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On reconstruction from imaginary part for radiation solutions in
two dimensions

A.V. Nair, R.G. Novikov

Abstract

We consider a radiation solution ψ for the Helmholtz equation in an
exterior region in R2. We show that ψ in the exterior region is uniquely
determined by its imaginary part Im(ψ) on an interval of a line L lying
in the exterior region. This result has holographic prototype in the
recent work [Nair, Novikov, arXiv:2408.08326]. Some other curves for
measurements instead of the lines L are also considered. Applications
to the Gelfand-Krein-Levitan inverse problem and passive imaging are
also indicated.

Keywords: Two-dimensional Helmholtz equation, radiation solutions, Gelfand-
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1 Introduction
We consider the two-dimensional Helmholtz equation

∆ψ(x) + κ2ψ(x) = 0, x ∈ U , κ > 0, (1)

where ∆ is the Laplacian in x, and U is a region (open connected set) in R2

consisting of all points outside a closed bounded regular curve S (for example as
in [13]). For equation (1) we consider the radiation solution ψ such that: ψ is of
class C2 and satisfies the Sommerfeld’s radiation condition√

|x|
( ∂

∂|x|
− iκ

)
ψ(x) → 0 as |x| → +∞, (2)

uniformly in x/|x|.
Let

L = Lx0,θ = {x ∈ R2 : x = x(s) = x0 + sθ, −∞ < s < +∞},

L+ = L+
x1,θ

= {x ∈ R2 : x = x(s) = x1 + sθ, 0 < s < +∞},

L− = L−
x2,θ

= {x ∈ R2 : x = x(s) = x2 − sθ, 0 < s < +∞}, (3)
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where x0, x1, x2 ∈ R2, θ ∈ S1 and x1, x2 ∈ L.
The present work combines results in [16], and methods of [25] (the three-dimensional
case), to obtain analogical results to [25] in the two-dimensional case. In particular,
we show that for any straight line L ⊂ U , any complex-valued radiation solution ψ
on U is uniquely determined by the Im(ψ) on an arbitrary non-empty interval Λ of
L; see Theorem 2 (which is a corollary of Theorem 1) and Corollary 1 in Section 2.
We also consider other curves for measurements instead of the lines L; see Example
1 and Theorem 3 in Section 2.

Our studies are motivated by the Gelfand-Krein-Levitan problem and passive
imaging, see, e.g., [2], [3], [5], [8], [11], [12], [14], [15], [25], [26] and references
therein. In particular, in this respect, we continue studies of [25], where the three-
dimensional case is considered.

The Gelfand-Krein-Levitan problem (in its fixed energy version in dimension
d = 2) consists in determining the potential v in the Schrödinger equation

−∆ψ(x) + v(x)ψ(x) = κ2ψ(x) + δ(x− y), x, y ∈ R2, κ > 0, (4)

from the imaginary part of its radiation solutions ψ = R+
v (x, y, κ) (that is, satisfy-

ing (2)) for one κ and all x, y on some part of the boundary of a domain containing
the support of v. Here, δ is the Dirac delta function. In this problem, Im(R+

v ) is
related to the spectral measure of the Schrödinger operator H = −∆+v. For more
information about the Gelfand-Krein-Levitan problem and its relevance to passive
imaging, see [2], [5], [25] and references therein.

Theorems 1, 2, Corollary 1, and Theorem 3 mentioned above admit the same
applications to the Gelfand-Krein-Levitan inverse problem and passive imaging in
two dimensions as their prototypes in [25] in three dimensions, see subsection 2.2
for more details.

In the present work, we use the Karp expansion (9) below for the radiation
solutions ψ of equation (1) instead of the Atkinson-Wilcox expansion, used in [25],
for radiation solutions of the Helmholtz equation in three dimensions. In addition,
we use very recent results on the Karp expansion obtained in [16].

The main results of the present work are presented in more detail and proved
in Section 2, Subsection 3.2, and Section 4. In our proofs, we proceed from the
results recalled in Section 3.

2 Main results

2.1 Determination of radiation solutions ψ from Im(ψ)

Our key result is as follows.
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Theorem 1. Let ψ be a radiation solution of equation (1) as in (3). Let L, L+ and
L− be as given in (3) such that L+ = L+

x1,θ
⊂ U and L− = L−

x2,θ
⊂ U , x1, x2 ∈ L,

where U is the region in (1). Then ψ on L+ ∪ L− is uniquely determined by Im(ψ)
on Λ+ ∪ Λ−, where Λ+ and Λ− are arbitrary non-empty intervals of L+ and L−,
respectively.

As a corollary, we also get the following result.

Theorem 2. Let ψ be a radiation solution of equation (1) as in (3). Let L be as
given in (3) such that L = Lx0,θ ⊂ U , where U is the region in (1). Then ψ on L
is uniquely determined by Im(ψ) on Λ, where Λ is an arbitrary non-empty interval
of L.

Theorem 1 is proved in Section 4 using the Karp expansion of [13] for the
radiation solutions of equation (1), results of [16], and methods of [25]. Similar to
[25], we use a two-point approximation for ψ in terms of Im(ψ); see Proposition 1
in Section 3.

Note that ψ and Im(ψ) are real-analytic on U , and therefore on L+ ∪ L− in
Theorem 1 and on L in Theorem 2. Because of this analyticity, Theorem 1 reduces
to the case when Λ+ ∪ Λ− = L+ ∪ L− and Theorem 2 reduces to the case when
Λ = L.

Theorem 2 is proved as follows (for example). We assume that Λ = L. Then
we simply consider L+ ⊂ L and L− ⊂ L such that L+ ∩ L− ̸= ∅. Then we may
apply Theorem 1.

Corollary 1. Under the assumptions of Theorem 2, Im(ψ) on L uniquely deter-
mines ψ in the entire region U .

Corollary 1 follows from Theorem 2, formula (14) recalled in Section 3, and
analyticity of ψ in U .

Theorems 1 and 2, and Corollary 1 have holographic prototypes in [16].

In connection with other curves of measurements instead of the lines L our
results are as follows.

The results in Theorems 1 and 2, don’t hold for some other curves in place of
L. An example is as follows. Let

Sr = {x ∈ R2 : |x| = r}, r > 0. (5)

Example 1. Let ψ(x) = G+(x, κ) = i
4H0(κ|x|), where H0 is the Hankel function

of first kind of order zero. Then ψ is a non-zero radiation solution of equation (1)
if {0} ⊂ R2 \ U , but Im(ψ) ≡ 0 on the circles Sr for r =

cj
κ , j ∈ N where cj are

the positive real roots of the Bessel function J0 = Re(H0).
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The fact that there are infinite positive real roots of J0 and they tend to positive
infinity can be found in [1]. Nevertheless, as in the three-dimensional scenario, the
uniqueness results of Theorem 2 and Corollary 1, remain valid for many interesting
curves instead of the lines L.

Suppose that

D is an open bounded domain in R2,

Γ = ∂D is real analytic and connected.
(6)

Theorem 3. Let ψ be a radiation solution of equation (1) as in (2). Let Γ be
a curve as above, where κ is not a Dirichlet eigenvalue for D, and D = D ∪ Γ
⊂ U . Then ψ on U is uniquely determined by Im(ψ) on Λ where Λ is an arbitrary
non-empty open interval of Γ.

The proof of Theorem 3 is similar to that of Theorem 4 in [25]. In particu-
lar, this proof uses real analytic continuations, solving the Dirichlet problem for
the Helmholtz equation in D, and Corollary 1 in place of its three-dimensional
prototype in [25].

2.2 Applications to Gelfand-Krein-Levitan problem
The aforementioned results on recovering a radiation solution ψ from Im(ψ) give
a reduction of the Gelfand-Krein-Levitan problem (of inverse spectral theory and
passive imaging in dimension d = 2) to the inverse scattering problem of finding v
in (4) from boundary values of ψ = R+

v . This reduction and known results imply,
in particular, that v in (4) is uniquely determined by Im(R+

v (x, y, κ)) for one κ
and all x, y on an arbitrary open interval Λ of L, where supp v ⊂ Ω, L is a line in
R2 \ Ω, Ω is an open bounded connected domain in R2, Ω is the closure of Ω; see
Theorem 4 below.

Theorem 4. Let v ∈ L∞(R2), supp v ⊂ Ω, and L ⊂ R2 \ Ω, where Ω is an open
bounded connected domain in R2, Ω is the closure of Ω, and L is a straight line.
Let R+

v (x, y, κ) be the outgoing Green function for equation (4). Then v is uniquely
determined by Im(R+

v (x, y, κ)) for one κ and all x, y on Λ, where Λ is an arbitrary
non-empty open interval of L.

Theorem 5. Let v ∈ L∞(R2), supp v ⊂ R2 \ U , where U is as in (1), and
property (17) hold for fixed κ > 0. Let Γ be a curve as in (6), where κ is not a
Dirichlet eigenvalue for D, and D = D ∪ Γ ⊂ U . Then v is uniquely determined
by Im(R+

v (x, y, κ)) on Λ × Λ, where Λ is an arbitrary non-empty open interval of
Γ.
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In Theorems 4 and 5, we do not assume that v is real-valued, but we assume
that (17) formulated in Subsection 3.4 holds.
Theorems 4 and 5 can be proved in a similar way to Theorems 3 and 5 in [25], re-
spectively. These proofs use Theorems 1,2, and 3 in place of their three-dimensional
prototypes in [25], some known results on two-dimensional direct scattering in place
of similar results on three-dimensional direct scattering used in [25], and also the
two-dimensional global uniqueness result on recovering from the scattering ampli-
tude A in (21) at fixed κ (see Corollary 5.1 in [6] in addition to results of [17], [18]).
These proofs follow from these indications in a straightforward way.

3 Preliminaries
Let (r, ϕ) denote the polar coordinates of a point x and let θ = x

|x| be its direction.
So −θ will be the direction of −x whose polar coordinates will be (r, ϕ+ π).
Let

Bρ = {x ∈ R2 | |x| < ρ}, ρ > 0. (7)

We use the following asymptotic expansion for radiation solution ψ of equation (1):

ψ(x) ∼

√
2

πκ|x|
ei(κ|x|−

π
4
)

∞∑
j=0

fj(ϕ)

|x|j
for x ∈ R2, |x| → ∞. (8)

Expansion (8) looks similar to the convergent Atkinson-Wilcox expansion in three
dimensions (in [4]). However, the series in (8) diverges in general and in particular
for ψ(x) = H0(κ|x|) (see [13] for more details).

3.1 The Karp Expansion
Due to [13], we have the following Karp expansion:

Suppose that ψ is a radiation solution of equation (1), and R2 \Bρ ⊂ U .

ψ(x) = H0(κ|x|)
∞∑
j=0

Fj(ϕ)

|x|j
+H1(κ|x|)

∞∑
j=0

Gj(ϕ)

|x|j
, (9)

for x ∈ R2 \Bρ,

where H0 and H1 are the Hankel functions of the first kind of order zero and one
respectively. The series converges absolutely and uniformly for |x| ≧ ρ1 > ρ (for
any such ρ1).
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The important result is that Fj(ϕ), Gj(ϕ), j = 0, 1, 2, ...n, in (9) are uniquely
determined from fj(ϕ), fj(ϕ + π), j = 0, 1, 2, ...n, in (8) via recurrent formulas;
(see Theorem III of [13] for n = 0, Theorem 3 of [16] for the general case).

3.2 A two-point approximation for ψ
Let

I(x) =
√

|x|Im(ψ(x)), x ∈ U , (10)

where ψ is a radiation solution of equation (1).

We have that

2iI(x) =

√
2

πκ
(ei(κ|x|−

π
4
)f0(ϕ)− e−i(κ|x|−π

4
)f0(ϕ)) +O

( 1

|x|
)
, as |x| → ∞, (11)

uniformly in θ = x/|x|, where f0 is the leading coefficient in (8).

Proposition 1. Let ψ be a radiation solution of equation (1). Then

f0(ϕ) =
1

sin(κτ)

√
πκ

2

(
I(x)e−i(κ|y|−π

4
) − I(y)e−i(κ|x|−π

4
) +O

( 1

|x|
))
, as |x| → ∞,

(12)

x, y ∈ L+
x0,θ

, x0 = 0, y = x+ τθ, θ ∈ S, τ > 0,

uniformly in θ, where f0 is the leading coefficient in (8), I is defined in (10), L+

is the ray defined by (3), and sin(κτ) ̸= 0 for fixed τ .

Formula (12) is a two-point approximation for f0 and together with (8) also
gives a two-point approximation for ψ in terms of I. For phaseless inverse scattering
and holography formulas of such a type go back to [19] (see also [23], [22], [21],
[16], [25]).

Remark 1. If an arbitrary function I on L0,θ satisfies (11), then formula (12)
holds, for fixed θ ∈ S.

We obtain (12) from the system of equations for f0, f0:√
2

πκ
(ei(κ|x|−

π
4
)f0(ϕ)− e−i(κ|x|−π

4
)f0(ϕ)) = 2iI(x) +O(|x|−1), (13)√

2

πκ
(ei(κ|y|−

π
4
)f0(ϕ)− e−i(κ|y|−π

4
)f0(ϕ)) = 2iI(y) +O(|y|−1),

where x, y are as in (12). In particular, we use that |y| = |x| + τ . In turn, (13)
follows from (11).
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3.3 A Green type formula
The following formula holds:

ψ(x) = 2

∫
L

∂G+(x− y, κ)

∂νy
ψ(y)dy, x ∈ VL, (14)

G+(x, κ) =
i

4
H0(κ|x|), x ∈ R2,

where ψ is a radiation solution of equation (1), L and VL are line and open half-
plane in U , where L is the boundary of VL, ν is the outward normal to L relative
to VL; see, for example, formula 5.84 in [7].

3.4 Some facts of direct scattering
The radiation solution R+

v = R+
v (., y, κ) for equation (4) satisfies the integral equa-

tion

R+
v (x, y, κ) = −G+(x− y, κ) +

∫
Ω
G+(x− y, κ)v(z)R+

v (z, y, κ)dz, (15)

where x, y ∈ R2, G+ is given in (14).
We consider equations (4) and (15) assuming for simplicity that

v is complex-valued, v ∈ L∞(Ω), v ≡ 0 on R2 \ Ω, (16)

and
equation (15) is uniquely solvable for R+

v (., y, κ) ∈ L2(Ω). (17)

It is known that if v satisfies (16) and is real-valued (or Im(v) ≤ 0) then (17)
is fulfilled automatically; see, for example, [9], at least in three dimensions.

Note that
R+

v (x, y, κ) = R+
v (y, x, κ), x, y ∈ R2; (18)

We also consider the scattering wave functions ψ+ for the homogeneous equa-
tion (4) (i.e without δ):

ψ+ = ψ+(x.k) = eikx + ψ+
sc(x, k), x, k ∈ R2, |k| = κ, (19)

where ψ+
sc(x, k) satisfies the radiation condition (2) at fixed k.

The following formulas hold:

R+
v (x, y, κ) = −1

2

√
1

2πκ|x|
ei(κ|x|+

π
4
)ψ+(y.−κ x

|x|
)+O

( 1

|x|3/2
)
, as |x| → ∞, (20)
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at fixed y;

ψ+
sc(x, k) =

eiκ|x|

|x|1/2
A(k, κ

x

|x|
) +O

( 1

|x|3/2
)
, as |x| → ∞, (21)

at fixed k, where A arising in (21) is the scattering amplitude for the homogeneous
equation (4).
In connection with the aforementioned facts concerning R+

v and ψ+, see, e.g., [10].

4 Proof of Theorem 1

4.1 Case L+
x1,θ

∪ L−
x2,θ

⊆ L0,θ

In a similar way to [25] (where the three-dimensional case is considered), we prove
that Im(ψ) on L+

x1,θ
∪ L−

x2,θ
⊆ L0,θ defined as in (3) where 0 denotes the origin

in R2, uniquely determines fj(ϕ) in (8) ∀j ∈ N. The proof is given below. Then,
using formulas in [13] and [16] as recalled in Subsection 3.1, all Fj(ϕ), Gj(ϕ), in (9)
are uniquely determined by fj(ϕ), fj(ϕ+π). The rest follows from the convergence
of the series in (9) and analyticity of ψ and Im(ψ) on L+ ⊆ L+

0,θ.
The determination of f0(ϕ) from Im(ψ) on L+

x1,θ
follows from (12).

Suppose that f0(ϕ), f1(ϕ), f2(ϕ), ...fn(ϕ) are determined then the determination
of fn+1(ϕ) from Im(ψ) on L+

x1,θ
is as follows.

Let

ψn(x) =

√
2

πκ|x|
ei(κ|x|−

π
4
)

n∑
j=0

fj(ϕ)

|x|j
, where θ =

x

|x|
= (cos(ϕ), sin(ϕ)), (22)

In(x) =
√
|x|Im(ψ(x)), (23)

Jn(x) = |x|n+1(I(x)− In(x)), (24)

where x is as in (9), I(x) is defined by (10).
We have that:

2iI(x) = 2In(x) +

√
2

πκ

ei(κ|x|−
π
4
)

|x|n+1
fn+1(ϕ)−

√
2

πκ

e−i(κ|x|−π
4
)

|x|n+1
fn+1(ϕ) (25)

+O
( 1

|x|n+2

)
2iJn(x) =

√
2

πκ
(ei(κ|x|−

π
4
)fn+1(ϕ)− e−i(κ|x|−π

4
)fn+1(ϕ)) +O

( 1

|x|
)
, (26)
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as |x| → +∞, uniformly in θ = x/|x|, where I is defined by (10).
Due to (26) and Remark 1, as |x| → +∞ we get:

fn+1(ϕ) =
1

sin(κτ)

√
πκ

2

(
Jn(x)e

−i(κ|y|−π
4
) − Jn(y)e

−i(κ|x|−π
4
) +O

( 1

|x|
))
, (27)

x, y ∈ L+ ⊆ L+
0,θ, y = x+ τθ, θ ∈ S1, τ > 0,

uniformly in θ, assuming that sin(κτ) ̸= 0 for fixed τ (where the parameter τ can
always be fixed in such a way for fixed κ > 0).

Formulas (10), (22)-(24) and (27) determine fn+1(ϕ), give the step of induction
for finding all fj(ϕ) from Im(ψ) on L+

x1,θ
. The determination of fj(ϕ + π) from

Im(ψ) on L−
x2,θ

is completely similar.
This completes the proof of Theorem 1 for the case L+

x1,θ
∪ L−

x2,θ
⊆ L0,θ.

4.2 General Case
In fact, in a similar way with [21], [25], and [16], the general case reduces to the
case of Subsection 4.1 by the change of variables

x′ = x− q (28)

for some fixed q ∈ R2 such that L+ ⊆ L+
q,θ, L− ⊆ L−

q,θ.

In the new variables x′, where x′ ∈ U ′ = U − q we have that:

L+ ⊆ L+
q,θ = L+

0,θ L− ⊆ L−
q,θ = L−

0,θ. (29)

In addition,

ψ(x′) =

√
2

πκ|x′|
ei(κ|x

′|−π
4
)

∞∑
j=0

f ′j(ϕ)

|x′|j
for x′ ∈ R2 \Br′ , (30)

for some new f ′j , where r′ is such that R2 \Br′ ⊂ U ′.
We also have

ψ(x′) = H0(κ|x′|)
∞∑
j=0

F ′
j(ϕ)

|x′|j
+H1(κ|x′|)

∞∑
j=0

G′
j(ϕ)

|x′|j
, (31)

where F ′
j and G′

j are appropriate new coefficients (in accordance with subsection
6.2 of [16]), and the series converges absolutely and uniformly in |x| > r′.

In view of (30), (31), we complete the proof of Theorem 1 by repeating the
proof of Subsection 4.1.

Remark 2. Our proof of Theorem 1 has holographic prototypes in [16]. Additional
formulas for finding fj can also be obtained using approaches of [20], [23], [24].
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