
HAL Id: hal-04768228
https://hal.science/hal-04768228v1

Preprint submitted on 5 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Quantum Advantage for Local Problems
Alkida Balliu, Sebastian Brandt, Xavier Coiteux-Roy, Francesco d’Amore,

Massimo Equi, François Le Gall, Henrik Lievonen, Augusto Modanese, Dennis
Olivetti, Marc-Olivier Renou, et al.

To cite this version:
Alkida Balliu, Sebastian Brandt, Xavier Coiteux-Roy, Francesco d’Amore, Massimo Equi, et al.. Dis-
tributed Quantum Advantage for Local Problems. 2024. �hal-04768228�

https://hal.science/hal-04768228v1
https://hal.archives-ouvertes.fr

Distributed Quantum Advantage
for Local Problems

Alkida Balliu · Gran Sasso Science Institute, Italy

Sebastian Brandt · CISPA Helmholtz Center for Information Security, Germany

Xavier Coiteux-Roy · Technical University of Munich, Germany · Munich Center for
Quantum Science and Technology, Germany

Francesco d’Amore · Bocconi University, Italy · BIDSA, Italy

Massimo Equi · Aalto University, Finland

François Le Gall · Nagoya University, Japan

Henrik Lievonen · Aalto University, Finland

Augusto Modanese · Aalto University, Finland

Dennis Olivetti · Gran Sasso Science Institute, Italy

Marc-Olivier Renou · Inria Paris-Saclay, France · CPHT, CNRS, Ecole Polytechnique,
Institut Polytechnique de Paris, France

Jukka Suomela · Aalto University, Finland

Lucas Tendick · Inria Paris-Saclay, France

Isadora Veeren · Inria Paris-Saclay, France · CPHT, CNRS, Ecole Polytechnique, Institut
Polytechnique de Paris, France

Abstract. We present the first local problem that shows a super-constant separation
between the classical randomized LOCAL model of distributed computing and its
quantum counterpart. By prior work, such a separation was known only for an artificial
graph problem with an inherently global definition [Le Gall et al. 2019].

We present a problem that we call iterated GHZ, which is defined using only lo-
cal constraints. Formally, it is a family of locally checkable labeling problems [Naor
and Stockmeyer 1995]; in particular, solutions can be verified with a constant-round
distributed algorithm.

We show that in graphs of maximum degree ∆, any classical (deterministic or
randomized) LOCAL model algorithm will require Ω(∆) rounds to solve the iterated
GHZ problem, while the problem can be solved in 1 round in quantum-LOCAL.

We use the round elimination technique to prove that the iterated GHZ problem
requires Ω(∆) rounds for classical algorithms. This is the first work that shows that
round elimination is indeed able to separate the two models, and this also demonstrates
that round elimination cannot be used to prove lower bounds for quantum-LOCAL.
To apply round elimination, we introduce a new technique that allows us to discover
appropriate problem relaxations in a mechanical way; it turns out that this new technique
extends beyond the scope of the iterated GHZ problem and can be used to e.g. reproduce
prior results on maximal matchings [FOCS 2019, PODC 2020] in a systematic manner.

1 Introduction

The key question we study in this work is this: which problems admit a distributed quantum
advantage? That is, if we have a computer network, and we replace classical computers with
quantum computers and classical communication channels with quantum communication channels,
which distributed tasks can be now solved faster?

1.1 Setting: LOCAL vs. quantum-LOCAL

There is a range of prior work that has studied such questions in bandwidth-limited networks, e.g.,
comparing the relative power of the classical CONGEST and CONGESTED CLIQUE models
with their quantum counterparts [33, 42, 50–52, 55, 61, 62, 64]. In essence, the question is: Can a
quantum network which can send b qubits (quantum bits) per time unit over each communication
link outperform a classical network which can send the same number of bits per time unit? It
turns out that in many cases we can indeed demonstrate quantum advantage in this sense, see,
e.g., [33, 50–52].

However, quantum advantage in settings in which large distances are the key limitation (instead
of bandwidth) are much less understood. We emphasize that large distances (i.e., network latency, or
time for information to propagate from one node to another) are a fundamental physical limitation,
and not merely an engineering challenge. One can at least in principle increase bandwidth by
installing multiple parallel communication channels (say, a larger number of fiber-optic links between
a pair of nodes), and it might be significantly harder for quantum communication channels, while
there is no way to increase the speed of information propagation beyond the speed of light in a
spatially distributed system. Can quantum computation and communication still help? This is our
focus in this work.

We study the classical LOCAL model of distributed computing, and compare it with its
quantum counterpart. In the LOCAL model computation proceeds in synchronous rounds, and in
each round each computer can send an arbitrarily large message to each neighbor, receive a message
from each neighbor, and do unbounded local computation. Initially all nodes are only aware of their
own local input, and eventually all nodes must stop and announce their own local output (e.g. in the
graph coloring problem: what is its own color). We are interested in how many communication
rounds are needed (in the worst case) until all nodes stop.

There is extensive line of research since the early 1990s on understanding the classical LOCAL
model and the round complexity of various graph problems in this model, see, e.g., [2,6,7,9,12,13,17,
26–28,35,36,41,44–46,54,57]. The main focus has been on problems defined with local constraints
(e.g. graph coloring), and especially in the recent years one of the main research themes has been
understanding the distributed complexity landscape of all such problems.

But do any of these problems strictly benefit from quantum computation and communication?
In the quantum-LOCAL model, the local state of a node consists of an arbitrary number of qubits,
each message consists of an arbitrary number of qubits, and after each communication round, each
node can do arbitrary quantum operations and measurements with the qubits that it holds. Does
this help in comparison with the classical randomized LOCAL model, where the nodes have only
access to a classical source of randomness?

1.2 Prior work vs. our main contribution

By prior work [53], it is known that there exists a (very artificial) graph problem with the following
properties: in n-node graphs, any classical (deterministic or randomized) LOCAL algorithm will

1

require Ω(n) rounds to solve the problem, while there is an O(1)-round quantum-LOCAL algorithm
for solving it.

However, the problem from prior work is not only artificial, but it is also very different from the
problems usually studied in the context of the LOCAL model. In particular, it has got an inherently
global definition: to decide if a given output is valid, one has to inspect the joint outputs of nodes in
distant parts of the networks. Such a problem is very different from problems typically studied in
the context of the LOCAL model. Usually we are interested in problems similar to graph coloring,
which can be defined with local constraints (e.g., a vertex coloring is valid if and only if each node
has an output label different from the labels of its neighbors). Put otherwise, these are problems
where the solution may be hard to find for a distributed algorithm, but it is at least easy to verify
(cf. class FNP in the centralized setting).

The idea of problems defined with local constraints was formalized in the seminal paper by Naor
and Stockmeyer in 1995 [57]. They defined the family of locally checkable labeling problems, or
in brief LCLs. These are problems that can be defined by specifying a finite set of valid labeled
neighborhoods. For example, proper vertex coloring with 11 colors in graphs of degree at most 10 is
a concrete example of a graph problem that is formally an LCL in the strict sense (very often we
study families of LCLs parameterized by the maximum degree, and e.g. (∆ + 1)-coloring in graphs
of degree at most ∆ is a natural example of such a problem family). Most of the problems of interest
in the context of the LOCAL model are (families of) LCL problems and there is a huge body of
work that has established all kinds of structural results related to the complexity of LCL problems
(see, e.g., [5–8,15,16,18,18–23,28,34–37,48]). Now the key question is:

Does quantum-LOCAL help in comparison with classical LOCAL for some LCL problem?

Before this work, the answer was: we do not know, beyond constant advantage. There are several
negative results that exclude any quantum advantage for a specific problem, or at least put limits
on it (see, e.g., [3, 40,43]). It is also easy to engineer a problem that exhibits a constant quantum
advantage, e.g., a problem that is solvable in 1 round with quantum-LOCAL and requires 2 rounds
with classical LOCAL. One can also amplify this if we cheat by defining a family of LCL in which
the checking radius (i.e., how local the constraints are, or what is the maximum radius of a valid
labeled neighborhood in the definition of the LCL) increases as a function of ∆. But beyond this,
nothing positive was known; the global graph problem from [53] was the only known example of any
asymptotic quantum advantage in the LOCAL model. Our main result is this:

We present a family of LCL problems P∆ called iterated GHZ, parameterized by the maximum
degree ∆, with these three properties:

1. the checking radius of P∆ is O(1), independently of ∆,
2. in quantum-LOCAL, we can solve P∆ in O(1) rounds, independently of ∆,
3. in classical (deterministic or randomized) LOCAL, any algorithm that solves P∆ requires

Ω(∆) rounds.

This gives the first local problem (in any reasonable sense) that demonstrates distributed
quantum advantage in the LOCAL model, also answering the open questions from [1,40] positively.
We emphasize that the problem is engineered so that the feasibility of solutions is easy to verify
also for classical distributed algorithms, but it is easy to compute only for distributed quantum
algorithms.

2

1.3 Key techniques and new ideas

As a gentle introduction to our work, let us first introduce a toy version of our problem, called
iterated CHSH. While this problem does not quite give us distributed quantum advantage, it
already contains all the key ingredients; and the final step that we need to take from iterated CHSH
to iterated GHZ is relatively straightforward (albeit technical).

CHSH game. The CHSH game [32,39] is the following two-player game: Alice gets an input bit
x and Bob gets an input bit y. Alice has to produce an output bit a and Bob has to produce an
output bit b. The bits have to satisfy xy = a ⊕ b, that is, if both inputs are 1, the players must
produce different outputs, while otherwise the players must produce the same output. This game
has two important properties:

1. It is “classically hard” in the following sense: Alice and Bob cannot win this game without any
communication (for any classical strategy, Alice and Bob will fail on at least one combination
(x, y) of inputs, and thus win with probability at most 75% on uniformly random inputs).

2. It is “non-signaling” in the following sense: if a friendly oracle picks a uniformly random valid
output, and informs Alice about her output a and informs Bob about his output b, then Alice
will learn absolutely nothing about Bob’s input and vice versa.

The non-signaling property implies that there might be a quantum strategy that enables Alice and
Bob to win this game (with a nontrivial probability); at least the existence of such a strategy would
not violate causality. And indeed this is the case: if Alice and Bob share a single entangled qubit
pair, they can win the game with up to (1 +

√
2)/2 ≈ 85% on uniformly random inputs, which is

better than the classical strategy [38].
Now 85% probability is not going to suffice for us, and this is exactly why this is just a toy version

of the real problem. But let us put this aside for now. It may be useful to imagine for a while that
we are living in a super-quantum world where the laws of physics actually allowed Alice and Bob to
win the CHSH game with probability 1 if they hold some magic pre-shared entangled super-qubits.
We will eventually get back from the super-quantum world to the usual quantum world. (Slightly
more formally, an entangled pair super-qubit is going to be exactly what is commonly called in the
literature a PR-box first introduced by Popescu and Rohrlich [59], but we do not assume familiarity
with this concept.)

Iterated CHSH. Now we are ready to explain what the iterated CHSH problem looks like. Fix
some maximum degree ∆. We can without loss of generality assume that our input graph is ∆-regular
and it is ∆-edge-colored, that is, for each c = 1, 2, . . . ,∆, each node is incident to exactly one edge
that is labeled with color c. (We note that we do not really need a promise here: we can simply
define the problem so that all nodes that violate this property are unconstrained, and hence hard
instances are exactly those graphs in which all nodes satisfy this locally checkable property, and we
do not have any unconstrained nodes.)

We define a graph problem in which each node v has to output a sequence of bits v0, v1, . . . , v∆
that satisfies these constraints:

• For each node v we have v0 = 1.
• If the color of the e = {u, v} is c, then uc−1vc−1 = uc ⊕ vc.

This can be interpreted as follows:

3

• Each edge {u, v} of color 1 represents an instance of the CHSH game where the inputs are
hardcoded to u0 = 1 and v0 = 1, and the outputs are u1 and v1.

• Each edge {u, v} of color c > 1 represents an instance of the CHSH game where the inputs are
uc−1 and vc−1 and the outputs are uc and vc.

That is, the outputs of the CHSH games that we play on the edges of color 1 form the inputs of the
CHSH games that we play on the edges of color 2, and the outputs of those games form the inputs
of the CHSH games that we play on the edges of color 3, etc., all the way up to the games that we
play on the edges of color ∆. We will now study some properties of the iterated CHSH problem.

Iterated CHSH is a local problem. First, we observe that the iterated CHSH problem is a
locally verifiable problem. Indeed, each edge represents the constraints of the CHSH game, and if
we are given some solution, it is sufficient that we check that for each edge the relevant bits satisfy
these constraints; hence the validity of a solution is locally verifiable.

Furthermore, for each fixed maximum degree ∆ we satisfy the usual technical requirements of
the definition of LCL problems in [57], namely, the set of input labels (∆ edge colors) and the
set of output labels (2∆ bit strings) are finite. In summary, we have a family of LCL problems
parameterized by ∆, and the checking radius does not depend on ∆.

Iterated CHSH in super-quantum-LOCAL. Now if we were in the hypothetical super-
quantum world in which pre-shared super-qubits enabled Alice and Bob to win the CHSH game with
probability 1, we could also solve the iterated CHSH problem in only one round of super-quantum
communication, as follows.

First, each node locally prepares ∆ pairs of entangled super-qubits. Then we use one round of
communication so that each node exchanges one entangled super-qubit with each of its neighbors
(it is critical here that we can do this in parallel with each neighbor). Additionally, each node can
share e.g. its own unique identifier that we can later use for symmetry-breaking purposes. This way
for each edge we have prepared two pairs of entangled super-qubits, and with the help of unique
identifiers we can consistently agree on which of these pairs to use. In summary, for each node v
there are super-qubits v1, v2, . . . , v∆ so that if {u, v} is an edge of color v, super-qubits uc and vc

form a pair of entangled super-qubits powerful enough to win the CHSH game.
Then all the rest is local computation. Consider a node v. It initializes v0 = 1, and then

iteratively repeats the following step for each c = 1, 2, . . . ,∆: Let e = {u, v} be the edge of color c
incident to v; in the first round v already learned the unique identifier of u. We check the unique
identifiers to decide which of the nodes takes the role of Alice and which takes the role of Bob; let
us say that v becomes Alice. Now v knows that it shares an entangled pair of super-qubits (vc, uc)
with node u, who plays the role of Bob. Alice knows its own input vc−1, and Bob knows its own
input uc−1. Node v, Alice, uses its own super-qubit vc appropriately to figure out its output vc,
and without any communication node u will do the same using its own entangled super-qubit uc to
find uc.

This way just 1 round of communication, followed by ∆ steps of purely local super-quantum
operations is enough for all nodes to produce valid solutions. Hence we have constructed a family of
LCL problems that is easy in super-quantum-LOCAL. This is not particularly surprising, as the
whole intuition here is that the problem is by construction easy in the super-quantum world. All the
heavy lifting goes to showing that it is hard in the classical world.

4

Iterated CHSH in classical LOCAL. To gain more intuition on the iterated CHSH problem, let
us first make the following observation: in graphs of maximum degree ∆, we can solve this problem
in Θ(∆) rounds in the classical deterministic LOCAL model.

The algorithm is very simple: Each node v first initializes v0 = 1. Then for each c = 1, 2, . . . ,∆,
we consider all edges e = {u, v} of color c. For each such edge, v will send its own identifier and the
value of vc−1 to u, and conversely u will send its own identifier and uc−1 to v. This way u and v
both know the values of uc−1 and vc−1, plus their own identifiers. Now assume that the identifier of
u is smaller than v; then the nodes will find the lexicographically smallest pair (uc, vc) such that
this is a valid output for the CHSH game assuming that node u is Alice with input uc−1 and node v
is Bob with input vc−1. In particular, node v learns the value of vc and node u learns the value of uc
so that these satisfy the constraints for edge {u, v}.

In ∆ rounds this will result in a valid solution. Essentially, each node plays CHSH games in a
sequential order, starting with the game on the edge of color 1, and eventually reaching the game on
the edge of color ∆.

Incidentally, it is good to note that both this Θ(∆)-round classical algorithm and the O(1)-
round super-quantum algorithm send Θ(∆) messages—each node communicates with each neighbor
exactly once. The key difference is that in the super-quantum algorithm, the messages that we send
(entangled super-qubits) do not depend on each other, and we can send all of them in the first round,
simultaneously in parallel, while in the classical algorithm, the messages that we send in round c
depend on the messages sent in round c− 1, and hence they cannot be parallelized.

Now what we would like to do is to show that the sequential strategy is the best possible
classical algorithm, i.e., there is no o(∆)-round classical algorithm that in some clever way
circumvents the need for coordinating with each neighbor in a sequential manner. But let us first
see how we get from the imaginary super-quantum world to the familiar quantum world, and then
discuss how to show the analogous statement for the real problem.

From super-quantum to quantum: replacing CHSH with GHZ. So far we have discussed
the toy problem, iterated CHSH, that (at best) can prove a separation between the classical world
and an imaginary super-quantum world in which the CHSH game can be solved with probability 1.
Let us now see how to apply the same idea to separate the classical world and the real quantum
world. To do that, we need a suitable non-signaling game with all these properties:

• It is impossible to solve without any communication using classical randomness.
• It can be solved with probability 1 with the help of pre-shared entangled qubits.
• The input and output values come from some finite set, so that we can turn this into an LCL

problem.
• The set of possible input values has to be the set of possible output values, so that we can use

the output of one game as the input of another game.
• The game does not require any promises on allowed input combinations, so that the game is

always well-defined.

The first two conditions define games called quantum pseudo-telepathy [30]. One good candidate
to fulfill also the last three conditions is the well-known GHZ game [47,56]. This is a three-player
game, where Alice, Bob, and Charlie each get one input bit, x, y, and z, and each of them has to
produce one output bit, a, b, and c. The usual phrasing of the game is as follows: we promise that
x⊕ y ⊕ z = 0, and the requirement is that a⊕ b⊕ c = 0 if and only if x = y = z = 0. This phrasing
of the game comes with a promise, but we can eliminate it by specifying that any output is valid if
x⊕ y ⊕ z = 1.

5

The good news is that this game is indeed solvable with probability 1 given a suitable entangled
quantum state [47]. The bad news is that it is very relaxed: it is not clear if this game can be used
to construct any problem that is classically hard. We now follow the blueprint of the iterated CHSH
problem; in essence we replace each instance of the CHSH game with an instance of the GHZ game.
We obtain a local problem that we call iterated GHZ. We prove that this problem is classically hard.

In the CHSH problem, each edge represented a 2-player game, and we need to embed 3-player
games. In essence, we need to switch from graphs to 3-uniform hypergraphs (where each hyperedge
represents a 3-player game), and then we will use a bipartite graph to represent the hypergraph: we
will have white nodes of degree ∆ that represent players and black nodes of degree 3 that represent
games. Black nodes are colored so that for each c = 1, 2, . . . ,∆ and for each white node there is
exactly one black neighbor of color c.

Again the intuition is that we play GHZ games in a sequential order, so that for each white node
v, the output of the GHZ game represented by the black neighbor of color c− 1 will be the input of
the GHZ game represented by the black neighbor of color c.

This time extra care is needed with bootstrapping. In the CHSH setting, we simply assumed
that the first game has all inputs hardcoded to 1. If we did the same here, the iterated GHZ problem
would become trivial to solve (note that all-1 input implies that all-1 output is valid, which means
that all nodes could blindly output a vector of 1 bits). Similarly, all-0 input leads to a trivial problem.
To force a nontrivial solution, we make the first game special: black nodes of color 1 represent the
task in which we have no inputs, and exactly one of the players Alice, Bob, and Charlie has to
output 1 and the other two must output 0. (We note that this is in some sense analogous to a CHSH
game in which the inputs are hardcoded to 1, as there exactly one of Alice and Bob has to output 1
and the other one has to output 0.)

Iterated GHZ. Let us now summarize the definition of the iterated GHZ problem. We have
a bipartite graph in which white nodes have degree ∆, and black nodes have degree 3. For each
c = 1, 2, . . . ,∆ and for each white node there is exactly one black neighbor of color c.

Each white node v has to output a bit vector v1, v2, . . . , v∆, so that the following holds. Assume
that s, t, and u are the three white neighbors of a black node x, and let c be the color of x. We
require the following:

• If c = 1, then exactly one of s1, t1, and u1 has to be 1.

• If c > 1, then sc, tc, and uc have to be a valid output for the GHZ game with inputs sc−1, tc−1,
and uc−1:

sc ⊕ tc ⊕ uc = 0 if sc−1 + tc−1 + uc−1 = 0,

sc ⊕ tc ⊕ uc = 1 if sc−1 + tc−1 + uc−1 = 2,

sc ⊕ tc ⊕ uc ∈ {0, 1} if sc−1 + tc−1 + uc−1 ∈ {1, 3}.

This problem can be solved with a one-round quantum strategy, as follows. Black nodes of color
c = 1 inform their first white neighbor v that it should set v1 = 1, and inform other neighbors to set
v1 = 0. Black nodes of color c > 1 prepare a suitable three-qubit GHZ state that enables Alice, Bob,
and Charlie to win the GHZ game with probability 1. Additionally, black nodes assign the roles
(Alice, Bob, Charlie) to their white neighbors, and also send their own color c, so that white nodes
are aware of which games they are supposed to play, in which roles and in which order. After this
one communication step, everything is ready, each white node v already knows v1, it holds ∆− 1
suitably entangled qubits, and it can locally play its own part in ∆− 1 GHZ games and this way
discover valid outputs v2, v3, . . . , v∆.

6

This problem also admits a Θ(∆)-round classical solution. Black nodes of color 1 start and
choose which of their neighbors will set v1 = 1; all other white nodes merely indicate their colors.
Then white nodes send v1 to black neighbors of color 2, black nodes of color 2 can find a valid
solution to the GHZ game that they represent, and they reply with v2, etc. After ∆ iterations (and
approximately 2∆ communication rounds) all white nodes know their final output.

However, as we discussed earlier, the GHZ game itself is very relaxed, and the details of the
definition of the iterated GHZ game are subtle; minor changes in the way we define the first game
lead to trivial problems. It is not at all clear intuitively if this problem is hard for classical algorithms,
or if there is some clever way to cheat. This is what we show in this work: no classical o(∆)-round
algorithm exist for this problem.

Proving the classical lower bound. Now we are given a specific problem with a fairly complicated
specification, namely iterated GHZ. There is a simple Θ(∆)-round classical algorithm, and we would
like to show that this is also (asymptotically) optimal.

Here it is also critical to note that we are heavily limited in the availability of possible proof
techniques that one could apply here. In distributed graph algorithms, one commonly uses, e.g.,
propagation arguments (fixing the solution in one place implies something in a distant part of the
graph) or arguments based on indistinguishability (two neighborhoods look locally identical, so any
distributed algorithm has to produce the same outputs). However, many of these techniques are
also (directly or indirectly) applicable in the quantum-LOCAL model [40, 43]. If the proof technique
would also imply that the problem is hard not only in classical LOCAL but also in quantum-LOCAL,
it cannot work here, as we already know that the problem is easy in quantum-LOCAL.

There are very few lower-bound proof techniques that even in principle could separate classical
LOCAL and quantum-LOCAL. One rare example is the round elimination technique [26]. It is
promising in the informal sense that at least known proofs that use round elimination do not
generalize to quantum-LOCAL, as a direct generalization would violate the no-cloning theorem.

In this work we show that round elimination is indeed able to separate classical LOCAL
and quantum-LOCAL: we are able to use round elimination to show that iterated GHZ cannot be
solved in o(∆) rounds in classical (deterministic or randomized) LOCAL, while the problem can be
solved in O(1) rounds in quantum-LOCAL. This is both good news and bad news: the good news is
that we indeed have a proof technique that can demonstrate distributed quantum advantage, but the
bad news is that none of previously-known lower bounds that were proved with round elimination
can be directly generalized to quantum-LOCAL.

Round elimination: basic idea. Round elimination is a proof technique that is specifically
applicable to the study of LCL problems in the classical LOCAL model. It is commonly used to prove
lower bounds (see, e.g., [4, 7, 10–14,17,24, 27, 54]), but it can also be used to e.g. synthesize efficient
algorithms (see, e.g., [17]). It is closely related to the fanout inflation technique [63] developed to
study network nonlocality [60].

In essence, round elimination is a function R that answers the following question:

Assume that an LCL problem Π admits a (black box) classical LOCAL algorithm A
working in T rounds. What is the most general problem Π′ = R(Π) which can be solved
in T − 1 rounds using A?

Round elimination precisely constructs that new problem Π′. Informally, we construct a (T−1)-round
algorithm A′ that works as follows: each node outputs the set of all values that A might output,
given what we see in the radius-(T − 1) neighborhood (by considering all possible extensions that

7

we might see at distance exactly T and simulating A for each of them). Now function R is defined
so that assuming that A indeed solved Π, algorithm A′ will solve R(Π), and given any solution to
R(Π), we can solve the original problem Π with only one extra round.

We note that the definition of A′ crucially needs to clone the information that we have in the
(T − 1)-radius neighborhood. Hence it is natural to expect that round elimination does not extend to
quantum algorithms. Yet, other properties of quantum information could (at least in principle) imply
that if a quantum LOCAL algorithm can solve Π in T rounds, then there is a quantum algorithm
that can solve Π′ = R(Π) in T − 1 rounds. Our main result implies that this cannot be the case.

Round elimination: formalism. To make use of round elimination, we need to have an LCL
problem that is written in a specific formalism:

• We have a bipartite graph, where the two sets of nodes are called active and passive.
• Each active node has to label its incident edges with labels from some finite alphabet Σ.
• We have an active constraint, which is a collection of multisets, where each multiset is one

possible valid assignment of edge labels incident to an active node.
• Similarly, we have a passive constraint, which specifies the collection of multisets that are valid

on the edges incident to passive nodes.

Now if we have any problem Π written in this formalism, we can apply in a mechanical way round
elimination to obtain another problem Π′ = R(Π). We emphasize that this part is just syntactic
manipulation of the problem description, without any references to any specific model of computation
or any distributed algorithm. Yet as explained above, if the round complexity of Π is T rounds in
the classical LOCAL model (for any sufficiently small T), then the round complexity of Π′ will be
exactly T − 1 rounds.

Round elimination: basic strategy. To apply round elimination in our task, we could try to
construct a sequence of problems Π0,Π1, . . . ,ΠT such that the following holds:

• Π0 is the original problem of interest, iterated GHZ,
• Πi+1 = R(Πi),
• we can show that ΠT is not trivial, i.e., it cannot be solved in 0 rounds.

Now if we could solve Π0 in T rounds, it would imply that ΠT can be solved in 0 rounds, but as this
is not the case, Π0 has to require at least T + 1 rounds. If we can do this for, e.g., T = ∆, we would
have the result that we want: iterated GHZ cannot be solved in o(∆) rounds.

However, what typically happens is that R(Π) is much more complicated than Π, in the sense
that the size of the alphabet of labels used to describe R(Π) may increase exponentially compared
to the size of the alphabet used to describe Π, and the number of valid multisets in the active and
passive constraints may increase accordingly. Even if the original problem Π0 has got a simple
description, there is typically no simple way to describe Πi, other than saying that it can be obtained
from Π0 with i applications of R. In particular, if we do not have a “closed-form” description of
ΠT , how do we argue that it is not trivial? Hence, what typically happens is that we augment this
mechanical procedure with some well-chosen relaxations.

Round elimination: relaxations. We say that Π′ is a relaxation of Π if given a feasible solution
to Π we can construct (in a distributed way, without any communication) a feasible solution to Π′.
A simple example of a relaxation is what can be obtained by merging labels. Let a, b ∈ Σ be two
distinct labels that we can use in Π. To define Π′, we relax all active and passive constraints so that

8

whenever a can be used, we can also use b, and vice versa; now trivially Π′ is at least as easy as Π.
Then we can simplify the description of Π′ by completely removing label b, as it is redundant.

The revised process now looks as follows. We construct a sequence of problems Π0,Π1, . . . ,ΠT

such that the following holds:

• Π0 is some relaxation of the original problem of interest, iterated GHZ,
• Πi+1 is some relaxation of R(Πi),
• we can show that ΠT is not trivial, i.e., it cannot be solved in 0 rounds.

Now if we could solve the original problem in T rounds, we could also solve its relaxation Π0 in T
rounds, and hence we could solve R(Π0) in T − 1 rounds, and hence we could solve its relaxation Π1

in T − 1 rounds, etc., and eventually we could solve ΠT in 0 rounds, but this was not possible. If we
can do this for, e.g., T = ∆, we would have the result that we want: iterated GHZ cannot be solved
in o(∆) rounds. In essence, our task is to guess a good sequence of problems such that all of
the above holds. How to do that?

Comparison with bipartite maximal matching. At this point it is useful to compare the
situation with the bipartite maximal matching problem [9, 10]. There is a very simple classical
LOCAL algorithm that solves the problem in O(∆) rounds, but for decades it was unknown whether
this is optimal. The breakthrough result from 2019 [9] eventually established this, by constructing a
suitable problem sequence Π0,Π1, . . . ,ΠT , and showing that it indeed has all the right properties:
Πi+1 is a relaxation of R(Πi).

Bipartite maximal matching is conceptually a very simple problem; it can be specified in the
appropriate round elimination formalism with only 3 labels, independently of the degree. Hence
there is a very simple starting point Π0. It is possible to compute R(Π0), R(R(Π0)), etc., write
down explicitly some of the first problems in this sequence for some small value of ∆, study their
structure, make some educated guesses on possible relaxations, and eventually with a sufficient
amount of trial and error, human intuition, and computational help one can make a reasonable guess
of the problem sequence Π0,Π1, . . . ,ΠT , generalize this to an arbitrary ∆, and verify that it indeed
has the right properties.

Iterated GHZ seems to be fundamentally different. The problem description is relatively long and
complicated, and when we increase ∆, the size of the problem description increases exponentially.
Studying the sequence R(Π0),R(R(Π0)), . . . is not particularly enlightening to a human being, and
even if there are educated guesses of suitable relaxations, they are very hard to verify, even with the
help of computers.

In this work we made the following surprising discovery: even though the maximal matching
problem and the iterated GHZ problem do not seem to have any relation between them, beyond
the fact that both of them admit an O(∆)-round classical algorithm, we can nevertheless apply
qualitatively similar relaxations in both maximal matching and iterated GHZ to construct
a suitable problem sequence! This technique is likely to generalize to a broad range of other problems.

Finding the right relaxations. Now we come to the mysterious part: when we look at the
problems at the right abstraction level, we can prove a lower bound for both maximal matching and
iterated GHZ using the “same” relaxations, in a sense, even though the problems, their alphabets,
and their constraints do not seem to have anything in common.

We do not know why this technique works, and we do not know how far it generalizes. But we do
know that it seems to be applicable to many previously-studied variants of the maximal matching
problem, and it seems to be applicable to both iterated CHSH and iterated GHZ. The reader does

9

not need to believe in this technique or trust that it is correct—this was merely a heuristic rule
that enabled us to guess the right problem sequence Π0,Π1, . . . ,ΠT , and once we have the sequence,
we can prove that it indeed satisfies all the right properties. But as the technique is apparently
applicable to two very different problem families, it may find other surprising uses, and hence we
outline it here.

The following description is primarily intended for a reader who is already experienced in the
use of round elimination; we refer to [26, 49, 58] for additional background. But for all other readers
this hopefully demonstrates that even though the problem sequence that we will present later in this
paper may look at first arbitrary and appearing out of thin air, there is a relatively short procedure
that can be used to mechanically generate it.

When we compute Π′ = R(Π), each label in Π′ represents a nonempty subset of labels in Π;
singleton sets represent old labels that already existed in Π, while all other sets are new labels. Now
we can construct a directed graph G that represents the relative strength of labels in Π′ from the
perspective of passive constraints: we will have an arrow a → b in the graph if the passive constraints
satisfy the property that any configuration remains valid if you replace any a with b (of course this
might violate active constraints). The transitive reduction of graph G is called the diagram for Π′ in
this context. Equipped with these definitions, we then find any pair of labels a and b that satisfy all
these properties:

• a is a new label,
• a has a nonzero indegree in the diagram,
• b is the only successor of a in the diagram,
• b has outdegree zero or b is a new label.

If such a pair exists, we merge the labels a and b to obtain a relaxation of Π′. We then update the
diagram and repeat the procedure until no such pair of labels a and b exists.

It turns out that following exactly this procedure will be able to reproduce the results of [9, 29],
but it will also let us find exactly the right relaxations that can be used to show that the iterated
GHZ problem cannot be solved in o(∆) rounds with classical LOCAL algorithms. As a final remark
we note that odd and even steps of the round elimination sequence are fundamentally different and
here we applied this rule in even steps.

1.4 Implications and discussion

Our work presents the first local problem (more precisely, a family of LCL problems) that admits a
distributed quantum advantage in the LOCAL model of distributed computing. In this section we
will discuss some further implications and connections with other areas.

Communication complexity. As we discussed earlier, there is much more prior work on the
quantum advantage in the CONGEST model than in the LOCAL model. One reason for this is that
the CONGEST model is similar in spirit to questions in communication complexity. In essence, if we
have a result in communication complexity that shows that b qubits can be used to solve a task that
O(b) classical bits cannot solve, one can try to turn that into an analogous result that separates
the classical CONGEST model from the quantum-CONGEST model. However, when we compare
classical LOCAL and quantum-LOCAL, we cannot use any communication complexity arguments.
In essence our goal is to show that unbounded quantum communication is stronger than unbounded
classical communication. In essence, we show that being able to communicate b qubits is strictly
stronger than being able to communicate 2b or even 22

b classical bits!

10

Circuit complexity. The question of distributed quantum advantage for LCLs is also related
to establishing an efficiently-verifiable quantum advantage in circuit complexity. The quantum
advantage obtained in [53] was obtained by “lifting” to the distributed setting a quantum advantage
for circuits by Bravyi, Gosset and König [31], which was inspired by an older work in quantum
information [25]. Ref. [31] showed that a variant of the global graph problem from [53] can be solved
by a constant-depth quantum circuit but cannot be solved by any small-depth classical circuit. This
computational problem, however, could not be checked by a quantum constant-depth circuit, leading
to the question whether a similar advantage can be proved for an efficiently-verifiable computational
problem. Since this question is still wide open in quantum circuit complexity, such a simple lifting
strategy cannot be used to tackle our question. Indeed, our separation uses an approach that does
not seem to be applicable to circuit complexity.

Lower-bound proof techniques. Our work is the first proof that shows that round elimination
is able to separate classical LOCAL and quantum-LOCAL. As a corollary, we now know that round
elimination is not applicable in the quantum-LOCAL model: it is possible that there is a round
elimination sequence Π0,Π1, . . . ,ΠT , but the existence of this sequence has no implications on the
round complexity in the quantum-LOCAL model. This also represents a new formal barrier for
resolving major open questions related to distributed quantum advantage: it is not possible to prove
quantum lower bounds for e.g. 3-coloring cycles or for finding sinkless orientations by constructing a
round elimination sequence.

Networks of quantum games. Our problem, iterated GHZ, is based on the idea that we build an
LCL problem that asks us to play a number of quantum games, so that the games are represented by
black nodes and the players are represented by white nodes. Then inside each white node the output
of one game is fed as input to another game. We call such a problem a network of quantum games.
Such a problem can be always solved in O(1) rounds in quantum-LOCAL, as we can create shared
entangled qubits in the first round, and then all further steps can be done without any additional
communication.

Our work shows that the classical complexity of such an LCL can be as high as Ω(∆). Now the
obvious question is whether we can push this further: can we maybe engineer a network of quantum
games such that its classical complexity is super-constant as a function of the number of nodes n,
even if ∆ is constant? For example, could we show a lower bound of Ω(n) or Ω(log n) or maybe
Ω(log∗ n) for such a problem?

It turns out that the answer is no. We generalize the idea so that instead of quantum games, we
can have a network of any non-signaling games (regardless of whether they happen to have quantum
strategies or not); we call such a problem a network of non-signaling games. We show that if Π is
any LCL problem that is constructed from networks of non-signaling games (even if we connect the
games with each other using arbitrarily complicated arithmetic circuits), it can be always solved
in O(1) rounds with classical LOCAL algorithms; here the constant depends on the specific LCL
problem Π (and in particular, if we have a family of LCL problems parameterized by ∆, the constant
may depend on ∆). However, the running time will be independent of n.

The key reason for this is that any non-signaling game is completable: for example, for a two-
player game this means that for any Alice’s input x there is some Alice’s output a such that for any
Bob’s input y there is still a valid Bob’s output b, and vice versa.

We can exploit completability to solve any Π in a distributed manner as follows. Each white
node starts to process its own arithmetic circuit in a topological order. As soon as it encounters
a step that involves a game, it sends a message to the black neighbor responsible for that specific

11

game, together with its own input for that game. The black nodes keep track of the inputs they
have seen so far, and they always pick safe outputs for those players. This way in one pair of rounds
all white nodes can learn their own output for the game that appears first in their own circuit, and
we can repeat this for each game in a sequential order—thanks to completability, black nodes will be
always able to assign valid outputs also for players that join the game late. This way the running
time will be proportional to the size of the circuit held by a single white node, and hence for a fixed
LCL (with a finite set of possible local circuits) it will be bounded by some constant.

The result may at first seem counterintuitive: A non-signaling game may require the players to
break symmetry (e.g., in the CHSH game, if the inputs are both 1, the outputs must be different).
Hence it would seem that we could put together non-signaling games in cycle so that the input does
not break symmetry, but the output has to break symmetry. Then we could apply the classical
result that shows that any symmetry-breaking LCL requires Ω(log∗ n) rounds [54]. However, the
above algorithm demonstrates that any network of non-signaling games admits a symmetric solution
in those neighborhoods where the input (together with the port numbering) does not break symmetry.

This represents a new barrier for proving distributed quantum advantage: the idea of networks of
non-signaling games can only prove f(∆) separations between classical LOCAL and quantum-LOCAL,
not f(n) separations.

1.5 Roadmap

We introduce some basic definitions in Section 2. In Section 3 we give the formal definition of the
iterated GHZ problem in the right formalism that we need for round elimination, and we show that
there is indeed a one-round quantum-LOCAL algorithm for solving this problem. In Section 4 we
prove our main result: iterated GHZ requires Ω(∆) rounds in classical LOCAL. Finally, in Section 5
we formalize the idea of networks of non-signaling games, and show that any fixed LCL in this
problem family can be solved in constant time in classical LOCAL.

2 Preliminaries

We write N0 for the set of non-negative integers, N+ for that of positive integers, and [n] = {1, . . . , n}
for the set of the first n ∈ N0 positive integers. For a relation R ⊆ A×B and x ∈ A, we write R(x)
for the set {y ∈ B | (x, y) ∈ R}.

For m ∈ N0 and a set Σ, we write Σm for the set of strings over elements of Σ that have length
m. We will refer to such strings in two different ways, both as concatenations of m many elements
of Σ (e.g., x = x1 · · ·xm where xi ∈ Σ) and as maps [m] → Σ. These two formalisms may be used
interchangeably without confusion. For a permutation σ : [m] → [m] and a string x = x1 · · ·xm ∈ Σm,
we let xσ = xσ(1) · · ·xσ(m).

Let G = (V,E) be a graph and v ∈ V a node of G. Since E is a relation, recall we may use our
notation for relations to write E(v) as shorthand for the set {e ∈ E | e is incident to v}. For any
node v of a graph G = (V,E), we denote by degG(v) its degree in G. If the underlying graph is clear
from the context, we omit the subscript and write simply deg(v).

In this paper we are interested in locally checkable labeling (LCL) problems, first introduced by
Naor and Stockmeyer in [57]. We now define this class of problems using a formalism that is slightly
different from the original one.

LCLs in the black-white formalism. While there are different ways to define LCLs, in this
paper we consider the so-called LCLs in the black-white formalism. Such a formalism, compared

12

to the definition given by Naor and Stockmeyer in [57], is more suitable for applying the round
elimination technique.

In this formalism, problems are defined on bipartite graphs. We refer to nodes in the first set as
white nodes and to nodes in the other as black nodes. The connection to a general graph G is that
we see white nodes as nodes of G and black nodes as edges of G. In this sense, we are able to handle
constraints for nodes and edges in a uniform manner.

Definition 2.1 (LCL problem in the black-white formalism). An LCL problem in the black-white
formalism is a tuple Π = (Σin,Σout, Cw, Cb) where:

• Σin and Σout are finite sets of labels.

• Cw is the white constraint, formally a set of multisets where each element of a multiset is a
pair of labels (ℓin, ℓout) ∈ Σin × Σout.

• Cb is the black constraint, formally a set of multisets where each element of a multiset is a pair
of labels (ℓin, ℓout) ∈ Σin × Σout.

Let G = (V,E) be a bipartite graph where V = W ∪B is a partition of V that implicitly “colors” the
nodes white and black by placing them in W and B, respectively. In addition, let i : E → Σin be an
input, that is, a labeling of edges such that i(e) ∈ Σin for each e ∈ E. An assignment o : E → Σout is
a solution to Π if it satisfies both the white and the black constraints, that is:

• For every white node w ∈ W , if e1, . . . , edw are the edges that are incident to w, then
{(i(e1), o(e1)), . . . , (i(edw), o(edw))} ∈ Cw.

• For every black node b ∈ B, if e1, . . . , edb are the edges that are incident to b, then we have
{(i(e1), o(e1)), . . . , (i(edb), o(edb))} ∈ Cb.

In general graphs, the black-white formalism captures a strict subset of LCLs as defined originally
by [57]; however, in the LOCAL model of computation (whose definition follows later in this section)
the two notions are equivalent in general trees and high-girth graphs, that are the classes of graphs
needed to apply round-elimination [12].

We first introduce the port-numbering model, and on top of it we define the LOCAL model of
computation [54] and the quantum-LOCAL model [43]. We stick to the black-white formalism to
keep all definitions consistent.

The port-numbering model. A port-numbered network is a triple N = (V, P, p) where V is
the set of nodes, P is the set of ports, and p : P → P is a function specifying connections between
ports. Each element x ∈ P is a pair (v, i) where v ∈ V , i ∈ N+. The connection function p between
ports is an involution, that is, p(p(x)) = x for all x ∈ P . If (v, i) ∈ P , we say that (v, i) is port
number i in node v. The degree of a node v in the network N is degN (v) is the number of ports in
v, that is, degN (v) = |{i ∈ N : (v, i) ∈ P}|. We assume that port numbers are consecutive, i.e., the
ports of any node v ∈ V are (v, 1), . . . , (v,degN (v)). Clearly, a port-numbered network identifies an
underlying graph G = (V,E) where, for any two nodes u, v ∈ V , {u, v} ∈ E if and only if there exists
ports xu, xv ∈ P such that p(xu) = xv. Here, the degree of a node degN (v) corresponds to degG(v).

In the port-numbering model we are given a distributed system consisting of a port-numbered
network of |V | = n processors (or nodes) that operates in a sequence of synchronous rounds. In each
round the processors may perform unbounded computations on their respective local state variables
and subsequently exchange of messages of arbitrary size along the links given by the underlying input
graph. Nodes identify their neighbors by using ports as defined before, where the port assignment

13

may be done adversarially. Barring their degree, all nodes are identical and operate according to the
same local computation procedures. Initially all local state variables have the same value for all
processors; the sole exception is a distinguished local variable x(v) of each processor v that encodes
input data.

Let Σin be a set of input labels. The input of a problem is defined in the form of a labeled,
bipartite graph (G, i) where G = (V = B ∪W,E), V is the set of processors (hence it is specified as
part of the input), and i : E → Σin is an assignment of an input label i(v) ∈ Σin to each edge e ∈ E.
The nodes in V are properly 2-colored with either color black (elements of B) or white (elements
of W). The output of the algorithm is given in the form of an assignment of local output labels
o : E → Σout, and the algorithm is assumed to terminate once all labels o(v) are definitely fixed.
These outputs are determined and assigned by the white nodes, which are also referred to as active
nodes, whereas black nodes are called passive nodes (they do not output anything). We assume that
nodes and their links are fault-free. The local computation procedures may be randomized by giving
each processor access to its own set of random variables; in this case, we are in the randomized
port-numbering model as opposed to the deterministic port-numbering model. If the algorithm is
randomized, we also require that the failure probability while solving any problem is at most 1/n,
where n is the size of the input graph.

The running time of an algorithm is the number of synchronous rounds required by all nodes to
produce output labels. If an algorithm running time is T , we also say that the algorithm has locality
T . Notice that T can be a function of the size of the input graph.

We remark that the notion of an (LCL) problem is a graph problem, and does not depend on
the specific model of computation we consider (hence, the problem definition cannot depend on, e.g.,
port numbers).

The LOCAL model. The LOCAL model was first introduced by [54], here adapted to the
black-white formalism. It is just the port-numbering model augmented with an assignment of unique
identifiers to nodes. Let c ≥ 1 be a constant, and let Σin be a set of input labels. The nodes of the
input graph G = (V,E) are given as input also unique identifiers specified by an injective function
id : V → [nc]. This assignment might be adversarial and is stored in the local state variable x(v),
and nodes can exploit these values during their local computation.

The local computation procedures may be randomized by giving each processor access to its
own set of random variables; in this case, we are in the randomized LOCAL model as opposed to
the deterministic LOCAL model. If the algorithm is randomized, we also require that the failure
probability while solving any problem is at most 1/n, where n is the size of the input graph.

The quantum-LOCAL model. The quantum-LOCAL of computing is similar to the deterministic
LOCAL model above, but now with quantum computers and quantum communication links. More
precisely, the quantum computers manipulate local states consisting of an unbounded number of
qubits with arbitrary unitary transformations, the communication links are quantum communication
channels (adjacent nodes can exchange any number of qubits), and the local outputs can be the
result of any quantum measurement.

3 Iterated GHZ problem

We start by defining the iterated GHZ problem. While in Section 2 we provided the definition of
LCLs in their full generality, in this section we consider a restricted setting, i.e., the case in which
the constraints do not depend on the provided input, and the considered graph is biregular. Hence,

14

in this section (and in the following one), an LCL problem Π in the black-white formalism is simply
a tuple (ΣΠ,NΠ, EΠ) where ΣΠ is a finite set of elements, called (output) labels, NΠ is a collection
of cardinality-∆ multisets of labels from ΣΠ, and EΠ is a collection of cardinality-3 multisets of
labels from ΣΠ. We call NΠ the white constraint of Π and EΠ the black constraint of Π. We will
use the term configuration to refer to any multiset of labels of cardinality ∆, resp. 3; we will call
a configuration of cardinality ∆, resp. 3, an allowed configuration if it is contained in the white
constraint, resp. black constraint, of the respectively considered LCL problem. For simplicity, we
will write a configuration {ℓ1, . . . , ℓk} (which, technically, is a multiset) in the form ℓ1 . . . ℓk (where
k ∈ {3,∆}).

For degree ∆, the iterated GHZ problem is defined as an LCL P∆ = (ΣP∆
,NP∆

, EP∆
) in the

black-white formalism (in the aforementioned restricted setting). While the constraints of this
problem do not depend on the provided input, we will consider lower and upper bounds for this
problem in the setting in which black nodes B are provided with a labeling c : B → {1, . . . ,∆}
satisfying that, if two black nodes u and v are incident to the same white node, then c(u) ̸= c(v). In
the following, this input will simply be called ∆-edge coloring (where the name comes from the fact
that we could think of a (∆, 3)-biregular graph as a hypergraph of degree ∆ and rank 3, and we
consider a coloring of the hyperedges).

Labels. The label set is defined as:

ΣP∆
= {(−y)1 | y ∈ {0, 1}}
∪ {(x y)j | 2 ≤ j ≤ ∆ and x, y ∈ {0, 1}}.

White constraint. For all vectors (y1, . . . , y∆) ∈ {0, 1}∆, NP∆
contains the configuration

L1 . . . L∆ satisfying the following properties.

• L1 = (−y1)1.
• For all j such that 2 ≤ j ≤ ∆, Lj = (yj−1 yj)j .

Black constraint. The black constraint EP∆
contains the following configurations.

• (−0)1 (−0)1 (−1)1.

• (x1 y1)j (x2 y2)j (x3 y3)j , for all 2 ≤ j ≤ ∆ and x1, x2, x3, y1, y2, y3 satisfying:

– xi ∈ {0, 1} and yi ∈ {0, 1} for all 1 ≤ i ≤ 3;

– if x1 + x2 + x3 is even, then y1 ⊕ y2 ⊕ y3 = x1 ∨ x2 ∨ x3.

Some intuition. Informally, each label encodes an input and an output to a GHZ game. The
white constraint enforces that the output of one game flows correctly to become the input of the
next game. The black constraint enforces that, on a black node, the GHZ game is played correctly
by the neighboring white nodes, except for the first black constraint, which is a special case and
only requires to break symmetry between adjacent white nodes. This special case is required to keep
the game from becoming trivial.

15

Considered setting. The problem P∆ is only defined on (∆, 3)-biregular graphs. However, it is
trivial to lift this definition to arbitrary graphs: white nodes of degree ∆ and black nodes of degree
3 need to satisfy the constraints of P∆; all other nodes can produce an arbitrary output.

Intuitively, the lower bound that we will prove can be interpreted as follows: for any n and any
small-enough ∆, there exists a balanced tree of n nodes where all white nodes that are “far enough”
from the leaves have degree ∆, all black nodes that are “far enough” from the leaves have degree 3,
and there exists a white node that is “far enough” from the leaves that needs to spend Ω(∆) rounds.
Observe that restricting the possible input instances only makes our lower bound stronger (i.e., this
problem is hard already on regular trees).

We will provide upper bounds for (∆, 3)-biregular graphs. However, given that the definition of
P∆ lifted to arbitrary graphs allows an arbitrary output for white nodes of degree different from ∆
and black nodes of degree different from 3, it is trivial to adapt our algorithm to the case of graphs
with nodes of arbitrary degree.

3.1 Quantum algorithm for iterated GHZ

We now prove that the iterated GHZ problem can be solved in O(1) rounds in the quantum LOCAL
model, no matter how large ∆ is. More formally, we devote the rest of the section to proving the
following theorem.

Theorem 3.1. For any integer ∆ > 0, the iterated GHZ problem can be solved in O(1) rounds in
the quantum LOCAL model, if a ∆-edge coloring is provided.

Quantum algorithm for iterated GHZ problem. Each black node receives a color c ∈ [∆]
as an input; recall that this is what we call a ∆-edge coloring. Each black node prepares three
qubits q1, q2, q3 in the GHZ state, that is

|0⟩q1 |0⟩q2 |0⟩q3 → 1√
2

(
|0⟩q1 |0⟩q2 |0⟩q3 + |1⟩q1 |1⟩q2 |1⟩q3

)
.

It then sends message (c, i, qi) to port i. Note that this is a message containing a qubit belonging to
a three-party entangled state. Then the black node stops.

The white nodes wait for the messages from the black nodes. Let (c′j , i
′
j , q

′
j) be the message a

white node receives from port j. Recall that cj is just the color of the ∆-edge coloring, and hence all
colors c′1, c

′
2, . . . , c

′
∆ form a permutation. Let us reindex the messages according to this permutation,

i.e. (k, ik, qk) is the message received from the black neighbor with color k.
The white node first breaks the symmetry based on i1. If i1 = 2, it sets g1 = 1, otherwise g1 = 0.

Now the white node plays sequentially the GHZ games locally with no further communication
by exploiting the GHZ states distributed by the black nodes. For each game k ∈ {2, 3, . . . ,∆},
in order starting with k = 2, the white node measures the qubit qk, with input gk−1, according
to the well-known quantum strategy [30, 56] for winning the GHZ game perfectly. This gives the
measurement outcome gk, which is then used for the (k + 1)th GHZ game, until all ∆ games have
been played.

Finally, the white node produces an output for each of its incident edges. For edge neigh-
boring color 1, the node outputs (−g1)1. For edge neighboring color k ∈ {2, 3, . . . ,∆}, the node
outputs (gk−1 gk)k. Then the node stops.

Now the only thing left is to prove that this algorithm produces a correct output.

Proof. It is easy to see that the white constraint is satisfied: there is exactly one edge with each
subscript, and the labels gi propagate correctly between the labels.

16

The black constraint is also easy to check: Nodes with input color 1 satisfy the first constraint,
as exactly one neighbor received message (1, 2, q2), and only that node outputs (−1)1; the other
two neighbors output (−0)1. Nodes with input color k ∈ {2, . . . ,∆} satisfy the latter constraint. In
particular, all of them have subscript k and describe the input and output to a GHZ game. Moreover,
as the algorithm uses the quantum GHZ strategy to produce the outputs from the inputs, they
satisfy the GHZ constraint.

4 Classical lower bound for iterated GHZ

In this section, we prove that the iterated GHZ problem requires Ω(∆) rounds in the LOCAL model.
More formally, we prove the following.

Theorem 4.1. Let ∆ ≥ 3 be an integer. The iterated GHZ problem requires Ω(min{∆, log∆ n})
rounds in the deterministic LOCAL model and Ω(min{∆, log∆ log n}) rounds in the randomized
LOCAL model, even if a ∆-edge coloring is provided.

The lower bound is based on the round elimination technique [26]. In Section 4.1, we first
provide definitions for a variety of helpful concepts and objects and introduce round elimination.
For simplicity, we will introduce all the definitions in the context of the LCL problems relevant in
this paper; in particular, we will assume that black nodes have degree 3. After giving an overview of
the structure of the proof in Section 4.2, we present the whole proof in Sections 4.3 to 4.10.

4.1 Preliminaries

Definitions. We will use so-called condensed configurations to represent certain sets of configura-
tions efficiently. Formally, a condensed configuration is a configuration of sets of labels from ΣΠ.
For a condensed configuration C = S1 . . . Sk, by configurations represented by C we denote the set
of all configurations ℓ1 . . . ℓk such that ℓj ∈ Sj for each 1 ≤ j ≤ k. To distinguish a condensed
configuration (which represents a set of configurations of labels from Σ) from a configuration of sets,
we will use the term disjunction instead of “set” and write the disjunction consisting of some labels
ℓ(1), . . . , ℓ(z) as [ℓ(1), . . . , ℓ(z)]. However, when convenient, we may consider a disjunction of labels as
the set of the same labels.

Definition 4.2 (Picking a configuration). We say that we can pick a configuration ℓ1, . . . , ℓk from a
configuration S1, . . . , Sk of sets of labels, if there exists a permutation σ : {1, . . . , k} → {1, . . . , k}
such that, for each 1 ≤ i ≤ k, it holds that ℓi ∈ Sσ(i). Moreover, we say that we can pick a
configuration C from a set C of configurations of sets of labels if there exists a configuration C ′ ∈ C
from which we can pick C.

By configurations represented by a set of condensed configurations, we denote the set of configu-
rations that can be picked from the condensed configurations.

Round elimination. On a high level, the round elimination framework introduced in [26] provides
a mechanism to prove a lower bound for a given LCL problem Π by generating a sequence of problems
starting with Π such that every problem has a complexity of exactly one round less than the previous
problem (under some mild assumptions). The underlying intuition for obtaining a lower bound with
this mechanism is that if one can show that the problem obtained after k steps in the sequence
cannot be solved in 0 rounds, then this yields a lower bound of k − 1. We remark that this is a
highly simplified description of the overall approach with a lot of details omitted; in the following,
we introduce round elimination more formally.

17

The round elimination operator R(). For a given LCL problem Π = (ΣΠ,NΠ, EΠ), the problem
R(Π) = (ΣR(Π),NR(Π), ER(Π)) is defined as follows.

• ER(Π) is the set of all configurations S1 S2 S3 such that

– for all 1 ≤ j ≤ 3, Sj is a nonempty subset of ΣΠ,
– for each tuple (ℓ1, ℓ2, ℓ3) ∈ S1 × S2 × S3, we have that ℓ1 ℓ2 ℓ3 ∈ EΠ, and
– S1 S2 S3 is maximal, i.e., there exists no configuration S′

1 S′
2 S′

3 of nonempty subsets of
ΣΠ such that

∗ for all 1 ≤ j ≤ 3, Sj ⊆ S′
j ,

∗ there exists some 1 ≤ j ≤ 3 such that Sj ⊊ S′
j , and

∗ for each tuple (ℓ′1, ℓ
′
2, ℓ

′
3) ∈ S′

1 × S′
2 × S′

3, we have that ℓ′1 ℓ′2 ℓ′3 ∈ EΠ.

• ΣR(Π) is the set of all nonempty subsets of Σ that appear in at least one configuration contained
in ER(Π).

• NR(Π) is the set of all configurations S1 . . . S∆ of sets contained in ΣR(Π) such that there
exists some tuple (ℓ1, . . . , ℓ∆) ∈ S1 × · · · × S∆ satisfying ℓ1 . . . ℓ∆ ∈ NΠ.

The round elimination operator R(). For a given LCL problem Π = (ΣΠ,NΠ, EΠ), the problem
R(Π) = (ΣR(Π),NR(Π), ER(Π)) is defined as follows.

• NR(Π) is the set of all configurations S1 . . . S∆ such that

– for all 1 ≤ j ≤ ∆, Sj is a nonempty subset of ΣΠ,
– for each tuple (ℓ1, . . . , ℓ∆) ∈ S1 × · · · × S∆, we have that ℓ1 . . . ℓ∆ ∈ NΠ, and
– S1 . . . S∆ is maximal, i.e., there exists no configuration S′′

1 . . . S′′
∆ of nonempty subsets

of ΣΠ such that
∗ for all 1 ≤ j ≤ ∆, Sj ⊆ S′′

j ,
∗ there exists some 1 ≤ j ≤ ∆ such that Sj ⊊ S′′

j , and
∗ for each tuple (ℓ′′1, . . . , ℓ

′′
∆) ∈ S′′

1 × · · · × S′′
∆, we have that ℓ′′1 . . . ℓ′′∆ ∈ NΠ.

• ΣR(Π) is the set of all nonempty subsets of ΣΠ that appear in at least one configuration
contained in NR(Π).

• ER(Π) is the set of all configurations S1 S2 S3 of sets contained in ΣR(Π) such that there exists
some tuple (ℓ1, ℓ2, ℓ3) ∈ S1 × S2 × S3 satisfying ℓ1 ℓ2 ℓ3 ∈ EΠ.

A simple way to compute NR(Π) and ER(Π). It has been observed in previous works that
use the round elimination technique (see, e.g, [12]), that NR(Π) can be easily computed as follows.
Start from all the configurations in NΠ, and for each configuration C ∈ NΠ, add to NR(Π) all the
configurations that can be picked from the condensed configuration obtained by replacing each label
ℓ in C with the disjunction of all label sets in ΣR(Π) that contain ℓ.

Similarly, ER(Π) can be easily computed as follows. Start from all the configurations in EΠ, and
for each configuration C ∈ EΠ, add to ER(Π) all the configurations that can be picked from the
condensed configuration obtained by replacing each label ℓ in C with the disjunction of all label sets
in ΣR(Π) that contain ℓ.

Throughout this section, in order to compute NR(Π) and ER(Π), we will implicitly use the
described procedures.

18

Further notation and terminology. For a set L of configurations of labels and a configuration
S = S1 . . . Sk of sets of labels, we say that S satisfies the universal quantifier if, for each choice
(ℓ1, . . . , ℓk) ∈ S1 × · · · × Sk, we have ℓj ∈ Sj for each 1 ≤ j ≤ k. A configuration S1 . . . Sk

satisfying the universal quantifier is called maximal if there is no configuration S′
1 . . . S′

k satisfying
the universal quantifier for which Sj ⊆ S′

j for all 1 ≤ j ≤ k and Sj ⊊ S′
j for at least one 1 ≤ j ≤ k.

In particular, NR(Π), resp. ER(Π), is precisely the set of all maximal configurations satisfying the
universal quantifier (for L = NΠ, resp. L = EΠ). Utilizing the fact that a disjunction is nothing
else than a set, we will call a set S of condensed configurations maximal-complete if the set of
configurations of sets obtained from S by interpreting each disjunction as a set contains all the set
of all maximal configurations satisfying the universal quantifier (w.r.t. the set of label configurations
represented by S).

Let (ΣΠ,NΠ, EΠ) be an LCL problem, and ℓ, ℓ′ two labels from ΣΠ. We say that ℓ′ is at least as
strong as ℓ w.r.t. EΠ (resp. w.r.t. NΠ) if the following holds: for any configuration ℓ ℓ2 ℓ3 ∈ EΠ (resp.
for any configuration ℓ ℓ2 . . . ℓ∆ ∈ NΠ), we have ℓ′ ℓ2 ℓ3 ∈ EΠ (resp. ℓ′ ℓ2 . . . ℓ∆ ∈ NΠ). We may
omit the dependency on the constraint when clear from the context; in particular, for the problems
Πi,∆ we define later and all problems obtained from applying R, the relative strength of labels will
be considered w.r.t. the respective black constraint, while for all problems obtained from applying R
it will be considered w.r.t. the respective white constraint. If ℓ′ is at least as strong as ℓ but ℓ is not
at least as strong as ℓ′, we say that ℓ′ is stronger than ℓ. We write ℓ ≤ ℓ′ to represent that ℓ′ is at
least as strong as ℓ; we write ℓ < ℓ′ to represent that ℓ′ is stronger than ℓ.

We will make use of so-called diagrams to represent the strength relations between labels.
Formally, the diagram of a problem (ΣΠ,NΠ, EΠ) (w.r.t. NΠ, resp. EΠ) is the directed graph where
the set of nodes is ΣΠ and there is a directed edge (ℓ, ℓ′) between two labels ℓ, ℓ′ ∈ ΣΠ if

• ℓ < ℓ′ and
• there is no label ℓ′′ ∈ ΣΠ satisfying ℓ < ℓ′′ < ℓ′

(where the strength relations are w.r.t. NΠ, resp. EΠ). We remark that the definition of strength
implies that any diagram is acyclic.

We call two labels ℓ, ℓ′ comparable if ℓ ≤ ℓ′ or ℓ′ ≤ ℓ, and incomparable otherwise. From the
definition of a diagram, it follows that two labels ℓ, ℓ′ are comparable if and only if there is a directed
path between ℓ and ℓ′ (in one of the two possible directions) in the diagram. Furthermore, for two
configurations L = ℓ1 . . . ℓk and L′ = ℓ′1 . . . ℓ′k of labels, we say that L′ dominates L if ℓj ≤ ℓ′j for
all 1 ≤ j ≤ k. Similarly, for configurations C = S1 . . . Sk and C ′ = S′

1 . . . S′
k of sets of labels, we

say that C ′ dominates C if Sj ⊆ S′
j for all 1 ≤ j ≤ k. (Note that as configurations are multisets, a

configuration already dominates another if there is a permutation ρ : {1, . . . , k} → {1, . . . , k} such
that ℓj ≤ ℓ′ρ(j) for all 1 ≤ j ≤ k, resp. Sj ⊆ S′

ρ(j) for all 1 ≤ j ≤ k.) Moreover, for two sets C and C′

of configurations, we say that C′ dominates C if, for all C ∈ C, there exists a configuration C ′ ∈ C′

that dominates C.
For labels ℓ1, . . . , ℓk, the set of all labels that are at least as strong as at least one of the ℓj is

denoted by ⟨ℓ1, . . . , ℓk⟩. In other words, ⟨ℓ1, . . . , ℓk⟩ is the set of all labels that are identical to one
of the ℓj or a (not necessarily direct) successor of one of the ℓj in the respective diagram. We say
that ⟨ℓ1, . . . , ℓk⟩ is generated by ℓ1, . . . , ℓk. As before, we will omit the dependency on the constraint
when clear from the context, and in particular use the conventions mentioned above. Moreover, for a
set L = {ℓ1, . . . , ℓk} by writing ⟨ℓ | ℓ ∈ L⟩ we denote ⟨ℓ1, . . . , ℓk⟩. Observe that ⟨L⟩ is different from
⟨ℓ | ℓ ∈ L⟩.

An alternative method to compute R(Π) and R(Π). In a recent work [14, Section 4], a
new method was developed for computing, for a given problem Π = (ΣΠ,NΠ, EΠ), the problems

19

R(Π) and R(Π) in a different way. On a high level, this new method is based on a very simple
operation that if applied iteratively will provide the same result as the more complex application of
the universal quantifier in the definitions of NR(Π) and ER(Π) above. The simplicity of said operation
makes it considerably easier to apply round elimination and prove the correctness of claims such as
that a certain problem is indeed what is obtained by applying R or R. In the following, we describe
this new method formally. We start by defining the notion of a combination of two configurations.

Let C = S1 . . . Sk and C ′ = S′
1 . . . S′

k be two configurations of sets of labels. Let 1 ≤ u ≤ k,
and let σ : {1, . . . , k} → {1, . . . , k} be a bijective function, i.e., a permutation. The combination of
C and C ′ w.r.t. u and σ is defined as the configuration C ′′ = S′′

1 . . . S′′
k satisfying

• S′′
j = Sj ∩ S′

σ(j) for each j ∈ {1, . . . , k} \ {u}, and
• S′′

u = Sj ∪ S′
σ(j).

Now consider the following process. Start with EΠ, given as a collection of condensed config-
urations, where, as usual, disjunctions are considered as sets. (If EΠ is given as a collection of
uncondensed configurations, it is straightforward to transform it into a list of condensed configura-
tions by interpreting each configuration of labels as the configuration of singleton disjunctions/sets
containing those labels.) Now arbitrarily choose two configurations C and C ′ from the collection,
combine them w.r.t. some arbitrarily chosen u and σ, and add the obtained configuration to the
maintained collection of configurations of sets (unless it is already present). Repeat this, for all
possible choices of C, C ′, u, and σ (including all newly obtained combined configurations as choices
for C and C ′) until no new configuration (i.e., no configuration not already obtained in the collection)
is produced anymore. Then, remove from the obtained collection all non-maximal configurations,
i.e., all configurations S1 . . . Sk for which there exists a configuration S′

1 . . . S′
k satisfying Sj ⊆ S′

j

for all 1 ≤ j ≤ k and Sj ⊊ S′
j for at least one 1 ≤ j ≤ k.

Now [14, Theorem 4.1] states that the obtained collection of configurations is identical to NR(Π),
and that the same procedure, when started from EΠ instead of NΠ, yields ER(Π). In other words,
the described simple iterative process can be used to replace the traditional and more complex
computation of NR(Π), resp. ER(Π), when computing R(Π), resp. R(Π) (while ΣΠ and ER(Π), resp.
NR(Π), are computed in the same way in both the traditional and the new method). We obtain the
following observation (which follows directly from [14]).

Observation 4.3. Let C be a collection of configurations of sets. Assume that C satisfies the following:
for all pairs of configurations C1, C2 ∈ C, all permutations σ and all indices u, the combination of
C1 and C2 w.r.t. u and σ is dominated by some configuration in C. Then, C is maximal-complete.

We call two sets S, S′ of labels incomparable if S ⊈ S′ and S′ ⊈ S, and comparable otherwise.
Based on the notion of (in)comparable sets, the following observation (which is analogous to [14,
Observation 5.4]) essentially shows that many choices for C, C ′, u, and σ do not need to be considered
in the described process as they cannot produce configurations that will be contained in the final
collection.

Observation 4.4. Let C = S1 . . . Sk and C ′ = S′
1 . . . S′

k be two configurations of sets of labels,
1 ≤ u ≤ k an index, and σ : {1, . . . , k} → {1, . . . , k} a permutation. Let C ′′ = S′′

1 . . . S′′
k be the

configuration obtained by combining C and C ′′ w.r.t. u and σ. Then, if Su and S′
u are comparable,

C ′′ is dominated by C or C ′.

Proof. If Su and S′
u are comparable, then Su ⊆ S′

u or S′
u ⊆ Su. Now the definition of C ′′ ensures

that, in the former case, C ′′ is dominated by C ′ and, in the latter case, C ′′ is dominated by C.

20

From the definition of the above process and Observation 4.4, it follows that the final collection
obtained when the process terminates will not change if we modify the process so that combinations
where Su and S′

u are comparable are not considered. Note that it is possible that some configurations
that are produced in the unmodified process along the way are not produced in the modified process;
however, all such configurations are configurations that will not be maximal, i.e., that are removed
in the last step of the unmodified process. In particular, all configurations that are maximal in the
collection produced by the unmodified process will also be produced (and will be maximal) in the
modified process.

We now define what it means for a problem to be the relaxation of another problem. Informally,
for a problem Π′ to be a relaxation of R(Π) it must hold that there exists a 0-round algorithm
operating on black nodes that, given a solution for R(Π), it is able to solve Π′. Similarly, for a
problem Π′ to be a relaxation of R(Π) it must hold that there exists a 0-round algorithm operating
on white nodes that, given a solution for R(Π), it is able to solve Π′. In this paper, we consider a
stricter (i.e., less permissive) form of relaxation, defined as follows.

Definition 4.5 (Relaxation of a problem). Let Π = (Σ,N , E). A problem Π′ = (Σ′,N ′, E ′) is a
relaxation of R(Π) if the following holds:

• For all configurations C in the black constraint of R(Π), there exists a configuration C ′ ∈ E ′

that dominates C;
• Σ′ is the collection of sets that appear in at least one configuration contained in E ′;
• N ′ is the set of all configurations S1 . . . S∆ of sets contained in Σ′ such that there exists some

tuple (ℓ1, . . . , ℓ∆) ∈ S1 × . . .× S∆ satisfying ℓ1 . . . ℓ∆ ∈ N .

Similarly, a problem Π′ = (Σ′,N ′, E ′) is a relaxation of R(Π) if the following holds:

• For all configurations C in the white constraint of R(Π), there exists a configuration C ′ ∈ N ′

that dominates C;
• Σ′ is the collection of sets that appear in at least one configuration contained in N ′;
• E ′ is the set of all configurations S1 S2 S3 of sets contained in Σ′ such that there exists some

tuple (ℓ1, ℓ2, ℓ3) ∈ S1 × S2 × S3 satisfying ℓ1 ℓ2 ℓ3 ∈ E .

Definition 4.6 (Right-closed). Let Π = (ΣΠ,NΠ, EΠ) be an LCL problem. We say that a set
S = {ℓ1, . . . , ℓk} ⊆ ΣΠ is right-closed if and only if, for each label ℓi ∈ S, it holds that all successors of
ℓi in the diagram (taken w.r.t. the constraint on which the universal quantifier is applied to) are also
contained in S. More precisely, a set S = {ℓ1, . . . , ℓk} ⊆ ΣΠ is called right-closed if S = ⟨ℓ1, . . . , ℓk⟩.

We observe the following statement, which was shown in [17].

Observation 4.7 ([17]). Let Π = (ΣΠ,NΠ, EΠ) be an LCL problem. Consider an arbitrary collection
of labels L1, . . . , Lk ∈ ΣΠ. If {L1, . . . , Lk} ∈ ΣR(Π), then the set {L1, . . . , Lk} is right-closed w.r.t.
EΠ. If {L1, . . . , Lk} ∈ ΣR(Π), then the set {L1, . . . , Lk} is right-closed w.r.t. NΠ.

Definition 4.8 (A configuration generated by a condensed one). Let C = S1, . . . , Sk be a configura-
tion of sets. We say that the configuration C ′ = S′

1, . . . , S
′
k is generated by the condensed configuration

C if there exists a permutation σ : {1, . . . , k} → {1, . . . , k} such that, for every 1 ≤ i ≤ k, it holds
that S′

i = ⟨c | c ∈ Sσ(i)⟩.

We are now ready to state the theorem that relates round elimination with the LOCAL model of
distributed computing.

21

Theorem 4.9 ([12], rephrased). Let Π0 → Π1 → . . . → Πt be a sequence of problems. Assume that,
for all 0 ≤ i < t, and for some function f , the following holds:

• There exists a problem Π′
i that is a relaxation of R(Πi);

• Πi+1 is a relaxation of R(Π′
i);

• The number of labels of Πi, and the ones of Π′
i, are upper bounded by f(∆).

Also, assume that Πt has at most f(∆) labels and is not 0-round solvable in the deterministic
port numbering model, even when given a ∆-edge coloring.1 Then, Π0 requires Ω(min{t, log∆ n−
log∆ log f(∆)}) rounds in the deterministic LOCAL model and Ω(min{t, log∆ log n− log∆ log f(∆)})
rounds in the randomized LOCAL model, even when given a ∆-edge coloring.

4.2 Roadmap

Informally, in order to prove a lower bound for P∆, we introduce a family of problems Πi,∆ (where
0 ≤ i ≤ ∆− 2) with the following properties.

• P∆ is at least as hard as Π0,∆.

• By applying round elimination to Πi,∆, we obtain a problem that is at least as hard as Πi+1,∆,
for all 0 ≤ i ≤ ∆− 3.

• Π∆−2,∆ cannot be solved in 0 rounds given a ∆-edge coloring.

Our result will follow by applying Theorem 4.9 to such a sequence of problems.
More in detail, in Section 4.3 we define the problems Πi,∆, and in Section 4.4 we prove the

strength relation between their labels. Then, in Section 4.5 we define a problem Π′
i,∆ and show that

it is a relaxation of R(Πi,∆). In Section 4.6 we prove the strength relation between the labels of
Π′

i,∆. In Section 4.7 we prove that R(Π′
i,∆) can be relaxed to Πi+1,∆. Then, in Section 4.8 we show

that Π∆−2,∆ cannot be solved in 0 rounds given a ∆-edge coloring. In Section 4.9, we show that P∆

is at least as hard as Π0,∆. Finally, in Section 4.10, we combine the results of all previous sections to
prove Theorem 4.1.

4.3 Problem definition

For each 0 ≤ i ≤ ∆ − 2, we define the problems Πi,∆ in the black-white formalism. We remark
that while the problem Πi,∆ is defined also for i = ∆− 2, from Section 4.4 onwards we will assume
i ≤ ∆− 3 for technical reasons.

Labels. The label set of Πi,∆ is defined as

Σi,∆ = {(!!)j | 1 ≤ j ≤ ∆− i− 1}
∪ {(!)j | ∆− i+ 1 ≤ j ≤ ∆}
∪ {(−−)j | 1 ≤ j ≤ ∆− i}
∪ {(−y)j | 1 ≤ j ≤ ∆− i and y ∈ {0, 1}}
∪ {(x−)j | 2 ≤ j ≤ ∆− i− 1 and x ∈ {0, 1}}
∪ {(xy)j | 2 ≤ j ≤ ∆− i and x, y ∈ {0, 1}}
∪ {(?)j | ∆− i+ 1 ≤ j ≤ ∆}.

1In [12], this theorem is stated in its full generality, and it talks about restricted assignments of port numbers. It is
easy to see that a ∆-edge coloring is indeed a restricted assignment of port numbers.

22

We call the subscript of a label its color. For example, label (−−)j has color j. When considering
some fixed i, we say that a color j is gone if j > ∆− i, otherwise it is present. Moreover, color ∆− i
is called special. Throughout the section, when writing a configuration L1 . . . L∆ we may implicitly
assume that label Li is of color i.

White constraint. We now define the white constraint Ni,∆ of problem Πi,∆. For an example,
see the paragraph after the definition. Ni,∆ contains node configurations of three different kinds.

First, for all integers a, b satisfying 1 ≤ a < b ≤ ∆ − i + 1 and b ̸= ∆ − i, and for all
vectors (ya, . . . , yb−1) ∈ {0, 1}b−a, Ni,∆ contains the configuration L1 . . . L∆ satisfying the following
properties.

• For all j such that 1 ≤ j < a, Lj = (−−)j ,
• La = (−ya)a,
• for all j such that a < j < b, Lj = (yj−1 yj)j ,
• if b ≤ ∆− i, Lb = (yb−1 −)b,
• for all j such that b < j ≤ ∆− i, Lj = (−−)j , and
• for all j such that ∆− i+ 1 ≤ j ≤ ∆, Lj = (?)j .

Second, for all integers a satisfying 1 ≤ a ≤ ∆ − i − 1, Ni,∆ contains the configuration L1 . . . L∆

satisfying the following properties.

• La = (!!)a,
• for all j such that 1 ≤ j ≤ ∆− i and j ̸= a, Lj = (−−)j , and
• for all j such that ∆− i+ 1 ≤ j ≤ ∆, Lj = (?)j .

Third, for all integers a satisfying ∆ − i + 1 ≤ a ≤ ∆, Ni,∆ contains the configuration L1 . . . L∆

satisfying the following properties.

• La = (!)a,
• for all j such that 1 ≤ j ≤ ∆− i, Lj = (−−)j , and
• for all j such that ∆− i+ 1 ≤ j ≤ ∆ and j ̸= a, Lj = (?)j .

Example for the white constraint. To make the above definition more accessible, we now
informally show how to obtain the white constraint in a concrete way, illustrated with an example
for specific values of ∆ and i. Let ∆ = 7 and i = 2. We obtain N2,7 by setting N2,7 = ∅ and then
performing the following procedure for each bit string B of ∆− i bits (which we illustrate for the
case B = 01100).

Add to N2,7 the configuration C of the first kind described above where we set a := 1, b := ∆−i+1,
and (ya, . . . , yb−1) := B, i.e., we add

C = (−0)1 (01)2 (11)3 (10)4 (00)5 (?)6 (?)7.

Starting from C, we now create additional configurations by canceling some bits, which we will
then all add to N2,7 (if not already present). We can cancel a prefix of the bit string B, a suffix, or
both at the same time. However, at least one bit must remain. Moreover, if we cancel a suffix, the
canceled suffix cannot be only the last bit. Each time we obtain a new bit string, we transform it
into a configuration analogously to how we obtained C from B, and add it to N2,7. In this way, we
add the following configurations.

23

• Prefix canceling:

(−−)1 (−1)2 (11)3 (10)4 (00)5 (?)6 (?)7

(−−)1 (−−)2 (−1)3 (10)4 (00)5 (?)6 (?)7

(−−)1 (−−)2 (−−)3 (−0)4 (00)5 (?)6 (?)7

(−−)1 (−−)2 (−−)3 (−−)4 (−0)5 (?)6 (?)7

• Suffix canceling (note that the rules do not allow a canceling of only the fifth bit in B):

(−0)1 (01)2 (11)3 (1−)4 (−−)5 (?)6 (?)7

(−0)1 (01)2 (1−)3 (−−)4 (−−)5 (?)6 (?)7

(−0)1 (0−)2 (−−)3 (−−)4 (−−)5 (?)6 (?)7

• Prefix and suffix canceling (again, the rules do not allow a suffix canceling of only the fifth bit
in B):

(−−)1 (−1)2 (11)3 (1−)4 (−−)5 (?)6 (?)7

(−−)1 (−1)2 (1−)3 (−−)4 (−−)5 (?)6 (?)7

(−−)1 (−−)2 (−1)3 (1−)4 (−−)5 (?)6 (?)7

Finally, we add a small number of additional configurations to N2,7 that we obtain from canceling the
entire bit string B. However, when we cancel B entirely, we are required to select in the respectively
obtained configuration a label at some position j ̸= ∆− i and replace this label by (!!)j if j < ∆− i,
and by (!)j otherwise. Hence, we obtain the following additional configurations that we add to N2,7.

(!!)1 (−−)2 (−−)3 (−−)4 (−−)5 (?)6 (?)7

(−−)1 (!!)2 (−−)3 (−−)4 (−−)5 (?)6 (?)7

(−−)1 (−−)2 (!!)3 (−−)4 (−−)5 (?)6 (?)7

(−−)1 (−−)2 (−−)3 (!!)4 (−−)5 (?)6 (?)7

(−−)1 (−−)2 (−−)3 (−−)4 (−−)5 (!)6 (?)7

(−−)1 (−−)2 (−−)3 (−−)4 (−−)5 (?)6 (!)7

Black constraint. We now define the black constraint Ei,∆ of problem Πi,∆. Let j be an integer
satisfying ∆− i+ 1 ≤ j ≤ ∆, i.e., a color that is gone. The allowed configurations are exactly those
that are described by the set of condensed configurations containing the following:

• [(!)j , (?)j]
2 [(?)j]

Then, the allowed configurations are all the ones described by the set of condensed configurations
containing the following:

• [(!!)1, (−−)1, (−0)1, (−1)1] [(−−)1] [(−−)1, (−0)1]

• [(−−)1, (−0)1]2 [(−−)1, (−1)1]

Let j be an integer satisfying 2 ≤ j ≤ ∆− i−1. The allowed configurations are all the ones described
by the set of condensed configurations containing the following:

24

• [(−−)j] [(!!)j , (−−)j , (−0)j , (−1)j , (0−)j , (00)j , (01)j , (1−)j , (10)j , (11)j]2
• [(−−)j , (−0)j , (00)j , (1−)j , (10)j , (11)j] [(−−)j , (00)j]2
• [(−−)j , (−1)j , (01)j , (1−)j , (10)j , (11)j] [(−−)j , (00)j] [(−−)j , (01)j]
• [(−−)j , (−0)j , (00)j , (1−)j , (10)j , (11)j] [(−−)j , (01)j]2
• [(−−)j , (−1)j , (0−)j , (00)j , (01)j , (11)j] [(−−)j , (00)j] [(−−)j , (10)j]
• [(−−)j , (−0)j , (0−)j , (00)j , (01)j , (10)j] [(−−)j , (00)j] [(−−)j , (11)j]
• [(−−)j , (−0)j , (0−)j , (00)j , (01)j , (10)j] [(−−)j , (01)j] [(−−)j , (10)j]
• [(−−)j , (−1)j , (0−)j , (00)j , (01)j , (11)j] [(−−)j , (01)j] [(−−)j , (11)j]
• [(−−)j , (−1)j , (01)j , (1−)j , (10)j , (11)j] [(−−)j , (10)j]2
• [(−−)j , (−0)j , (00)j , (1−)j , (10)j , (11)j] [(−−)j , (10)j] [(−−)j , (11)j]
• [(−−)j , (−1)j , (01)j , (1−)j , (10)j , (11)j] [(−−)j , (11)j]2
• [(−−)j , (−0)j , (00)j , (10)j] [(−−)j , (00)j] [(−−)j , (00)j , (11)j]
• [(−−)j , (−1)j , (01)j , (11)j] [(−−)j , (00)j] [(−−)j , (01)j , (10)j]
• [(−−)j , (−0)j , (00)j , (10)j] [(−−)j , (01)j] [(−−)j , (01)j , (10)j]
• [(−−)j , (−1)j , (01)j , (11)j] [(−−)j , (00)j , (11)j] [(−−)j , (01)j]
• [(−−)j , (−0)j , (00)j , (10)j] [(−−)j , (−1)j , (01)j , (11)j] [(−−)j , (10)j]
• [(−−)j , (11)j] [(−−)j , (−0)j , (00)j , (10)j]2
• [(−−)j , (10)j] [(−−)j , (01)j , (10)j]2
• [(−−)j , (10)j] [(−−)j , (00)j , (11)j]2
• [(−−)j , (00)j , (11)j] [(−−)j , (01)j , (10)j] [(−−)j , (11)j]
• [(−−)j , (11)j] [(−−)j , (−1)j , (01)j , (11)j]2
• [(−−)j , (1−)j , (10)j , (11)j] [(−−)j , (0−)j , (00)j , (01)j]2
• [(−−)j , (1−)j , (10)j , (11)j]3

For the case j = ∆− i, i.e., for the special color, the list of allowed configurations are all the ones
described by the set of condensed configurations given by the following process:

• Start from the condensed configurations given above for the case 2 ≤ j ≤ ∆− i− 1.
• From each disjunction, remove labels (0−)j , (1−)j , and (!!)j (i.e., labels that for color ∆− i do

not exist).

Alternative definition of the black constraint. We provided the allowed configurations for the
case 2 ≤ j ≤ ∆− i− 1 as a long list. We now provide an equivalent but compact description of such
configurations, that will be useful later. Such configurations are based on the allowed configurations
of the iterated GHZ problem. Each configuration is composed of 3 labels with subscript j, and for
the moment we only consider labels containing two bits, i.e., (00)j , (01)j , (10)j , and (11)j . Later we
will provide additional configurations as a function of the ones that we provide now. The first bit
of each label is called input bit, and the second is called output bit. If the number of input bits
equal to 1 is even, is required that the XOR of the output bits is equal to the OR of the input bits.
Instead, if the number of input bits equal to 1 is odd, there is no constraint on the output bits. The
configurations satisfying these requirements, which we call bit configurations, are the following:

• (00)j (00)j (00)j
• (00)j (01)j (01)j
• (00)j (00)j (10)j
• (00)j (00)j (11)j
• (00)j (01)j (10)j
• (00)j (01)j (11)j
• (01)j (01)j (10)j

25

• (01)j (01)j (11)j
• (00)j (10)j (11)j
• (01)j (10)j (10)j
• (01)j (11)j (11)j
• (10)j (10)j (10)j
• (10)j (10)j (11)j
• (10)j (11)j (11)j
• (11)j (11)j (11)j

We now compute the set of maximal configurations satisfying the universal quantifier w.r.t. the
above set of configurations.

Lemma 4.10. Let Sj denote the set of maximal configurations satisfying the universal quantifier
w.r.t. the set of bit configurations of color j. Then Sj contains precisely the following configurations.

• {(00)j , (10)j , (11)j} {(00)j}2
• {(01)j , (10)j , (11)j} {(00)j} {(01)j}
• {(00)j , (10)j , (11)j} {(01)j}2
• {(00)j , (01)j , (11)j} {(00)j} {(10)j}
• {(00)j , (01)j , (10)j} {(00)j} {(11)j}
• {(00)j , (01)j , (10)j} {(01)j} {(10)j}
• {(00)j , (01)j , (11)j} {(01)j} {(11)j}
• {(01)j , (10)j , (11)j} {(10)j}2
• {(00)j , (10)j , (11)j} {(10)j} {(11)j}
• {(01)j , (10)j , (11)j} {(11)j}2
• {(00)j , (10)j} {(00)j} {(00)j , (11)j}
• {(01)j , (11)j} {(00)j} {(01)j , (10)j}
• {(00)j , (10)j} {(01)j} {(01)j , (10)j}
• {(01)j , (11)j} {(00)j , (11)j} {(01)j}
• {(00)j , (10)j} {(01)j , (11)j} {(10)j}
• {(11)j} {(00)j , (10)j}2
• {(10)j} {(01)j , (10)j}2
• {(10)j} {(00)j , (11)j}2
• {(00)j , (11)j} {(01)j , (10)j} {(11)j}
• {(11)j} {(01)j , (11)j}2
• {(10)j , (11)j} {(00)j , (01)j}2
• {(10)j , (11)j}3

Proof. By inspecting each configuration of Sj , we can observe that the universal quantifier is satisfied
on all of them. It is straightforward to verify that none of the displayed configurations dominates
any of the other displayed configurations. Hence, it suffices to show that Sj contains all the maximal
configurations satisfying the universal quantifier. Assume for a contradiction that there exists a
maximal configuration C satisfying the universal quantifier that is not dominated by any configuration
present in Sj .

We start by proving that C cannot contain two sets of size 1, let them be C1 and C2. As it is
straightforward to check, the set Sj contains all configurations satisfying the universal quantifier
composed of two sets of size 1 and one set of size 3, and that all configurations satisfying the
universal quantifier composed of two sets of size 1 and one set of size at most 2 are dominated by
configurations in Sj . Hence, for the configuration C to not be in Sj , it must contain a set of size 4,

26

let it be C3. Consider the input bits i1 and i2 of the labels in the sets C1 and C2. If the number of
input bits in (i1, i2) equal to 1 is even, then C3 cannot contain both (00)j and (01)j . If the number
of input bits in (i1, i2) equal to 1 is odd, then C3 cannot contain both (10)j and (11)j . Hence, C3

has size at most 3.
Since a set cannot be empty, and hence it must have size at least 1, the above also implies that

C cannot contain sets of size 4 (even if the other sets have size strictly larger than 1).
Moreover, consider a configuration C containing two sets of size 1 (C1 and C2) and one set of

size 3 (C3). By adding any element L to some set of size 1, w.l.o.g. to C1, the obtained configuration
does not satisfy the universal quantifier anymore, for the following reasons.

• Consider the case in which L has an input bit that is the same as i1, and hence the opposite
output bit. Since C3 has size 3, from C we can always pick a configuration with an even
number of input bits set to 1. If we now replace the element picked from C1 with L, we obtain
an invalid configuration.

• If L has an input bit that is different from i1, then we can pick two configurations that only
differ in the element picked from C3 and that have an even number of input bits set to 1, but
that have different parity in the amount of output bits set to 1, and hence one of the two is
invalid.

Hence, if the number of sets of size 1 is strictly less than two, it is not possible to have sets of size 3.
We now consider the case in which C contains exactly one set of size 1, let it be C1. The other

sets, C2 and C3, must be of size 2. Since C is maximal, it is not possible to add an element to C1,
and in particular the label with the same input and opposite output bit of the label in C1, without
losing the property that the configuration satisfies the universal quantifier. This implies that it must
be possible to pick, from C, a configuration with an even number of input bits set to 1. Let such a
configuration be P1 P2 P3, and let the non-picked labels be N2 ∈ C2 and N3 ∈ C3. It cannot be that
P2 and N2 (resp. P3 and N3) have the same input and opposite output bit, as replacing P2 with
N2 (resp. P3 with N3) in C would result in a configuration that is not allowed (since the amount of
input bits equal to 1 stays even, but the parity of the output changes). Moreover, the configuration
P1 N2 N3 still needs to be allowed. It is straightforward to verify that all configurations satisfying
these requirements are listed.

Finally, let us consider the case in which C contains only sets of size exactly 2. We prove that
each set must satisfy that all its elements have the same input bit, and that the number of sets
whose elements have input bit 1 must be odd. Given such a proof, we get a contradiction to our
initial assumption by observing that there are only two configurations satisfying these requirements,
and they are both listed.

Suppose that all configurations that can be picked from C have an odd number of input bits set to
1. This implies that all sets have elements with the same input bit, since otherwise we could replace
a picked element with a non-picked one and change the parity. Now, suppose for a contradiction
that we can pick a configuration with an even number of input bits set to 1. If any set contains a
non-picked element with the same input bit as the picked one but the opposite output bit, we would
get a contradiction. Hence, each non-picked element must have opposite input bit from the picked
one of the same set. Hence, it must be possible to pick (00)3j , or (00)j (01)2j . In the former case, we
must be able to pick (00)j (10)2j or (00)j (11)2j , which are both not allowed. In the latter case, we
can pick (00)j (10)2j , (00)j (11)2j , or (10)j (01)j (11)j , which are all not allowed. This completes our
proof by contradiction.

We now modify the set Sj defined in Lemma 4.10 by applying the following rules.

27

• If a set contains both (00)j and (01)j , add (0−)j .
• If a set contains both (10)j and (11)j , add (1−)j .
• If a set contains both (00)j and (10)j , add (−0)j .
• If a set contains both (01)j and (11)j , add (−1)j .
• Always add (−−)j .

Finally, we add the following configuration C∗:

{(−−)j} {(!!)j , (−−)j , (−0)j , (−1)j , (0−)j , (00)j , (01)j , (1−)j , (10)j , (11)j}2.

Let the result be S′
j . Observe that, for all 2 ≤ j ≤ ∆ − i − 1, S′

j is exactly equal to the set of
condensed configurations listed when defining Ei,∆. We observe the following (which will be useful
later).

Observation 4.11. For all 2 ≤ j ≤ ∆− i− 1, the set S′
j is maximal-complete.

Proof. We prove that, if we take two arbitrary configurations C1 and C2 in S′
j , and we combine them

w.r.t. an arbitrary u and an arbitrary σ, we obtain a configuration C = C1 C2 C3 that is dominated
by some other configuration in S′

j . By Observation 4.3 this implies that S′
j is maximal-complete.

We start by observing that, by Observation 4.4, we do not need to consider the case in which
C1 = C∗ or C2 = C∗.

If an intersection results in (−−)j , then C is dominated by the configuration C∗. Otherwise, let
C ′1 and C ′2 be the configurations obtained by starting from C1 and C2 and removing the labels
(0−)j , (1−)j , (−0)j , (−1)j , and (−−)j from all the sets of C1 and C2. We obtain that C ′1 and C ′2

are configurations listed in Lemma 4.10. Let C ′ be the configuration obtained by combining C ′1

and C ′2 w.r.t. u and σ, and let D′ be the configuration dominating C ′ among the configurations
listed in Lemma 4.10 (which is guaranteed to exist by Lemma 4.10). In each set of D′ add the labels
(0−)j , (1−)j , (−0)j , (−1)j , (−−)j by using the same rules applied when defining S′

j as a function of Sj ,
obtaining the configuration D = D1 D2 D3. Clearly, the configuration D is present in S′

j . Moreover,
the following observations show that D dominates C.

• The label (−−)j is present in all sets of both C and D, and hence does not affect domination.

• If some label L ∈ {(00)j , (01)j , (10)j , (11)j} is present in Ci, for some i ∈ {1, 2, 3}, then L is
present also in Di.

• If Cu contains a label L in {(0−)j , (1−)j , (−0)j , (−1)j}, then L ∈ Du. To see this, consider
w.l.o.g. L = (0−)j . We get that (00)j ∈ C1

u or (00)j ∈ C2
σ(u), and (01)j ∈ C1

u or (01)j ∈ C2
σ(u).

Hence, {(00)j , (01)j} ⊆ Du, and hence (0−)j ∈ Du.

• Let i ∈ {1, 2, 3} and i ̸= u. If Ci contains a label L in {(0−)j , (1−)j , (−0)j , (−1)j}, then L ∈ Di.
To see this, consider w.l.o.g. L = (0−)j . We get that (00)j ∈ C1

i , (00)j ∈ C2
σ(i), (01)j ∈ C1

i ,
and (01)j ∈ C2

σ(i). Hence, {(00)j , (01)j} ⊆ Di, and hence (0−)j ∈ Di.

Observe that this covers all cases, since (!!)j only occurs in C∗.

4.4 The diagram of Πi,∆

Throughout the rest of Section 4, we assume that i ≤ ∆− 3. We now provide the diagram of Πi,∆,
that is, we prove the strength relation between the labels of Πi,∆ w.r.t. its black constraint. In
Appendix A we will first observe that, a necessary condition for a label to be at least as strong as
another label, is for the two labels to be of the same color. Then, we will prove Lemmas 4.12 to 4.15
(which are just a long case analysis).

28

(!!)1

(-0)1

(-1)1

(--)1

Figure 1: The strength relation of the first color.

(!!)j

(-0)j

(-1)j
(--)j

(0-)j

(1-)j

(00)j

(10)j

(01)j

(11)j

Figure 2: The strength relation of each present color j different from the first and the special color.

(-0)j

(-1)j

(--)j

(00)j

(10)j

(01)j

(11)j

Figure 3: The strength relation of the special color j = ∆− i− 1.

(!)j (?)j

Figure 4: The strength relation of gone colors.

Lemma 4.12. The strength relation of the labels of color 1 is given by the diagram of Figure 1.

Lemma 4.13. Let j be a color satisfying 2 ≤ j ≤ ∆− i− 1. The strength relation of the labels of
color j is given by the diagram of Figure 2.

Lemma 4.14. Let j be the special color, that is, j = ∆− i. The strength relation of the labels of
color j is given by the diagram of Figure 3.

Lemma 4.15. Let j be a gone color, i.e., an integer satisfying ∆− i+ 1 ≤ j ≤ ∆. The strength
relation of the labels of color j is given by the diagram of Figure 4.

4.5 The first round elimination step

In this section, we define a family of problems Π′
i,∆, and we prove that R(Πi,∆) can be relaxed to

Π′
i,∆. Each label of Π′

i,∆ is going to be a set of labels of Πi,∆. Recall that with ⟨L1, . . . , Lk⟩ we
denote the set of labels containing L1, . . . , Lk and all of their (not necessarily direct) successors in
the diagram of Πi,∆.

29

Black constraint. We now define the black constraint E ′
i,∆ of Π′

i,∆. For each j where j is a gone
color, the following configuration is allowed:

• ⟨(!)j⟩2 ⟨(?)j⟩

For color 1, the following configurations are allowed:

• ⟨(!!)1⟩ ⟨(−−)1⟩ ⟨(−0)1⟩
• ⟨(−0)1⟩2 ⟨(−1)1⟩

For each color j satisfying 2 ≤ j ≤ ∆− i− 1, the following configurations are allowed:

• ⟨(−−)j⟩ ⟨(!!)j⟩2
• ⟨(−0)j , (1−)j⟩ ⟨(00)j⟩2
• ⟨(−1)j , (1−)j⟩ ⟨(00)j⟩ ⟨(01)j⟩
• ⟨(−0)j , (1−)j⟩ ⟨(01)j⟩2
• ⟨(−1)j , (0−)j⟩ ⟨(00)j⟩ ⟨(10)j⟩
• ⟨(−0)j , (0−)j⟩ ⟨(00)j⟩ ⟨(11)j⟩
• ⟨(−0)j , (0−)j⟩ ⟨(01)j⟩ ⟨(10)j⟩
• ⟨(−1)j , (0−)j⟩ ⟨(01)j⟩ ⟨(11)j⟩
• ⟨(−1)j , (1−)j⟩ ⟨(10)j⟩2
• ⟨(−0)j , (1−)j⟩ ⟨(10)j⟩ ⟨(11)j⟩
• ⟨(−1)j , (1−)j⟩ ⟨(11)j⟩2
• ⟨(−0)j⟩ ⟨(00)j⟩ ⟨(00)j , (11)j⟩
• ⟨(−1)j⟩ ⟨(00)j⟩ ⟨(01)j , (10)j⟩
• ⟨(−0)j⟩ ⟨(01)j⟩ ⟨(01)j , (10)j⟩
• ⟨(−1)j⟩ ⟨(00)j , (11)j⟩ ⟨(01)j⟩
• ⟨(−0)j⟩ ⟨(−1)j⟩ ⟨(10)j⟩
• ⟨(11)j⟩ ⟨(−0)j⟩2
• ⟨(10)j⟩ ⟨(01)j , (10)j⟩2
• ⟨(10)j⟩ ⟨(00)j , (11)j⟩2
• ⟨(00)j , (11)j⟩ ⟨(01)j , (10)j⟩ ⟨(11)j⟩
• ⟨(11)j⟩ ⟨(−1)j⟩2
• ⟨(1−)j⟩ ⟨(0−)j⟩2
• ⟨(1−)j⟩3

For the special color j = ∆− i, the following configurations are allowed:

• ⟨(00)j , (01)j⟩ ⟨(−0)j , (−1)j⟩2
• ⟨(10)j , (11)j⟩ ⟨(−0)j , (−1)j⟩2

This concludes the definition of the black constraint.
Before proving the relation between the black constraint of R(Πi,∆) and E ′

i,∆, we will state a
useful observation, based on the following definitions. For any set S that contains only labels of the
same color, say j, we define the color of S as j. For any configuration C that contains only sets of
color j, we define the color of C as j.

In order for a configuration of the black constraint of R(Πi,∆) to satisfy the universal quantifier,
the following must clearly hold.

Observation 4.16. All labels of R(Πi,∆) are sets of labels of Πi,∆, where each set S satisfies that
all labels in S have the same color. Moreover, each configuration of the black constraint of R(Πi,∆)
consists of sets of the same color.

30

In the following, we will implicitly use the fact that, for any set L of labels, if two labels satisfy
Li ≤ Lj , and Li, Lj ∈ L, then ⟨L | L ∈ L⟩ = ⟨L | L ∈ L \ {Lj}⟩.

Lemma 4.17. The black constraint of R(Πi,∆) is dominated by E ′
i,∆.

Proof. By Observation 4.16, each configuration of R(Πi,∆) is composed of labels with the same color.
In order to prove the statement, we consider each color j separately.

• For all j ̸= ∆− i, the configurations of E ′
i,∆ are exactly the condensed configurations provided

when describing Ei,∆. We prove that, by combining configurations of color j, we do not get
any additional configuration. By Observation 4.3, this implies that the configurations of color
j are maximal-complete.

• For j = ∆ − i, we prove that each configuration of color j of R(Πi,∆) is dominated by (at
least) one of the two configurations of color j that we provided.

Let j be a gone color, i.e., j > ∆−i. By Observation 4.4, when combining the unique configuration
of color j with itself (for any index u and permutation σ), we do not obtain any new configuration,
since ⟨(!)j⟩ and ⟨(?)j⟩ are comparable.

Let us now consider color 1. By Observation 4.4, by combining ⟨(!!)1⟩ ⟨(−−)1⟩ ⟨(−0)1⟩ with
itself, we cannot get additional configurations (not dominated by ones already present), since all
sets in this configuration are comparable with each other. By Observation 4.4, in order to get new
configurations when combining ⟨(−0)1⟩2 ⟨(−1)1⟩ with itself, we need to take the union of ⟨(−0)1⟩
with ⟨(−1)1⟩, thus obtaining the configuration ⟨(−0)1, (−1)1⟩ ⟨(−0)1⟩ ⟨(−−)1⟩, which is dominated
by ⟨(!!)1⟩ ⟨(−−)1⟩ ⟨(−0)1⟩. Finally, if we combine ⟨(!!)1⟩ ⟨(−−)1⟩ ⟨(−0)1⟩ with ⟨(−0)1⟩2 ⟨(−1)1⟩, by
Observation 4.4 we need to take the union of ⟨(−0)1⟩ with ⟨(−1)1⟩, thus obtaining the configuration
⟨(−0)1, (−1)1⟩ ⟨(−0)1⟩ ⟨(−−)1⟩, which again is dominated by ⟨(!!)1⟩ ⟨(−−)1⟩ ⟨(−0)1⟩.

In the case 2 ≤ j ≤ ∆− i− 1, the claim follows by applying Observation 4.11 (and the definition
of R).

Finally, we consider the case j = ∆ − i, i.e., the special color. In this case, we prove that all
the configurations satisfying the universal quantifier are dominated by (at least) one of the two
configurations present in E ′

i,∆. We first observe that, since ⟨(−0)j , (−1)j⟩ contains all labels of color
j (see Figure 3), any configuration C = C1 C2 C3 of color j in the black constraint of R(Πi,∆)
that is not dominated by the two configurations present in E ′

i,∆ must necessarily satisfy that all
its sets Ci satisfy Ci ̸⊆ ⟨(00)j , (01)j⟩ and Ci ̸⊆ ⟨(10)j , (11)j⟩. By Observation 4.7, each set in
such a configuration must be right-closed, and hence it holds that, for all i, Ci is a superset of at
least one of the following four sets: X1 = {(00)j , (10)j}, X2 = {(00)j , (11)j}, X3 = {(01)j , (10)j},
X4 = {(01)j , (11)j}. We consider all possible choices in {X1, X2, X3, X4}3 (excluding permutations):

• For any choice in {X3, X4}3, we can pick the configuration (01)3j , which is not present in Ei,∆.

• For any choice in {X1, X2}3, we can pick the configuration (00)j (10)2j or the configuration
(00)j (11)2j , which are not present in Ei,∆.

• For any choice in {X1, X2}2 {X3, X4}, we can pick the configuration (00)2j (01)j , which is not
present in Ei,∆.

• For any choice in {X1, X2} {X3}2, we can pick the configuration (00)j (10)2j , which is not
present in Ei,∆.

• For any choice in {X1, X2} {X4}2, we can pick the configuration (00)j (11)2j , which is not
present in Ei,∆.

31

• For any choice in {X1, X2} {X3} {X4}, we can pick the configuration (10)j (01)j (11)j , which
is not present in Ei,∆.

White constraint. We first define an intermediate constraint N ∗
i,∆. Then, we define N ′

i,∆ as a
function of N ∗

i,∆. The constraint N ∗
i,∆ is defined as follows. Let x = ∆− i be the special color. For

each configuration C ∈ Ni,∆, the constraint N ∗
i,∆ contains the condensed configuration C∗ obtained

by replacing each label of C with the disjunction of sets according to the following rules (where j
denotes the color of L):

• [⟨L⟩], if j ̸= x;
• [⟨(00)j , (01)j⟩], if j = x and L ∈ {(00)j , (01)j};
• [⟨(10)j , (11)j⟩], if j = x and L ∈ {(10)j , (11)j};
• [⟨(−0)j , (−1)j⟩], if j = x and L ∈ {(−0)j , (−1)j};
• [⟨(00)j , (01)j⟩, ⟨(10)j , (11)j⟩], if j = x and L = (−−)j .

Let Σ′
i,∆ be the set of labels that appear in E ′

i,∆. The white constraint N ′
i,∆ of Π′

i,∆ contains all
the configurations described by the set of condensed configurations given by the following process.
Take a condensed configuration C∗ in N ∗

i,∆, and replace each disjunction of labels [L1 . . . Lk] with
the disjunction containing L1, . . . , Lk and all the labels L ∈ Σ′

i,∆ that are supersets of at least one
label in {L1, . . . , Lk}.

Lemma 4.18. N ′
i,∆ is the set of all configurations S1 . . . S∆ of sets contained in Σ′

i,∆ such that there
exists some tuple (ℓ1, . . . , ℓ∆) ∈ S1 × . . .× S∆ satisfying that ℓ1 . . . ℓ∆ is contained in Ni,∆.

Proof. Consider the collection C of all configurations obtained from Ni,∆, by replacing, in each
configuration, each label L with the disjunction containing all sets L′ ∈ Σ′

i,∆ satisfying L ∈ L′.
It is sufficient to prove that the collection of configurations that can be picked from C is equal to

N ′
i,∆. This follows directly by the definition of N ′

i,∆ and Lemmas 4.12 to 4.15.

By combining Lemma 4.17 and Lemma 4.18, by the definition of relaxation, we obtain the
following.

Lemma 4.19. The problem Π′
i,∆ is a relaxation of R(Πi,∆).

White constraint example. We now provide an example of N ′
i,∆, for the case ∆ = 7 and i = 2,

by showing some examples of replacements.
In N2,7, the following configuration is present:

(−0)1 (01)2 (11)3 (10)4 (00)5 (?)6 (?)7.

We get that, in N ′
2,7, the following configuration is present:

⟨(−0)1⟩ ⟨(01)2⟩ ⟨(11)3⟩ ⟨(10)4⟩ ⟨(00)5, (01)5⟩ ⟨(?)6⟩ ⟨(?)7⟩.

Moreover, N ′
2,7 contains all configurations that can be obtained by starting from such a configuration

and replacing some labels with arbitrary supersets. For example, the following configuration is also
present:

⟨(−0)1⟩ ⟨(01)2⟩ ⟨(11)3⟩ ⟨(10)4⟩ ⟨(00)5, (01)5⟩ ⟨(!)6⟩ ⟨(!)7⟩.

For another example, consider the following configuration present in N2,7:

(−0)1 (01)2 (1−)3 (−−)4 (−−)5 (?)6 (?)7.

32

We get that, in N ′
2,7, all the configurations given by the following condensed configuration (plus all

the ones obtained by replacing labels with supersets) are present:

[⟨(−0)1⟩] [⟨(01)2⟩] [⟨(1−)3⟩] [⟨(−−)4⟩] [⟨(00)5, (01)5⟩, ⟨(10)5, (11)5⟩] [⟨(?)6⟩] [⟨(?)7⟩].

For another example, consider the following configuration present in N2,7:

(−−)1 (−−)2 (−−)3 (−−)4 (−0)5 (?)6 (?)7

We get that, in N ′
2,7, the following configuration is present, plus all the ones obtained by replacing

labels with supersets:

⟨(−−)1⟩ ⟨(−−)2⟩ ⟨(−−)3⟩ ⟨(−−)4⟩ ⟨(−0)5, (−1)5⟩ ⟨(?)6⟩ ⟨(?)7⟩

We observe that the constraint N ′
i,∆ can be described in the following alternative (and more

explicit) way, that will be useful later. Let N+
i,∆ be the set containing the following condensed

configurations.

• Strikethrough configurations. For all integers a, b satisfying 1 ≤ a < b ≤ ∆− i, and for
all vectors (yj | yj ∈ {0, 1} and a ≤ j < b), the condensed configuration L1 . . . L∆ is allowed,
where:

– For all j such that 1 ≤ j < a, Lj = [⟨(−−)j⟩];
– La = [⟨(−ya)a⟩];
– For all j such that a < j < b, Lj = [⟨(yj−1 yj)j⟩];
– If b ≤ ∆− i− 1, Lb = [⟨(yb−1−)b⟩];
– For all j such that b < j ≤ ∆− i− 1, Lj = [⟨(−−)j⟩];
– If b ̸= ∆− i, L∆−i = [⟨(00)∆−i, (01)∆−i⟩, ⟨(10)∆−i, (11)∆−i⟩];
– If b = ∆− i, L∆−i = [⟨(yb−10)∆−i, (yb−11)∆−i⟩];
– For all j such that ∆− i+ 1 ≤ j ≤ ∆, Lj = [⟨(?)j⟩].

• Grabbing-present configurations. For all integers a satisfying 1 ≤ a ≤ ∆ − i − 1, the
condensed configuration L1 . . . L∆ is allowed, where:

– La = [⟨(!!)a⟩];
– For all j such that 1 ≤ j ≤ ∆− i− 1 and j ̸= a, Lj = [⟨(−−)j⟩];
– L∆−i = [⟨(00)∆−i, (01)∆−i⟩, ⟨(10)∆−i, (11)∆−i⟩];
– For all j such that ∆− i+ 1 ≤ j ≤ ∆, Lj = [⟨(?)j⟩].

• Grabbing-gone configurations. For all integers a satisfying ∆ − i + 1 ≤ a ≤ ∆, the
configuration L1 . . . L∆ is allowed, where:

– La = [⟨(!)a⟩];
– For all j such that 1 ≤ j ≤ ∆− i− 1, Lj = [⟨(−−)j⟩];
– L∆−i = [⟨(00)∆−i, (01)∆−i⟩, ⟨(10)∆−i, (11)∆−i⟩];
– For all j such that ∆− i+ 1 ≤ j ≤ ∆ and j ̸= a, Lj = [⟨(?)j⟩].

• Grabbing-special configuration. The configuration L1 . . . L∆ is allowed where:

– For all j such that 1 ≤ j ≤ ∆− i− 1, Lj = [⟨(−−)j⟩];

33

– L∆−i = [⟨(−0)∆−i, (−1)∆−i⟩];
– For all j such that ∆− i+ 1 ≤ j ≤ ∆, Lj = [⟨(?)j⟩].

Then, let N ∗
i,∆ be the set of condensed configurations obtained as follows. Take a configuration C+

from N+
i,∆. Replace, in C+, each disjunction of labels [L1 . . . Lk] with the disjunction containing

L1, . . . , Lk and all the labels L ∈ Σ′
i,∆ that are supersets of at least one label in {L1, . . . , Lk}.

By the definitions of N ∗
i,∆ and N ′

i,∆, we obtain the following observation.

Observation 4.20. The white constraint N ′
i,∆ is the set containing all the configurations C that

can be picked from N ∗
i,∆.

4.6 The diagram of Π′
i,∆

We now provide the diagram of Π′
i,∆, that is, we prove the strength relation between the labels of

Π′
i,∆ w.r.t. its white constraint. Again, a necessary condition for a label to be at least as strong as

another label is for the two labels to be of the same color.

<(--)1>

<(-0)1>

<(-1)1>

<(!!)1>

Figure 5: The strength relation of the first color.

<(0-)j>

<(-1)j>

<(!!)j>

<(00)j>

<(01)j>

<(10)j>

<(11)j>

<(--)j>

<(-0)j>

<(01)j, (10)j>

<(00)j, (11)j >

<(1-)j>

<(0-)j, (-0)j>

<(0-)j, (-1)j>

<(1-)j, (-0)j>

<(1-)j, (-1)j>

Figure 6: The strength relation of each present color j different from the first and the special color.

<(10)j, (11)j>

<(00)j, (01)j >

<(-0)j, (-1)j>

Figure 7: The strength relation of the special color j = ∆− i− 1.

Lemma 4.21. The strength relation of the labels of color 1 is given by the diagram of Figure 5.

34

<(?)j> <(!)j>

Figure 8: The strength relation of gone colors.

Lemma 4.22. Let j be a color satisfying 2 ≤ j ≤ ∆− i− 1. The strength relation of the labels of
color j is given by the diagram of Figure 6.

Lemma 4.23. Let j be the special color, that is, j = ∆− i. The strength relation of the labels of
color j is given by the diagram of Figure 7.

Lemma 4.24. Let j be a gone color, i.e., an integer satisfying ∆− i+ 1 ≤ j ≤ ∆. The strength
relation of the labels of color j is given by the diagram of Figure 8.

The proofs of Lemmas 4.21 to 4.24 are just a long case analysis, and hence they are deferred to
Appendix B. By the above lemmas, we get the following.

Observation 4.25. L1 ≤ L2 ⇐⇒ L1 ⊆ L2.

4.7 The second round elimination step

In this section, we define a family of problems Π′′
i,∆, and we prove that R(Π′

i,∆) can be relaxed to
Π′′

i,∆. Then, we show how to relax R(Π′
i,∆) even more in order to obtain Πi+1,∆. Each label of Π′′

i,∆

is going to be a set of labels of Π′
i,∆. Recall that with ⟨L1, . . . , Lk⟩ (where L1, . . . , Lk are labels

of Π′
i,∆) we denote the set of labels obtained by taking L1, . . . , Lk and all their successors in the

diagram of Π′
i,∆.

White constraint. The white constraint N ′′
i,∆ of Π′′

i,∆ is defined as the set N ∗
i,∆ described

immediately before Observation 4.20. By Observation 4.25, we obtain that an alternative but
equivalent definition of N ′′

i,∆ is the following.

Observation 4.26. N ′′
i,∆ is equal to the set containing, for each condensed configuration C+ in

N+
i,∆, the configuration generated by C+.

We will prove that the white constraint of R(Π′
i,∆) is dominated by N ′′

i,∆. For this purpose,
we first define a function f that takes as input two (condensed) strikethrough configurations
C1 = L1,1 . . . L1,∆ and C2 = L2,1 . . . L2,∆ from N+

i,∆, an index h satisfying 1 ≤ h ≤ ∆ − i − 1, an
index 1 ≤ u ≤ ∆, and a value k ∈ {1, 2} as follows. First, for j ∈ {1, 2}, let tj,h = (tj,h,1, tj,h,2) be
defined as:

• tj,h = (−,−) if Lj,h = [⟨(−−)h⟩];
• tj,h = (b,−) if Lj,h = [⟨(b−)h⟩];
• tj,h = (−, b) if Lj,h = [⟨(−b)h⟩];
• tj,h = (b1, b2) if Lj,h = [⟨(b1 b2)h⟩].

Then, let f(C1, C2, h, u, k) =

• − if h = u;
• − if h ̸= u and {t1,h,k, t2,h,k} ∈ {{−}, {0, 1}};
• 0 if h ̸= u and {t1,h,k, t2,h,k} ∈ {{0}, {0,−}};
• 1 if h ̸= u and {t1,h,k, t2,h,k} ∈ {{1}, {1,−}}.

35

Lemma 4.27. Let Th,k = f(C1, C2, h, u, k). Let L = [⟨(Th,1 Th,2)h⟩]. Then,

• if h = u, ⟨ℓ | ℓ ∈ L⟩ ⊇ ⟨ℓ | ℓ ∈ L1,h⟩ ∪ ⟨ℓ | ℓ ∈ L2,h⟩;
• if h ̸= u, ⟨ℓ | ℓ ∈ L⟩ ⊇ ⟨ℓ | ℓ ∈ L1,h⟩ ∩ ⟨ℓ | ℓ ∈ L2,h⟩.

Proof. By the definition of f , if h = u, then L = [⟨(−−)h⟩], and the set ⟨ℓ | ℓ ∈ L⟩ contains all labels
of color h (see Figures 5 and 6). Hence in this case the claim holds.

If h ≠ u, by inspecting the diagrams in Figures 5 and 6, it is straightforward to verify that it
always holds that ⟨ℓ | ℓ ∈ L1,h⟩ ∩ ⟨ℓ | ℓ ∈ L2,h⟩ (i.e., the intersection between the set containing the
unique label contained in the disjunction L1,h and all successors of that label, and the set containing
the unique label contained in the disjunction L2,h and all successors of that label) is a subset of the
set containing the unique label contained in the disjunction L and all successors of that label.

Lemma 4.28. Assume that 1 ≤ u ≤ ∆− i− 1, and let ℓ1 denote the unique label in L1,u and ℓ2 the
unique label in L2,u. Assume further that ℓ1 and ℓ2 are incomparable. Then,

• for all 1 ≤ u < ∆ − i − 1, it holds that, if Tu+1,1 ̸= −, then {t1,u,1, t2,u,1} = {0, 1} or
{t1,u, t2,u} = {(x1,−), (−, x2)} for some x1, x2 ∈ {0, 1}, and

• for all 1 < u ≤ ∆ − i − 1, it holds that, if Tu−1,2 ̸= −, then {t1,u,2, t2,u,2} = {0, 1} or
{t1,u, t2,u} = {(x1,−), (−, x2)} for some x1, x2 ∈ {0, 1}.

Proof. For all 1 ≤ u < ∆− i−1, if Tu+1,1 ̸= −, it must hold that {t1,u,2, t2,u,2} (i.e., the set of output
bits in position u of C1 and C2) is in {{0,−}, {1,−}, {0}, {1}}. By Lemma 4.22 (and Lemma 4.21) it
must hold that either {t1,u,1, t2,u,1} = {0, 1} or {t1,u, t2,u} = {(x1,−), (−, x2)} for some x1, x2 ∈ {0, 1}.
The other case is symmetric.

Observation 4.29. For all 1 ≤ j < ∆− i− 1 satisfying j ̸= u and j + 1 ̸= u, Tj,2 = Tj+1,1.

Lemma 4.30. The white constraint of R(Π′
i,∆) is dominated by N ′′

i,∆.

Proof. By definition, N ′′
i,∆ contains exactly the condensed configurations used to describe N ′

i,∆.
Hence, we only need to prove that N ′′

i,∆ is maximal-complete.
In the following, we use the description of N ′′

i,∆ given by Observation 4.26. There are 4 types of
configurations in N+

i,∆, and by Lemmas 4.21 to 4.24, for each color 1 ≤ j ≤ ∆, all sets of labels of
color j appearing in at least one of the configurations generated by the condensed configurations of
types grabbing-present, grabbing-gone, and grabbing-special are comparable with all sets of labels of
color j appearing in at least one of the configurations generated by at least one of the condensed
configurations in N+

i,∆. Moreover, in order to combine two configurations C1 and C2 and obtain a
configuration C that does not contain any empty set, it must clearly hold that the union and all the
intersections must be taken on labels of the same color (i.e., the permutation σ used to combine C1

with C2 must always pair labels of the same color). Hence, by Observation 4.4, the only way we
could get additional configurations is by combining two configurations generated by strikethrough
configurations.

Hence, let C1 = L1,1 . . . L1,∆ and C2 = L2,1 . . . L2,∆ be two strikethrough configurations. Let
a1, a2, b1, b2 be their parameters and y1,j , y2,j their bits. Let u be the position of the union, and note
that the permutation σ used to combine the configurations generated by C1 and C2 must be the
identity function, since otherwise, when taking intersections, we would obtain empty sets. Moreover,
for the sake of contradiction, assume that the configuration obtained by combining the configuration
generated by C1 and the configuration generated by C2 w.r.t. u and σ is not contained in N ′′

i,∆.

36

This implies that, by Observation 4.4, u ≤ ∆− i. Let C be the combination of the configurations
generated by C1 and C2 w.r.t. u and the identity function σ.

We start by handling a special case, that is, when a1 = b2 = u or a2 = b1 = u. W.l.o.g., let
a1 = b2 = u. Consider the configuration C∗ generated by the condensed configuration L1 . . . L∆,
where:

• Lj = L2,j for all j < u;
• Lj = L1,j for all j > u;
• Lu = [⟨(y2,u−1 y1,u)u⟩].

We first prove that C is dominated by C∗, and then that C∗ is contained in N ′′
i,∆. For each j ≠ u, it

holds that the set ⟨ℓ | ℓ ∈ L1,j⟩ ∩ ⟨ℓ | ℓ ∈ L2,j⟩ is a subset of both ⟨ℓ | ℓ ∈ L1,j⟩ and ⟨ℓ | ℓ ∈ L2,j⟩. In
position u of C1 there is the disjunction [⟨(−y1,u)u⟩], and in position u of C2 there is the disjunction
[⟨(y2,u−1−)u⟩]. Observe that Lu is a superset of both (see Figure 6). Also, by definition, the obtained
configuration C∗ is generated by a strikethrough configuration with parameters a2 and b1, and hence
it is part of N ′′

i,∆.
In the other cases, we proceed as follows. For 1 ≤ h ≤ ∆− i− 1, let

Th = (Th,1, Th,2) = (f(C1, C2, h, u, 1), f(C1, C2, h, u, 2)).

We now consider all possible cases for the values of T1, . . . , T∆−i−1.

• There exists an index 1 ≤ h ≤ ∆ − i − 1 such that Th,2 ̸= − and (h = ∆ −
i − 1 ∨ Th+1,1 ̸= −). Let a be the largest integer satisfying Ta ∈ {(−, 0), (−, 1)}, a ≤ h,
(u ≥ h ∨ u < a), if it exists, and ⊥ otherwise. Let b be the smallest integer satisfying
Tb ∈ {(0,−), (1,−)}, b ≥ h + 1, (u ≤ h + 1 ∨ u > b), if it exists, and ⊥ otherwise. In the
following, we assume that, if there exists at least one index h that satisfies the requirements
and that makes a and b (which are defined as a function of h) both different from ⊥, then h is
one of such values.

If a and b are both different from ⊥, consider the configuration C∗ generated by L1 . . . L∆,
where:

– Lj = [⟨(−−)j⟩] if j < a;

– Lj = [⟨(Tj,1 Tj,2)j⟩] if a ≤ j ≤ b;

– Lj = [⟨(−−)j⟩] if b < j ≤ ∆− i− 1;

– L∆−i = [⟨(00)∆−i, (01)∆−i⟩, ⟨(10)∆−i, (11)∆−i⟩];
– Lj = [⟨(?)j⟩] if j > ∆− i.

We start by arguing that u must satisfy u < a or u > b. For a contradiction, assume otherwise.
By the definition of a and b, this implies u ∈ {h, h+1}. If u = h, then the assumption Th,2 ̸= −
implies Tu ≠ (−,−). If u = h+1, then the assumption Tb ∈ {(0,−), (1,−)} implies b ≤ ∆− i−1
(as otherwise Tb would not be defined), which, combined with the assumption b ≥ h+1 implies
h < ∆ − i − 1, which implies Th+1,1 ≠ −, and hence Tu ̸= (−,−). In either case, we obtain
Tu ̸= (−,−), contradicting the definition of Tu, and we conclude that u < a or u > b.

This in particular implies that for all a < h < b it holds that Th,1 and Th,2 are both different
from −, and we get that C∗ is generated by a strikethrough configuration with parameters a, b
(where we use Observation 4.29 in both arguments). Hence, C∗ is contained in N ′′

i,∆. Moreover,
C∗ dominates C, in fact:

37

– In all positions j satisfying j < a or j > b, C∗ contains all sets of color j. Hence, in such
positions the set of C∗ is a superset of the set of C. Moreover, observe that u satisfies
u < a or u > b (as observed above).

– In all positions j satisfying a ≤ j ≤ b, we apply Lemma 4.27, obtaining that

⟨⟨(Tj,1 Tj,2)j⟩⟩ ⊇ ⟨ℓ | ℓ ∈ L1,j⟩ ∩ ⟨ℓ | ℓ ∈ L2,j⟩.

For similar reasons, if a ̸= ⊥, u < a, and b = ⊥, C is dominated by the configuration generated
by L1 . . . L∆, where:

– Lj = [⟨(−−)j⟩] if j < a;
– Lj = [⟨(Tj,1 Tj,2)j⟩] if a ≤ j ≤ ∆− i− 1;
– Lj = [⟨(Tj−1,2 0)j , (Tj−1,2 1)j⟩] if j = ∆− i;
– Lj = [⟨(?)j⟩] if j > ∆− i.

Note that this configuration is contained in N ′′
i,∆.

Now consider the case that a = ⊥. Recall that, by assumption, it holds that there exists
an index h such that Th,2 ̸= − and (h = ∆ − i − 1 ∨ Th+1,1 ̸= −). By recursively applying
Observation 4.29 starting with h and decreasing it step by step, since a = ⊥ and since T1,1 = −,
we get that u < h, and that for all u < j ≤ h, Tj,1 and Tj,2 are both different from − (since
otherwise we would have found a value for a).

Similarly, if b = ⊥ and u > h, it must also hold that for all h+1 ≤ j < min{u,∆− i− 1}, Tj,1

and Tj,2 are both different from −. Moreover, the case b = ⊥, a ̸= ⊥ and u < a has already
been handled, and, by the definition of a, it is not possible that b = ⊥, a ̸= ⊥, and a ≤ u ≤ h
(where we use that u ̸= h since Th,2 ̸= − and Tu = (−,−)).
Hence, we need to handle the following two cases: the case a = ⊥ and u < h, and the case
b = ⊥, a ̸= ⊥, and u > h.

Let us consider the case a = ⊥ and u < h. Since Tu+1,1 ̸= −, by Lemma 4.28, it must hold that
either {t1,u,1, t2,u,1} = {0, 1} or {t1,u, t2,u} = {(x1,−), (−, x2)} for some x1, x2 ∈ {0, 1}. The
latter case is covered by the special case handled before, i.e., when a1 = b2 = u or a2 = b1 = u.

Hence, consider the former case, which implies that u ̸= 1 and that Tu−1,2 = −. If there exists
an index h′ < u such that Th′,2 ≠ −, which by Observation 4.29 implies Th′+1,1 ̸= −, then, since
Tu−1,2 = −, we can find two indices a ≤ h′ and b ≥ h′ + 1 satisfying the requirements stated at
the beginning of this case, contradicting the assumption that a = ⊥. Hence, Tj = (−,−) for all
j ≤ u, which implies that a1 = a2 < u, because:

– if a1 > u or a2 > u, then we get that the union is on comparable sets, which contradicts
Observation 4.4;

– if a1 = u or a2 = u, w.l.o.g. a1 = u, then t1,u,1 = t1,a1,1 = −, which contradicts
t1,u,1 ∈ {0, 1};

– if a1 < u, a2 < u, and a1 ≠ a2, w.l.o.g. a1 < a2, then it must hold that Ta2 ̸= (−,−),
which is a contradiction.

Therefore, in position a1 = a2, since we must have {L1,a1 , L2,a2} = {[⟨(−0)a1⟩], [⟨(−1)a1⟩]}
(otherwise we would not have Ta1 = (−,−)), we get ⟨ℓ | ℓ ∈ L1,a1⟩ ∩ ⟨ℓ | ℓ ∈ L2,a2⟩ = ⟨⟨(!!)a1⟩⟩,
by Lemmas 4.21 and 4.22. Hence the result is dominated by a configuration generated by a
grabbing-present configuration.

38

Let us now consider the case b = ⊥, a ̸= ⊥, and u > h. If u ≤ ∆− i− 1 and T∆−i−1,2 = −, we
consider two cases:

– t1,∆−i−1,2 = t2,∆−i−1,2 = −, i.e., the output bit in position ∆ − i − 1 is − in both
configurations. In this case, the claim holds for symmetric reasons as in the previous case
(i.e., the case a = ⊥ and u < h).

– {t1,∆−i−1,2 = t2,∆−i−1,2} = {0, 1}. In this case, the output is dominated by the con-
figuration generated by the grabbing-special configuration, because {L1,∆−i, L2,∆−i} =
{[⟨(00)∆−i, (01)∆−i⟩], [⟨(10)∆−i, (11)∆−i⟩]}.

We now consider the case that u ≤ ∆ − i − 1 and T∆−i−1,2 ≠ −. Since b = ⊥ and u > h,
we obtain that Tu−1,2 ̸= −. By Lemma 4.28, this implies that {t1,u,2, t2,u,2} = {0, 1}, or
{t1,u, t2,u} = {(x1,−), (−, x2)} for some x1, x2 ∈ {0, 1}. The latter case is covered by the
special case handled before, i.e., when a1 = b2 = u or a2 = b1 = u. In the former case,
we obtain that u < ∆ − i − 1 (because T∆−i−1,2 ≠ −) and that Tu+1,1 = −. We get that
we could have picked a different value of h that would have made a ̸= ⊥ and u < a,
which is a case previously covered. For the case u = ∆ − i, by applying Observation 4.4,
we get that {L1,∆−i, L2,∆−i} = {[⟨(00)∆−i, (01)∆−i⟩], [⟨(10)∆−i, (11)∆−i⟩]} and hence that
{t1,u−1,2, t2,u−1,2} = {0, 1}. This implies that Tu−1,2 = −, and hence b cannot be ⊥, a
contradiction. Finally, we can exclude the case u > ∆− i by Observation 4.4.

• For all 1 ≤ h ≤ ∆ − i − 1, Th = (−,−). We consider positions a1 and b1. Recall
that a1 < b1. Either a1 ̸= u or b1 ̸= u. In the former case, in order to obtain Th =
(−,−) it must hold that {t1,a1 , t2,a1} ∈ {(−, 0), (−, 1)} and that t1,a1 ≠ t2,a1 . In this case,
the result is dominated by the configuration generated by a grabbing-present configuration
(i.e., the one with label [⟨(!!)a1⟩]). In the latter case, we distinguish two cases. If b1 <
∆ − i, it must hold that {t1,b1 , t2,b1} ∈ {(0,−), (1,−)} and that t1,b1 ̸= t2,b1 . As before,
the result is dominated by the configuration generated by a grabbing-present configuration
(i.e, the one with label [⟨(!!)b1⟩]). If b1 = ∆ − i, since it holds that T∆−i−1,2 = −, we get
that {L1,∆−i, L2,∆−i} = {[⟨(00)∆−i, (01)∆−i⟩], [⟨(10)∆−i, (11)∆−i⟩]}, and hence the result is
dominated by the configuration generated by the grabbing-special configuration.

• There exists an index 1 ≤ h ≤ ∆ − i − 1 such that Th = (−, b) and Th+1 = (−,−),
or such that Th = (b,−) and Th−1 = (−,−), for some b ∈ {0, 1}, and the previous
cases do not apply. We consider positions a1 and b1. Recall that a1 < b1. Either a1 ̸= u
or b1 ̸= u. In the former case, if {t1,a1 , t2,a1} ∈ {(−, 0), (−, 1)} and t1,a1 ̸= t2,a1 , the result is
dominated by the configuration generated by a grabbing-present configuration. If t1,a1 = t2,a1 ,
w.l.o.g. assume t1,a1 = t2,a1 = (−, 0), by Observation 4.29, in order to have Ta1+1 = (−,−), it
must hold that u = a1 + 1. By Observation 4.4, L1,u and L2,u must be incomparable, which
implies that {t1,u, t2,u} ∈ {(0, 0), (0, 1)}. If b1 = u+1, we get that {t1,b1 , t2,b1} ∈ {(0,−), (1,−)},
and hence that the result is dominated by the configuration generated by the grabbing-special
configuration. If b1 > u+ 1 and {t1,b1 , t2,b1} ∈ {(0,−), (1,−)}, we again get that the result is
dominated by the configuration generated by the grabbing-special configuration. The remaining
case to handle is the one where b1 > u+ 1 and t1,b1 = t2,b1 . We get that Tb1−1,2 ̸= − and that
Tb1,1 ̸= −, which contradicts the assumption that previous cases do not apply. Finally, the case
b1 ̸= u is symmetric to the case a1 ̸= u, which we have already handled.

• There exists an index 1 ≤ h ≤ ∆ − i − 1 such that Th = (b1, b2) such that
bh, bj ∈ {0, 1} and for all j ̸= h, it holds that Tj = (−,−). This case cannot happen by
Observation 4.29.

39

We obtained that, in all cases, C is dominated by some configuration in N ′′
i,∆, which is a contradiction.

Black constraint. We define the black constraint E ′′
i,∆ as follows. Let Σ′′

i,∆ be the set of labels
that appear in N ′′

i,∆. The black constraint E ′′
i,∆ contains all the configurations described by the set

of condensed configurations given by the following process. Take a configuration C∗ in E ′
i,∆, and

replace each label L with the disjunction containing the labels of Σ′′
i,∆ that are supersets of (or equal

to) ⟨L⟩. By the definition of E ′′
i,∆, we obtain the following.

Lemma 4.31. E ′′
i,∆ is the set of all configurations S1 S2 S3 of sets contained in Σ′′

i,∆ such that there
exists some tuple (ℓ1, ℓ2, ℓ3) ∈ S1 × S2 × S3 satisfying that ℓ1 ℓ2 ℓ3 is contained in E ′

i,∆.

By combining Lemma 4.30 and Lemma 4.31, by the definition of relaxation, we obtain the
following.

Lemma 4.32. The problem Π′′
i,∆ is a relaxation of R(Π′

i,∆).

More explicit black constraint. While for the white constraint we have an explicit definition
(given by Observation 4.26), the definition of E ′′

i,∆ is given implicitly. We now provide an explicit
definition of E ′′

i,∆. First, we explicitly list the labels appearing in N ′′
i,∆, and hence the labels in Σ′′

i,∆.

• For color 1, there are the following labels: ⟨⟨(!!)1⟩⟩, ⟨⟨(−−)1⟩⟩, ⟨⟨(−0)1⟩⟩, ⟨⟨(−1)1⟩⟩.

• For each present color j satisfying 2 ≤ j ≤ ∆− i− 1, there are the following labels: ⟨⟨(!!)j⟩⟩,
⟨⟨(−−)j⟩⟩, ⟨⟨(−0)j⟩⟩, ⟨⟨(−1)j⟩⟩, ⟨⟨(0−)j⟩⟩, ⟨⟨(1−)j⟩⟩, ⟨⟨(00)j⟩⟩, ⟨⟨(01)j⟩⟩, ⟨⟨(10)j⟩⟩, ⟨⟨(11)j⟩⟩.

• For each gone color j, there are the following labels: ⟨⟨(?)j⟩⟩, ⟨⟨(!)j⟩⟩.

• For the special color j = ∆− i, there are the following labels:
⟨⟨(00)∆−i, (01)∆−i⟩, ⟨(10)∆−i, (11)∆−i⟩⟩, ⟨⟨(00)∆−i, (01)∆−i⟩⟩, ⟨⟨(10)∆−i, (11)∆−i⟩⟩,
⟨⟨(−0)∆−i, (−1)∆−i⟩⟩.

Now, by Observation 4.25 (see Figures 5 to 8), E ′′
i,∆ can be obtained as follows. Take each

configuration C∗ in E ′
i,∆, and replace labels as follows. For gone colors j:

• ⟨(!)j⟩ 7−→ [⟨⟨(?)j⟩⟩, ⟨⟨(!)j⟩⟩];

• ⟨(?)j⟩ 7−→ [⟨⟨(?)j⟩⟩].

For color 1:

• ⟨(!!)1⟩ 7−→ [⟨⟨(!!)1⟩⟩, ⟨⟨(−−)1⟩⟩, ⟨⟨(−0)1⟩⟩, ⟨⟨(−1)1⟩⟩];

• ⟨(−−)1⟩ 7−→ [⟨⟨(−−)1⟩⟩];

• For b ∈ {0, 1}, ⟨(−b)1⟩ 7−→ [⟨⟨(−b)1⟩⟩, ⟨⟨(−−)1⟩⟩].

For each present color j satisfying 2 ≤ j ≤ ∆− i− 1:

• For b1 ∈ {0, 1}, b2 ∈ {0, 1}, ⟨(b1 b2)j⟩ 7−→ [⟨⟨(−−)j⟩⟩, ⟨⟨(b1 b2)j⟩⟩];

• For b ∈ {0, 1}, ⟨(b−)j⟩ 7−→ [⟨⟨(−−)j⟩⟩, ⟨⟨(b 0)j⟩⟩, ⟨⟨(b 1)j⟩⟩, ⟨⟨(b−)j⟩⟩];

• For b ∈ {0, 1}, ⟨(−b)j⟩ 7−→ [⟨⟨(−−)j⟩⟩, ⟨⟨(0 b)j⟩⟩, ⟨⟨(1 b)j⟩⟩, ⟨⟨(−b)j⟩⟩];

40

• ⟨(01)j , (10)j⟩ 7−→ [⟨⟨(01)j⟩⟩, ⟨⟨(10)j⟩⟩, ⟨⟨(−−)j⟩⟩];

• ⟨(00)j , (11)j⟩ 7−→ [⟨⟨(00)j⟩⟩, ⟨⟨(11)j⟩⟩, ⟨⟨(−−)j⟩⟩];

• For b1 ∈ {0, 1}, b2 ∈ {0, 1}, ⟨(b1−)j , (−b2)j⟩ 7−→ [⟨⟨(−−)j⟩⟩, ⟨⟨(b1−)j⟩⟩, ⟨⟨(−b2)j⟩⟩, ⟨⟨(b1 0)j⟩⟩,
⟨⟨(b1 1)j⟩⟩, ⟨⟨(0 b2)j⟩⟩, ⟨⟨(1 b2)j⟩⟩];

• ⟨(!!)j⟩ 7−→ [⟨⟨(!!)j⟩⟩, ⟨⟨(−−)j⟩⟩, ⟨⟨(−0)j⟩⟩, ⟨⟨(−1)j⟩⟩, ⟨⟨(0−)j⟩⟩, ⟨⟨(1−)j⟩⟩, ⟨⟨(00)j⟩⟩, ⟨⟨(01)j⟩⟩,
⟨⟨(10)j⟩⟩, ⟨⟨(11)j⟩⟩].

For the special color j = ∆− i:

• ⟨(00)j , (01)j⟩ 7−→ [⟨⟨(00)j , (01)j⟩⟩, ⟨⟨(00)∆−i, (01)∆−i⟩, ⟨(10)∆−i, (11)∆−i⟩⟩];

• ⟨(10)j , (11)j⟩ 7−→ [⟨⟨(10)j , (11)j⟩⟩, ⟨⟨(00)∆−i, (01)∆−i⟩, ⟨(10)∆−i, (11)∆−i⟩⟩];

• ⟨(−0)j , (−1)j⟩ 7−→ [⟨⟨(00)∆−i, (01)∆−i⟩⟩, ⟨⟨(10)∆−i, (11)∆−i⟩⟩, ⟨⟨(−0)∆−i, (−1)∆−i⟩⟩,
⟨⟨(00)∆−i, (01)∆−i⟩, ⟨(10)∆−i, (11)∆−i⟩⟩].

Let B be the defined mapping. We summarize the above observation in the following statement.

Observation 4.33. The black constraint E ′′
i,∆ can be obtained as follows. Take each configuration

C∗ in E ′
i,∆, and replace labels using the mapping B.

Relation between Π′′
i,∆ and Πi+1,∆. We define additional problems Π′′′

i,∆ and Π′′′′
i,∆, which are,

like Π′′
i,∆, also going to be relaxations of R(Π′

i,∆), and then we prove that Π′′′′
i,∆ is equivalent to

Πi+1,∆. Let j be the special color. The problem Π′′′
i,∆ is obtained by replacing each instance of

⟨⟨(00)j , (01)j⟩⟩, and each instance of ⟨⟨(10)j , (11)j⟩⟩, with the label ⟨⟨(00)j , (01)j⟩, ⟨(10)j , (11)j⟩⟩, in
both the white and the black constraint of Π′′

i,∆.

Observation 4.34. In the white constraint of Π′′′
i,∆, all configurations that, for j = ∆− i−1, contain

the label ⟨⟨(0−)j⟩⟩ or ⟨⟨(1−)j⟩⟩ are non-maximal.

Proof. Consider the definition of N ′′
i,∆ given by Observation 4.26, and the replacement rules used to

define Π′′′
i,∆ as a function of Π′′

i,∆. The proof follows by observing the following:

• Label ⟨⟨(0−)j⟩⟩ is a subset of both ⟨⟨(00)j⟩⟩ and ⟨⟨(01)j⟩⟩;

• Label ⟨⟨(1−)j⟩⟩ is a subset of both ⟨⟨(10)j⟩⟩ and ⟨⟨(11)j⟩⟩;

• Given a configuration C that in position j has a label in {⟨⟨(0−)j⟩⟩, ⟨⟨(1−)j⟩⟩}, there is also a
configuration that is equal to C in all positions except j, and in position j contains a label
from {⟨⟨(00)j⟩⟩, ⟨⟨(01)j⟩⟩, ⟨⟨(10)j⟩⟩, ⟨⟨(11)j⟩⟩}.

Let Π′′′′
i,∆ be the problem obtained by removing from the white constraint of Π′′′

i,∆ all configurations
that, for j = ∆− i− 1, contain the label ⟨⟨(0−)j⟩⟩ or ⟨⟨(1−)j⟩⟩. By the definitions of Π′′′

i,∆ and Π′′′′
i,∆,

by Observation 4.34, and by Lemma 4.32, we obtain the following.

Lemma 4.35. The problem Π′′′′
i,∆ is a relaxation of R(Π′

i,∆).

We now define a renaming N of the labels of N ′′′′
i,∆. Let N be the following mapping.

• If j is not special, let N(⟨⟨L⟩⟩) = L.
• If j is special, let:

41

– N(⟨⟨(00)j , (01)j⟩, ⟨(10)j , (11)j⟩⟩) = (?)j ;

– N(⟨⟨(−0)j , (−1)j⟩⟩) = (!)j .

By combining the definition of N ′′
i,∆ given by Observation 4.26, Observation 4.33, the replacement

rules used to define Π′′′
i,∆ as a function of Π′′

i,∆, and the definition of N ′′′′
i,∆ as a function of Π′′′

i,∆, we
obtain the following.

Observation 4.36. Under the renaming N , the white constraint N ′′′′
i,∆ of Π′′′′

i,∆ is equal to Ni+1,∆.

Observation 4.37. Under the renaming N , the black constraint E ′′′′
i,∆ of Π′′′′

i,∆ is equal to Ei+1,∆.

By combining Lemma 4.19, Lemma 4.35, Observation 4.36, and Observation 4.37, we obtain the
following.

Lemma 4.38. For all 0 ≤ i ≤ ∆− 3, there exists a problem Πrel
i,∆ satisfying the following:

• R(Πi,∆) can be relaxed to Πrel
i,∆;

• R(Πrel
i,∆) can be relaxed to Πi+1,∆;

• The number of labels of Πrel
i,∆ are upper bounded by O(∆).

4.8 The problem Π∆−2,∆ is not trivial

We now prove that Π∆−2,∆ is not trivial to solve, even when given a ∆-edge coloring.

Lemma 4.39. The problem Π∆−2,∆ is not 0-round solvable in the deterministic port numbering
model, even if a ∆-edge coloring is given.

Proof. Assume for a contradiction that there exists a deterministic 0-round algorithm solving
Π∆−2,∆ when given a ∆-edge coloring. Any 0-round algorithm (operating on white nodes) in the
deterministic port numbering model satisfies that all white nodes output the same configuration
C = {L1, . . . , L∆} ∈ N∆−2,∆. Moreover, there must exist a permutation φ such that all nodes
output label Li on port φ(i).

By the definition of N∆−2,∆, the configuration C must contain at least one label among the
following:

• (!!)1;
• (!)j , for some 3 ≤ j ≤ ∆;
• (−0)j , for some 1 ≤ j ≤ 2;
• (−1)j , for some 1 ≤ j ≤ 2.

Let Lj be such a label, and let i = φ(j) be the port on which the algorithm outputs Lj .
Observe that, for any possible Lj listed above, the configuration Lj Lj Lj is not contained in

E∆−2,∆. However, by considering a graph in which there are three white nodes u, v, w connected via
port i to the same black node b (satisfying that the ∆-edge coloring assigns color i to node b), we
obtain a setting in which the algorithm fails to produce a valid solution for Π∆−2,∆.

4.9 Relation between P∆ and Π0,∆

Lemma 4.40. Given a solution for P∆, it is possible to solve Π0,∆ in 0 rounds.

Proof. It is easy to see that NP∆
⊊ N0,∆ and that EP∆

⊊ E0,∆. Hence, any solution for P∆ is also a
solution for Π0,∆.

42

4.10 Putting things together

By applying Lemma 4.38 multiple times, and then applying Lemma 4.39, we obtain the following.

Lemma 4.41. Let ∆ ≥ 3 be an integer. There exists a problem sequence Π0,∆ → Π1,∆ → . . .Π∆−2,∆

such that, for all 0 ≤ i < ∆− 2, the following holds:

• There exists a problem Π′
i,∆ that is a relaxation of R(Πi,∆);

• Πi+1,∆ is a relaxation of R(Π′
i,∆);

• The number of labels of Πi,∆, and the ones of Π′
i,∆, are upper bounded by O(∆).

Also, Π∆−2,∆ is not 0-round solvable in the deterministic port numbering model, when given a ∆-edge
coloring.

By combining Lemma 4.41 with Theorem 4.9, we obtain the following.

Lemma 4.42. Let ∆ ≥ 3 be an integer. The problem Π0,∆ requires Ω(min{∆, log∆ n}) rounds in
the deterministic LOCAL model and Ω(min{∆, log∆ log n}) rounds in the randomized LOCAL model,
even if a ∆-edge coloring is given.

By combining Lemma 4.42 with Lemma 4.40, we obtain Theorem 4.1.

5 Networks of non-signaling games

In this section, we show a classical upper bound for all networks of non-signaling games. We start
by defining the notion of a game. Each player of a game receives a local input and must produce a
local output such that the outputs of all players combined are consistent with their inputs.

Definition 5.1 (Game). Let Σ be a finite set, and let m ∈ N+ be the number of players. We
call g ⊆ Σm × Σm a game. Each player i receives one input xi ∈ Σ and produces one output
yi ∈ Σ. A move µ = (x, y) ∈ Σm × Σm is valid if µ ∈ g. We overload the notation so that
g(x) = {y ∈ Σm | (x, y) ∈ g}. We say g is solvable if, for every x, g(x) is non-empty.

Note that our games last for a single move. (Later on we will connect a player to multiple games
and hence each player will be part of moves in multiple games.) Since games that are not solvable
cannot be solved by any strategy at all, in what follows we assume that we are dealing exclusively
with solvable games.

Let us now move to the setting where a player takes part in multiple games. A game’s inputs
may depend arbitrarily (but in a computable way) on the outputs of games that were played before.
Formally we model this using circuits.

Definition 5.2 (Circuit of half-games). Let d ∈ N+, and let D be a circuit that satisfies the following
properties:

• D has a single input gate ξ and no output gates.
• Every wire in D carries a value in Σ.
• D may contain arbitrary gates over Σ (of unbounded fan-in and fan-out).
• D contains d unary gates H1, . . . ,Hd, which we call half-games.

A circuit C is a (degree-d) circuit of half-games if it can be obtained from such a D by detaching
all the Hi, that is, by replacing every Hi with a pair of input and output gates xi and yi (that are
connected to the rest of the circuit in the same way the input and output of Hi are). In a sense,

43

ξ

H1 ¬

H2

∧

H3

y3

ξ

x1

y1
¬

x2

y2

∧

x3

y3

ξ

x1

y1
¬

x2

Figure 9: Transforming D (on the left) into C (in the middle) by detaching all half-games. Note how
C may have multiple components and not use every one of its inputs. On the right, the prefix C2 is
presented.

C is just D where one can externally examine the inputs x1 · · ·xd to half-games H1, . . . ,Hd, and
the outputs of half-games are fixed at y1 · · · yd. As a result, C has d + 1 inputs ξ, y1, . . . , yd ∈ Σ
and d outputs x1, . . . , xd ∈ Σ. Equivalently, we may also view C as having 2 inputs, ξ ∈ Σ and
y = y1 · · · yd ∈ Σd, and a single output x = x1 · · ·xd ∈ Σd. See Figure 9 for an example.

The intuition is that, in addition to an external input ξ, D is connecting together d pairs (xi, yi)
that each correspond to a half-game Hi. Note that the roles of xi and yi as input and output from
the perspective of D, in contrast to that of the half-game Hi, are reversed: How yi is obtained from
xi is extrinsic to D—indeed, it is determined by Hi—and hence what D does is describe how xi
(which is the input of Hi) is obtained from the external input ξ and the yj (which are the outputs of
the other half-games).

With this in place, we now turn to the definition of the network of games problem. Each player
is modeled as a circuit of half-games of degree d. The input on white nodes describe what the circuit
looks like for each white node and what is their local input. The input on black nodes specify which
game is played with its neighbors. The output on each edge is the respective player’s input and
output pair to the game across that edge.

Definition 5.3 (Network of games problem). Fix the number of players m ∈ N+ and the number of
games d ∈ N+ each player plays. Let G = {gi ⊆ Σm × Σm}i be a family of games on Σ.

The network of games problem GAMESd[G] is an LCL problem defined on (d,m)-regular graphs
as follows:

• Each edge must be labeled with a pair from Σ× Σ.

• Each white node w is given an input element ξ ∈ Σ, a circuit of half-games C, and a
permutation σw of its neighboring edges. The node satisfies the white constraint if the output
labels (x1, y1), . . . , (xd, yd) ∈ Σ× Σ around it satisfy C(ξ, yσw) = xσw . This ensures that the
outputs of games flow correctly through the circuit to following games.

44

• Each black node is given as input a game g ∈ G and a permutation σb of its neighboring edges.
The node satisfies the black constraint if the output labels (x1, y1), . . . , (xm, ym) ∈ Σ × Σ
around it satisfy yσb ∈ g(xσb). This ensures that each game is played correctly.

Note that, for simplicity, the problem above is defined with inputs on nodes. To make this an
LCL problem in the sense of Definition 2.1, we can move the node input labels to the adjacent edges
and require that all the inputs on the adjacent edges agree (and allow a node’s output to be arbitrary
if this is not the case). In particular, the permutation of neighboring edges is most naturally encoded
by having the neighboring edges carry their indices in the permutation. Moreover, note that both
the circuits C and the games g can be seen as tables over a finite alphabet, and hence there are
only finitely many distinct circuits and games. This ensures that the input and output label sets are
finite, as required by Definition 2.1.

We note here that the iterated GHZ problem, as defined in Section 3, is a relaxation of a network
of games problem, namely GAMES∆[{SYMM,GHZ}]. Here SYMM is the symmetry-breaking game,
where exactly one of the players must output 1 and the other two output 0, regardless of the
input. The easiest way to see that is indeed the case is to notice that the iterated GHZ problem is
a GAMES∆[{SYMM,GHZ}] instance with the following promises on the input:

• The circuit in each white node is the same, namely one where the first game is the SYMM
game and the rest are GHZ games. The circuit is linear and the output of one game flows
directly to become the input of the next game.

• The ∆-edge coloring (recall that this is a coloring of the black nodes) gives the order of the
games: Black node with color 1 plays the SYMM game while the rest of the black nodes play
the GHZ game. Note that the setting is actually even more relaxed, as the algorithm is free to
permute the order of the colors.

• The ∆-edge coloring also promises that each white agrees on the order of the games with its
adjacent white nodes. In the network of games problems in general, the first half-game of one
white node may be played with the last half-game of another white node.

Using similar reasoning, one can also get convinced that the iterated CHSH game, defined in
Section 1.3, is a relaxation of a network of games problem, this time GAMES∆[{CHSH}]. Finally,
we note that CHSH, SYMM and GHZ are non-signaling games, as defined in the next section
(Definition 5.5), and hence our upper bound algorithm works for solving both GAMES∆[{CHSH}]
and GAMES∆[{SYMM,GHZ}], and therefore also for solving the iterated CHSH and GHZ games.

5.1 Solving networks of non-signaling games deterministically

An important special class of games are so-called non-signaling games. For a survey on the topic,
see [32]. We now give a definition of non-signaling games adapted to our purposes. Before doing
that, we introduce some notation and minor definitions. For any function f : A → B and any subset
S ⊆ A, we denote by f ↾S the function g : S → B such that f(x) = g(x) for all x ∈ S. We now
define the notion of a strategy for a game.

Definition 5.4 (Strategy). For any fixed game g ⊆ Σm×Σm of m players, consider a mapping from
inputs to probability distributions over outputs ρ(g) : (x1, . . . , xm) 7→ {(λj : [m] → Σm, pj) : j ∈ J}.
Here, (x1, . . . , xm) ∈ Σm is an input for g, λj : [m] → Σm is an assignment of outputs to the [m]
players, pj is the probability that λj is the actual outputs of the players, and J is any set used
for indexing. We call ρ(g) a strategy for g. Since {(λj : [m] → Σm, pj) : j ∈ J} is a probability
distribution,

∑
j∈J pj = 1 and, for all j ∈ J , pj ≥ 0.

45

For any game g and any strategy ρ(g) for g, we say that ρ(g) solves g with probability at least p if, for
any input (x1, . . . , xm) ∈ Σm to g, the distribution {(λj : [m] → Σm, pj) : j ∈ J} = ρ(g)((x1, . . . , xm))
satisfies the following property: ∑

j∈J :
(λj(1),...,λj(m))∈g(x1,...,xm)

pj ≥ p.

For any subset of players S = {i1, . . . , is} ⊆ [m] (with i1 < i2 < · · · < is), let us define the
restriction of ρ(g) to S as ρ

(g)
S : (xi1 , . . . , xis) 7→ {(λS,j : S → Σs, pS,j) : j ∈ JS} where

pS,j =
∑
i∈J :

λS,j=λi↾S

pi.

Definition 5.5 (Non-signaling game). A game g ⊆ Σm × Σm is said to be non-signaling if there
exists a strategy ρ(g) : (x1, . . . , xm) 7→ {(yj : [m] → Σm, pj) : j ∈ J} solving g with probability 1

such that, for every pair of inputs (x
(1)
1 , . . . , x

(1)
m), (x

(2)
1 , . . . , x

(2)
m) ∈ Σm × Σm to g, and any subset

of the players S = {i1, . . . , is} ⊆ [m] (with i1 < i2 < · · · < is), if x(1)i = x
(2)
i for all i ∈ S, then

ρ
(g)
S (x

(1)
i1

, . . . , x
(1)
is

) = ρ
(g)
S (x

(2)
i1

, . . . , x
(2)
is

). Also, ρ(g) is said to be a non-signaling strategy for g.

Interestingly, for every non-signaling game, the existence of a non-signaling strategy solving g
guarantees a strong completability property, which we exploit for our major result of this section.
Let us now describe strongly completable games.

Informally, a game is strongly completable if every move can be “sequentialized” by splitting it
into plies where each player Pi does the following in their respective ply:

1. Pi sees the inputs and outputs of all players that completed their ply before it as well as its
own input xi.

2. With only this information, Pi can produce an output yi such that, no matter what the rest of
the inputs are and in what order the rest of the players complete their plies, the other players
are each able to find outputs that make the whole move a valid one using only information
described in Item 1.

Note we are assuming that the process determining the order in which players must complete
their plies is non-adaptive (i.e., it follows a fixed permutation).

Definition 5.6 (Strongly completable game). A game g ⊆ Σm×Σm is said to be strongly completable
if, for every permutation σ : [m] → [m], we have that

∀xσ(1) ∈ Σ : ∃yσ(1) ∈ Σ : · · · ∀xσ(m) ∈ Σ : ∃yσ(m) ∈ Σ : (y1 · · · ym) ∈ g(x1 · · ·xm).

As mentioned before, non-signaling games are strongly completable.

Lemma 5.7. Any non-signaling game g ⊆ Σm × Σm is strongly completable.

Proof. Since g is non-signaling, there exists a non-signaling strategy ρ(g) solving g with probability 1,
which implies that all outputs sampled according to ρ(g) are global solutions. Fix any permutation
σ : [m] → [m]. Now, for the first player σ(1) with input xσ(1), sample any output yσ(1) from the
restriction ρ

(g)
{σ(1)}(xσ(1)). Now we proceed recursively. Let i > 1 and suppose that all inputs and

outputs for players σ(1), . . . , σ(i− 1) have been fixed. For player σ(i) with input xσ(i), sample any

46

output yσ(i) using ρ
(g)
{σ(1),...,σ(i)}(xσ(1), . . . , xσ(i)) as follows: For any j ∈ [m], let p(yσ(1), . . . , yσ(j))

the probability of sampling (yσ(1), . . . , yσ(j)) from ρ
(g)
{σ(1),...,σ(j)}(xσ(1), . . . , xσ(j)). Then, any yσ(i) is

sampled with probability
p(yσ(1), . . . , yσ(i))

p(yσ(1), . . . , yσ(i−1))
.

This procedure is well-defined because at any step there is always some output to choose with
non-zero probability, due to the non-signaling property of ρ(g) (which solves g with probability
1). This is because, at any step i, the probability of having sampled (yσ(1), . . . , yσ(i)) is exactly
the unconditional probability associated to the output labeling λi : {σ(1), . . . , σ(i)} → Σi defined
by λi(σ(j)) = yσ(j): such distribution is given by ρ

(g)
{σ(1),...,σ(i)}(xσ(1), . . . , xσ(i)). Let us denote this

probability by pi. We prove this statement by induction. If i = 1, the thesis is trivial by construction.
Assume i > 1 and the thesis to be true for i−1. Let Y1, . . . , Yi be the random variables describing the
outputs for players σ(1), . . . , σ(i), respectively. Then, the probability of sampling (yσ(1), . . . , yσ(i))
can be expressed as follows:

Pr
[
(Y1, . . . , Yi) = (yσ(1), . . . , yσ(i))

]
= Pr

[
(Y1, . . . , Yi) = (yσ(1), . . . , yσ(i))

∣∣ (Y1, . . . , Yi−1) = (yσ(1), . . . , yσ(i−1))
]

· Pr
[
(Y1, . . . , Yi−1) = (yσ(1), . . . , yσ(i−1))

]
=

pi
pi−1

· pi−1 (1)

= pi,

where Equation (1) holds by construction of the sampling procedure. Finally, we conclude that
Pr

[
(Y1, . . . , Ym) = (yσ(1), . . . , yσ(m))

]
= pm > 0. Since all outputs sampled with non-zero probability

according to ρ(g) are actual solutions, then (yσ(1), . . . , yσ(m)) is a global solution, completing the
lemma.

We finally present the main result of this section:

Theorem 5.8. For any collection of strongly completable games G = {gi ⊆ Σm × Σm}i and any
d ∈ N+, there is a deterministic LOCAL algorithm that solves GAMESd[G] in O(d) rounds.

Theorem 5.8 and Lemma 5.7 imply the following corollary.

Corollary 5.9. For any collection of non-signaling games G = {gi ⊆ Σm × Σm}i and any d ∈ N+,
there is a deterministic LOCAL algorithm that solves GAMESd[G] in O(d) rounds.

To make the proof simpler, we make the following trivial observation:

Observation 5.10. Let C be a degree-d circuit of half-games. Without loss of generality, we may
assume that half-games H1, . . . ,Hd appear in a topological order in circuit C.

With the help of this observation, we notice that the half-games of a circuit partition the circuit
into connected components. In particular, we can consider the circuit formed by only the first k
games.

Definition 5.11 (Prefix of a circuit of half-games). Let C be a degree-d circuit of half-games, and
let ξ and y1, . . . , yd be the inputs and let x1, . . . , xd be the outputs of C. Let k ∈ [d]. Define Ck

to be the circuit consisting of only components connected to half-games H1, . . . ,Hk. In particular,

47

circuit Ck has only inputs ξ and (some subset of) y1, . . . , yk−1, and fully defines the outputs x1, . . . , xk.
This is because, by the above observation, the games H1, . . . ,Hk are in a topological order in C.
In particular, the input for game Hi depends only on ξ and the outputs of games Hj for j < i.
See Figure 9 for a visualization.

We can now present our algorithm A. The algorithm proceeds in d phases, each of which consists
of two communication rounds: one where information flows from white to black nodes and another
where it does so in the reverse direction. We refer to these as the white and black rounds, accordingly.
Let us now describe what occurs in phase number i ∈ [d].

1. The white nodes keep track of the results y1, . . . , yi−1 of the half-games they have determined
already. In the white phase i, each white node w evaluates Ci(ξ, y1, . . . , yi−1) to get value xi.
Node w then sends this value to the black node representing the said game according to the
input permutation.

2. Let j ∈ [m] denote the number of messages black node b has received by black round i, and let
s ∈ [m]j be player numbers of the senders those messages in the order of reception, breaking
ties arbitrarily among simultanously-arrived messages. The black node b can map the ports to
player numbers using the local input permutation. Let x ∈ Σj be the values of those messages,
in the same order.

Now the node b now plays game g using s as the playing order and x as the inputs, producing
partial output y ∈ Σj for those nodes. Because g is a strongly completable game, it can
pick the outputs y one-by-one in such way that the game is still solvable for every possible
future inputs. Moreover, the node plays the game in a deterministic manner in order not to
change the values of previously-assigned outputs. This is possible by the definition of strongly
completable games, see Definition 5.6. Finally, node b sends the player output yk to each
neighbor k it received a message in this round.

The round complexity of A is evidently 2d = O(d). The white constraint is satisfied by
construction. Hence for the correctness we need only argue that the black constraint is satisfied,
which we do in the following lemma:

Lemma 5.12. Algorithm A is correct, that is, for every black node b ∈ B with input game g, the
edges around it are labeled with (xi, yi) such that y ∈ g(x) (where x = x1 · · ·xm and y = y1 · · · ym).

Proof. Fix such a black node b ∈ B. First notice that, since the algorithm is deterministic, for a
fixed input to the algorithm we will have a fixed order in which b receives inputs xi from white nodes
and, hence, also a fixed order in which it sets the outputs yi. Hence there is a permutation σ as in
Definition 5.6 that corresponds to the order in which b sets the yi. Having observed this, note that
there is no difference (from the point of view of b) if the inputs xi arrive in separate phases or all in
the same one. Hence we can assume that the latter is the case. Having done so, then what b does is
exactly what is guaranteed to be possible by Definition 5.6, and thus the claim follows.

This concludes the proof of Theorem 5.8.

Acknowledgments

Augusto Modanese is supported by the Helsinki Institute for Information Technology (HIIT). Henrik
Lievonen is supported by the Research Council of Finland, Grants 333837 and 359104. Alkida Balliu
and Dennis Olivetti are supported by MUR (Italy) Department of Excellence 2023 - 2027. Francesco

48

d’Amore is supported by MUR FARE 2020 - Project PAReCoDi CUP J43C22000970001. Xavier
Coiteux-Roy acknowledges funding from the BMW endowment fund and from the Swiss National
Science Foundation. François Le Gall is supported by JSPS KAKENHI grants Nos. JP20H05966,
20H00579, 24H00071, MEXT Q-LEAP grant No. JPMXS0120319794 and JST CREST grant No. JP-
MJCR24I4. Lucas Tendick, Marc-Olivier Renou and Isadora Veeren acknowledge funding from
INRIA and CIEDS through the Action Exploratoire project DEPARTURE, and from the ANR for
the JCJC grant LINKS (ANR-23-CE47-0003).

References

[1] Amirreza Akbari, Xavier Coiteux-Roy, Francesco D’Amore, François Le Gall, Henrik Lievonen,
Darya Melnyk, Augusto Modanese, Shreyas Pai, Marc-Olivier Renou, Václav Rozhon, and
Jukka Suomela. Online locality meets distributed quantum computing. CoRR, abs/2403.01903,
2024. arXiv:2403.01903, doi:10.48550/ARXIV.2403.01903.

[2] Amirreza Akbari, Navid Eslami, Henrik Lievonen, Darya Melnyk, Joona Särkijärvi, and Jukka
Suomela. Locality in online, dynamic, sequential, and distributed graph algorithms. In Kousha
Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata,
Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume
261 of LIPIcs, pages 10:1–10:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.ICALP.2023.10.

[3] Heger Arfaoui and Pierre Fraigniaud. What can be computed without communications?
SIGACT News, 45(3):82–104, 2014. doi:10.1145/2670418.2670440.

[4] Alkida Balliu, Thomas Boudier, Sebastian Brandt, and Dennis Olivetti. Tight lower bounds
in the supported LOCAL model. In Ran Gelles, Dennis Olivetti, and Petr Kuznetsov, editors,
Proceedings of the 43rd ACM Symposium on Principles of Distributed Computing, PODC 2024,
Nantes, France, June 17-21, 2024, pages 95–105. ACM, 2024. doi:10.1145/3662158.3662798.

[5] Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. The distributed complexity of locally checkable problems on paths is decidable. In
Peter Robinson and Faith Ellen, editors, Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages
262–271. ACM, 2019. doi:10.1145/3293611.3331606.

[6] Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Jan Studený, and Jukka
Suomela. Efficient classification of locally checkable problems in regular trees. In Christian
Scheideler, editor, 36th International Symposium on Distributed Computing, DISC 2022, October
25-27, 2022, Augusta, Georgia, USA, volume 246 of LIPIcs, pages 8:1–8:19. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.DISC.2022.8.

[7] Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti, and
Jukka Suomela. Classification of distributed binary labeling problems. In Hagit Attiya, editor,
34th International Symposium on Distributed Computing, DISC 2020, October 12-16, 2020,
Virtual Conference, volume 179 of LIPIcs, pages 17:1–17:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPICS.DISC.2020.17.

[8] Alkida Balliu, Sebastian Brandt, Manuela Fischer, Rustam Latypov, Yannic Maus, Dennis
Olivetti, and Jara Uitto. Exponential speedup over locality in MPC with optimal memory. In

49

http://arxiv.org/abs/2403.01903
https://doi.org/10.48550/ARXIV.2403.01903
https://doi.org/10.4230/LIPICS.ICALP.2023.10
https://doi.org/10.1145/2670418.2670440
https://doi.org/10.1145/3662158.3662798
https://doi.org/10.1145/3293611.3331606
https://doi.org/10.4230/LIPICS.DISC.2022.8
https://doi.org/10.4230/LIPICS.DISC.2020.17

Christian Scheideler, editor, 36th International Symposium on Distributed Computing, DISC
2022, October 25-27, 2022, Augusta, Georgia, USA, volume 246 of LIPIcs, pages 9:1–9:21.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.DISC.2022.9.

[9] Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. In David
Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 481–497. IEEE Computer Society,
2019. doi:10.1109/FOCS.2019.00037.

[10] Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. Journal of the
ACM, 68(5):39:1–39:30, 2021. doi:10.1145/3461458.

[11] Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Improved distributed lower
bounds for MIS and bounded (out-)degree dominating sets in trees. In Avery Miller, Keren
Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21: ACM Symposium on Principles
of Distributed Computing, Virtual Event, Italy, July 26-30, 2021, pages 283–293. ACM, 2021.
doi:10.1145/3465084.3467901.

[12] Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed ∆-coloring
plays hide-and-seek. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual
ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages
464–477. ACM, 2022. doi:10.1145/3519935.3520027.

[13] Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed maximal
matching and maximal independent set on hypergraphs. In Nikhil Bansal and Viswanath
Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2023, Florence, Italy, January 22-25, 2023, pages 2632–2676. SIAM, 2023. doi:10.1137/
1.9781611977554.CH100.

[14] Alkida Balliu, Sebastian Brandt, Fabian Kuhn, Dennis Olivetti, and Joonatan Saarhelo. Towards
fully automatic distributed lower bounds, 2024. URL: https://arxiv.org/abs/2410.20224, arXiv:
2410.20224.

[15] Alkida Balliu, Sebastian Brandt, Fabian Kuhn, Dennis Olivetti, and Gustav Schmid. On the
node-averaged complexity of locally checkable problems on trees. In Rotem Oshman, editor,
37th International Symposium on Distributed Computing, DISC 2023, October 10-12, 2023,
L’Aquila, Italy, volume 281 of LIPIcs, pages 7:1–7:21. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPICS.DISC.2023.7.

[16] Alkida Balliu, Sebastian Brandt, Fabian Kuhn, Dennis Olivetti, and Gustav Schmid. Completing
the node-averaged complexity landscape of lcls on trees. In Ran Gelles, Dennis Olivetti, and
Petr Kuznetsov, editors, Proceedings of the 43rd ACM Symposium on Principles of Distributed
Computing, PODC 2024, Nantes, France, June 17-21, 2024, pages 369–379. ACM, 2024.
doi:10.1145/3662158.3662773.

[17] Alkida Balliu, Sebastian Brandt, and Dennis Olivetti. Distributed lower bounds for ruling sets.
SIAM Journal on Computing, 51(1):70–115, 2022. doi:10.1137/20M1381770.

50

https://doi.org/10.4230/LIPICS.DISC.2022.9
https://doi.org/10.1109/FOCS.2019.00037
https://doi.org/10.1145/3461458
https://doi.org/10.1145/3465084.3467901
https://doi.org/10.1145/3519935.3520027
https://doi.org/10.1137/1.9781611977554.CH100
https://doi.org/10.1137/1.9781611977554.CH100
https://arxiv.org/abs/2410.20224
http://arxiv.org/abs/2410.20224
http://arxiv.org/abs/2410.20224
https://doi.org/10.4230/LIPICS.DISC.2023.7
https://doi.org/10.1145/3662158.3662773
https://doi.org/10.1137/20M1381770

[18] Alkida Balliu, Sebastian Brandt, Dennis Olivetti, Jan Studený, Jukka Suomela, and Aleksandr
Tereshchenko. Locally checkable problems in rooted trees. In Avery Miller, Keren Censor-Hillel,
and Janne H. Korhonen, editors, PODC ’21: ACM Symposium on Principles of Distributed
Computing, Virtual Event, Italy, July 26-30, 2021, pages 263–272. ACM, 2021. doi:10.1145/
3465084.3467934.

[19] Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. How much does ran-
domness help with locally checkable problems? In Yuval Emek and Christian Cachin, editors,
PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy,
August 3-7, 2020, pages 299–308. ACM, 2020. doi:10.1145/3382734.3405715.

[20] Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. Almost global prob-
lems in the LOCAL model. Distributed Computing, 34(4):259–281, 2021. doi:10.1007/
S00446-020-00375-2.

[21] Alkida Balliu, Keren Censor-Hillel, Yannic Maus, Dennis Olivetti, and Jukka Suomela. Locally
checkable labelings with small messages. In Seth Gilbert, editor, 35th International Symposium on
Distributed Computing, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference),
volume 209 of LIPIcs, pages 8:1–8:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPICS.DISC.2021.8.

[22] Alkida Balliu, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Dennis Olivetti, and
Jukka Suomela. New classes of distributed time complexity. In Ilias Diakonikolas, David Kempe,
and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 1307–1318.
ACM, 2018. doi:10.1145/3188745.3188860.

[23] Alkida Balliu, Juho Hirvonen, Dennis Olivetti, and Jukka Suomela. Hardness of minimal
symmetry breaking in distributed computing. In Peter Robinson and Faith Ellen, editors,
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC
2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 369–378. ACM, 2019. doi:
10.1145/3293611.3331605.

[24] Alkida Balliu, Janne H. Korhonen, Fabian Kuhn, Henrik Lievonen, Dennis Olivetti, Shreyas Pai,
Ami Paz, Joel Rybicki, Stefan Schmid, Jan Studený, Jukka Suomela, and Jara Uitto. Sinkless
orientation made simple. In Telikepalli Kavitha and Kurt Mehlhorn, editors, 2023 Symposium
on Simplicity in Algorithms, SOSA 2023, Florence, Italy, January 23-25, 2023, pages 175–191.
SIAM, 2023. doi:10.1137/1.9781611977585.CH17.

[25] Jonathan Barrett, Carlton M. Caves, Bryan Eastin, Matthew B. Elliott, and Stefano Pironio.
Modeling Pauli measurements on graph states with nearest-neighbor classical communication.
Physical Review A, 75(1), 2007. doi:10.1103/physreva.75.012103.

[26] Sebastian Brandt. An automatic speedup theorem for distributed problems. In Peter Robinson
and Faith Ellen, editors, Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 379–388. ACM,
2019. doi:10.1145/3293611.3331611.

[27] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel Rybicki,
Jukka Suomela, and Jara Uitto. A lower bound for the distributed Lovász local lemma. In
Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT

51

https://doi.org/10.1145/3465084.3467934
https://doi.org/10.1145/3465084.3467934
https://doi.org/10.1145/3382734.3405715
https://doi.org/10.1007/S00446-020-00375-2
https://doi.org/10.1007/S00446-020-00375-2
https://doi.org/10.4230/LIPICS.DISC.2021.8
https://doi.org/10.1145/3188745.3188860
https://doi.org/10.1145/3293611.3331605
https://doi.org/10.1145/3293611.3331605
https://doi.org/10.1137/1.9781611977585.CH17
https://doi.org/10.1103/physreva.75.012103
https://doi.org/10.1145/3293611.3331611

Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016,
pages 479–488. ACM, 2016. doi:10.1145/2897518.2897570.

[28] Sebastian Brandt, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Patric R. J.
Östergård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemyslaw Uznanski. LCL
problems on grids. In Elad Michael Schiller and Alexander A. Schwarzmann, editors, Proceedings
of the ACM Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC,
USA, July 25-27, 2017, pages 101–110. ACM, 2017. doi:10.1145/3087801.3087833.

[29] Sebastian Brandt and Dennis Olivetti. Truly tight-in-∆ bounds for bipartite maximal matching
and variants. In Yuval Emek and Christian Cachin, editors, PODC ’20: ACM Symposium on
Principles of Distributed Computing, Virtual Event, Italy, August 3-7, 2020, pages 69–78. ACM,
2020. doi:10.1145/3382734.3405745.

[30] Gilles Brassard, Anne Broadbent, and Alain Tapp. Quantum Pseudo-Telepathy. Foundations
of Physics, 35(11):1877–1907, 2005. doi:10.1007/s10701-005-7353-4.

[31] Sergey Bravyi, David Gosset, and Robert König. Quantum advantage with shallow circuits.
Science, 362(6412):308–311, 2018. doi:10.1126/science.aar3106.

[32] Nicolas Brunner, Daniel Cavalcanti, Stefano Pironio, Valerio Scarani, and Stephanie Wehner. Bell
nonlocality. Reviews of Modern Physics, 86(2):419–478, 2014. doi:10.1103/revmodphys.86.419.

[33] Keren Censor-Hillel, Orr Fischer, François Le Gall, Dean Leitersdorf, and Rotem Oshman.
Quantum distributed algorithms for detection of cliques. In Mark Braverman, editor, 13th
Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 - February
3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 35:1–35:25. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ITCS.2022.35.

[34] Yi-Jun Chang. The complexity landscape of distributed locally checkable problems on trees.
In Hagit Attiya, editor, 34th International Symposium on Distributed Computing, DISC 2020,
October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 18:1–18:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.DISC.2020.18.

[35] Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between randomized
and deterministic complexity in the LOCAL model. SIAM Journal on Computing, 48(1):122–143,
2019. doi:10.1137/17M1117537.

[36] Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. SIAM Journal
on Computing, 48(1):33–69, 2019. doi:10.1137/17M1157957.

[37] Yi-Jun Chang, Jan Studený, and Jukka Suomela. Distributed graph problems through an
automata-theoretic lens. Theoretical Computer Science, 951:113710, 2023. doi:10.1016/J.TCS.
2023.113710.

[38] B. S. Cirel’son. Quantum generalizations of Bell’s inequality. Letters in Mathematical Physics,
4(2):93–100, 1980. doi:10.1007/bf00417500.

[39] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt. Proposed Experiment
to Test Local Hidden-Variable Theories. Physical Review Letters, 23(15):880–884, 1969. doi:
10.1103/physrevlett.23.880.

52

https://doi.org/10.1145/2897518.2897570
https://doi.org/10.1145/3087801.3087833
https://doi.org/10.1145/3382734.3405745
https://doi.org/10.1007/s10701-005-7353-4
https://doi.org/10.1126/science.aar3106
https://doi.org/10.1103/revmodphys.86.419
https://doi.org/10.4230/LIPICS.ITCS.2022.35
https://doi.org/10.4230/LIPICS.DISC.2020.18
https://doi.org/10.1137/17M1117537
https://doi.org/10.1137/17M1157957
https://doi.org/10.1016/J.TCS.2023.113710
https://doi.org/10.1016/J.TCS.2023.113710
https://doi.org/10.1007/bf00417500
https://doi.org/10.1103/physrevlett.23.880
https://doi.org/10.1103/physrevlett.23.880

[40] Xavier Coiteux-Roy, Francesco D’Amore, Rishikesh Gajjala, Fabian Kuhn, François Le Gall,
Henrik Lievonen, Augusto Modanese, Marc-Olivier Renou, Gustav Schmid, and Jukka Suomela.
No distributed quantum advantage for approximate graph coloring. In Bojan Mohar, Igor
Shinkar, and Ryan O’Donnell, editors, Proceedings of the 56th Annual ACM Symposium on
Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 1901–1910.
ACM, 2024. doi:10.1145/3618260.3649679.

[41] Sameep Dahal, Francesco D’Amore, Henrik Lievonen, Timothé Picavet, and Jukka Suomela.
Brief announcement: Distributed derandomization revisited. In Rotem Oshman, editor, 37th
International Symposium on Distributed Computing, DISC 2023, October 10-12, 2023, L’Aquila,
Italy, volume 281 of LIPIcs, pages 40:1–40:5. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPICS.DISC.2023.40.

[42] Pierre Fraigniaud, Maël Luce, Frédéric Magniez, and Ioan Todinca. Even-cycle detection in
the randomized and quantum CONGEST model. In Ran Gelles, Dennis Olivetti, and Petr
Kuznetsov, editors, Proceedings of the 43rd ACM Symposium on Principles of Distributed
Computing, PODC 2024, Nantes, France, June 17-21, 2024, pages 209–219. ACM, 2024.
doi:10.1145/3662158.3662767.

[43] Cyril Gavoille, Adrian Kosowski, and Marcin Markiewicz. What can be observed locally? In
Idit Keidar, editor, Distributed Computing, 23rd International Symposium, DISC 2009, Elche,
Spain, September 23-25, 2009. Proceedings, volume 5805 of Lecture Notes in Computer Science,
pages 243–257. Springer, 2009. doi:10.1007/978-3-642-04355-0_26.

[44] Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In Robert
Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 270–277.
SIAM, 2016. doi:10.1137/1.9781611974331.CH20.

[45] Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, and Yannic Maus. Improved Distributed Delta-
Coloring. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing,
pages 427–436. ACM, 2018. doi:10.1145/3212734.3212764.

[46] Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler, faster,
and without network decomposition. In 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1009–1020.
IEEE, 2021. doi:10.1109/FOCS52979.2021.00101.

[47] Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger. Going beyond Bell’s theorem.
In Bell’s Theorem, Quantum Theory and Conceptions of the Universe, pages 69–72. Springer
Netherlands, 1989. doi:10.1007/978-94-017-0849-4_10.

[48] Christoph Grunau, Václav Rozhon, and Sebastian Brandt. The landscape of distributed
complexities on trees and beyond. In Alessia Milani and Philipp Woelfel, editors, PODC ’22:
ACM Symposium on Principles of Distributed Computing, Salerno, Italy, July 25 - 29, 2022,
pages 37–47. ACM, 2022. doi:10.1145/3519270.3538452.

[49] Juho Hirvonen and Jukka Suomela. Distributed algorithms. https://jukkasuomela.fi/da2020/,
2020.

53

https://doi.org/10.1145/3618260.3649679
https://doi.org/10.4230/LIPICS.DISC.2023.40
https://doi.org/10.1145/3662158.3662767
https://doi.org/10.1007/978-3-642-04355-0_26
https://doi.org/10.1137/1.9781611974331.CH20
https://doi.org/10.1145/3212734.3212764
https://doi.org/10.1109/FOCS52979.2021.00101
https://doi.org/10.1007/978-94-017-0849-4_10
https://doi.org/10.1145/3519270.3538452
https://jukkasuomela.fi/da2020/

[50] Taisuke Izumi and François Le Gall. Quantum distributed algorithm for the all-pairs shortest
path problem in the CONGEST-CLIQUE model. In Peter Robinson and Faith Ellen, editors,
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019,
Toronto, ON, Canada, July 29 - August 2, 2019, pages 84–93. ACM, 2019. doi:10.1145/3293611.
3331628.

[51] Taisuke Izumi, François Le Gall, and Frédéric Magniez. Quantum distributed algorithm for
triangle finding in the CONGEST model. In Christophe Paul and Markus Bläser, editors, 37th
International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March
10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 23:1–23:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.STACS.2020.23.

[52] François Le Gall and Frédéric Magniez. Sublinear-time quantum computation of the diameter in
CONGEST networks. In Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing, pages 337–346. ACM, 2018. doi:10.1145/3212734.3212744.

[53] François Le Gall, Harumichi Nishimura, and Ansis Rosmanis. Quantum advantage for the
LOCAL model in distributed computing. In Rolf Niedermeier and Christophe Paul, editors,
36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March
13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages 49:1–49:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.STACS.2019.49.

[54] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193–
201, 1992. doi:10.1137/0221015.

[55] Frédéric Magniez and Ashwin Nayak. Quantum distributed complexity of set disjointness on a
line. ACM Transactions on Computation Theory, 14(1):5:1–5:22, 2022. doi:10.1145/3512751.

[56] N. David Mermin. Quantum mysteries revisited. American Journal of Physics, 58(8):731–734,
1990. doi:10.1119/1.16503.

[57] Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

[58] Dennis Olivetti. Round Eliminator: a tool for automatic speedup simulation. https://github.
com/olidennis/round-eliminator, 2020.

[59] Sandu Popescu and Daniel Rohrlich. Quantum nonlocality as an axiom. Foundations of Physics,
24(3):379–385, 1994. doi:10.1007/bf02058098.

[60] Armin Tavakoli, Alejandro Pozas-Kerstjens, Ming-Xing Luo, and Marc-Olivier Renou. Bell
nonlocality in networks. Reports on Progress in Physics, 85(5):056001, 2022. doi:10.1088/
1361-6633/ac41bb.

[61] Joran van Apeldoorn and Tijn de Vos. A framework for distributed quantum queries in the
CONGEST model. In Alessia Milani and Philipp Woelfel, editors, PODC ’22: ACM Symposium
on Principles of Distributed Computing, Salerno, Italy, July 25 - 29, 2022, pages 109–119. ACM,
2022. doi:10.1145/3519270.3538413.

[62] ChengSheng Wang, Xudong Wu, and Penghui Yao. Complexity of eccentricities and all-pairs
shortest paths in the quantum CONGEST model. CoRR, abs/2206.02766, 2022. arXiv:
2206.02766, doi:10.48550/ARXIV.2206.02766.

54

https://doi.org/10.1145/3293611.3331628
https://doi.org/10.1145/3293611.3331628
https://doi.org/10.4230/LIPICS.STACS.2020.23
https://doi.org/10.1145/3212734.3212744
https://doi.org/10.4230/LIPICS.STACS.2019.49
https://doi.org/10.1137/0221015
https://doi.org/10.1145/3512751
https://doi.org/10.1119/1.16503
https://doi.org/10.1137/S0097539793254571
https://github.com/olidennis/round-eliminator
https://github.com/olidennis/round-eliminator
https://doi.org/10.1007/bf02058098
https://doi.org/10.1088/1361-6633/ac41bb
https://doi.org/10.1088/1361-6633/ac41bb
https://doi.org/10.1145/3519270.3538413
http://arxiv.org/abs/2206.02766
http://arxiv.org/abs/2206.02766
https://doi.org/10.48550/ARXIV.2206.02766

[63] Elie Wolfe, Robert W. Spekkens, and Tobias Fritz. The Inflation Technique for Causal Inference
with Latent Variables. Journal of Causal Inference, 7(2), 2019. doi:10.1515/jci-2017-0020.

[64] Xudong Wu and Penghui Yao. Quantum complexity of weighted diameter and radius in
CONGEST networks. In Alessia Milani and Philipp Woelfel, editors, PODC ’22: ACM
Symposium on Principles of Distributed Computing, Salerno, Italy, July 25 - 29, 2022, pages
120–130. ACM, 2022. doi:10.1145/3519270.3538441.

55

https://doi.org/10.1515/jci-2017-0020
https://doi.org/10.1145/3519270.3538441

A Omitted proofs for the first round elimination step

We first observe that, a necessary condition for a label to be at least as strong as another label, is
for the two labels to be of the same color.

Observation A.1. Let L1 and L2 be two labels of different colors. Then, L1 ̸≤ L2 and L2 ̸≤ L1.

Then, by the definition of strength relation, the following also holds.

Observation A.2. Let L1 and L2 be two labels. Let C be the set of configurations described by a
set S of condensed configurations. Assume that, for all condensed configurations of S it holds that,
if a disjunction contains L1, then the disjunction also contains L2. Then, w.r.t. the constraint C, it
holds that L1 ≤ L2.

By transitivity of the strength relation, the following also holds.

Observation A.3. Let L1, L2, L3 be labels satisfying L1 ≤ L2 and L3 ̸≤ L2. Then, L3 ̸≤ L1.

Proof of Lemma 4.15. By Observation A.1, labels of color j can only be in relation with labels
of color j. By Observation A.2, the relation depicted in the diagram is present. Hence, we only
need to prove that (?)j ̸≤ (!)j , which holds since, while the configuration (!)2j (?)j is allowed, the
configuration (!)3j is not allowed.

Proof of Lemma 4.12. By Observation A.1, labels of color 1 can only be in relation with labels of
color 1. By Observation A.2, the relations depicted in the diagram are present. Hence, we only need
to prove that no additional relations than the ones of Figure 1 hold. We consider all possible cases:

• (−−)1 ̸≤ (−0)1 because the configuration (−−)1 (−0)21 is allowed but (−0)31 is not.
• (−−)1 ̸≤ (−1)1 because the configuration (−1)1 (−−)21 is allowed but (−−)1 (−1)21 is not.
• (−−)1 ̸≤ (!!)1 holds by Observation A.3.
• (−0)1 ̸≤ (−1)1 because the configuration (−0)1 (−1)1 (−−)1 is allowed but (−−)1(−1)21 is not.
• (−1)1 ̸≤ (−0)1 because the configuration (−1)1 (−0)21 is allowed but (−0)31 is not.
• (−0)1 ̸≤ (!!)1 and (−1)1 ̸≤ (!!)1 hold by Observation A.3.

Proof of Lemma 4.13. By Observation A.1, labels of color j can only be in relation with labels of
color j. By Observation A.2, the relations depicted in the diagram are present. Hence, we only need
to prove that no additional relations than the ones of Figure 2 hold. We consider all possible cases:

• (−−)j ̸≤ (00)j because (00)j (01)j (−−)j is allowed but (01)j (00)2j is not.
• (−−)j ̸≤ (01)j because (−−)j (00)2j is allowed but (01)j (00)2j is not.
• (−−)j ̸≤ (10)j because (00)j (10)j (−−)j is allowed but (00)j (10)2j is not.
• (−−)j ̸≤ (11)j because (00)j (11)j (−−)j is allowed but (00)j (11)2j is not.
• (−−)j ̸≤ (0−)j , (−−)j ̸≤ (1−)j , (−−)j ̸≤ (−0)j , (−−)j ̸≤ (−1)j , and (−−)j ̸≤ (!!)j by

Observation A.3.
• (00)j ̸≤ (01)j because (00)3j is allowed but (01)j (00)2j is not.
• (00)j ̸≤ (10)j because (10)j (00)2j is allowed but (00)j (10)2j is not.
• (00)j ̸≤ (11)j because (11)j (00)2j is allowed but (00)j (11)2j is not.
• (00)j ̸≤ (0−)j , (00)j ̸≤ (1−)j , (00)j ̸≤ (−0)j , (00)j ̸≤ (−1)j , and (00)j ̸≤ (!!)j by

Observation A.3.
• (01)j ̸≤ (00)j because (00)j (01)2j is allowed but (01)j (00)2j is not.
• (01)j ̸≤ (10)j because (00)j (01)j (10)j is allowed but (00)j (10)2j is not.

56

• (01)j ̸≤ (11)j because (00)j (01)j (11)j is allowed but (00)j (11)2j is not.
• (01)j ̸≤ (0−)j , (01)j ̸≤ (1−)j , (01)j ̸≤ (−0)j , (01)j ̸≤ (−1)j , and (01)j ̸≤ (!!)j by

Observation A.3.
• (10)j ̸≤ (00)j because (00)j (01)j (10)j is allowed but (01)j (00)2j is not.
• (10)j ̸≤ (01)j because (10)j (00)2j is allowed but (01)j (00)2j is not.
• (10)j ̸≤ (11)j because (00)j (10)j (11)j is allowed but (00)j (11)2j is not.
• (10)j ̸≤ (0−)j , (10)j ̸≤ (1−)j , (10)j ̸≤ (−0)j , (10)j ̸≤ (−1)j , (10)j ̸≤ (!!)j by Observation A.3.
• (11)j ̸≤ (00)j because (00)j (01)j (11)j is allowed but (01)j (00)2j is not.
• (11)j ̸≤ (01)j because (11)j (00)2j is allowed but (01)j (00)2j is not.
• (11)j ̸≤ (10)j because (00)j (10)j (11)j is allowed but (00)j (10)2j is not.
• (11)j ̸≤ (0−)j , (11)j ̸≤ (1−)j , (11)j ̸≤ (−0)j , (11)j ̸≤ (−1)j , and (11)j ̸≤ (!!)j by

Observation A.3.
• (0−)j ̸≤ (10)j because (00)j (10)j (0−)j is allowed but (00)j (10)2j is not.
• (0−)j ̸≤ (11)j because (00)j (11)j (0−)j is allowed but (00)j (11)2j is not.
• (0−)j ̸≤ (1−)j , (0−)j ̸≤ (−0)j , (0−)j ̸≤ (−1)j , and (0−)j ̸≤ (!!)j by Observation A.3.
• (1−)j ̸≤ (00)j because (00)j (01)j (1−)j is allowed but (01)j (00)2j is not.
• (1−)j ̸≤ (01)j because (1−)j (00)2j is allowed but (01)j (00)2j is not.
• (1−)j ̸≤ (0−)j , (1−)j ̸≤ (−0)j , (1−)j ̸≤ (−1)j , and (1−)j ̸≤ (!!)j by Observation A.3.
• (−0)j ̸≤ (01)j because (−0)j (00)2j is allowed but (01)j (00)2j is not.
• (−0)j ̸≤ (11)j because (00)j (11)j (−0)j is allowed but (00)j (11)2j is not.
• (−0)j ̸≤ (0−)j , (−0)j ̸≤ (1−)j , (−0)j ̸≤ (−1)j , and (−0)j ̸≤ (!!)j by Observation A.3.
• (−1)j ̸≤ (00)j because (00)j (01)j (−1)j is allowed but (01)j (00)2j is not.
• (−1)j ̸≤ (10)j because (00)j (10)j (−1)j is allowed but (00)j (10)2j is not.
• (−1)j ̸≤ (0−)j , (−1)j ̸≤ (1−)j , (−1)j ̸≤ (−0)j , and (−1)j ̸≤ (!!)j by Observation A.3.

Proof of Lemma 4.14. By Observation A.1, labels of color j can only be in relation with labels of
color j. By Observation A.2, the relations depicted in the diagram are present. Hence, we only need
to prove that no additional relations than the ones of Figure 3 hold. We consider all possible cases:

• (−−)j ̸≤ (00)j because (00)j (01)j (−−)j is allowed but (01)j (00)2j is not.
• (−−)j ̸≤ (01)j because (−−)j (00)2j is allowed but (01)j (00)2j is not.
• (−−)j ̸≤ (10)j because (00)j (10)j (−−)j is allowed but (00)j (10)2j is not.
• (−−)j ̸≤ (11)j because (00)j (11)j (−−)j is allowed but (00)j (11)2j is not.
• (−−)j ̸≤ (−0)j and (−−)j ̸≤ (−1)j by Observation A.3.
• (00)j ̸≤ (01)j because (00)3j is allowed but (01)j (00)2j is not.
• (00)j ̸≤ (10)j because (10)j (00)2j is allowed but (00)j (10)2j is not.
• (00)j ̸≤ (11)j because (11)j(00)

2
j is allowed but (00)j (11)2j is not.

• (00)j ̸≤ (−0)j and (00)j ̸≤ (−1)j by Observation A.3.
• (01)j ̸≤ (00)j because (00)j (01)2j is allowed but (01)j (00)2j is not.
• (01)j ̸≤ (10)j because (00)j (01)j (10)j is allowed but (00)j (10)2j is not.
• (01)j ̸≤ (11)j because (00)j (01)j (11)j is allowed but (00)j (11)2j is not.
• (01)j ̸≤ (−0)j and (01)j ̸≤ (−1)j by Observation A.3.
• (10)j ̸≤ (00)j because (00)j (01)j (10)j is allowed but (01)j (00)2j is not.
• (10)j ̸≤ (01)j because (10)j (00)2j is allowed but (01)j (00)2j is not.
• (10)j ̸≤ (11)j because (00)j (10)j (11)j is allowed but (00)j (11)2j is not.
• (10)j ̸≤ (−0)j and (10)j ̸≤ (−1)j by Observation A.3.
• (11)j ̸≤ (00)j because (00)j (01)j (11)j is allowed but (01)j (00)2j is not.

57

• (11)j ̸≤ (01)j because (11)j (00)2j is allowed but (01)j (00)2j is not.
• (11)j ̸≤ (10)j because (00)j (10)j (11)j is allowed but (00)j (10)2j is not.
• (11)j ̸≤ (−0)j and (11)j ̸≤ (−1)j by Observation A.3.
• (−0)j ̸≤ (01)j because (−0)j (00)2j is allowed but (01)j (00)2j is not.
• (−0)j ̸≤ (11)j because (00)j (11)j (−0)j is allowed but (00)j (11)2j is not.
• (−1)j ̸≤ (00)j because (00)j (01)j (−1)j is allowed but (01)j (00)2j is not.
• (−1)j ̸≤ (10)j because (00)j (10)j (−1)j is allowed but (00)j (10)2j is not.
• (−0)j ̸≤ (−1)j and (−1)j ̸≤ (−0)j by Observation A.3.

B Omitted proofs for the second round elimination step

We observe that, as in the case of the first round elimination step, a necessary condition for a label
to be at least as strong as another label, is for the two labels to be of the same color.

Observation B.1. Let L1 and L2 be two labels of different colors. Then, L1 ̸≤ L2 and L2 ̸≤ L1.

Again, by the definition of strength relation, the following also holds.

Observation B.2. Let L1 and L2 be two labels. Let C be the set of configurations described by a set
S of condensed configurations. Assume that, for all condensed configurations of S it holds that, if
a disjunction contains L1, then the disjunction also contains L2. Then, w.r.t. the constraint C, it
holds that L1 ≤ L2.

Again, by transitivity of the strength relation, the following also holds.

Observation B.3. Let L1, L2, L3 be labels satisfying L1 ≤ L2 and L3 ̸≤ L2. Then, L3 ̸≤ L1.

Proof of Lemma 4.24. By Observation B.1, labels of color j can only be in relation with labels of
color j. By Observation B.2, the relation depicted in the diagram is present. Hence, we only need to
prove that ⟨(!)j⟩ ̸≤ ⟨(?)j⟩, which holds since the configuration L1 . . . L∆ is allowed, where:

• For 1 ≤ k ≤ ∆− i− 1, Lk = ⟨(−−)k⟩;
• L∆−i = ⟨(00)∆−i, (01)∆−i⟩;
• For ∆− i+ 1 ≤ k ≤ ∆ such that j ̸= k, Lk = ⟨(?)k⟩;
• Lj = ⟨(!)j⟩,

but by replacing ⟨(!)j⟩ with ⟨(?)j⟩ we obtain a configuration that is not allowed.

Proof of Lemma 4.21. By Observation B.1, labels of color 1 can only be in relation with labels of
color 1. By Observation B.2, the relations depicted in the diagram are present. Hence, we only need
to prove that no additional relations than the ones of Figure 5 hold. We consider all possible cases:

• ⟨(!!)1⟩ ̸≤ ⟨(−0)1⟩ because the configuration L1 . . . L∆ is allowed, where:

– L1 = ⟨(!!)1⟩;
– For 2 ≤ k ≤ ∆− i− 1, Lk = ⟨(11)k⟩;
– L∆−i = ⟨(10)∆−i, (11)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(!!)1⟩ with ⟨(−0)1⟩ we obtain a configuration that is not allowed.

58

• ⟨(!!)1⟩ ̸≤ ⟨(−1)1⟩ for symmetric reasons as in the case ⟨(!!)1⟩ ̸≤ ⟨(−0)1⟩.

• ⟨(!!)1⟩ ̸≤ ⟨(−−)1⟩ by Observation B.3.

• ⟨(−0)1⟩ ̸≤ ⟨(−1)1⟩ because the configuration L1 . . . L∆ is allowed, where:

– L1 = ⟨(−0)1⟩;
– For 2 ≤ k ≤ ∆− i− 1, Lk = ⟨(00)k⟩;
– L∆−i = ⟨(00)∆−i, (01)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(−0)1⟩ with ⟨(−1)1⟩ we obtain a configuration that is not allowed.

• ⟨(−1)1⟩ ̸≤ ⟨(−0)1⟩ for symmetric reasons as in the case ⟨(−0)1⟩ ̸≤ ⟨(−1)1⟩.

• ⟨(−1)1⟩ ̸≤ ⟨(−−)1⟩ and ⟨(−0)1⟩ ̸≤ ⟨(−−)1⟩ hold by Observation B.3.

Proof of Lemma 4.22. By Observation B.1, labels of color j can only be in relation with labels of
color j. By Observation B.2, the relations depicted in the diagram are present. Hence, we only need
to prove that no additional relations than the ones of Figure 6 hold. We consider all possible cases.

• ⟨(00)j⟩ ̸≤ ⟨(1−)j , (−1)j⟩ because the configuration L1 . . . L∆ is allowed, where:

– L1 = ⟨(−0)1⟩;
– For 2 ≤ k ≤ ∆− i− 1, Lk = ⟨(00)k⟩;
– L∆−i = ⟨(00)∆−i, (01)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(00)j⟩ with ⟨(1−)j , (−1)j⟩ we obtain a configuration that is not allowed.

• ⟨(00)j⟩ ̸≤ ⟨(−−)j⟩, ⟨(00)j⟩ ̸≤ ⟨(01)j⟩, ⟨(00)j⟩ ̸≤ ⟨(10)j⟩, ⟨(00)j⟩ ̸≤ ⟨(11)j⟩,
⟨(00)j⟩ ̸≤ ⟨(01)j , (10)j⟩, ⟨(00)j⟩ ̸≤ ⟨(1−)j⟩, ⟨(00)j⟩ ̸≤ ⟨(−1)j⟩ hold by Observation B.3.

• ⟨(01)j⟩ ̸≤ ⟨(−−)j⟩, ⟨(01)j⟩ ̸≤ ⟨(00)j⟩, ⟨(01)j⟩ ̸≤ ⟨(10)j⟩, ⟨(01)j⟩ ̸≤ ⟨(11)j⟩,
⟨(01)j⟩ ̸≤ ⟨(00)j , (11)j⟩, ⟨(01)j⟩ ̸≤ ⟨(1−)j⟩, ⟨(01)j⟩ ̸≤ ⟨(−0)j⟩, ⟨(01)j⟩ ̸≤ ⟨(1−)j , (−0)j⟩,
⟨(10)j⟩ ̸≤ ⟨(−−)j⟩, ⟨(10)j⟩ ̸≤ ⟨(00)j⟩, ⟨(10)j⟩ ̸≤ ⟨(01)j⟩, ⟨(10)j⟩ ̸≤ ⟨(11)j⟩,
⟨(10)j⟩ ̸≤ ⟨(00)j , (11)j⟩, ⟨(10)j⟩ ̸≤ ⟨(0−)j⟩, ⟨(10)j⟩ ̸≤ ⟨(−1)j⟩, ⟨(10)j⟩ ̸≤ ⟨(0−)j , (−1)j⟩,
⟨(11)j⟩ ̸≤ ⟨(−−)j⟩, ⟨(11)j⟩ ̸≤ ⟨(00)j⟩, ⟨(11)j⟩ ̸≤ ⟨(01)j⟩, ⟨(11)j⟩ ̸≤ ⟨(10)j⟩,
⟨(11)j⟩ ̸≤ ⟨(01)j , (10)j⟩, ⟨(11)j⟩ ̸≤ ⟨(0−)j⟩, ⟨(11)j⟩ ̸≤ ⟨(−0)j⟩, ⟨(11)j⟩ ̸≤ ⟨(0−)j , (−0)j⟩ for
symmetric reasons.

• ⟨(0−)j⟩ ̸≤ ⟨(1−)j , (−0)j⟩ because the configuration L1 . . . L∆ is allowed, where:

– L1 = ⟨(−0)1⟩;
– For 2 ≤ k < j, Lk = ⟨(00)k⟩;
– Lj = ⟨(0−)j⟩
– For j < k ≤ ∆− i− 1, Lk = ⟨(11)k⟩;
– L∆−i = ⟨(10)∆−i, (11)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(0−)j⟩ with ⟨(1−)j , (−0)j⟩ we obtain a configuration that is not allowed.

• ⟨(0−)j⟩ ̸≤ ⟨(1−)j , (−1)j⟩ because the configuration L1 . . . L∆ is allowed, where:

59

– L1 = ⟨(−0)1⟩;
– For 2 ≤ k < j, Lk = ⟨(00)k⟩;
– Lj = ⟨(0−)j⟩
– For j < k ≤ ∆− i− 1, Lk = ⟨(00)k⟩;
– L∆−i = ⟨(00)∆−i, (01)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(0−)j⟩ with ⟨(1−)j , (−1)j⟩ we obtain a configuration that is not allowed.

• ⟨(0−)j⟩ ̸≤ ⟨(−−)j⟩, ⟨(0−)j⟩ ̸≤ ⟨(00)j⟩, ⟨(0−)j⟩ ̸≤ ⟨(01)j⟩, ⟨(0−)j⟩ ̸≤ ⟨(10)j⟩,
⟨(0−)j⟩ ̸≤ ⟨(01)j , (10)j⟩, ⟨(0−)j⟩ ̸≤ ⟨(11)j⟩, ⟨(0−)j⟩ ̸≤ ⟨(00)j , (11)j⟩, ⟨(0−)j⟩ ̸≤ ⟨(1−)j⟩,
⟨(0−)j⟩ ̸≤ ⟨(−0)j⟩, ⟨(0−)j⟩ ̸≤ ⟨(−1)j⟩ hold by Observation B.3.

• ⟨(1−)j⟩ ̸≤ ⟨(−−)j⟩, ⟨(1−)j⟩ ̸≤ ⟨(00)j⟩, ⟨(1−)j⟩ ̸≤ ⟨(01)j⟩, ⟨(1−)j⟩ ̸≤ ⟨(10)j⟩,
⟨(1−)j⟩ ̸≤ ⟨(01)j , (10)j⟩, ⟨(1−)j⟩ ̸≤ ⟨(11)j⟩, ⟨(1−)j⟩ ̸≤ ⟨(00)j , (11)j⟩, ⟨(1−)j⟩ ̸≤ ⟨(0−)j⟩,
⟨(1−)j⟩ ̸≤ ⟨(−0)j⟩, ⟨(1−)j⟩ ̸≤ ⟨(0−)j , (−0)j⟩, ⟨(1−)j⟩ ̸≤ ⟨(−1)j⟩, ⟨(1−)j⟩ ̸≤ ⟨(0−)j , (−1)j⟩ for
symmetric reasons.

• ⟨(−0)j⟩ ̸≤ ⟨(0−)j , (−1)j⟩ because the configuration L1 . . . L∆ is allowed, where:

– L1 = ⟨(−1)1⟩;
– For 2 ≤ k < j, Lk = ⟨(11)k⟩;
– Lj = ⟨(−0)j⟩
– For j < k ≤ ∆− i− 1, Lk = ⟨(00)k⟩;
– L∆−i = ⟨(00)∆−i, (01)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(−0)j⟩ with ⟨(0−)j , (−1)j⟩ we obtain a configuration that is not allowed.

• ⟨(−0)j⟩ ̸≤ ⟨(1−)j , (−1)j⟩ because the configuration L1 . . . L∆ is allowed, where:

– L1 = ⟨(−0)1⟩;
– For 2 ≤ k < j, Lk = ⟨(00)k⟩;
– Lj = ⟨(−0)j⟩
– For j < k ≤ ∆− i− 1, Lk = ⟨(00)k⟩;
– L∆−i = ⟨(00)∆−i, (01)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(−0)j⟩ with ⟨(1−)j , (−1)j⟩ we obtain a configuration that is not allowed.

• ⟨(−0)j⟩ ̸≤ ⟨(−−)j⟩, ⟨(−0)j⟩ ̸≤ ⟨(00)j⟩, ⟨(−0)j⟩ ̸≤ ⟨(01)j⟩, ⟨(−0)j⟩ ̸≤ ⟨(10)j⟩,
⟨(−0)j⟩ ̸≤ ⟨(01)j , (10)j⟩, ⟨(−0)j⟩ ̸≤ ⟨(11)j⟩, ⟨(−0)j⟩ ̸≤ ⟨(00)j , (11)j⟩, ⟨(−0)j⟩ ̸≤ ⟨(0−)j⟩,
⟨(−0)j⟩ ̸≤ ⟨(1−)j⟩, ⟨(−0)j⟩ ̸≤ ⟨(−1)j⟩ hold by Observation B.3.

• ⟨(−1)j⟩ ̸≤ ⟨(−−)j⟩, ⟨(−1)j⟩ ̸≤ ⟨(00)j⟩, ⟨(−1)j⟩ ̸≤ ⟨(01)j⟩, ⟨(−1)j⟩ ̸≤ ⟨(10)j⟩,
⟨(−1)j⟩ ̸≤ ⟨(01)j , (10)j⟩, ⟨(−1)j⟩ ̸≤ ⟨(11)j⟩, ⟨(−1)j⟩ ̸≤ ⟨(00)j , (11)j⟩, ⟨(−1)j⟩ ̸≤ ⟨(0−)j⟩,
⟨(−1)j⟩ ̸≤ ⟨(1−)j⟩, ⟨(−1)j⟩ ̸≤ ⟨(−0)j⟩, ⟨(−1)j⟩ ̸≤ ⟨(0−)j , (−0)j⟩, ⟨(−1)j⟩ ̸≤ ⟨(1−)j , (−0)j⟩ for
symmetric reasons.

• ⟨(01)j , (10)j⟩ ̸≤ ⟨(1−)j , (−0)j⟩ because the configuration L1 . . . L∆ is allowed, where:

– L1 = ⟨(−0)1⟩;

60

– For 2 ≤ k < j, Lk = ⟨(00)k⟩;
– Lj = ⟨(01)j , (10)j⟩;
– For j < k ≤ ∆− i− 1, Lk = ⟨(11)k⟩;
– L∆−i = ⟨(10)∆−i, (11)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(01)j , (10)j⟩ with ⟨(1−)j , (−0)j⟩ we obtain a configuration that is not allowed.

• ⟨(01)j , (10)j⟩ ̸≤ ⟨(0−)j , (−1)j⟩ because the configuration L1 . . . L∆ is allowed, where:

– L1 = ⟨(−1)1⟩;
– For 2 ≤ k < j, Lk = ⟨(11)k⟩;
– Lj = ⟨(01)j , (10)j⟩;
– For j < k ≤ ∆− i− 1, Lk = ⟨(00)k⟩;
– L∆−i = ⟨(00)∆−i, (01)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(01)j , (10)j⟩ with ⟨(0−)j , (−1)j⟩ we obtain a configuration that is not allowed.

• ⟨(01)j , (10)j⟩ ̸≤ ⟨(−−)j⟩, ⟨(01)j , (10)j⟩ ̸≤ ⟨(00)j⟩, ⟨(01)j , (10)j⟩ ̸≤ ⟨(01)j⟩,
⟨(01)j , (10)j⟩ ̸≤ ⟨(10)j⟩, ⟨(01)j , (10)j⟩ ̸≤ ⟨(11)j⟩, ⟨(01)j , (10)j⟩ ̸≤ ⟨(00)j , (11)j⟩,
⟨(01)j , (10)j⟩ ̸≤ ⟨(0−)j⟩, ⟨(01)j , (10)j⟩ ̸≤ ⟨(1−)j⟩, ⟨(01)j , (10)j⟩ ̸≤ ⟨(−0)j⟩,
⟨(01)j , (10)j⟩ ̸≤ ⟨(−1)j⟩ hold by Observation B.3.

• ⟨(00)j , (11)j⟩ ̸≤ ⟨(1−)j , (−1)j⟩ because the configuration L1 . . . L∆ is allowed, where:

– L1 = ⟨(−0)1⟩;
– For 2 ≤ k < j, Lk = ⟨(00)k⟩;
– Lj = ⟨(00)j , (11)j⟩;
– For j < k ≤ ∆− i− 1, Lk = ⟨(00)k⟩;
– L∆−i = ⟨(00)∆−i, (01)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(00)j , (11)j⟩ with ⟨(1−)j , (−1)j⟩ we obtain a configuration that is not allowed.

• ⟨(00)j , (11)j⟩ ̸≤ ⟨(0−)j , (−0)j⟩ because the configuration L1 . . . L∆ is allowed, where:

– L1 = ⟨(−1)1⟩;
– For 2 ≤ k < j, Lk = ⟨(11)k⟩;
– Lj = ⟨(00)j , (11)j⟩;
– For j < k ≤ ∆− i− 1, Lk = ⟨(11)k⟩;
– L∆−i = ⟨(10)∆−i, (11)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(00)j , (11)j⟩ with ⟨(0−)j , (−0)j⟩ we obtain a configuration that is not allowed.

• ⟨(00)j , (11)j⟩ ̸≤ ⟨(−−)j⟩, ⟨(00)j , (11)j⟩ ̸≤ ⟨(00)j⟩, ⟨(00)j , (11)j⟩ ̸≤ ⟨(01)j⟩,
⟨(00)j , (11)j⟩ ̸≤ ⟨(10)j⟩, ⟨(00)j , (11)j⟩ ̸≤ ⟨(01)j , (10)j⟩, ⟨(00)j , (11)j⟩ ̸≤ ⟨(11)j⟩,
⟨(00)j , (11)j⟩ ̸≤ ⟨(0−)j⟩, ⟨(00)j , (11)j⟩ ̸≤ ⟨(1−)j⟩, ⟨(00)j , (11)j⟩ ̸≤ ⟨(−0)j⟩,
⟨(00)j , (11)j⟩ ̸≤ ⟨(−1)j⟩ hold by Observation B.3.

• ⟨(0−)j , (−0)j⟩ ̸≤ ⟨(1−)j , (−0)j⟩ because the configuration L1 . . . L∆ is allowed, where:

61

– L1 = ⟨(−0)1⟩;
– For 2 ≤ k < j, Lk = ⟨(00)k⟩;
– Lj = ⟨(0−)j , (−0)j⟩;
– For j < k ≤ ∆− i− 1, Lk = ⟨(11)k⟩;
– L∆−i = ⟨(10)∆−i, (11)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(0−)j , (−0)j⟩ with ⟨(1−)j , (−0)j⟩ we obtain a configuration that is not
allowed.

• ⟨(0−)j , (−0)j⟩ ̸≤ ⟨(0−)j , (−1)j⟩ because the configuration L1 . . . L∆ is allowed, where:

– L1 = ⟨(−1)1⟩;
– For 2 ≤ k < j, Lk = ⟨(11)k⟩;
– Lj = ⟨(0−)j , (−0)j⟩;
– For j < k ≤ ∆− i− 1, Lk = ⟨(00)k⟩;
– L∆−i = ⟨(00)∆−i, (01)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(0−)j , (−0)j⟩ with ⟨(0−)j , (−1)j⟩ we obtain a configuration that is not
allowed.

• ⟨(0−)j , (−0)j⟩ ̸≤ ⟨(1−)j , (−1)j⟩ because the configuration L1 . . . L∆ is allowed, where:

– L1 = ⟨(−0)1⟩;
– For 2 ≤ k < j, Lk = ⟨(00)k⟩;
– Lj = ⟨(0−)j , (−0)j⟩;
– For j < k ≤ ∆− i− 1, Lk = ⟨(00)k⟩;
– L∆−i = ⟨(00)∆−i, (01)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(0−)j , (−0)j⟩ with ⟨(1−)j , (−1)j⟩ we obtain a configuration that is not
allowed.

• ⟨(0−)j , (−0)j⟩ ̸≤ ⟨(−−)j⟩, ⟨(0−)j , (−0)j⟩ ̸≤ ⟨(00)j⟩, ⟨(0−)j , (−0)j⟩ ̸≤ ⟨(01)j⟩,
⟨(0−)j , (−0)j⟩ ̸≤ ⟨(10)j⟩, ⟨(0−)j , (−0)j⟩ ̸≤ ⟨(01)j , (10)j⟩, ⟨(0−)j , (−0)j⟩ ̸≤ ⟨(11)j⟩,
⟨(0−)j , (−0)j⟩ ̸≤ ⟨(00)j , (11)j⟩, ⟨(0−)j , (−0)j⟩ ̸≤ ⟨(0−)j⟩, ⟨(0−)j , (−0)j⟩ ̸≤ ⟨(1−)j⟩,
⟨(0−)j , (−0)j⟩ ̸≤ ⟨(−0)j⟩, ⟨(0−)j , (−0)j⟩ ̸≤ ⟨(−1)j⟩ hold by Observation B.3.

• ⟨(0−)j , (−1)j⟩ ̸≤ ⟨(1−)j , (−1)j⟩ because the configuration L1 . . . L∆ is allowed, where:

– L1 = ⟨(−0)1⟩;
– For 2 ≤ k < j, Lk = ⟨(00)k⟩;
– Lj = ⟨(0−)j , (−1)j⟩;
– For j < k ≤ ∆− i− 1, Lk = ⟨(00)k⟩;
– L∆−i = ⟨(00)∆−i, (01)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(0−)j , (−1)j⟩ with ⟨(1−)j , (−1)j⟩ we obtain a configuration that is not
allowed.

• ⟨(0−)j , (−1)j⟩ ̸≤ ⟨(1−)j , (−0)j⟩ because the configuration L1 . . . L∆ is allowed, where:

62

– L1 = ⟨(−0)1⟩;
– For 2 ≤ k < j, Lk = ⟨(00)k⟩;
– Lj = ⟨(0−)j , (−1)j⟩;
– For j < k ≤ ∆− i− 1, Lk = ⟨(11)k⟩;
– L∆−i = ⟨(10)∆−i, (11)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(0−)j , (−1)j⟩ with ⟨(1−)j , (−0)j⟩ we obtain a configuration that is not
allowed.

• ⟨(0−)j , (−1)j⟩ ̸≤ ⟨(0−)j , (−0)j⟩ because the configuration L1 . . . L∆ is allowed, where:

– L1 = ⟨(−1)1⟩;
– For 2 ≤ k < j, Lk = ⟨(11)k⟩;
– Lj = ⟨(0−)j , (−1)j⟩;
– For j < k ≤ ∆− i− 1, Lk = ⟨(11)k⟩;
– L∆−i = ⟨(10)∆−i, (11)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(0−)j , (−1)j⟩ with ⟨(0−)j , (−0)j⟩ we obtain a configuration that is not
allowed.

• ⟨(0−)j , (−1)j⟩ ̸≤ ⟨(−−)j⟩, ⟨(0−)j , (−1)j⟩ ̸≤ ⟨(00)j⟩, ⟨(0−)j , (−1)j⟩ ̸≤ ⟨(01)j⟩,
⟨(0−)j , (−1)j⟩ ̸≤ ⟨(10)j⟩, ⟨(0−)j , (−1)j⟩ ̸≤ ⟨(01)j , (10)j⟩, ⟨(0−)j , (−1)j⟩ ̸≤ ⟨(11)j⟩,
⟨(0−)j , (−1)j⟩ ̸≤ ⟨(00)j , (11)j⟩, ⟨(0−)j , (−1)j⟩ ̸≤ ⟨(0−)j⟩, ⟨(0−)j , (−1)j⟩ ̸≤ ⟨(1−)j⟩,
⟨(0−)j , (−1)j⟩ ̸≤ ⟨(−0)j⟩, ⟨(0−)j , (−1)j⟩ ̸≤ ⟨(−1)j⟩ hold by Observation B.3.

• ⟨(1−)j , (−0)j⟩ ̸≤ ⟨(−−)j⟩, ⟨(1−)j , (−0)j⟩ ̸≤ ⟨(00)j⟩, ⟨(1−)j , (−0)j⟩ ̸≤ ⟨(01)j⟩,
⟨(1−)j , (−0)j⟩ ̸≤ ⟨(10)j⟩, ⟨(1−)j , (−0)j⟩ ̸≤ ⟨(01)j , (10)j⟩, ⟨(1−)j , (−0)j⟩ ̸≤ ⟨(11)j⟩,
⟨(1−)j , (−0)j⟩ ̸≤ ⟨(00)j , (11)j⟩, ⟨(1−)j , (−0)j⟩ ̸≤ ⟨(0−)j⟩, ⟨(1−)j , (−0)j⟩ ̸≤ ⟨(1−)j⟩,
⟨(1−)j , (−0)j⟩ ̸≤ ⟨(−0)j⟩, ⟨(1−)j , (−0)j⟩ ̸≤ ⟨(0−)j , (−0)j⟩, ⟨(1−)j , (−0)j⟩ ̸≤ ⟨(−1)j⟩,
⟨(1−)j , (−0)j⟩ ̸≤ ⟨(0−)j , (−1)j⟩, ⟨(1−)j , (−0)j⟩ ̸≤ ⟨(1−)j , (−1)j⟩ for symmetric reasons.

• ⟨(1−)j , (−1)j⟩ ̸≤ ⟨(−−)j⟩, ⟨(1−)j , (−1)j⟩ ̸≤ ⟨(00)j⟩, ⟨(1−)j , (−1)j⟩ ̸≤ ⟨(01)j⟩,
⟨(1−)j , (−1)j⟩ ̸≤ ⟨(10)j⟩, ⟨(1−)j , (−1)j⟩ ̸≤ ⟨(01)j , (10)j⟩, ⟨(1−)j , (−1)j⟩ ̸≤ ⟨(11)j⟩,
⟨(1−)j , (−1)j⟩ ̸≤ ⟨(00)j , (11)j⟩, ⟨(1−)j , (−1)j⟩ ̸≤ ⟨(0−)j⟩, ⟨(1−)j , (−1)j⟩ ̸≤ ⟨(1−)j⟩,
⟨(1−)j , (−1)j⟩ ̸≤ ⟨(−0)j⟩, ⟨(1−)j , (−1)j⟩ ̸≤ ⟨(0−)j , (−0)j⟩, ⟨(1−)j , (−1)j⟩ ̸≤ ⟨(1−)j , (−0)j⟩,
⟨(1−)j , (−1)j⟩ ̸≤ ⟨(−1)j⟩, ⟨(1−)j , (−1)j⟩ ̸≤ ⟨(0−)j , (−1)j⟩ for symmetric reasons.

• ⟨(!!)j⟩ ̸≤ ⟨(0−)j , (−1)j⟩ because the configuration L1 . . . L∆ is allowed, where:

– L1 = ⟨(−1)1⟩;
– For 2 ≤ k < j, Lk = ⟨(11)k⟩;
– Lj = ⟨(!!)j⟩;
– For j < k ≤ ∆− i− 1, Lk = ⟨(00)k⟩;
– L∆−i = ⟨(00)∆−i, (01)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(!!)j⟩ with ⟨(0−)j , (−1)j⟩ we obtain a configuration that is not allowed.

• ⟨(!!)j⟩ ̸≤ ⟨(0−)j , (−0)j⟩ because the configuration L1 . . . L∆ is allowed, where:

63

– L1 = ⟨(−1)1⟩;
– For 2 ≤ k < j, Lk = ⟨(11)k⟩;
– Lj = ⟨(!!)j⟩;
– For j < k ≤ ∆− i− 1, Lk = ⟨(11)k⟩;
– L∆−i = ⟨(10)∆−i, (11)∆−i⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(!!)j⟩ with ⟨(0−)j , (−0)j⟩ we obtain a configuration that is not allowed.

• ⟨(!!)j⟩ ̸≤ ⟨(1−)j , (−1)j⟩, ⟨(!!)j⟩ ̸≤ ⟨(1−)j , (−0)j⟩ for symmetric reasons.

• ⟨(!!)j⟩ ̸≤ ⟨(−−)j⟩, ⟨(!!)j⟩ ̸≤ ⟨(00)j⟩, ⟨(!!)j⟩ ̸≤ ⟨(01)j⟩, ⟨(!!)j⟩ ̸≤ ⟨(10)j⟩, ⟨(!!)j⟩ ̸≤ ⟨(01)j , (10)j⟩,
⟨(!!)j⟩ ̸≤ ⟨(11)j⟩, ⟨(!!)j⟩ ̸≤ ⟨(00)j , (11)j⟩, ⟨(!!)j⟩ ̸≤ ⟨(0−)j⟩, ⟨(!!)j⟩ ̸≤ ⟨(1−)j⟩, ⟨(!!)j⟩ ̸≤ ⟨(−0)j⟩,
⟨(!!)j⟩ ̸≤ ⟨(−1)j⟩ hold by Observation B.3.

Proof of Lemma 4.23. By Observation B.1, labels of the special color j = ∆ − i can only be in
relation with labels of color j. By Observation B.2, the relations depicted in the diagram are present.
Hence, we only need to prove that no additional relations than the ones of Figure 7 hold. We consider
all possible cases:

• ⟨(00)j , (01)j⟩ ̸≤ ⟨(10)j , (11)j⟩ because the configuration L1 . . . L∆ is allowed, where:

– L1 = ⟨(−0)1⟩;
– For 2 ≤ k ≤ ∆− i− 1, Lk = ⟨(00)k⟩;
– Lj = ⟨(00)j , (01)j⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(00)j , (01)j⟩ with ⟨(10)j , (11)j⟩ we obtain a configuration that is not allowed.

• ⟨(10)j , (11)j⟩ ̸≤ ⟨(00)j , (01)j⟩ for symmetric reasons as in the case ⟨(00)j , (01)j⟩ ̸≤ ⟨(10)j , (11)j⟩.

• ⟨(−0)j , (−1)j⟩ ̸≤ ⟨(00)j , (01)j⟩ because the configuration L1 . . . L∆ is allowed, where:

– L1 = ⟨(−1)1⟩;
– For 2 ≤ k ≤ ∆− i− 1, Lk = ⟨(11)k⟩;
– Lj = ⟨(−0)j , (−1)j⟩;
– For ∆− i+ 1 ≤ k ≤ ∆, Lk = ⟨(?)k⟩;

but by replacing ⟨(−0)j , (−1)j⟩ with ⟨(00)j , (01)j⟩ we obtain a configuration that is not allowed.

• ⟨(−0)j , (−1)j⟩ ̸≤ ⟨(10)j , (11)j⟩ for symmetric reasons as in the case ⟨(−0)j , (−1)j⟩ ̸≤ ⟨(00)j , (01)j⟩.

64

	Introduction
	Setting: LOCAL vs. quantum-LOCAL
	Prior work vs. our main contribution
	Key techniques and new ideas
	Implications and discussion
	Roadmap

	Preliminaries
	Iterated GHZ problem
	Quantum algorithm for iterated GHZ

	Classical lower bound for iterated GHZ
	Preliminaries
	Roadmap
	Problem definition
	The diagram of Pi
	The first round elimination step
	The diagram of Pi'
	The second round elimination step
	The problem Pi is not trivial
	Relation between P and Pi
	Putting things together

	Networks of non-signaling games
	Solving networks of non-signaling games deterministically

	Omitted proofs for the first round elimination step
	Omitted proofs for the second round elimination step

