KTN+1 (PN) ≃ Z[Λ±10 , . . . ,Λ±1N ][P ±1]/((1 −Λ0P
−1)⋯(1 −ΛNP

−1)) ,

H∗TN+1 (PN ;Q) ≃ Q[λ0, . . . , λN ][H]/((H − λ0)⋯(H − λN)) .

A basis of the equivariant K-theory KTN+1 (PN) is given by the classes

indexed by i ∈ {0, . . . ,N}

ηi =∏
j≠i

1 −ΛjP
−1

1 −ΛjΛ−1i
∈KTN+1 (PN) .
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Definition 3.1 ([CK99], Subsection 11.2.3). — Givental’s equivari-

ant cohomological small J-function of the projective space PN is the func-

tion defined by

Jcoh,eq(z,Q) = QH
z ∑

d≥0

Qd

∏d
r=1 (H − λ0 + rz)⋯ (H − λN + rz)

∈H∗TN+1 (PN)⊗C[[z, z−1]].

Remark 3.2. — The reader familiar with Gromov–Witten theory

may notice several abuses in this definition of the J-function. The proper

way to define them would be from the fundamental of the quantum D-
module (see e.g. [CK99], Equation 10.28 and [IMT15], Definition 2.4).

We also confuse the I-function and the J-function for projective spaces

due to the triviality of the mirror map for complex projective spaces.

Proposition 3.3. — The cohomological J-function Jcoh,eq is a so-

lution of the differential equation

[(−λ0 + zQ∂Q)⋯(−λN + zQ∂Q) −Q]Jcoh,eq(z,Q) = 0. (3.1.1)

Definition 3.4 ([Giv15a], p.1). — Givental’s small equivariant K-

theoretic J-function of the projective space PN is the function defined

by

JKth,eq(q,Q) = P −ℓq(Q)∑
d≥0

Qd

(qΛ0P −1, . . . , qΛNP −1; q)d
, (3.1.2)

where

(qΛ0P
−1, . . . , qΛNP

−1; q)
d
=

N

∏
i=0

(qΛiP
−1; q)

d
,

P −ℓq(Q) =
N

∑
i=0

Λ
−ℓq(Q)
i ηi.

Proposition 3.5 ([Giv15b]). — The K-theoretic J-function JKth,eq

is a solution of the q-difference equation, which is regular singular at

Q = 0 :

[(1 −Λ0q
Q∂Q)⋯ (1 −ΛNq

Q∂Q) −Q]JKth,eq(q,Q) = 0. (3.1.3)
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Remark 3.6 (On the inputs z and q). — Geometrically, the input

q (resp. z) can be understood as a generator of the C∗-equivariant K-

theory (resp. cohomology) of the point, see Section 2.6 of [IMT15] for

details. Then, these generators are related by the identity z = −c1(q) ∈
H∗C∗(pt).

A remark on the choice of the function P −ℓq(Q).

This part will be a comparison between the K-theoretic function

P −ℓq(Q) we have introduced in a factor associated to the J-function in

Definition 3.4 and the usual q-characters eq,λq that appear in the ana-

lytic theory of regular singular q-difference equations. This optional part

is independent of the main theorem. The reader may want to skip to

Subsection 3.2.

Proposition 3.7. — The K-theoretic function defined by

P −ℓq(Q) ∶=
N

∑
i=0

Λ
−ℓq(Q)
i ηi

is a solution of the K-theoretically valued q-difference equation

qQ∂Qf(Q) = P −1f(Q).

Complex functions that satisfy such q-difference equations are called

q-characters. Recall that Jacobi’s theta function θq, by Proposition 2.9,

is a solution of the q-difference equation qQ∂Qθq(Q) = Q−1θq(Q). A com-

mon example of a q-character is the following function:

Definition 3.8 ([Sau00], Subsection 1.1.2). — Let λq ∈ C∗. The

corresponding q-character is the function eq,λq defined by

eq,λq(Q) =
θq(Q)
θq(λqQ)

∈M (C∗) .
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Proposition 3.9 ([Sau00], Subsection 1.1.2). — Let λq ∈ C∗. The
function eq,λq is a solution of the q-difference equation

qQ∂Qeq,λq(Q) = λqeq,λq(Q)

Remark 3.10. — For the equivariantK-theoretic J-function, instead

of using the function P −ℓq(Q), it would have been possible to introduce

the function eq,P−1 defined by

eq,P−1(Q) =
N

∑
i=0

eq,Λ−1i (Q)ηi

We chose the former to have a better basis decomposition when con-

sidering the non equivariant limit Λi → 1. Indeed, the non equivariant

K-theory of PN is given by K (PN) ≃ Z[P,P −1]/((1 − P −1)N+1) . Let
us write

(ℓq(Q)
k
) = 1

k!

k−1

∏
r=0

(ℓq(Q) − r)

The function P −ℓq(Q) has the decomposition in the previous basis of the

non equivariant K-theory

P −ℓq(Q) = (1 − (1 − P −1))ℓq(Q) = ∑
k≥0

(−1)k(ℓq(Q)
k
)(1 − P −1)k .

Let us point out that the family (1, ℓq(Q), . . . , ℓq(Q)N) is linearly in-

dependent over the field of q-constants M (Eq), see [Roq19], Lemma

VI.1.1.10. This function has to be compared with the infinite product

below, whose decomposition in our basis of the non equivariantK-theory

is much more technical,

eq,P−1(Q) ∶= θq(Q)θq(P −1Q)−1.

Therefore, when defining the J-function, we decided to use the function

P −ℓq(Q) instead of the usual q-character eq,P−1(Q).
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3.2. Confluence of the J-function

We begin by making a remark on the equivariant parameters to justify

the relation Λi = q
−λi
z ∈ C that will appear in our statement of the

confluence of the K-theoretic J-function.

Remark 3.11. — Recall that we have z = −c1(q) ∈H∗C∗(pt) and λi =
c1(Λi) ∈H∗TN+1(pt). The morphism f ∶ TN+1 → C∗ given by f(w0, . . . ,wN)
∶= w0⋯wN induces morphisms fKth ∶ KC∗(pt) → KTN+1(pt) and fcoh ∶
H∗C∗(pt)→H∗TN+1(pt). We have the relation in the equivariant cohomol-

ogy H∗TN+1 (PN), up to degree 2 terms

ch(Λi) = ch(fKth(q))−
λi

fcoh(z) .

Statement.

Theorem 3.12. — Consider the algebraic torus TN+1 = (C∗)N+1

acting on X = PN . Recall that (3.1.3) (resp. (3.1.1)) denotes the q-

difference (resp. differential) equation satisfied by Givental’s small equi-

variant K-theoretic (resp. cohomological) J-function JKth,eq (resp. Jcoh,eq).

Assume that the relation Λi = q
−λi
z ∈ C holds for all i ∈ {0, . . . ,N}, and

that for i ≠ j, λi − λj ∉ Z. Let q ∈ C,0 < ∣q∣ < 1 and z ∈ C∗. The following

statements hold:

(i) Consider the map φq,z defined by

φq,z ∶
RRRRRRRRRRRRRR

C C

Q ( z
1−q
)
N+1

Q.

Then, the pullback by φq,z of the q-difference equation (3.1.3)

is a confluent q-difference equation. Moreover, its formal limit

when q → 1 is the differential equation (3.1.1) satisfied by the

cohomological J-function.
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(ii) Let Eq be the complex torus C∗/qZ and M (Eq) be the space

of meromorphic functions on said complex torus. Consider the

isomorphism of rings γeq ∶ KTN+1 (PN) ⊗ C → H∗TN+1 (PN ,C)
defined by, for all i ∈ {0, . . . ,N}

γeq
⎛
⎝∏j≠i

1 −ΛiP
−1

1 −ΛiΛ−1j

⎞
⎠
=∏

j≠i

H − λi
λj − λi

.

Then, there exists an explicit change of fundamental solution

P eq
q,z ∈ GLN+1 (M (Eq)) , such that the fundamental solution JKth,eq

verifies

γeq (lim
t→0

P eq
qt,z ⋅ (φ

∗
qt,zJ

Kth,eq (qt,Q))) = Jcoh,eq(z,Q).

The proof of this theorem consists of three computations: we begin by

studying the confluence of the q-difference equation, then of the solution.

Then, we compare the limit of the solution to the cohomological J-

function. After these three computations, we will give a proof of this

theorem.

Confluence of the q-difference equation.

Proposition 3.13. — Consider the q-difference equation (3.1.3) sat-

isfied by the K-theoretic J-function:

[(1 −Λ0q
Q∂Q)⋯ (1 −ΛNq

Q∂Q) −Q]JKth(q,Q) = 0.

Let φq,z be the map

φq,z ∶
RRRRRRRRRRRRRR

C C

Q ( z
1−q
)
N+1

Q.

Then, the q-pullback of the q-difference equation (3.1.3) by the isomor-

phism φq,z is confluent, and its formal limit is the differential equation

satisfied by the small equivariant cohomological J-function (3.1.1).
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Proof. — Denote by δq the q-difference operator qQ∂Q−Id
q−1

. We rewrite

the q-difference equation (3.1.3) to express it with the operators δq in-

stead. Using

qQ∂Q = Id + (q − 1)δq,

we obtain that ∆(q,Q, δq)JKth,eq (qt,Q) = 0, where ∆(q,Q, δq) is the

q-difference operator given by

∆(q,Q, δq) =
⎡⎢⎢⎢⎢⎣
−Q + (1 − q)N+1

N+1

∑
i=0

δiq(−1)i ∑
0≤j1<⋯<ji<N

Λj1⋯Λji ∏
k∈{0,...,N}−{j1,⋯,ji}

1 −Λk

1 − q

⎤⎥⎥⎥⎥⎦
.

As it is written, the formal limit when q → 1 of this operator is given

by −Q and thus does not define a differential equation. Introduce the

q-pullback

φq,z ∶
RRRRRRRRRRRRRR

C C

Q ( z
1−q
)
N+1

Q.

The q-pullback by φq,z of the above q-difference equation is given by

⎡⎢⎢⎢⎢⎣
−Q + zN+1

N+1

∑
i=0

δiq(−1)i ∑
0≤j1<⋯<ji<N

Λj1⋯Λji ∏
k∈{0,...,N}−{j1,⋯,ji}

1 −Λk

1 − q

⎤⎥⎥⎥⎥⎦
⋅ f(q,Q) = 0.

(3.2.1)

Since the relation Λi = q
−λi
z holds for all i ∈ {0, . . . ,N}, this q-difference

equation is confluent. Using the same relation again, we can compute its

formal limit when q → 1. The resulting formal limit coincides with the

developed expression of the differential equation (3.1.1) satisfied by the

cohomological J-function. □

Remark 3.14. — The q-pullback φq,z defined in Proposition 3.13 is

the only q-pullback of the form Q↦ ( z
1−q
)
λ
Q, with λ ∈ Z, which defines

a confluent q-difference system whose formal limit is non zero.
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Confluence of the solution.

The q-difference system associated to the q-pullbacked equation (3.2.1)

has a fundamental solution obtained from the J-function JKth,eq(q,Q),
which is explicitly given by

X (q,Q) =
⎛
⎜⎜⎜
⎝

JKth,eq
∣P=Λ0

(q, ( 1−q
z
)N+1Q) ⋯ JKth,eq

∣P=ΛN
(q, ( 1−q

z
)N+1Q)

⋮ ⋱ ⋮
δNq J

Kth,eq
∣P=Λ0

(q, ( 1−q
z
)N+1Q) ⋯ δNq J

Kth,eq
∣P=ΛN

(q, ( 1−q
z
)N+1Q)

⎞
⎟⎟⎟
⎠
.

(3.2.2)

The condition ΛiΛ
−1
j ∉ qZ for i ≠ j implies that this matrix is invertible.

Proposition 3.15. — There exists a change of fundamental solu-

tion, denoted by P eq
q,z ∈ GLN+1 (M (Eq)) such that the new fundamental

solution X (q,Q)P eq
q,z obtained from Equation (3.2.2) is given by

(X (q,Q)P eq
q,z)li = (δq)

l
Λ
−ℓq(Q)
i ∑

d≥0

1

zd(N+1)
(1 − q)d(N+1)Qd

(qΛ0Λ−1i , . . . , q, . . . , qΛNΛ−1i ; q)
d

Moreover, this fundamental solution is confluent.

Proof. — We begin by trying to compute the limit of the fundamental

solution X (q,Q) when q tends to 1. Let i ∈ {0, . . . ,N}. We have

JKth,eq
∣P=Λi

(q,(1 − q
z
)
N+1

Q)

= Λ
−ℓq((

q−1
z
)
N+1

Q)

i ∑
d≥0

(1 − q)d(N+1)
zd(N+1)(qΛ0Λ−1i ; q)d⋯(qΛNΛ−1i ; q)d)

Qd.

First let us check that every term in the sum indexed by d has a well

defined limit when q tends to 1: the relation Λi = q−λi/z gives that for

any r ∈ Z,
lim
q→1

1 − q
1 − qrΛjΛ−1i

= z

r + λi − λj
.

Therefore, we have

lim
q→1

(1 − q)d(N+1)
zd(N+1)(Λ0Λ−1i ; q)d⋯(ΛNΛ−1i ; q)d

Qd = Qd
d

∏
r=1

N

∏
j=0

1

(λi − λj + rz)
.
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It remains to deal with the divergent coefficient Λ
−ℓq((

q−1
z
)
N+1

Q)

i . No-

tice that the two functions given by ℓq(Q) and ℓq (( q−1z )
N+1

Q) are

both q-logarithms, i.e. solutions of the q-difference equation qQ∂Qfq(Q) =
fq(Q)+1. Therefore, there exists a change of fundamental solution P eq

q,z ∈
GLN+1 (M (Eq)) which allows us, in the formula of the fundamental so-

lution X (q,Q), to change the divergent q-logarithms ℓq (( q−1z )
N+1

Q)
into the convergent q-logarithms ℓq(Q). Then, by Proposition 2.14,

lim
t→0

Λ
−ℓqt(Q)

i = lim
t→0

e
λi
z log(qt)ℓqt(Q) = Q

λi
z .

Therefore, the transformed fundamental solution X (q,Q)P eq
q,z is conflu-

ent, and its coefficients are given by

(X (q,Q)P eq
q,z)li = (δq)

l
Λ
−ℓq(Q)
i ∑

d≥0

1

zd(N+1)
(1 − q)d(N+1)Qd

(qΛ0Λ−1i , . . . q, . . . , qΛNΛ−1i ; q)
d

.

□

Comparison between confluence of quantum K-theory and quan-

tum cohomology.

Recall that we use a basis of the equivariant K-theory given by ηi =
∏j≠i

1−ΛjP
−1

1−ΛjΛ
−1
i

∈KTN+1 (PN).

Definition 3.16. — Denote by P eq
q,z ⋅ φ∗q,zJKth,eq the K-theoretic

function obtained from the first row of the transformed fundamental so-

lution:

P eq
q,z ⋅ φ∗q,zJKth,eq =

N

∑
i=0

(X (q,Q)P eq
q,z)0i ηi.

By Proposition 3.15, the limit when qt tends to 1 of the function P eq
q,z ⋅

φ∗q,zJ
Kth,eq is well defined. We define the K-theoretic function

confluence (JKth,eq) (z,Q) ∶= lim
t→0

P eq
qt,z ⋅ φ

∗
qt,zJ

Kth,eq(qt,Q).
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Proposition 3.17. — Consider the isomorphism of rings

γeq ∶KTN+1 (PN)→H∗TN+1 (PN ;Q)

given by γeq(ηi) =∏j≠i
H−λi

λj−λi
for all i ∈ {0, . . . ,N} Then,

γeq (confluence (JKth,eq) (z,Q)) = Jcoh,eq(z,Q).

Proof. — We have

P eq
q,z ⋅ φ∗q,zJKth,eq(t, z,Q)

=
N

∑
i=0

⎛
⎝
Λ
−ℓq(Q)
i ∑

d≥0

1

zd(N+1)
(1 − q)d(N+1)Qd

(qΛ0Λ−1i , . . . q, . . . , qΛNΛ−1i ; q)
d

⎞
⎠
ηi.

Thus,

confluence (JKth,eq) (z,Q) =
N

∑
i=0

⎛
⎝
Q

λi
z ∑

d≥0

Qd
d

∏
r=1

N

∏
j=0

1

(λi − λj + rz)
⎞
⎠
ηi.

We conclude using γeq(ηi) =∏j≠i
H−λi

λj−λi
, recalling that

Jcoh,eq
∣H=λi

(z,Q) = Q
λi
z ∑

d≥0

Qd
d

∏
r=1

N

∏
j=0

1

(λi − λj + rz)
.

□

Summary of the previous results.

We have now all the ingredients to give the proof of Theorem 3.12.

Proof of Theorem 3.12. — Confluence of the equation. Using the

q-pullback φq,z of Proposition 3.13, we obtain a confluent q-difference

system. Its limit is the differential equation associated to the small equi-

variant cohomological J-function.

Confluence of the solution. As done in Equation (3.2.2), we can

encode the equivariant K-theoretic J-function as a fundamental solution

of the q-pullback of the system (3.2.1), which we denote by X (q,Q) in
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Equation (3.2.2). By Proposition 3.15, there exists a q-constant trans-

formation P eq
q,z ∈ GLN+1 (M (Eq)) such that the fundamental solution

X (q,Q)P eq
q,z is confluent.

Comparison with quantum cohomology. The first row of the

fundamental solution after the q-constant transformation Pq,z, X (q,Q)P eq
q,z,

defines anotherK-theoretic function, which we denote by P eq
q,z ⋅φ∗q,zJKth,eq

in Definition 3.16. Since the fundamental solution was confluent, this

function has a well defined limit when qt → 1. Using Proposition 3.17,

we have

γeq (lim
t→0

P eq
qt,z ⋅ φ

∗
qt,zJ

Kth,eq(qt,Q)) = Jcoh,eq(z,Q).

□

3.3. Confluence and non equivariant limit

Since Givental’s equivariant J-functions have well defined non equi-

variant limit by setting λi → 0 and Λi → 1 for all i ∈ {0, . . . ,N}, one
may wonder if there is a statement analogue to the Theorem 3.12 for

non equivariant J-function. While the answer is positive, the details are

slightly more technical.

Definitions and statement of the theorem.

Remark 3.18. — A basis of the non equivariant K-theory

K (PN) ≃ Z[P,P −1]/((1 − P −1)N+1)

is given by the integer powers of 1 − P −1. Notice that the the non

equivariant limit of the equivariant basis given by ηi = ∏j≠i
1−ΛjP

−1

1−ΛjΛ
−1
i

∈
KTN+1 (PN) is not a basis the non equivariant K-theory.
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Definition 3.19. — Let X = PN and let P = O(1) ∈ K (PN) be the

anti-tautological bundle. Givental’s small K-theoretic J-function is the

function given by

JKth(q,Q) = P −ℓq(Q)∑
d≥0

Qd

(qP −1; q)N+1d

∈K (PN)⊗C(q)[[Q]],

where

P −ℓq(Q) = (1 − (1 − P −1))ℓq(Q) = ∑
k≥0

(−1)k(ℓq(Q)
k
)(1 − P −1)k ,

and

(ℓq(Q)
k
) = 1

k!

k−1

∏
r=0

(ℓq(Q) − r).

Proposition 3.20 ([IMT15], Equation 10). — The non equivariant

J-function JKth(q,Q) is a solution of the q-difference equation

[(1 − qQ∂Q)N+1 −Q] J̃Kth(q,Q) = 0. (3.3.1)

This q-difference equation is regular singular at Q = 0.

Definition 3.21 ([CK99], Proposition 11.2.1). — Givental’s small

cohomological J-function is given by the expression

Jcoh(z,Q) = QH
z ∑

d≥0

Qd

∏d
r=1 (H + rz)

N+1
∈H (PN)⊗C[z, z−1][[Q]].

Proposition 3.22 ([CK99], Equation 10.38). — This function is a

solution of the differential equation

[(zQ∂Q)N+1 −Q]Jcoh(z,Q) = 0. (3.3.2)

Theorem 3.23. — Let X = PN . Denote by JKth (resp. Jcoh) Given-

tal’s small K-theoretic (resp. cohomological) J-function. Let q ∈ C,0 <
∣q∣ < 1 and z ∈ C∗. The following statements hold:

(i) Consider the application φq,z defined by

φq,z ∶
RRRRRRRRRRRRRR

C C

Q ( z
1−q
)
N+1

Q
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The pullback by φq,z of the q-difference equation (3.3.1) satisfied

by the K-theoretic J-function is confluent. Moreover, its formal

limit when q → 1 is the differential equation (3.3.2) satisfied by

the cohomological J-function.

(ii) Let Eq be the complex torus C∗/qZ and M (Eq) be the space

of meromorphic functions on said complex torus. Consider the

isomorphism of rings γ ∶ K (PN) ⊗C → H∗ (PN ,C) defined by,

for all i ∈ {0, . . . ,N}

γ ((1 − P −1)i) =Hi

Then, there exists an explicit change of fundamental solution

Pq,z ∈ GLN+1 (M (Eq)) such that the fundamental solution JKth

verifies

γ (lim
t→0

Pqt,z ⋅ (φ∗qt,zJKth (qt,Q))) = Jcoh(z,Q)

The plan of the proof is the same as in the equivariant setting (Theo-

rem 3.12): first we study the confluence of the q-difference equation, then

the confluence of Givental’s J-function as a fundamental solution, which

we compare to the cohomological J-function. However, the confluence

of the fundamental solution requires a different change of fundamental

solution Pq,z ∈ GLN+1 (M (Eq)), which is slightly more complex than in

the equivariant case. For a detailed proof of this statement, we will refer

to Section VI.2 of [Roq19].

Confluence of the q-difference equation.

Proposition 3.24. — Consider the q-difference equation (3.3.1) :

(1 − qQ∂Q)N+1 f(q,Q) = Qf(q,Q).
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Let z ∈ C∗ and let φq,z be the function

φq,z ∶
RRRRRRRRRRRRRR

C C

Q ( z
1−q
)
N+1

Q
.

Then, the q-pullback of the q-difference equation (3.3.1) by φq,z is

confluent, and its limit is the differential equation (3.3.2) satisfied by

Givental’s small cohomological J-function.

The proof of this proposition can be obtained by setting Λi → 1, λi → 0

for all i ∈ {0, . . . ,N} in the proof of Proposition 3.13 Writing δq = qQ∂Q−id
q−1

,

the pullback by φq,z of the q-difference equation (3.3.1) is given by

[(zδq)N+1 −Q]JKth (q,φ−1q,z(Q)) = 0. (3.3.3)

Confluence of the fundamental solution.

Consider the decomposition

JKth(q,Q) =
N

∑
i=0

Ji(q,Q) (1 − P −1)
i ∈K (PN)⊗C(q)[[Q]]

Givental’s small K-theoretic J-functions can be encoded in the funda-

mental solution of the q-difference equation (3.3.3) given by the matrix

XKth (q,Q)

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

J0 (q, ( 1−qz )
N+1

Q) J1 (q, ( 1−qz )
N+1

Q) ⋯ JN (q, ( 1−qz )
N+1

Q)
δqJ0 (q, ( 1−qz )

N+1
Q) δqJ1 (q, ( 1−qz )

N+1
Q) ⋯ δqJN (q, ( 1−qz )

N+1
Q)

⋮ ⋮ ⋱ ⋮
δNq J0 (q, ( 1−qz )

N+1
Q) δNq J1 (q, ( 1−qz )

N+1
Q) ⋯ δNq JN (q, ( 1−qz )

N+1
Q)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(3.3.4)
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Proposition 3.25 ([Roq19], Proposition VI.2.3.3). — There exists

an explicit q-constant matrix Pq,z ∈ GLN+1 (M (Eq)) such that the new

fundamental solution XKth (q,Q)Pq,z obtained from Equation (3.3.4) is

given by

(XKth(q,Q)Pq,z)li

= (δq)l ∑
0≤a,b≤N
a+b=i

(q − 1
z
)
a

(ℓq (Q)
a
)(1 − q

z
)
b

fb (q,(
1 − q
z
)
N+1

Q) ,

where the functions fb are defined by

fb(q,Q) ∶= ∑
d≥0

Qd

(q; q)N+1d

N

∑
k=0

∑
0≤j1,...,jN≤N
j1+⋯+jN=k

j1+2j2+⋯+NjN=b

(−1)k (N + k)!
N !j1!⋯jN !

N

∏
l=1

⎛
⎝ ∑
1≤m1<⋯<ml≤d

qm1+⋯+ml

(1 − qm1)⋯(1 − qml)
⎞
⎠

jl

Moreover, this fundamental solution has a non trivial limit when qt tends

to 1. □

In that case, we can not use the proof of the equivariant statement

(Proposition 3.15), as the non equivariant limit of our basis in equi-

variant K-theory is not a basis in non equivariant K-theory. However,

the technique will be similar, so we will refer to Proposition VI.2.3.3 of

[Roq19] for the complete proof. Just like in Proposition 3.15, we will need

to change the q-logarithms, but to obtain a well defined limit, the i-th

column of the matrix (3.3.4) has to be multiplied by the factor ( q−1
z
)i.

Comparison with quantum cohomology.

To complete the proof of Theorem 3.23, it remains to compare the

limit of the first row of the fundamental solution XKth (q,Q)Pq,z with

Givental’s small cohomological J-function.
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Definition 3.26. — We denote by Pq,z ⋅φ∗q,zJKth(q,Q) the K-theoretic

function defined by

Pq,z ⋅φ∗q,zJKth(q,Q) =
N

∑
i=0

(XKth (q,Q)Pq,z)0iH
i ∈K (PN)⊗C(q, z)[[Q]]

Proposition 3.27. — Consider the ring automorphism

γ ∶K (PN)Q →H∗ (PN ;Q)

defined by γ(1 − P −1) =H. The following asymptotic holds

γ (lim
t→0

Pqt,z ⋅ φ∗qt,zJKth(qt,Q)) = Jcoh(z,Q).

Proof. — Using the characterisation of the change of fundamental

solution of Proposition 3.25, we have to compute the limits of the terms

for all i ∈ {0, . . . ,N}

∑
0≤a,b≤N
a+b=i

(q − 1
z
)
a

(ℓq (Q)
a
)(1 − q

z
)
b

fb (q,(
1 − q
z
)
N+1

Q)

The decomposition of the cohomological J-function in the usual basis

(1,H, . . . ,HN) is given by

Jcoh(z,Q) =
N

∑
i=0

Hi

⎡⎢⎢⎢⎢⎢⎢⎣
∑

0≤a,b≤N
a+b=i

1

a!
( log(Q)

z
)
a

gb(z,Q)

⎤⎥⎥⎥⎥⎥⎥⎦

, (3.3.5)

where

gb(z,Q) = ∑
d≥0

Qd

(zdd!)N+1
1

zb

N

∑
k=0

∑
0≤j1,...,jN≤N
j1+⋯+jN=k

j1+2j2+⋯+NjN=b

(−1)k (N + k)!
N !j1!⋯jN !

N

∏
l=1

⎛
⎝ ∑
1≤m1<⋯<ml≤d

1

m1⋯ml)
⎞
⎠

jl

We observe that

lim
t→0
(1 − q

t

z
)
b

fb
⎛
⎝
qt,(1 − q

t

z
)
N+1

Q
⎞
⎠
= gb(z,Q).
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Using Proposition 2.14, we also have that

lim
t→0
(q

t − 1
z
)
a

(ℓqt (Q)
a
) = 1

a!
( log(Q)

z
)
a

.

Using these two limits, we obtain that

lim
t→0

Pqt,z ⋅φ∗qt,zJKth(qt,Q) =
N

∑
i=0

(1 − P −1)i ∑
0≤a,b≤N
a+b=i

1

a!
( log(Q)

z
)
a

gb(z,Q).

Applying the ring isomorphism γ and comparing with Equation (3.3.5),

we find the desired result. □

4. q-monodromy of the q-difference equation of projective

spaces

The goal of this section is to compute some monodromy data for the

q-difference equation satisfied by the small K-theoretical J-function of

projective spaces. This monodromy data takes the form of a connection

matrix, computing the base change from the J-function (fundamental

solution at Q = 0) to a fundamental solution at Q =∞.

Before starting, let us mention some references on q-monodromy. A

treatment of the regular singular case can be found in [HSS16], the end

result being Theorem 3.4.9 p.134. For some irregular case, we can re-

fer to [RS15] and [Dre15b] in general, [Ada19] for irregular (unilateral)

q-hypergeometric series, and [Wen20] for the q-difference equation asso-

ciated to Fermat’s quintic threefold.

4.1. Fundamental solution at ∞

In this Subsection, we begin by constructing a fundamental solution

of the q-difference equation (3.1.3) at Q = ∞. This solution is built by

looking for a formal solution to the q-difference equation, then using a

q-analogue of the Borel–Laplace transform to obtain an analytic solution.
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4.1.1. Formal solution

We denote by w = Q−1 our coordinate at Q = ∞. Notice that if

f, g are two complex functions so that g(w) = f(1/w) = f(Q), then

qQ∂Qf = (qw∂w)−1 g. Therefore, the q-difference equation (∆q) in the

new local coordinate w becomes

[(−1)N+1qN+1Λ0⋯ΛNw (1 −Λ−10 qw∂w)⋯ (1 −Λ−1N qw∂w) − (qw∂w)N+1]

gq(w) = 0.
(4.1.1)

Notation. — We recall some q-analogues of hypergeometric func-

tions. Let r, s ∈ Z≥0 and a1, . . . , ar, b1, . . . , bs ∈ C. The notation for a

(unilateral) q-hypergeometric series is

φr s

⎛
⎜
⎝

a1 ⋯ ar

b1 ⋯ bs

RRRRRRRRRRRRR
q, z
⎞
⎟
⎠
= ∑

d≥0

(a1, . . . , ar; q)d
(q, b1, . . . , bs; q)d

((−1)dq
d(d−1)

2 )
1+s−r

zd.

Keeping the same notations, we define bilateral q-hypergeometric series

by

ψr s

⎛
⎜
⎝

a1 ⋯ ar

b1 ⋯ bs

RRRRRRRRRRRRR
q,w
⎞
⎟
⎠
= ∑

d∈Z

(a1, . . . , ar; q)d
(b1, . . . , bs; q)d

((−1)dq
d(d−1)

2 )
s−r

wd.

Let α ∈ C∗. We will use the following ansatz ton construct our fun-

damental solution at w = 0.

Lemma 4.1. — Let hq be a complex function and set the ansatz

gq(w) ∶= eq,α−1P (w)hq(w). The function gq is a solution of the q-difference

equation (4.1.1) if and only if the function hq is a solution of the follow-

ing q-difference equation:

[(−1)N+1qN+1wΛ0⋯ΛN

N

∏
i=0

(1 −Λ−1i α−1Pqw∂w) − (α−1P )N+1 (qw∂w)N+1]

hq(w) = 0
(4.1.2)
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Notice that the formula of our ansatz gq is close to the K-theoretic

J-function, as eq,α−1P (w) is a q-character and hq will be a Laurent series.

Proof. — Assume the function gq is a solution of the q-difference

equation (4.1.1). The functions gq, hq are related by the relation gq(w) =
eα−1P (w)hq(w). Therefore,

qw∂wgq(w) = eα−1P (w)α−1Pqw∂whq(w).

Thus, when applying the q-difference operator in Equation (4.1.1) to gq,

we obtain

eα−1P (w) ⋅ [(−1)N+1qN+1wΛ0⋯ΛN

N

∏
i=0

(1 −Λ−1i α−1Pqw∂w) −

− (α−1P )N+1 (qw∂w)N+1]hq(w),

which is zero by assumption that gq is a solution of the q-difference

equation (4.1.1). □

Lemma 4.2. — The q-difference equation (4.1.2) of the previous lemma

admits as a solution the following formal Laurent series

hq(w) = ψN+1 0

⎛
⎜
⎝

Λ−10 α−1P ⋯ Λ−1N α−1P

−

RRRRRRRRRRRRR
q, (αP −1)N+1Λ0⋯ΛNw

⎞
⎟
⎠

(4.1.3)

Remark 4.3. — Since ∣q∣ < 1, applying the ratio test to the positive

part of the Laurent series (4.1.3) shows that its convergence ray is 0. The

negative part has convergence ray ∞.

Proof. — We look for a formal Laurent series solution to the q-difference

equation (4.1.2). Let the Laurent series in the input w

hq(w) = ∑
d∈Z

hd(q)wd
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Let’s assume the Laurent series hq is a solution of the q-difference equa-

tion (4.1.2). Then,

∑
d∈Z
(α−1P )N+1 qd(N+1)hdwd

= ∑
d∈Z
(−1)N+1qN+1 [

N

∏
i=0

Λi (1 − α−1PΛ−1i qd)]hdwd+1

Identifying the coefficients in front of wd+1, we get the following recursion

relation satisfied by the family of coefficients (hd)d∈Z.

(α−1P )N+1 q(d+1)(N+1)hd+1 = (−1)N+1qN+1 [
N

∏
i=0

Λi (1 − α−1PΛ−1i qd)]hd

Recall that the q-Pochhammer symbol (a; q)d is a solution of the recur-

sion equation (a; q)d+1 = (1−aqd)(a; q)d. Therefore, we get a solution hd

of the previous recursion equation given by

hd+1 =(−1)(N+1)(d+1) (qN+1)
−

d(d+1)
2 (Λ−10 α−1P, . . . ,Λ−1N α−1P ; q)

d+1
×

× ((αP −1)N+1Λ0⋯ΛN)
d+1

h0,

where h0 ∈ C. Setting h0 = 1 produces a solution which is also the bilateral

q-hypergeometric series given by Equation (4.1.3) □

We can now give the formula for our fundamental solution in the

proposition below.

Proposition 4.4. — Consider the q-difference equation (4.1.1), given

by

[(−1)N+1qN+1Λ0⋯ΛNw (1 −Λ−10 qw∂w)⋯ (1 −Λ−1N qw∂w) − (qw∂w)N+1]

gq(w) = 0

Assume that α ∈ C∗ − qZ and that for any i ≠ j ∈ {0, . . . ,N}, ΛiΛ
−1
j ∉

qZ. Denote by hq(w) the formal Laurent series (4.1.3). Then, the q-

difference equation (4.1.1) admits a basis of formal solutions given by,
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for i ∈ {0, . . . ,N},

gi(w) = (eq,α−1P (w)hq(w))∣P=Λi

= eq,α−1Λi
ψN+1 0

⎛
⎜
⎝

Λ−10 α−1Λi ⋯ Λ−1N α−1Λi

−

RRRRRRRRRRRRR
q, (αΛ−1i )

N+1
Λ0⋯ΛNw

⎞
⎟
⎠
.

Remark 4.5. — Before giving a proof of this statement, we point

out that if α ∈ qZ, then there exists a d ∈ Z such that (α−1; q)d = 0, and
therefore the expression gi is either undefined or is not a solution of the

q-difference equation.

Proof. — Let i ∈ {0, . . . ,N}. Let us show that the function gi is a

formal solution of the q-difference equation (4.1.1). By setting P = Λi in

the statement of Lemma 4.1, we can construct one solution by solving the

q-difference equation (4.1.2), having replaced P by Λi. A formal solution

of this new q-difference equation can be found in Lemma 4.2 after setting

P = Λi, which is precisely the function gi.

Assuming the condition that for any i ≠ j ∈ {0, . . . ,N}, ΛiΛ
−1
j ∉ qZ,

we obtain that the functions (gi)i∈{0,...,N} are independent over the field

of q-constantsM (Eq). □

4.1.2. Analytic solution

Definition 4.6. — Let f(w) = ∑d≥0 fdw
d ∈ C[[w]] be a formal power

series. The q-Borel transform of the formal power series f is given by

the expression

Bqf(ξ) ∶= ∑
d≥0

fdq
d(d−1)

2 ξd ∈ C[[ξ]].

Definition 4.7 ([Zha00]). — Let [λ; q] ∈ C∗/qZ be a discrete q-spiral

and f ∈M (C∗,0) be a germ of a meromorphic function with essential

singularity at 0. We say the function g admits a q-Laplace transform
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along the q-spiral [λ; q] if there exists a constant ε > 0 and an domain

Ω ⊂ C such that

(i) The domain Ω contains the domain

⋃
m∈Z
{ξ ∈ C∗ , ∣ξ − λqm∣ < ε∣λqm∣} ⊂ Ω.

(ii) The function g admits an analytic continuation ḡ on the domain

Ω. Furthermore, we ask that there exists constants C1,C2 > 0

such that f̄ satisfies the bound

∣f̄(ξ)∣ < C1θ∣q∣ (C2∣ξ∣) .

A function satisfying such a bound is said to have q-exponential

growth at ∞.

We will denote by H[λ;q]q the space of functions satisfying the conditions

(i) and (ii).

Remark 4.8. — Notice that the definitions we gave so far are con-

cerned with power series, while the formal fundamental solution built in

Proposition 4.4 is a Laurent series. We formally extend the definition of

the q-Laplace transform to Laurent series by setting

Bq (∑
d∈Z

fdw
d)(ξ) = ∑

d∈Z
fdq

d(d−1)
2 ξd ∈ C[[ξ±1]].

By doing so, there is a chance that the negative powers part of the

Laurent series is no longer convergent, but it still is in the case of our

fundamental solution.

Definition 4.9 (Definition 7 in [Zha00] or p.8 in [Zha02]). — Let

g ∈ H[λ;q]q be a function admitting a q-Laplace transform along the q-

spiral [λ; q]. We defined the q-Laplace transform of the function f by the

expression

L[λ;q]q g(w) ∶= ∑
m∈Z

g(λqm)
θq (λq

m

w
)
∈M (C∗,0) .
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We will now define a q-Borel–Laplace sum.

Proposition 4.10 (Lemma 6 in [Zha00]). — Consider a convergent

power series f ∈ C{w} and a q-spiral [λ; q] ∈ C/qZ, then

L[λ;q]q Bqf(w) = f(w).

Note that this formula extends to formal Laurent series, as the recur-

sion strategy used in the proof of Lemma 1.7 in [DE16] can be used to

prove that for a fixed l ∈ Z and every a ∈ C, L[λ;q]q Bqawl+1 = awl+1, then

L[λ;q]q Bqawl = awl also holds. Indeed, a computation gives the formulas

L[λ;q]q (ξBq(f)(ξ)) = wq−w∂wL[λ;q]q Bqf(w) = L[λ;q]q Bq (wq−w∂wf(w)) ,

L[λ;q]q (ξ−1Bq(f)(ξ))

= qw∂w (w−1L[λ;q]q Bqf(w)) = L[λ;q]q Bq (qw∂w (w−1f(w))) .

Definition 4.11. — Let f ∈ C[[w±1]] be a formal series. We say

that the function f is q-Borel–Laplace summable along the q-spiral [λ; q]
if it satisfies the condition

Bqf ∈H[λ;q]q

For such a function, we define its q-Borel–Laplace resummation to be the

function defined by

S[λ;q]q f(w) ∶= (L[λ;q]q Bqf) (w)

Proposition 4.12. — Let (gi) be the basis of formal fundamental

solution of the q-difference equation (4.1.1) constructed in Proposition

4.4, and let S[λ;q]q denote the q-Borel–Laplace transform defined in Defi-

nition 4.11. Then, the family (S[λ;q
N+1
]

qN+1 gi)
i
is a fundamental solution of

the q-difference (4.1.1).

To prove such a statement, one has to check qN+1-resummability of

the bilateral q-series (4.1.2). This relies on an analytical continuation of
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the qN+1-Borel transform, which is given in the coming Corollary 4.16.

The proof that this analytical continuation has qN+1-exponential growth

along a domain Ω is exactly the same as in the case of unilateral q-

hypergeometric series, which is given by [Ada19], Theorem 3.1. Indeed,

one can check the analytical continuation in both cases can be written

under the form, with Cj ,Aj ∈ C

ḡ(ξ) =∑
j

Cj
θq (ajξ)
θq(ξ)

φs r

⎛
⎜
⎝

c1 ⋯ cs

d1 ⋯ dr

RRRRRRRRRRRRR
q,Aj

1

w

⎞
⎟
⎠
;

for which Adachi’s arguments contained in Section 5 of [Ada19] apply

identically.

4.2. Connection numbers for quantum K-theory of projective

spaces

We will now compute a base change formula between the J-function

and the fundamental solution at Q =∞ built in Proposition 4.12.

Notation. — Let a ∶= (a1, . . . , ar) ∈ Cr be a multi-index. For d ∈
Z ∪ {∞}, j ∈ {1, . . . , r} and γ ∈ C we will use the following notations:

(a; q)d ∶= (a1, . . . , ar; q)d,

(γa; q)d ∶= (γa1, . . . , γar; q)d,

a−1 ∶= (a−11 , . . . , a−1r ),

â(j) ∶= (a1, . . . , aj−1, aj+1, . . . , ar) ∈ Cr−1,

π(a) ∶= a1⋯ar.

Our goal is to prove the following computation.

Theorem 4.13. — Write Λ ∶= (Λ0, . . . ,ΛN). Let α ∈ C∗ − qZ and

let [λ; qN+1] be a qN+1-spiral. Denote by (g[λ;q
N+1
]

k )
k∈{0,...,N}

the funda-

mental solution of the q-difference equation for quantum K-theory at ∞
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given by Proposition 4.12:

gk(w) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
eq,α−1P (w)

⎡⎢⎢⎢⎢⎢⎣
S[λ;q

N+1
]

qN+1 ψN+1 0

⎛
⎜
⎝

α−1PΛ−1

−

RRRRRRRRRRRRR
q, (αP −1)N+1 π(Λ)w

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
(w)
⎫⎪⎪⎪⎬⎪⎪⎪⎭∣P=Λk

.

Then, this fundamental solution at ∞ can by expressed with the funda-

mental solution at 0 given by the small J-function as in the following

identity.

g
[λ;qN+1]
k (w) =

N

∑
j=0

R
[λ;qN+1]
k,j (q,w)JKth, eq

∣P=Λj
(q, 1

w
) ,

where R
[λ;qN+1]
k,j is the qN+1-constant function given by

R
[λ;qN+1]
k,j (q,w) =

(q, α
−1Λk

Λ̂
j ; q)

∞

(qαΛ−1k Λj ,
Λj

Λ̂
j ; q)

∞

θq ((−1)N λα−1Λk

Λj
)

θq ((−1)Nλ)
×

×
θqN+1 (

λΛN+1
j

π(Λ)w
)

θqN+1 ( λ

(αΛ−1
k
)
N+1

π(Λ)w
)
eq,α−1Λk

(w)Λℓq(
1
w
)

j

Our strategy to prove this theorem will be the same as the one found

in [Ada19]: we start from a connection number for a regular singular

bilateral q-hypergeometric series, identify some limit of these connec-

tion numbers as an identity between q-Borel transforms, then apply a

q-Laplace transform to the identity.

Proposition 4.14 ([Sla66], Equation 5.2.4 p.165; see also [Cha09],

Theorem 2.1). — Let a, b ∈ Cr. Assuming the following series are finite

sums, or assuming ∣ π(b)
π(a)
∣ < ∣z∣ < 1,

ψr r

⎛
⎜
⎝

a

b

RRRRRRRRRRRRR
q,w
⎞
⎟
⎠
=

r

∑
j=1

Cj(q)
(ajw, q

ajw
; q)

∞

(w, q
w
; q)
∞

φr r−1

⎛
⎜⎜⎜
⎝

ajq

b
ajq

âj

RRRRRRRRRRRRRRRRR

q,
π(b)
π(a)w

⎞
⎟⎟⎟
⎠
,
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where

Cj(q) ∶=
(q, âj , b

aj
; q)

∞

( q
aj
,
âj

aj
, b; q)

∞

∈ C,

ajq

b
∶= (ajq

b1
, . . . ,

ajq

br
) ∈ Cr.

Remark 4.15. — We have

(ajz, q
ajz

; q)
∞

(z, q
z
; q)
∞

= θq(−ajz)
θq(−z)

Over the field of q-constantsM (Eq), the corresponding function is lin-

early equivalent to the function given by a
−ℓq(z)
j .

By taking the limit b → 0 in the identity of Proposition 4.14, we

obtain the following corollary.

Corollary 4.16. — We have the following identity of analytic func-

tions

ψr r

⎛
⎜
⎝

a

0

RRRRRRRRRRRRR
q,w
⎞
⎟
⎠
=

r

∑
j=1

C ′j(q)
θq(−ajw)
θq(−w)

φ0 r−1

⎛
⎜⎜
⎝

−
ajq

âj

RRRRRRRRRRRRRRR
q,
qrar−1j

π(âj)w

⎞
⎟⎟
⎠
,

where

C ′j(q) ∶= (q, âj ; q)∞ (
q

aj
,
âj

aj
; q)

−1

∞

Remark 4.17. — The motivation for this using this corollary is the

observation that, denoting Bq the q-Borel transform,

Bqr ψr 0

⎛
⎜
⎝

a

−

RRRRRRRRRRRRR
q,w
⎞
⎟
⎠
= ψr r

⎛
⎜
⎝

a

0

RRRRRRRRRRRRR
q, (−1)rw

⎞
⎟
⎠

We also notice that the statement of this corollary does not make sense if

we were to set a = 1, e.g. if we were doing equivariant limit in equivariant

quantum K-theory.
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Proof. — We have limbi→0Cj(q) = C ′j(q) by the convention (0; q)d =
1. The remaining computation relies on the observation that

lim
bi→0
(ajq
bi

; q)
d

bdi = lim
bi→0

d

∏
l=1

(bi − ajql) = (−1)dadj q
d(d+1)

2

Therefore, we have

φr r−1

⎛
⎜⎜⎜
⎝

ajq

b
ajq

âj

RRRRRRRRRRRRRRRRR

q,
π(b)
π(a)w

⎞
⎟⎟⎟
⎠
= ∑

d≥0

(ajq

b
; q)

d
π(b)d

(ajq

âj ; q)
d

( 1

π(a)dzd )

→ ∑
d≥0

(−1)dradrj qr
d(d−1)

2 qdr

(ajq

âj ; q)
d

( 1

π(a)dzd )

= ∑
d≥0

1

(ajq

âj ; q)
d

((−1)dq
d(d−1)

2 )
r

(
qrar−1j

π(âj)z
)
d

= φ0 r−1

⎛
⎜⎜
⎝

−
ajq

âj

RRRRRRRRRRRRRRR
q,
qrar−1j

π(âj)w

⎞
⎟⎟
⎠

□

Corollary 4.18. — Let L[λ;q
r
]

qr be the qr-Laplace transform along

the q-spiral [λ; qr]. We have the following identity of analytic functions

⎡⎢⎢⎢⎢⎢⎣
L[λ;q

r
]

qr ψr r

⎛
⎜
⎝

a

0

RRRRRRRRRRRRR
q, (−1)rw

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
(x)

=
r

∑
j=1

C ′j(q)
θq ((−1)r+1ajλ)
θq ((−1)r+1λ)

θqr ( λ
ar
jx
)

θqr (λx)
φr r−1

⎛
⎜⎜
⎝

0

ajq

âj

RRRRRRRRRRRRRRR
q,

1

π(a)x

⎞
⎟⎟
⎠

We recall that the qr-Laplace transform along the q-spiral [λ; qr] of
a function g is given by

[L[λ;q
r
]

qr g] (x) ∶= ∑
n∈Z

g(λqrn)
θqr (λq

rn

x
)
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The main idea of the proof of the corollary is to make a change of variable

for the summation on the index n ∈ Z to make the Laurent series of the

function θqr appear.

Proof. — In the expression for the qr-Laplace transform of the right

hand side of Corollary 4.18, we use the identity (deduced from the q-

difference equation satisfied by the theta function)

θq (qrx) =
1

q
r(r−1)

2 xr
θq(x)

We therefore obtain

⎡⎢⎢⎢⎢⎢⎣
L[λ;q

r
]

qr ψr r

⎛
⎜
⎝

a

0

RRRRRRRRRRRRR
q, (−1)r+1w

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
(x)

=
r

∑
j=1

∑
n∈Z

C ′j(q)
1

arnj

θq ((−1)r+1ajλ)
θq ((−1)r+1λ)

(λ
x
)
n

qr
n(n−1)

2
1

θqr (λx)
×

×∑
d≥0

1

(ajq

âj ; q)
d

qr
d(d−1)

2
qrd

qdrn

a
(r−1)d
j

π (âj)d λd

Multiplying all the terms of the form q(exponent) together, we obtain

qr
n(n−1)

2 +r
r(r−1)

2 +dr−drn = qr
(n−d)(n−d−1)

2

Setting n′ = n − d, we have

∑
n∈Z

1

arnj
(λ
x
)
n

qr
(n−d)(n−d−1)

2

=
⎛
⎝∑n′∈Z

( λ

arjx
)
n′

qr
(n′)(n′−1)

2
⎞
⎠
( λ

arjx
)
d

= θqr (
λ

arjx
)( λ

arjx
)
d
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Therefore,

⎡⎢⎢⎢⎢⎢⎣
L[λ;q

r
]

qr ψr r

⎛
⎜
⎝

a

0

RRRRRRRRRRRRR
q, (−1)r+1w

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
(x)

=
r

∑
j=1

C ′j(q)
θq ((−1)r+1ajλ)
θq ((−1)r+1λ)

θqr ( λ
ar
jx
)

θqr (λx)
∑
d≥0

1

(ajq

âj ; q)
d

( λ

arjx
)
d a

(r−1)d
j

π (âj)d λd

We conclude recognizing the q-hypergeometric series

∑
d≥0

1

(ajq

âj ; q)
d

( λ

arjx
)
d a

(r−1)d
j

π (âj)d λd
= φr r−1

⎛
⎜⎜
⎝

0

ajq

âj

RRRRRRRRRRRRRRR
q,

1

π(a)x

⎞
⎟⎟
⎠

□

Applying this corollary to the case of quantum K-theory gives the

following statement below.

Corollary 4.19. — Write Λ ∶= (Λ0, . . . ,ΛN) ∈ KTN+1 (PN)N+1.
Let α ∈ C∗−qZ and let [λ; qN+1] be a qN+1-(discrete) spiral. We have the

following identity of functions

eq,α−1P (w)
⎡⎢⎢⎢⎢⎢⎣
S[λ;q

N+1
]

qN+1 ψN+1 0

⎛
⎜
⎝

Λ−1α−1P

−

RRRRRRRRRRRRR
q, (αP −1)N+1 π(Λ)w

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
(w)

=
N

∑
j=0

(q, α−1P
Λ̂

j ; q)
∞

(qαP −1Λj ,
Λj

Λ̂
j ; q)

∞

θq ((−1)N λα−1P
Λj
)

θq ((−1)Nλ)

θqN+1 (
λΛN+1

j

π(Λ)w
)

θqN+1 ( λ
(αP−1)N+1π(Λ)w

)
×

× eq,α−1P (w)Λ
ℓq(

1
w
)

j

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Λ
−ℓq(

1
w
)

j φN+1 N

⎛
⎜
⎝

0

qΛ−1j Λ̂
j

RRRRRRRRRRRRRR
q,

1

w

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Notice that in the right hand side of the above identity, the function

between the curly brackets is the small J-function:

Λ
−ℓq(

1
w
)

j φN+1 N

⎛
⎜
⎝

0

qΛ−1j Λ̂
j

RRRRRRRRRRRRRR
q,

1

w

⎞
⎟
⎠
= JKth, eq
∣P=Λj

(q, 1
w
) .
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From this observation, we obtain the identity announced in Theorem

4.13.

Remark 4.20. — If we try to obtain a non equivariant version of

the formula in Theorem 4.13, the formula does not make sense as we no

longer have bases of solutions on left and right hand sides. Nonetheless,

let us consider the ring KTN+1 (PN) ⊗ KTN+1 (PN), denoting by P(0)

(resp. P(∞)) the generator on the left (resp. right) factor. We introduce

the equivariant K-theoretic number

Req(q,w) ∶=
(α−1P(∞)Λ−1; q)
(α−1P(0)Λ−1; q)

(q; q)2∞
(qαP(∞)−1P(0), α−1P(∞)P(0)−1; q)

×

×
θq ((−1)N

λα−1P(∞)
P(0)

)

θq ((−1)Nλ)

θqN+1 (
λP(0)

N+1

π(Λ)w
)

θqN+1 ( λ

(αP(∞)−1)
N+1

π(Λ)w
)
eq,α−1P(∞)(w)P(0)

ℓq(
1
w
)

∈KTN+1 (PN)⊗KTN+1 (PN) .

Then, one can notice that R(q,w)∣P(∞)=Λk,P(0)=Λj
= Rk,j , where Rk,j is

the equivariant connection number of Theorem 4.13. The non equivariant

limit of the number R(q,w) is well defined and given by

lim
Λ→1

R(q,w) =
(α−1P(∞); q)

N+1

∞

(α−1P(0); q)
N+1

∞

(q; q)2∞
(qαP(∞)−1P(0), α−1P(∞)P(0)−1; q)∞

×

×
θq ((−1)N

λα−1P(∞)
P(0)

)

θq ((−1)Nλ)

θqN+1 (
λP(0)

N+1

w
)

θqN+1 ( λ

(αP(∞)−1)
N+1

w
)
eq,α−1P(∞)(w)P(0)

ℓq(
1
w
)

(4.2.1)

We recall that a basis of solution in the non equivariant case is obtained

by taking in the formula for the J-function the coefficient in front of

(1 − P −1)j for j = 0, . . . , n. Therefore, we may expect the connection

numbers in the non equivariant case to be obtained by looking at the

coefficients in front of (1 − P(∞))
k ⊗ (1 − P(0))

j
in the right hand side

of Equation (4.2.1), once it is decomposed in this basis of K (PN)⊗2.
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Unfortunately, we are currently not able to write the identity Theorem

4.13 without any choice of basis in equivariant K-theory, thus we are not

able to make such a non equivariant limit.
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matics, vol. 28, Birkhäuser Boston, Inc., Boston, MA, 1983,

With the assistance of C. Musili, M. Nori, E. Previato and

M. Stillman.

[Roq19] A. Roquefeuil, “Confluence of quantum k-theory to quan-

tum cohomology for projective spaces”, Ph.D. thesis, Uni-
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q-différences linéaires et à coefficients analytiques: théorie
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