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Abstract

We investigate several earthquake models in one and two dimensions of space and analyze in

these models the stress spatial distribution. We show that the statistical properties of stress

distribution are responsible for the distribution of earthquake magnitudes, as described by the

Gutenberg-Richter law.

A series of prediction is made based on the analogies between the stress profile and one dimen-

sional random curves or two dimensional random surfaces. These predictions include the b-value,

which determines the ratio between small and big events, and, in two dimensional models, we

predict the existence of aftershocks and their time distribution, known as the Omori law. Both

the Gutenberg-Richter and the Omori law are properties that are widely verified by earthquakes

in nature.

PACS numbers:
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Among the statistical properties of earthquakes (EQ) that were first discovered is the

distribution of the energy that they release, a property that was initially described by

Gutenberg and Richter [1]. Using modern definitions, the released energy during an EQ

is characterized by its magnitude m defined as m = 2 log10(M)/3 where M is the seismic

moment M =
∑

∆x. The sum is taken over all the spatial extent that has moved during

the EQ and ∆x is the total displacement during the event. In natural seismic data, the

distribution of m is observed to be an exponential, so-called Gutenberg-Richter (GR) law

[1]. It is written P (m) ∝ 10−bm and the value of b usually ranges between 3/4 and 1 [2].

When translated into the distribution of the moment M , the GR law turns into a power law

distribution P (M) ∝ M−1−B, where B = 2b/3 and thus ranges between 1/2 and 2/3 [3].

Another well-documented property of EQ concerns the number of aftershocks which are

events that follow a large event, referred to as the mainshock. This property is called the

Omori-Utsu law [4]. It is presented in general by the formula for the number n of events per

unit of time dn/dt = k/(t+c)−p where the exponent p is of order unity, c and k are constants

that depend on the mainshock properties and t is the time elapsed since the mainshock.This

is a generalization of the original formula due to Omori who considered p = 1.

A variety of EQ models exists, using simplified and idealized dynamical rules to describe

the evolution of faults [5], [11], see [3, 6] for reviews. In general, through appropriate

parameter adjustment, these models yield the GR law. The objective of this article is to

investigate the origin of the power-law distribution in several models and to predict possible

values for the exponent B. To achieve this, we consider the size of the EQ, which refers to

the its spatial extent. From the distribution of the size, and the dependence of moment on

size, we derive the exponent of the GR law. In Section I, we present this relation that will be

of use all along this article. In Section II, we explore models with one-dimensional geometry

and in Section III, we extend our approach to two-dimensional situations. In this geometry,

we also propose an explanation for Omori’s law. A comparison of our results with datas in

nature is presented in section IV. This article presents in detail the results announced in [8].

I. A RELATION BETWEEN SIZE AND MOMENT DISTRIBUTIONS

We consider models where space is discretized. The moment of an EQ writes M =∑N
i=1∆xi where ∆xi measures the total change of position of site i during the event and i

3



ranges from 1 to N , with N the number of sites involved in the event, i.e. the size of the

event.

We first assume that the moment M is simply related to the size of the event N as

M ≃ Nα , (1)

where ≃ stands for equality up to a multiplicative constant. If the distribution of N is a

power-law,

PN(N) ≃ N−β, (2)

then, the distribution of M is also a power-law

P (M) ≃ M−1−B, with exponent B =
β − 1

α
. (3)

This argument was previously introduced in [21], and used to constrain the admissible values

of B.

This approach relies on the assumption of a single relation between M and N , such as eq.

1. If we release this assumption and start with the general expression of a joint probability

Pj(M,N), a less strict condition for eq. 3 to apply is that the joint distribution writes

Pj(M,N) = PN(N)f( M
Nα )N

−α. In other words, this means that the conditional probability

of M given N is self-similar.

This argument relies on the existence of a relation between the moment M and a quantity

N that we described here as the event size. The result remains valid if instead of the size of

the event, another quantity of the system is related to M as in eq. 1 and is distributed as

in eq. 2. We shall for instance use this version of the result in the analysis of the standard

Burridge-Knopoff model in section II A.

II. ONE DIMENSIONAL MODELS

A. Analysis of the BK model

We first consider the one-dimensional Burridge-Knopoff (BK) model, where a set of Nt

sliders are located on a line at positions xi, as illustrated in Fig. 1. Each slider is connected

to its nearest neighbors with a spring of stiffness k2. The first and the last sliders are only

connected to one neighbour. In addition, each slider is connected with a spring of stiffness

k1 to a plate moving at constant velocity denoted by v0.
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FIG. 1: Schematics of the BK model. The i-th block is pushed by its neighbors and the moving

plate of speed V (t).

The driving force on the i-th slider is

τi = −k2(2xi − xi+1 − xi−1) + k1(v0 t− xi) . (4)

When the sliders are all at rest, they experience a linear in time increasing load until this

driving force τi reaches the static friction force Fs for a given slider i, which starts to move

with velocity vi and is then subject to the dynamic friction force

Fd(vi) = F
1− δ

1 + 2∆
1−δ

vi
(5)

where δ and ∆ are positive constants. δ corresponds to the instantaneous stress drop from

static friction to dynamic friction. As introduced in [7], the dynamic friction decreases as

the slip velocity vi increases. Such friction is referred to as velocity weakening friction, and

∆ represents the amplitude of the negative velocity dependence. Then we are led to the

equation of motion governing slider i

m
d

dt
vi = τi − Fd(vi). (6)

In addition, a slider is not allowed to move backward and if its velocity vanishes with a

negative acceleration, the velocity is set to zero. We note that during the motion, the

driving force applied to the neighbors of moving sliders increases and additional sliders can

be put into motion.

Without loss of generality we set to unity the masses of the movers, the stiffness k1 and

the static friction force Fs. Unless otherwise stated, we use Nt = 800, v0 = 10−6, ∆ = 10−3,

α = 1, and k2 = 9 as is usually considered by former studies. We take for initial values of xi

small and uncorrelated random terms. For these parameters, the system alternates between
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a loading period during which the sliders are at rest and the driving force τi increases linearly

in time and a brief event initiated once one of the sliders starts moving and can put into

motion a varying number of sliders. These sudden events are interpreted as the earthquakes

(EQ) in the BK model. The system has a chaotic behavior and in particular the size of the

EQ fluctuates. Time series of the moment M of the events is displayed in Fig. 2. The PDF

of the moment P (M) is displayed in Fig. 3. As discussed in the introduction, the GR law

correspond to P (M) being a power law. In this study, we focus on the behavior for large

enough M , roughly spanning two decades between M = 1 and M = 102. Within this range

of M , we measure a power-law exponent 1 +B = 1.56± 0.1.

To understand the origin of this behavior, we first discuss how events are formed. A

crucial role is played by the stress field Si which we define as

Si = −k2(2xi − xi+1 − xi−1)− k1xi . (7)

An EQ initiates at the site where Si is maximum and at time t when Si is equal to Fs−k1v0t.

An example of stress profile just before an event is displayed in Fig. 4. It corresponds to

an event that involves a large enough number of sliders. Going forward, we focus on such

events with a number of moving masses N ≥ 30. The general behavior is the following:

the slider with maximum Si value, the epicenter, starts to move and subsequently puts

into motion its neighbor and this phenomenon propagates through a part of the system.

We identified that an EQ can be partitioned into two spatial domains. An initial domain,

that corresponds to stress values nearly equal to the maximum, see Fig. 4. For sliders

within this domain, the total displacement at the end of the EQ, ∆xi, scales as the square

of the distance from the epicenter. This domain contains sliders close to the epicenter for

which the difference between the stress and its maximum remains smaller than roughly

∆S = 0.2. In the second domain, the slip depends on the initial stress. It increases with

the distance from the epicenter if max(Si)− Si is smaller than ∆S. Otherwise, it decreases

and a good qualitative description of the slip variation between neighboring sliders is that

∆xi+1 − ∆xi ∝ (Si − max(Si)). The event terminates when the stress is such that ∆xi

vanishes. This corresponds to the stress minus its maximum reaching large enough negative

values for a sufficient number of masses.

A few comments are in order. We present a simplified set of rules that, at least qualita-

tively, provide a description of the events. These rules rely on the value of the stress before
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the event and translate it into the spatial distribution of the slider slip once the EQ is over.

We can only expect that this is valid in the regime of parameters that we are considering

here and for specific events, for instance those involving a large enough number of sliders.

Nevertheless, these rules allow to obtain a statistically representative set of the real solu-

tions of the BK model. In other words, the predictions derived from this simple set of rules

correctly describe the properties of the BK model. Importantly, we stress that most of the

detailed aspects have no influence for the prediction that we shall obtain.

We now turn to the statistical properties of the spatial extent of the earthquakes. We

investigate both the size of the initial domain Ni, for which the initial stress Si remains larger

than its maximum minus ∆S and the size of the second part of the event, say Nc. The total

size of an event is N = Ni + Nc. The distribution of Ni, Nc and N are shown in Fig. 5.

The initial phase has a peaked distribution that decreases at large Ni as either a power-law

with large exponent (larger than 5) or as an exponential. In contrast the distribution of Nc

is wider and displays a power-law behavior with exponent β = 1.55± 0.06. The distribution

of N does not display a clear scaling domain. In summary, an event is characterized by two

phases: an initial phase in which sizes do not fluctuate much and a second phase in which

length Nc is more widely distributed, following a power-law of exponent β.

To conclude on this analysis of moment and length, we note that a relation between the

moment of an event M and the length Nc exists and is shown in Fig. 6. For Nc larger than

10−20, the moment M is linear in Nc. This leads to an exponent α = 1 for the law M ≃ Nα
c

valid at large Nc.

Using the relation between M and Nc, we can now verify the relation obtained in eq.

3. We found β ≃ 1.55, α ≃ 1, thus 1 + (β − 1)/α ≃ 1.55 ± 0.06 that is in nearly perfect

agreement with the exponent 1 +B = 1.56± 0.1 obtained from the GR law.

To understand what controls the B-value, we have to understand what sets the value of

α and β. α = 1 implies that the moment is proportional to Nc. This is a simple consequence

of the slip of each slider which is bounded, and more precisely which fluctuates around a

value roughly independent of Nc. This property is tested in Fig. 7 where events involving

different numbers of sliders are plotted and no variations with Nc are observed.

To understand the value of β, we have to consider the condition for an event to stop.

As discussed during the analysis of the stress profile, an event stops the stress minus its

maximum value reaches sufficiently negative values for a sufficient number of sliders. If
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FIG. 2: Moment M as a function of time of earthquake for the solution of the BK model with

N = 800, v0 = 10−6, δ = 10−3, α = 1, and k2 = 9. Note both the existence of small events involving

only one mass and with identical value of the moment (slightly smaller than 10−4) together with

events of moment that widely varies.
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FIG. 3: Distribution of the moment M for the BK model, with N = 800, vo = 10−6, δ = 10−3.

For M between 0.5 and 113, a best fit leads to a power-law exponent 1+B = 1.56± 0.1, indicated

here as a straight line.
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FIG. 4: For the BK model, example of fields corresponding to an event involving N = 95 sliders.

Top: stress profile before the event, i.e. value of Si minus its maximum value as a function of i the

index of the 800 masses. The black square indicates the first moving mass (epicenter of position

noted i0). Middle: total slip as function of the position from the epicenter (i − i0) for the event

caused by the stress profile in the top figure. Bottom: zoom on the stress profile (same data as top

figure) as function of the position from the epicenter (i − i0). Note the initial phase for i smaller

than 20 where Si remains very close to its maximum.

we assume that Si is a random walk, the probability to reach a given value for the first

time after Nc steps is a power law which, if the steps of the random walks are uncorrelated,

satisfies P (Nc) ≃ N
−3/2
c [9]. We thus obtain from this argument an explanation for the value

β = 1.55± 0.06. The length of the EQ is N = Ni +Nc, where Ni does not fluctuate much

whereas Nc is determined by the random walk behavior of the stress profile. Consequently

the distribution of Nc is a power-law with exponent −3/2. We can verify that Si behaves

as a random walk by calculating the power spectrum density of its spatial gradient, see Fig.

8. The spectrum tends to a non zero constant at small wavevector K which implies that at

large scale, Si is indeed a random walk with uncorrelated increments.
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FIG. 5: Distribution of size of earthquakes P (N) for N ≥ 30 with in blue: total length N , in red:

length of initial domain Ni and in black the length of the second part of the EQ: Nc = N − Ni.

The black straight line indicates the power-law with exponent −β = −1.55 ± 0.06, obtained by a

best fit for 23 ≤ Nc ≤ 140 and the red straight line indicates slope −5.6.

In summary, our results on the BK model show that large enough events contain a large

domain of size Nc which is randomly distributed as N
−3/2
c and reach slip values independent

of Nc. These two properties constrain the B-value to 3/2.

B. Coulomb friction model

We now consider a modified version of the Burridge-Knopoff model, in which the friction

force can take only two values: the static friction force Fs or the dynamical friction force Fd.

Both values are constant so that we name this model a Coulomb friction model. This model

had been considered in the past [12] to study the effective friction force of an ensemble of

sliders. Here we focus on the distribution of magnitude. We consider the case Fd = 0 and

choose the same values as in the standard BK model, N = 800, v0 = 10−6, k1 = 1.

Despite the simplicity of this model, its solutions also display chaotic properties. We

observe a wide distribution of the moment released at each eventM =
∑

i ∆xi. Interestingly,
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FIG. 6: M vs Nc for events simulated by the BK model. Blue dots are individual events. The

black curve is the moment M averaged over events at fixed value of Nc. Note the linear trend for

Nc large enough.

these distributions display a power law behavior P ∝ M−(1+B), and the exponent B varies

with k2 (Fig. 9).

We also observe a wide distribution of the number of masses involved in each event N .

As for the distributions of the moment, they display a power-law behavior P ∝ N−β, and

the exponent β varies with k2, see fig. 10.

In line with what we did on the standard BK model, we calculate the value of ⟨M⟩N where

the average is taken at fixed value of N . At intermediate value of N a power-law behavior

⟨M⟩N ∝ Nα emerges and again the exponent α depends on the value of k2. Compared to our

analysis of the standard BK model, we consider here the total length of each event. Indeed,

for the events obtained for the Coulomb friction model, the initial phase observed in the

standard BK model is not present. As a result, our analysis does not require to remove the

length of the initial phase of the earthquake in order to estimate the length of the critical

zone. The argument is thus simpler for the Coulomb friction model.

This is also confirmed by analysing the stress profile and its relation with the slip dis-
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FIG. 7: Slip as a function of the mass position normalized by the total number of masses involved

in the event. Colors stand for different number of masses. Blue between 80 and 100; Green between

100 and 130; Red between 130 and 170 and Black above 170.

tribution. Unlike the standard BK model, the stress profile does not display plateau near

its maximum, but rather isolated positions where the stress is close to its maximum. We

observed that for events that involve a sufficient number of masses, there exists a simple

effective linear relation between Si and ∆xi, so that the slip profiles correspond to excursions

above a fixed threshold of the stress field.

Considering values ofM andN for which the power-law behavior ⟨M⟩N ∝ Nα is observed,

we calculate the values of the exponents α, β, B. They are displayed in Fig. 12 together

with the prediction for the B−value: B = (β − 1)/α. The prediction is verified.

To progress in the understanding of the B−value, we need to understand what sets the

value of α and β. As the slip is roughly proportional to the stress profile, we can equivalenty

consider the stress profile. We thus calculate the power spectrum density of the spatial

gradient of the stress profile, which is displayed in Fig. 13. At small wavevector,K < 0.1, the

spectrum displays a power-law behavior, that we write K1−2H . We associate this behavior

to the one of a fractional Brownian motion (fBm) of Hurst exponent H [13, 14]. Stated
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FIG. 8: Power spectrum density of the spatial gradient of the stress profile before an event measured

in the second part of the event and for events larger than N = 64 (blue) or N = 128 (red). The

PSD tend to a non zero value at vanishing wave vector K.
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FIG. 10: Probability density function (PDF) of the event size N for the solution of the Coulomb

friction model and varying k2, same parameters and color code as in Fig. 9.
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FIG. 11: Moment M averaged over events of same size N for the solution of the Coulomb friction

model and varying k2, same parameters and color code as in Fig. 9.

differently, the large scales of the stress profile are not trajectories of a standard Brownian

motion as in the case of the BK model, but are excursions of a fBm. Because the slip is

proportional to the stress for the solutions of this model, we can use properties of the fBm to

predict the ones of the earthquake. Return times of a fBm are distributed as P (N) = NH−2
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Continuous lines are the predictions obtained from the fBm model (α = 1 + H, β = 2 − H,

1 + B = 1 + (1−H)/(1 +H)) with H obtained by fitting the large scales of the spectrum of the

gradient of the stress in fig. 13.
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15



Stress

Stress

Slip

Dynamical Laws

Mechanical Laws

1

2

Position

Position

Position

Hypocenter

FIG. 14: The two steps of evolution of the stress and the slip profile. First: the stress profile

determines what the slip is. Second: the slip profile changes the value of the stress. The iteration

of this dynamics leads to a fixed point characterized by statistically stationnary scale invariant

properties.

[15] so that the exponent for the EQ size is β = 2−H. Typical excursions of a fBm of size

N are of size NH so that the area covered by a fBm excursion scales as N1+H . This implies

that the moment-size relation exponent is α = 1 +H. We thus obtain a prediction for the

B-value using the results of equation 3 as 1 + B = 1 + 1−H
1+H

. This prediction, together with

α = 1 +H and β = 2−H are displayed as continuous lines in fig. 13, using H fitted from

the spectrum of the gradient of the stress profile. A good agreement is found between the

predictions and the results.

Let us sum up on the behavior of the Coulomb friction model. The large scales of the

stress profile behave as a fractional Brownian motion of Hurst exponent H. The EQ slips

are proportional to excursions of this fBm. This analogy between fBm and earthquake

properties allows us to predict the values of the exponents α, β and B as a function of one

single parameter H, the Hurst exponent of the fBm.
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C. Discussion

In these earthquake models, the underlying dynamics can be described in a simpler

manner by considering the coupled dynamics of two fields. The first field is the stress before

an event and the second field is the total slip during an event. We have identified that the

stress field has scale-invariant properties, at least for a certain regime of EQ size. This stress

field controls the dynamics of the EQ and the value of the slip of each event. In particular

the distributions of the lengths of the events also display power-law behaviors that result

from the properties of the stress field. Together with the moment dependence on length,

and using the relation between exponents given by Eq. (3), a prediction for the B-value

is obtained. Essentially, the GR law finds its origin in the scale invariance of the stress profile.

What else can we learn from this approach?

Result 1 (R1)- It is generic and can be applied to other models of EQ (or of similar

effects such as avalanches) in order to understand the origin of the self-similar behaviors.

R2- It provides a scheme to build other models of EQ. Such models would involve two

steps, as sketched in Fig. 14.

First the stress field sets the slip of the following event. In principle the stress field

together with the dynamical equations of continuum mechanics allow to calculate the slip.

Our approach simplifies drastically the calculation of the slip. Other models of relation

from stress to slip can be tested. We have for instance in mind a condition for the event to

stop that would depend on the length of the event. Different conditions may lead to models

with different properties but we anticipate the existence of universality classes displaying the

same statistical behavior and containing groups of different conditions for the termination

of the EQ.

Second, the slip pattern modifies the value of the stress after the event. In principle the

slip spatial distribution together with the rules of equilibrium for continuum mechanics allow

to calculate the change of stress due to an EQ. In the models here, the change is simply

related to the motion of the sliders, through eq. 4. Other rules may also be introduced to

describe for instance the effect of material heterogeneity along the fault.
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Using this methodology, a variety of models can be built and their properties be studied

and compared to natural datas. Again, as discussed for the EQ termination, we expect a

limited number of asymptotic behaviors toward which will converge models having different

rules for the EQ dynamics but belonging to the same universality class. We note that it

is not uncommon in physics that different rules at small scales (here the scale of a slider)

generate the same statistical behavior at large scales and at long time.

R3- By analyzing separately these two steps, some understanding of their properties can

be achieved:

The stress to slip problem can be seen as a non standard application of random curves.

The stress profile, a possibly correlated random trajectory defines through possibly nonlinear

rules the slip distribution which is also a random curve. This situation falls into the problem

of random polymers: in the models studied here, a Brownian trajectory defines the stress

field and we are interested in the excursion of the slip which is a trajectory dependent on the

Brownian. There exist some results for such problems which makes this analogy promising

for both statistical mechanics and EQ modelling.

Here we reach conclusions by using the properties of the return time of a Brownian or

fractional Brownian motion. However, more complicated situations may occur, for instance

if the stress is a Brownian motion while the slip is (case a) the integral of this Brownian

motion, or (case b) an integral of a function, f , of this Brownian motion. For case a, we

expect that properties of the random acceleration process will be recovered. For case b,

the law of the return time of such processes is being studied by Q. Berger et al [10]. For a

Brownian motion, the distribution of the return length is shown to be a power law as well

as the distribution of the moment (the area below the curve). The value of the exponents

depend only on the behavior of the function f for large values of its argument. In the case

of a fractional Brownian motion, these statistical properties are largely unknown.

The second step in the modeling, from slip to stress field, is obviously crucial here. We

still have little result on it: the stress field is, at least at large scale, self-similar but we do

not know what determines its statistical properties, such as the Hurst exponent. This part

of the problem belongs to the class of the evolution of random interfaces. The stress field

changes at each event because of the EQ that decreases the stress of the moving sites and

increases the one of the neighbors. Yet, understanding how and when such a process lead
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to a self-similar stress profile remains a challenge. For this question also very little is known

and it is possible that new classes of random interfaces will be identified. Recent work with

N. Pétrélis confirms the validity of this scenario and shows that the random addition of

structures of variable size lead to self-affine interfaces.

It is likely that several properties results from the existence of large events with a power

law size distribution. For instance, in the solutions of the BK model, masses that participate

to a large events are more likely to have experienced a large event during their most recent

motion. Large events, even though less likely to occur than smaller events, have thus a

strong effect and affect the stress profile over long durations (i.e. on many iterations of the

process). Whether this remains true in other models is an open question.

We believe that these two new classes of random trajectories and random interfaces can

be of interest for probabilists and theoretical results are definitely lacking.

III. TWO DIMENSIONAL GEOMETRY

The one-dimensional nature of the models considered so far makes them difficult to

compare with natural data. With the will to make use of what we learned so far, we now

turn to two-dimensional (2D) systems and we will follow the approach presented in the

former discussion. First we build a model (R2) and then analyse it (R3).

We could have considered an extension to 2D of the BK models that we considered in the

former section. We did not proceed as such but instead built a simpler model using the 2

steps as described in Fig. 14. Doing so, we will show that this 2 steps mechanism is indeed

capable of generating EQ-like series of events. In addition, its simplicity facilitates both its

analysis and the generation of a sufficient quantity of data to obtain statistical convergence

of the fluctuating quantities.

Description of the model

We consider a 2D geometry with Nt sites located on a square pattern. Between events,

the stress at each site Si increases linearly in time at a rate vo. When the stress at one

site, say i0, reaches a threshold value, Sc, an earthquake is initiated. Let D1 be a constant

stress drop; we identify sites which stress is larger than Sc − D1. All these sites can be
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classified into clusters made of neighboring sites, see Fig. 17 for example of stress fields.

Only the sites which belong to the same cluster as site i0 participate in the earthquake. Let

N be the number of sites in this cluster. In line with the seismological observations [2], we

assume that their total motion during the earthquake is proportional to
√
N which results

in a moment M = N3/2 and a magnitude m = log(M) = 3 log (N)/2.

The events are considered to be instantaneous compared to the inverse of the loading rate

1/v0. After an event, the stresses of the moving sites are set to new values equal to Sc minus

a stress drop Dd equal to a constant D2 plus a random term D3. The system has returned

to its initial stage where the sites are at rest and the stress increases linearly in time.

A well-studied model in 2D and also based on simple dynamical rules is the OFC model

[11]. Moving sites share their excess stress to neighbours and this leads to cascading events.

This model has a quite rich behavior. It has now been pointed out that the frontiers of the

system play an important role and in particular control the dynamics. Such systems are

thus strongly inhomogeneous [3].

The model that we consider here use a random term for the stress drop. A random field is

calculated with values of uniform probability between 0 and D3. The field is Fourier trans-

formed in space, filtered by multiplication with a kernel K−sn with K the wavevector and

then inversed Fourier transformed. This procedure generates a correlated random surface

with Hurst exponent Hn = sn−1 [16]. The random field is calculated over the whole Nt sites

but only the values corresponding to the moving sites are used. To save computational time,

we perform this procedure only for events of size larger than 5, otherwise an uncorrelated

random field is used with values uniformly chosen at random between 0 and D3. For sn = 0,

this procedure generates an uncorrelated random field (white noise), whereas for positive sn,

correlated fields are generated. The case sn = 1, corresponding to independent increments

is named Gaussian free field [22]. In this model, the interaction between sites takes place

when sites which belong to the same cluster move and the value of the stress of these sites

is reduced by a uniform value and a correlated one for sn ̸= 0.

Let us now sum up the three steps of this model:

1) Identify the site, say i0 with largest value of stress, say S0 and add a uniform stress 1−S0

to all the sites.

2) Find the clusters of sites which stress is larger than the threshold.

3) Change the value of the stress of the sites that belong to the same cluster as i0.
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Numerical results

Without loss of generality we set v0 = 1, Sc = 1, D1 = 1. Numerical simulations are

performed for 602 ≤ Nt ≤ 6002. We considered a constant field as initial condition or a

randomly uncorrelated one. Statistical properties are calculated after a large enough initial

transient so that they do not depend on the initial state. If D2 is large enough compared to

D1, the system displays earthquake-like behavior with events that occur randomly in time

and of random magnitude. If D3 is small, the distribution of the moment is a power-law, like

the Gutenberg-Richter law. More precisely, the PDF P (N) displays a cut-off for N ≥ Nc

and Nc increases either when D3 decreases or when Nt increases. We also note that at fixed

Nt, for D3 smaller than a threshold value, D3m, the system shows nearly periodic behavior

and looses the GR-like behavior. Our simulations show that D3m decreases with Nt. To sum

up, for large Nt, a GR law is observed provided D3 ≪ D1 ≪ D2, i.e. the stress drop is large

and its fluctuations are small compared to the threshold stress above which earthquakes

are initiated. The inequality D1 ≪ D2 implies that a long duration is necessary before a

second event occurs at the same location and D3 ≪ D1 states that the stress drop after an

earthquake displays small spatial variations compared to the stress threshold, itself smaller

than the stress drop. These assumptions appear reasonable in the context of natural datas.

Nonetheless, our goal here is not to build a model encompassing every process occurring

in nature. Rather, we search for simplicity instead and retain only the most essential effects.

We shall see that the few effects that we keep are sufficient to explain both the GR law and

Omori’s law. We expect that more sophisticated models would also display these behaviors

but that their origin will be the same as in the model considered here. Similarly, the ordering

in the noise amplitude that is assumed here, D3 ≪ D1 ≪ D2, may be released in other more

sophisticated models.

Unless otherwise stated, we will discuss results obtained with D2 = 10, D3 = 0.1, Nt =

4002, sn = 0 or sn = 1.5. We display in Fig. 15, time series of the size of the events N(t).

Large fluctuations are observed together with a clustering in time of the events that appears

stronger for sn = 1.5 than for sn = 0.

The size of the events are distributed as a power-law, P (N) ≃ N−β, see Fig.16 with

exponent β that depends on sn. For D3 = 0.1 and sn = 0, a best-fit for 3 ≤ N ≤ 80 leads

to β = 2.046 ± 0.015. It decreases to β = 1.93 ± 0.01 for sn = 1 and β = 1.63 ± 0.01 for
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sn = 1.5. Results similar to the ones of sn = 0 are obtained for small positive sn = 0.5 or

negative sn = −1. In these models, the relation between size and moment is taken to be

M = N3/2, so that the B-values predicted by eq. 3, are B = 2(β− 1)/3 and are respectively

equal to 0.697, 0.62, 0.42.

For what concerns the clustering of the events, we perform the following analysis. We

consider events of size larger than 100, that we consider to be mainshocks. We then calculate

the number of events per unit of time as a function of the time before or after the mainshock.

It is displayed in Fig. 18 for sn = 0 and sn = 1.5. If we consider all events, an increase

of EQ activity close to the mainshock is only visible for sn = 1.5. If we restrict to events

that are located at a distance smaller than 50 grid steps from the mainshock, then even the

sn = 0 case displays an increase of activity.

Measuring the unit of time with ⟨T ⟩, the mean duration between EQ, we observe that

the larger sn, the stronger is the increase of activity in the vicinity of the mainshocks, see

Fig. 19. Both an Omori law (after the mainshock) and an inverse Omori law (before the

mainshock) are visible. Displayed as a power-law in Fig. 20, different behaviors are visible

depending on the duration to the mainshock. For each value of sn, part of the data can be

fitted using the standard Omori law, dn
dt

∝ (t+ c)−1 but it is valid only on a restricted time

interval so that the inverse-time expression provided by the Omori law is only a fit on part

of the data.

Discussion

1- The stress as a random surface and results from percolation theory

The observed behavior can be understood by an analysis of the spatial distribution of the

stress. The stress field is a surface and events involve clusters of sites for which the stress is

above a threshold value. This problem is classical in statistical physics as it covers a variety

of analogous situations [17]. The stress can be considered as a topography that is filled with

water until a given altitude and we are interested in the size of the islands or continents

[19]. If the comparison of the stress with a fixed threshold amounts to define whether a site

is occupied or empty, then the problem of percolation is recovered [20].

Indeed, random surfaces and the properties of clusters above a cut belong to the univer-
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sality class of percolation, possibly over a correlated disorder. More precisely, provided some

mild hypothesis on the random surface, there exists a threshold at which the system is criti-

cal and displays properties alike to the ones of percolation. In particular, close to the critical

point, cluster sizes are distributed following a power-law with exponent τF , so-called Fisher

exponent. If the heights h of the surface at different positions are uncorrelated, standard

percolation takes place and τF = 187/91 [20].

If the height is Gaussian and correlated as ⟨(h(x+R)−h(x))2⟩1/2 = RH , then correlated

percolation takes place. We note that another way to quantify correlations is to use the the

power spectrum density (PSD) of the field h. In 2D the PSD behaves as S(K) ∝ K−2−2H .

It has been shown [17, 18] that for H ≤ −3/4, correlations do not affect the critical behavior

that remains identical to the one of uncorrelated percolation. For −3/4 ≤ H, the critical

exponents vary with H.

We have calculated the spectrum of the stress field, see Fig. 22. We observe for the set

of parameters considered here (D1 = 1, D2 = 10, D3 = 0.1, Nt = 4002) that the spectrum

behavior depends on sn. For sn = 1.5, i.e. Hn = sn − 1 = 0.5, we have a clear power-law

behavior of exponent around −1.35. For sn = 1, Hn = 0, a power law of exponent closer

to −1 is observed on a slightly narrower range of K. For sn = 0, any power-law behavior

would be restricted to a quite narrow range, so that it appears more accurate to describe

the behavior of the spectrum as asymptotically constant at small and large K and gently

transitioning between the two values at intermediate K. We stress that the exponent of

the spectrum, equal to −2− 2H with H the Hurst exponent of the surface, varies with the

exponent sn of the noise term, but in a non trivial manner. For the values reported here,

we have H ≃ −1, −0.5 and −0.32 for respectively Hn = −1, 0 and 0.5. Indeed the stress

field results from the repeated addition of noise terms of fluctuating size so that it is not

surprising that its behavior differs from the one of a single stress drop.

2- The Gutenberg-Richter law and the b-value

The observed properties can be understood by considering that the stress field has the

same properties as a random field with an Hurst exponent H that depends on sn. As a

consequence, we expect that the distribution of size of clusters above a threshold follows a

power-law of exponent τF . This is in agreement with the exponent of the size distribution
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of the events for small sn as we have measured β = 2.046 ± 0.015 for sn = 0, very close

to Fisher prediction for uncorrelated percolation τf = 187/91 ≃ 2.055 . For positive sn a

smaller exponent is measured. It can be ascribed to correlations in the stress field, so that

predictions from uncorrelated random percolation do not apply. If the stress surface has

strong correlations, namely H > −3/4, the analogy with correlated percolation predicts a

decrease in the B-value. This is indeed observed in our model as B = 0.697 for H = −1

(sn = 0) and the same value is obtained within error bars for sn = −1 and sn = 0.5, thus with

moderate correlations. Increasing the correlation and for H above H = −3/4, we measure

as expected a decrease in B since B = 0.62 for H = −0.5 and B = 0.42 for H = −0.32. We

also note that the measured exponent can depend on the noise amplitude. Indeed, at larger

noise a peak at large N appears which in turn modifies the slope of the PDF of N even

at smaller value. This, together with finite size effect, may lead to an apparent exponent

different from the true power-law behavior.

Written in term of b-values, this analysis predicts b = 96/91 ≃ 1.05 and B = 64/91 ≃ 0.70

for weakly correlated stress surfaces. If the stress surface has strong correlation, we expect

a decrease in these values. This is compatible with most reported natural values [2, 3].

3- Existence of aftershocks and the Omori law

Aftershocks and foreshocks are also explained by the spatial structure of the stress field.

Correlated random surfaces display level sets that are spatially correlated. More precisely, if

a domain has a large value of stress, other clusters with large stress are likely to be located

in its vicinity. This property of random surface has, to the best of our knowledge, not been

described. We have simulated random surfaces with various exponents H by multiplication

in Fourier space with a well-chosen power-law [16]. Examples are displayed in Fig. 23 where

the correlated random surface displays clustering in space of its level set. To quantify this

effect, we have simulated a large number of random surfaces. For each surface, we identify

the sites which value is above a given threshold. The value of the threshold sets the value

of the probability p of occupation of a site in the framework of percolation theory. We then

identify the clusters of connected sites. We next calculate the distance d between the largest

cluster and any other cluster. The distribution of the distance is a characteristic of the

spatial organization of the clusters. It is displayed in Fig. 24 for different values of p and H.
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Compared to uncorrelated surfaces, the correlations induce a non homogeneous localization

of clusters with respect to the position of a given cluster.

We conclude that clustering in space of individual clusters with large stress is a con-

sequence of the geometrical properties of the stress field that behaves at large scale as a

correlated random surface. This provides an explanation for the existence of aftershocks:

close to a mainshock, there exist clusters where stress is large and close to initiate an EQ.

This mechanism is purely geometrical and does not require additional phenomena (stress

transfer, pore pressure dynamics, viscosity....).

For what concerns the rate of aftershocks, as mentionned in the section analysis of the

results, the Omori law is only a fit on part of the time series. We plan to investigate further

if this can be deduced from the properties of clusters in percolation theory.

We ended section II on the 1D models by mentioning the need for additional studies on

these new problems of random curves and random interfaces. The same remarks apply for

the 2D case. Statistical properties of random surfaces built upon a 2D random stress profile

(the 2D version of the polymer approach) and properties of random 2D dynamically evolving

interfaces are topics that have called for very little attention.

IV. DISCUSSION

A. Comparison with theoretical results

We compare the results presented here with some previous publications. While the rela-

tion between exponents Eq. 3 is mentioned in [21], it has not been validated against existing

datas. Similar relations have also been used to assess scaling laws in the EQ community,

see for instance [23]. The generalization to the case of a self-similar joint distribution of

moment and size, and the application to the case where a different quantity than the size is

considered are both new results.

Relating the GR law to some fault fractal properties has been proposed in [24] or [25].

In the latter, a field property is assumed to be a fractal, and statistical properties of their

level set are used. Recent tests using data in boreholes are presented in [26] where the self

similar nature of the elastic properties of the fault material are considered. Our work, in

contrast, identifies the origin of the self-similar property: it is a consequence of the repeted
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effects of all former events. Our results also include a prediction for the values of several

exponents including the b-value. These exponents depend on the field similarity exponent,

as is shown by the analogy with percolation.

It has been proposed that the EQ belong to the class of self organized critical systems

(SOC). The idea is that such systems evolve spontaneously towards a critical point [27].

The models presented in this article all require either fine tuning of their parameters (for

the 1D model such as the standard BK model) or a large difference of amplitude between

the parameter values (for the 2D model). If other parameters are selected, the GR law is

not observed. In that sense, these models are not spontaneously evolving towards a critical

point.

We also note that self-similarity of the stress (long range correlation or, similarly, power-

law behavior of its power spectrum) do not necessarily require to be in the vicinity of a

critical point. Processes based on a random walk or a fractional random walk, can result in

a power-law behavior in 1D and the appearance of such random walks does not require a

critical phenomenon. This is the case in the 1D models studied in section II.

In the model in 2D, the percolation critical point plays a role and selects the exponent of

the distribution of the cluster size. This is true for the regime considered here with negative

H (Hurst exponent of the stress field). For positive H, the percolation transition disappears

and yet the cluster sizes also follow a power law distribution [19]. This is another example

of system in which a power-law behavior occurs on an extended domain of parameters and

not only at a critical transition.

Based upon the idea of SOC, a model, named OFC, was studied in [11]. As our model

in 2D, it is a cellular automaton with simple dynamical rules. It has been shown that the

properties of this model are in part controlled by the location of the earthquake epicenter [3].

They nucleate close to the system boundaries and changing the control parameters modifies

the extent of their spatial localization. The lack of homogeneity due to the specific role of

the boundaries renders it difficult to analyse in the framework presented in this article.

Regarding aftershocks, our study shows that the self-affine property of the spatial dis-

tribution of the stress is sufficient to explain the existence of aftershocks. Obviously, other

effects prone to trigger aftershocks could also be involved in nature and contribute to the

aftershocks sequences. We note that the simpler version of the BK models in 1D and 2D do

not display aftershock sequences, see discussion in [3]. In a 2D model with heterogeneous
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friction properties, a viscoelastic coupling to the asthenosphere would create aftershocks that

verify the Omori law [31]. More recently, a model of fault based on the coupling between a

velocity weakening elastic layer and a viscoelastic velocity strengthening layer is able to re-

cover statistical properties of aftershocks as observed in nature [32]. It would be interesting

to investigate in these models whether the stress spatial structure becomes self-affine when

the viscous effects play a role which would provide a simple explanation for the origin of the

aftershocks.

B. Comparison with natural datas

There exists only few studies on the stress distribution in nature. Some studies have

shown that the topography of faults are self-affine with their roughness associated to an

Hurst exponent of order 0.2 to 0.8 [28]. Interestingly, evidence suggests that the slip itself

scales with a Hurst exponent close to 0.6. Using a 3D fault numerical model it was predicted

that the frictional stress field scales with an Hurst exponent of −0.4 [29]. In line with our

description of slip and stress, several fields in nature display large scale behaviors that are

self-similar.

For what concerns the b-value, we predict, b = 96/91 ≃ 1.05 for weakly correlated stress

field and a smaller one for strong correlation, which is compatible with most reported natural

values [2, 3]. Some studies report a variation of b with properties of the faults, in particular

on the nature of the fault and thus on its stress [33], [34]. Our work provides an explanation

for these effects: fault properties influence the self-affine behavior of the stress field or the

moment-size relationship. These properties, in turn, modify the b-value. We add that in a

recent experiment of sheared granular matter, the authors report B = 0.71 ± 0.01 for the

released energy during the events [30], which is in perfect agreement with our prediction

B = 64/91 ≃ 0.70.

We hope that further studies on the stress in the vicinity of a fault will investigate the

possibility of a self-affine behavior. It would also be interesting to analyse natural datas in

terms of level sets of random surfaces. In particular some specific properties of clusters can

be tested (fractal dimension, typical shape...). The spatial clustering of events should also

be compared to the one of level sets of random surfaces and indicators of proximity of a

large event might be obtained in this framework.
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FIG. 15: Time series of EQ size N(t) for the 2D model for D1 = 1, D2 = 10, D3 = 0.1, Nt = 4002

and top sn = 0, bottom sn = 1.5.
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[10] Q. Berger and L. Béthencourt, An application of Sparre Andersen’s fluctuation theorem for

exchangeable and sign-invariant random variables, arxiv.org/abs/2304.09031. Q. Berger, L.
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FIG. 20: Log-log plot of the same datas as in fig. 19, for (top) aftershocks, and (bottom) foreshocks.
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FIG. 21: Inverse of the averaged number of events per unit of time as a function of duration to a

main event of size N ≥ 100. Only events of size larger than 10 and with epicenter located from the

main shock at a distance smaller than 50 are considered. Time is measured in unit of the mean

interevent duration. Red: sn = 0, green sn = 1 and blue: sn = 1.5. Same datas as in fig. 19.

Straight lines are guide for the eyes and correspond to the Omori law.
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FIG. 22: Power spectrum density of the stress field S(K) for red sn = 0, green sn = 1, blue

sn = 1.5.
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FIG. 23: Random surfaces calculated with from top to bottom sn = 0, sn = 1 and sn = 1.5. Left:

value of the field as a function of space. Right: sites with value higher than a fixed threshold so

that 0.3 of the sites are above the threshold. Note that the larger sn the more localized in space

are the clusters.
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FIG. 24: Probability density function of the distance d between the largest cluster and the other

clusters for a random surface with exponent sn = 0 in red, sn = 1 in green and sn = 1.5 in blue.

The fraction of sites belonging to clusters increases with the line thickness and is 0.3, 0.5 and 0.55.

The total number of sites is 4002.
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