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Confidence control for efficient behaviour in
dynamic environments

Tarryn Balsdon 1,2 & Marios G. Philiastides 1

Signatures of confidence emerge during decision-making, implying con-
fidencemaybeof functional importance todecision processes themselves.We
formulate an extension of sequential sampling models of decision-making in
which confidence is used online to actively moderate the quality and quantity
of evidence accumulated for decisions. The benefit of this model is that it can
respond to dynamic changes in sensory evidence quality. We highlight this
feature by designing a dynamic sensory environment where evidence quality
can be smoothly adapted within the timeframe of a single decision. Ourmodel
with confidence control offers a superior description of human behaviour in
this environment, compared to sequential sampling models without con-
fidence control. Using multivariate decoding of electroencephalography
(EEG), we uncover EEG correlates of the model’s latent processes, and show
stronger EEG-derived confidence control is associated with faster, more
accurate decisions. These results support a neurobiologically plausible fra-
mework featuring confidence as an active control mechanism for improving
behavioural efficiency.

Feelings of confidence in decision accuracy are thought to reflect a
metacognitive evaluation of the quality and quantity of evidence
underlying decisions1,2. Confidence has been extensively studied as a
post-decision reflection3 which is important for communicating about
past decisions4 and improving future decisions5–7. However, there is
increasing experimental support for signatures of confidence emer-
ging online, during decision-making8–11, suggesting confidence could
serve an active role prior to decision commitment. Indeed, there is a
growing endorsement for a role of confidence in adjudicating how
much evidence is required to commit to decisions12–15, consistent with
earlier proposals implicating a belief about obtaining a reward (cost-
benefit trade-off16,17). Here, we test a framework in which confidence
does not only control the quantity of decision evidence, but is used to
actively improve evidence quality. Confidence thus manifests as a
central control mechanism formoderating behavioural efficiency, that
is, maximising precision given the constraints of time and effort.

We implement this role of online confidence in controlling the
quality and quantity of decision evidence using a double-integration
framework18,19. Dominant theories of decision formation rely on single-

integration frameworks, where decision evidence is accumulated over
time until a bound is reached20–22. With only a single stage of evidence
accumulation (single-integration framework), the relative (to the
starting point) placement of the bound is the only mechanism for
controlling behavioural efficiency. These bound adjustments, includ-
ing confidence-controlled variants12,13, have been previously used to
describe the speed-accuracy trade-off (SAT23) and decision urgency24

(in addition to evidence-boosting urgency signals25–27). Instead, in our
double-integration framework, the primary source of evidence accu-
mulation remains unbounded, with the bound placed on the evidence
re-integrated by a secondary accumulator. This secondary accumu-
lator has a “leaky memory” and uses this property to consider past
evidence in the accumulated signal, rather than just its current state.
Importantly, this property serves to modulate both the quality and
quantity of decision evidence, which here we implement as being
controlled by online confidence computed from the primary
accumulator.

The inclusion of a secondary accumulator in the double-
integration framework was motivated by its neurobiological
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plausibility: this secondary accumulation is proposed to take place at
the level of motor processes, to explain the build-up of motor activity
prior to decision commitment27–29, and evidence for a more active role
of these motor processes in decision-making30–33. In addition, the pri-
mary accumulator is left unbounded, to account for how neural sig-
natures of (primary) evidence accumulation can appear to terminate at
different bounds, depending on the quality of evidence34–36 and also
persist beyond decision commitment8,37,38. We have already shown
how controlling the “leaky memory” of the secondary accumulation
offers a better characterisation of SAT compared to bound
adjustments19, and how this provides a more holistic explanation of
observed electroencephalography18 (EEG). This framework has also
been used to explain partial electromyography activity profiles39. Here,
we seek to investigate the role of online confidence in controlling the
double-integration of evidence and demonstrate how perceptual,
inference, metacognitive, and motor functions – classically studied as
distinct processes – are effectively working in concert to dynamically
orchestrate efficient behaviour.

While the role of confidence in controlling decision processes
makes theoretical sense, most current computational models of
decision formation sufficiently explain behaviour without a promi-
nent need for confidence control. The role of online confidence
control, however, would be most pronounced in situations where
high-quality evidence may not last, and low-quality evidence may
improve (situations more like natural environments). In these sce-
narios, the observer would benefit from adapting decision processes
online17 to capitalise on early high-quality evidence, or down-weight
early low-quality evidence in case better evidence follows. While
previous experiments have manipulated the volatility of sensory
evidence across trials (via random variations of evidence quality40),
or created systematic but predictable changes in sensory evidence
quality within blocks of trials41, behaviour in these environments can

be explained by offline adaptations to sensory statistics as opposed
to online control.

Here, we designed a dynamic sensory environment in which evi-
dence changes in a systematic but unpredictable manner during the
course of individual decisions. In this context, efficient behaviour
requires online control of decision processes in response to tempo-
rally evolving stimulus evidence. We show that a classic single-
integration model fails to capture human behaviour in this environ-
ment. In contrast, we show that our double-integration model with
confidence control can reliably capture behaviour and that the
dynamics of these two integration processes can be mapped onto
distinct spatiotemporal EEG signatures. Moreover, we show that
endogenous variability in a separate EEG-derived signature of con-
fidence control could be used to predict intraindividual behavioural
efficiency. Together, our findings offer evidence in support of our
double-integration framework and the role of online confidence con-
trol in arbitrating behavioural efficiency.

Results
Participants were asked to perform a fine-grained left/right (from
vertical) direction discrimination of moving dot stimuli, and rate their
confidence that they were correct (Fig. 1a). The stimuli provided
dynamic evidence for the decision, where the quality of the sensory
evidence could increase or decrease within the first second of stimulus
presentation (within the timeframe of individual decisions). The
quality of the sensory evidence was controlled by manipulating the
mean and variance of the circular Gaussian (von Mises) distributions
from which the dot directions were sampled. There were nine condi-
tions (Fig. 1b): two with increasing evidence quality (increasing the
mean or decreasing the variance); two with decreasing evidence
quality (decreasing mean or increasing variance); three with stable
evidence quality (low/moderate/high); and two with moderate
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Fig. 1 | Behaviour in a dynamic sensory environment. a On each trial, the
observer was presentedwith a display ofmoving dots, presenteduntil they entered
their response (up to 2 s). After 200ms, observers were cued tomake a confidence
rating, entered after unlimited time by holding a response key tomove the circular
marker around the annulus until it reached their desired confidence (thicker
annulus means higher confidence; it was possible to make more than one revolu-
tion to return to lower confidence). b The quality of the sensory evidence was
manipulated according to nine conditions created by adjusting the parameters of
the circular Gaussian (von Mises) distribution from which the dot directions were
sampled. The table to the left shows the parameter values in each condition: the
mean difference (Δ) from vertical (degrees) and the Kappa parameter, which con-
trols the inverse spread of the distribution (arrows highlight the change in terms of
evidence strength, which is also depicted to the right). In four conditions, the

evidence was systematically increased or decreased over the first second of sti-
mulus presentation (by increasing/decreasing the mean or the variance). In three
conditions, the evidence was completely stable. Two additional conditions of
moderate evidence were created by changing the mean and variance in opposite
directions. c Proportion correct by median response time in each condition (col-
ours correspond to conditions in b) averaged across 20 participants (100 trials per
participant), lines show 95% within-subjects confidence intervals. d Median con-
fidence in each condition, thin grey lines show individual participants, the thick red
line shows the average median confidence of incorrect trials, the black line shows
the average of all trials, and the shaded region shows 95% within-subjects con-
fidence (barely thicker than a black line). e Proportion correct bymedian response
time in each condition (colours correspond to conditions in (b) for individual
participants (100 trials per condition).
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evidence quality created by manipulating the mean and variance in
opposite directions (see “Methods” for details). Stimuli from these
conditions were presented in intermixed order, thereby limiting the
participants’ ability to predict how evidence quality might change
based on the initial evidence. Participants were instructed to respond
as quickly and accurately as possible while the stimulus presentation
continued until their response (or up to 2 s).

Decision processes are modulated by sensory evidence
dynamics
The average proportion correct by median response time (RT) is
plotted in Fig. 1c (individuals in Fig. 1e), showing participants make
fast, accurate responses to early high-quality evidence whilst also
slowing down when faced with early low-quality evidence. There was a
significant effect of stimulus condition on discrimination performance
(d’, repeated measures ANOVA, F(8152) = 47.83; p <0.001), response
times (F(8152) = 40.14; p <0.001), and confidence (Fig. 1d; F(8152) =
70.91;p <0.001). These effects are driven by differences betweenmost
pairs of conditions (paired t tests in Supplementary Tables S1–S3).

Double integration with online confidence control
We formulated an extension of the Leaky Integrating Thresholdmodel
(LIT19) to account for online modulation of decision processes via
metacognitive confidence control. The LIT model employs a double-
integration framework, which was initially motivated by neurobiolo-
gical plausibility: the primary accumulated evidence is re-integratedby
a secondary, motor accumulator, which triggers the behavioural
response at its own bound. This accounts for the build-up of motor
activity prior to decision commitment and formalises the more active
role of motor processes in decision-making30,31. This framework also
allows for flexible online modulation of the evidence accumulation
rate, via leakage in the motor accumulator. In previous work, we
showed how the model can capture changes in the speed-accuracy
trade-off via changes in a static leakage parameter18,19 (leakage was
constant within decisions; henceforth referred to as the static LIT

model). Here we formulate an extension by proposing that motor
leakage is controlled by confidence, which is computed online from
the (unbounded) primary accumulator. Critically, this means online
confidence control is implemented without circularity since the evi-
dence for confidence is decoupled from the final evidence for the
decision.

The double-integration framework is visualised in Fig. 2a, with
equations provided in the Methods. In the context of the current task,
the observer takes the perceptual evidence (v) as the log probability of
leftward vs rightward dot directions based on the presented stimulus.
This perceptual evidence is disrupted by additive Gaussian noise (ε),
with zero mean, and standard deviation modulated by a free para-
meter. The momentary perceptual evidence is integrated over time at
the primary accumulator (x). Accumulating the log probabilities
amounts to a sequential probability ratio test, the Bayes optimal task
solution. Classic single-integration models propose that a bound is
placed on this primary accumulated evidence to dictate the response.
This provides the optimal strategy in the case that the observer is
unaware of the noise (ε) affecting their representation of the decision
evidence. However,with access to some representation of uncertainty,
the observer could improve decision efficiency via a secondary evi-
dence integration process (Fig. 2c).

Online metacognitive confidence signals could provide this
representation of uncertainty. In this framework, confidence (c) is
computed based on the primary accumulated evidence and used to
moderate the leakage (α) in the secondary,motor accumulator (y). The
motor accumulator re-integrates the already integrated primary evi-
dence. This is an essential difference from previous models with
multiple stages, which suggest evidence is merely passed along with-
out re-integration. The leakage in the motor accumulator controls the
memory of previous integrated states and thus acts as a smoothing
filter (exponential moving average) to actively improve evidence
quality (smoothout temporally independent noise) at the same timeas
slowing down the rate at which the motor accumulated evidence
reaches the decision bound (b). In previous formulations (the static

C
o
n
fi
d
en
ce

Confidence

Stimulus

E
vi
d
en
ce

Evidence

P
ri
m
ar
y

Primary

M
o
to
r

MotorMotor

"Left" "Right"Response

b

b

0 01 12 2
t (s) t (s)

"Left" (correct) "Right" (error)

0.8 1 1.2
0.5

0.6

0.7

0.8

0.9

P
ro

po
rt

io
n 

co
rr

ec
t

Median response time (s)

a b c

b

Fig. 2 | Double integration framework. a Visualisation of the double-integration
model with confidence control. Noisy estimates of the stimulus evidence (v) are
integrated into the primary accumulator (x). Classic single-integration models
propose a bound set on the primary accumulator to determine the response. Here
the primary accumulator remains unbounded and informs both confidence (c) and
the secondary motor accumulator (y), which re-integrates the already integrated
evidence (x) with some leakage (α) controlled by confidence. The bound (b) on the
motor accumulator determines the response, while the primary accumulator could
continue to accumulate additional evidence, for example, to inform post-decision
confidence. b Example traces simulated from 20 example stimuli from the
decreasing variance condition. One stimulus is highlighted in bold, decision

commitment would have occurred at the black dot (continued in dashed line for
demonstration). The grey-shaded region on the confidence plot shows the leakage,
which is proportional to confidence greater than 0.5. The best-fitting model
incorporated a temporal decay in this lower confidence bound (red dashed line)
such that over time, leakage can increase based on lower confidence, simulating an
urgency effect. c Proportion correct by median response time simulated using the
double-integration framework (coloured lines corresponding to conditions in
Fig. 1b, inset, average of 1000 simulations), or terminating the decision with a
bound on the primary accumulator (black lines). Shaded regions illustrate the
additional benefit of double-integration with confidence control, which improves
both the speed and accuracy of decisions.
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LIT), this smoothing parameter was static over time, and we have
demonstrated how modulating the smoothing parameter across
speed-accuracy trade-off conditions can better account for behaviour
and neural signals (EEG) compared to modulating the bound18,19. With
confidence modulating the leakage in the motor accumulator, the
amount of smoothing now becomes a dynamic variable and corre-
sponds to current certainty conditioned on the provisional choices.
With low confidence, there is more smoothing, which slows down the
rate at which the motor evidence reaches the bound. As confidence
increases, smoothing decreases, and the motor evidence speeds
toward the bound. Figure 2b shows how these signals evolve during
decision-making for 20 example stimuli with increasing evidence
strength (decreasing variance condition). In this way, the double-
integration framework describes the flow of information over four
stages of processing (perceptual, inference, metacognitive, and
motor). However, it is elegant in requiring only one additional para-
meter compared to the traditional single-integration framework (see
“Methods” for details).

Importantly, this framework also has the potential to account for
post-decision confidence. Confidence is computed from the primary
accumulator, which remains unbounded and is allowed to persist past
the response. This captures how confidence can incorporate addi-
tional evidence accumulated after decision commitment (without
having to propose a double-bound, as in single-integration
frameworks37,38), although without specifying a read-out mechanism.
Moreover, the smoothing in the motor accumulator suggests the
decision is basedon evidenceaffectedby less noise thanwaspresent in
the primary accumulator, explaining how confidence judgements
reflect more intrinsic noise than decisions42 and accounting for the
dissociation between confidence and decision sensitivity8.

Computational evidence for online confidence control
Our main hypothesis was that incorporating confidence control in the
double-integration framework would provide a better description of
participant behaviour than the classic single-integration model. The
classic single-integration model dramatically failed to capture the
pattern of behaviour across intermixed stimulus conditions (Fig. 3a).
The model was unable to describe both how participants could be
faster and more accurate with early high-quality evidence while also
slowingdownwith early low-quality evidence. This failure is in part due
to the fact that the model has to implement a single decision bound
across the intermixed stimulus conditions, and in part due to con-
straining all models to use the evidence from the presented stimuli (a
constraint validated by a separate GLM analysis, Supplementary
Fig. S1). This second constraint can be somewhat ameliorated by
adding a bottom-up weighting of the evidence as it is accumulated
(Fig. 3b), to weaken the influence of more variable stimulus evidence
(an overcompensation in the computation of decision evidence; see
Eqs. 1–3, 11 in “Methods”). While this bottom-up weighting improves
the spread of response times across conditions, the model over-
estimates performance, and the additional parameter used to imple-
ment the weighting is not parsimonious (bottom-up weighting –

classic
P

ΔBIC =38:14; themodel also suffers a lack of neurobiological
plausibility; see Supplementary Fig. S6).

Similar model failures were also apparent for variants of the
single-integration models with time-varying bounds, and for a static
LIT model (as implemented in previous work18,19) where double-
integration occurswith a smoothing parameter that is stable over time
(see Supplementary Figs. S2, S6). Describing behaviour in this dynamic
sensory environment requires a model where decision processes can
react to the unpredictable transitions in the evidence quality online
(Supplementary Fig. S6), which is provided by the double-integration
model with online confidence control (Fig. 3c; and would otherwise
require effective stimulus-time-dependent bounds on the primary
evidence13,14, Supplementary Fig. S2).

Formal model comparison suggested the double-integration
model with online confidence control proved superior to the classic
model (Fig. 3c;

P
BICclassic =8:33 × 10

4,
P

BICconf control =8:25 × 10
4,P

ΔBIC =842:61, protected exceedance probability = 0.981; see Sup-
plementary Table S4 for a summary of parameters and fit statistics)
and the classic model with bottom-up weighting
(
P

BICbottom�up =8:34× 104,
P

ΔBIC =880:47, protected exceedance
probability = 0.989). The quality of the fit of the confidence control
model can be appreciated from the full accuracy-RT distributions
shown in Fig. 3d, as well as the comparison of individual simulated vs
participant proportion correct and response times in Fig. 3e.

As additional evidence of the superiority of the double-
integration framework, we were also able to predict post-decision
confidence ratings from the model fit only to choices and response
times, without additional parameters. For each trial, we simulated
1000 noisy instances of the double-integration process, using the
parameters fit to each participant, and took the median of the
instances consistent with the participant’s choice and response time
on that trial. This provided a trial-wise estimate of the dynamic primary
and motor accumulated evidence, as well as the online confidence
computed from the primary accumulator. The final state of themodel-
simulated online confidence for the chosen response predicted
observers’ post-decision confidence ratings with z =0.41 (average
Fisher transformed correlation; range, [0.0604, 0.5634]; t test against
0, t(18) = 12.425, p = 1:45 × 10�10) and captured the pattern of con-
fidence across decision accuracy and response time (Fig. 3f). This
validates the claim that post-decision confidence can be accounted for
within the double-integration framework, and shows the latent model
variable is related to participants’ explicitly reported confidence fol-
lowing their decisions.

Neural mechanisms of confidence control
The double-integration model was motivated by neurobiological
plausibility but provides a numerical description of the processes
underlying behaviour that is essentially agnostic to the neural
mechanisms implementing these processes. We hypothesised that the
primary accumulator corresponds to the accumulation of evidence in
the associative (parietal) cortex (as with single-integrationmodels43,44).
The motor accumulator we hypothesised would be realised by the
motor processes corresponding to the effector (in this case, the right
hand). We have already demonstrated that the relationship between
associative and motor electroencephalography (EEG) components in
speed-accuracy trade-off contexts maps well to the predictions of the
double-integration framework18. Here, we use a different analysis to
obtain appreciably similar results (Supplementary Fig. S4). As descri-
bed above, for each trial, we took traces of primary and motor evi-
dence accumulation based on the median of simulated traces that
were consistent with the choice and response time (out of 1000
simulated instances of double-integration using the participants’ fitted
parameters). Due to the overall ramp profile in both accumulators, the
raw primary and motor accumulators were strongly correlated (aver-
age Fisher transformed correlation z = 1.02) which would disrupt our
ability to isolate separable EEG components simultaneously associated
with these two accumulators. However, the derivatives (slopes, Fig. 4a)
show a weaker correlation (z =0.23), as they distinguish the linear vs
exponential profiles of the primary vs motor accumulators
(respectively).

We used a decoding analysis to trace the neural representation of
simulated primary and motor accumulated evidence traces: An inver-
ted multiple linear encoding model (based on multiple linear regres-
sion, see “Methods”), was used to maximally disambiguate the EEG
sources contributing to primary and motor accumulation. The inver-
ted encodingmodel identifiesweights on EEG sensors that best predict
the simulated evidence derivatives (both primary andmotor) from the
derivative of the EEG signal amplitude in the 400ms leading to the
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response (see “Methods”). The precision, assessed by taking the cor-
relation between the EEG predicted evidence and themodel simulated
evidence, was not high, but significantly above chance across partici-
pants (for the primary accumulator, mean z =0.024, t(18) = 5.90,
p = 1:10× 10�5; for the motor accumulator, mean z =0.086,
t(18) = 9.07, p = 2:47× 10�8). The overall shape of the EEG-predicted
evidence accumulation profiles and those described by the model are
well matched (Fig. 4a), supporting the existence of these two distinct
(linear vs quadratic) accumulation profiles in terms of neural
correlates.

The central purpose of this analysis was to assess the neurobio-
logical validity of the proposed computationalmechanisms, which can
be appreciated from the topography of the sensor weights shown in
Fig. 4b: the motor accumulator most strongly relies on EEG signals
over contralateralmotor cortex; the primary accumulator is associated
with topography comparable to a central parietal positivity signal,
previously associated with evidence accumulation44–46 (note that a
more symmetric topography emerges when performing the analysis

separately for each accumulator, Supplementary Fig. S4). We consider
this strong evidence for the neurobiological validity of the double-
integration framework, where the appropriate topography emerges
based on single-trial estimations of the two accumulation signals from
the computational model that is agnostic to the relevant neural
signatures.

We performed a separate analysis to decode post-decision con-
fidence ratings from the EEG signals following the perceptual decision.
The resulting topography is shown in Fig. 4c. We then applied these
sensor weights from decoding post-decision confidence to the signals
just prior to the response to generate an EEG-predicted confidence
signal during decision-making. The prediction of the computational
model is that these online confidence signals are used to control the
smoothing of the motor accumulator, such that increased confidence
decreases smoothing and drives faster accumulation to the motor
bound. Greater online confidence should, therefore, cause a faster
ramp-up in themotor accumulator signal. Indeed, we found significant
evidence that the EEG online confidence signals (based on decoding
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(fast RT vs slow RT, left) and correct/incorrect discrimination decisions (right).
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post-decision confidence judgements) granger-cause ramp-up in the
EEG motor accumulator signals (based on decoding the model pre-
dicted accumulation derivative) within each participant (leave-one-out
Granger Causality test; minimum χ2 = 477.46, all p <0.001, with best
fitting vector autoregressive models including lags between
272−784ms). These neural signals, therefore, offer additional support
for the hypothesis that confidence is used online to control decision
processes.

As an exploratory analysis, we examined how these neural sig-
natures of online confidence control relate to behavioural efficiency.
Wemeasured the endogenous variability of the strength of confidence
control using the within-trial correlation between the EEG-predicted
online confidence and the ramp-up of the EEG-predicted motor accu-
mulator, in the 200ms prior to the response (where the ramp is most
pronounced, prior towhich, the smaller rampmakes the analysismore
vulnerable to noise). Trials with stronger correlation predict tighter
confidence control, which is integral for behavioural efficiency under
the double-integration framework (Fig. 2c). We took a median split
based on the EEG-predicted confidence-motor correlation, within
subjects and within conditions. Trials with stronger EEG-predicted
confidence control showed faster, more accurate responses (Fig. 4d;
effect on discrimination performance: F(1,19) = 11.19, p = 0.0034; effect
on response time: F(1,19) = 12.15, p = 0.0025). EEG-predicted con-
fidence control is associated with increased behavioural efficiency.

Discussion
These results provide behavioural and neural evidence for the
important role of online confidence control implemented in our pro-
posed double-integration framework. This role of online confidence
control is amplified in dynamic stimulus environments,where it is used
tomodulate decision processes according to unpredictable transitions
in stimulus evidence quality. This serves not only to increase beha-
vioural efficiency in dynamic environments, as in our task, but also to
improve the speed and accuracy of individual decisions (Fig. 2c and
Fig. 4d). The neurobiological validity of the double-integration fra-
mework is supported by the spatiotemporal properties of distinct EEG

signals (Fig. 4a, b) that align with the proposed role of associative and
motor cortex in primary and motor evidence accumulation. The
coordination of these processes functionally contributes to beha-
vioural efficiency, where weaker confidence control of EEG motor
accumulation leads to slower, less accurate responses (Fig. 4d). The
neurobiological plausibility of this framework, specifically in describ-
ing the interaction of several subsystems, will provide an advantage in
generating testable predictions across multiple neuroimaging mod-
alities, and across different species of decision-makers.

The proposed framework sets out several shifts in current para-
digms of decision-making. First, and most prominently, online con-
fidence actively modulates decision processes to improve current
behaviour, as opposed to being a passive post-decision evaluation only
useful for improving future behaviour. Second, confidence control
moderates not only thequantity of evidence accumulated (asprovided
by decision boundary shifts) but also the evidence quality (via the
smoothing induced bymotor leakage). Third, as suggested in previous
work and formalised here, motor processes play an active role in
decision formation30,31, ultimately determining the choice at themotor
bound, which could be conceptualised as the level of cortical activity
sufficient to propel excitation down the spinal cord to the behavioural
effector39. Fourth,motor leakage is a critical component inmodulating
the implicit speed and accuracy of decisions in dynamic sensory
environments, operating to smooth re-integrated evidence and slow
down the rate of evidence build-up. We propose that this motor
leakage might be moderated by the arbitration of two endogenous
signals, confidence (primarily pushing for accuracy and value) and
urgency (primarily pushing for speed and reduced effort), which could
be integrated into subcortical structures implementing motor (dis)
inhibition47,48. In our view, the nature of this arbitration is a prominent
component to be examined in future work.

Another contributionof thiswork is indescribing the formationof
confidence. We show that the EEG signatures of post-decision con-
fidence can be used to estimate online confidence in a way that is
meaningful for behaviour. Moreover, the final estimate of online
confidence from themodel fit to choices and response times provided
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Fig. 4 | Neural signatures of confidence control. a Accumulation profile (a deri-
vative of accumulated evidence) of the primary (left) and motor (right) accumu-
lators from simulating the model fit to participants (black) and those predicted
from the EEG inverted encodingmodel (red dashed line). b Topography of the EEG
encoding of primary (left) and motor (right) evidence accumulation (Fisher trans-
formed precision increases in orange, white marks the half-maximum). The green
marker shows sensor C3 (commonly associated with right-hand motor responses),
and the purple marker shows sensor CPz (over which the central parietal positivity
signal is centred). c Topography of the EEG representation of post-decision

confidence (same format as b). d Proportion correct by median response time for
trials split by the correlation between EEG-predicted online confidence and EEG-
predicted motor accumulation ramp (median split; 50 trials for each of 20 parti-
cipants per marker). Trials with a stronger correlation (filled) corresponded to
faster, more accurate responses in each stimulus condition (coloured as in Fig. 1b,
inset), and averaged across conditions (black inset). Error bars show 95% within-
subject confidence intervals on the difference between stronger and weaker cor-
related trials.
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a good prediction of post-decision confidence responses. The model
formalises confidence as relying on primary accumulated evidence,
prior to the re-integration at the motor level that determines the
choice. This conceptual change in the temporal hierarchy of processes
also comes with a re-attribution of metacognitive noise: while most
current models of confidence add noise to capture the reduced sen-
sitivity of confidence compared to that predicted by decision
sensitivity1,49,50, here (at least some of) the additional noise can be
attributed to confidence being computed prior to noise being filtered
out bymotor leakage.While the framework allows for ongoingprimary
evidence accumulation after decision commitment to contribute to
post-decision confidence, further investigation is required to under-
stand how other factors (for example, motor processes51) might
additionally be incorporated into post-decision confidence.

While the experimental evidence presented here supports the
central role of online confidence estimates in controlling behavioural
efficiency, the evidence is inconclusive as to the mechanistic relation-
ship between online confidence estimates and explicit metacognitive
confidence reports (evaluated post-decision). Online confidence esti-
mates used during deliberation could rely on representations of cer-
tainty from low-level (e.g., sensory) probabilistic (distributed) neural
population codes52. Post-decision metacognitive confidence reports
have been associatedwith a read-out of this low-level distributed coding
in high-level brain regions53 (frontal cortex). While our model for-
malisation of online confidence is consistent with this high-level read-
out (conditioning certainty on the provisional choice), and we find the
model online estimates predict post-decision confidence reports, the
read-out for online confidence could rely on a distinct mechanism to
that of explicit post-decisional confidence reports.We also propose that
online confidence is used in decision-making irrespective of whether an
observer expects to give an explicit report of post-decision confidence,
and independently of how post-decision confidence is reported. These
reporting factors could influence the read-out mechanism for post-
decision confidence (for example, criterion noise42), without affecting
online confidence (though this remains to be tested). Post-decision
confidence has also been shown to incorporate additional information
and biases, such as information accumulated after decision
commitment8,37,38, information about deliberation time54 and motor
preparation51, biases toward confirmatory evidence55, biases based on
stimulus visibility56 and attentional allocation57, and developing detailed
computational models of how these factors influence metacognition
represents a long-term goal for the field58.

In summary, in this work, we offer evidence that achieving beha-
vioural efficiency during sensorimotor decisions involves the online
coordination of perceptual, inference, motor, and metacognitive
processes. These processes are typically studied as separate fields of
research, with the limited examination of how they interact as a sys-
tem. Here, we developed a computational framework to capture the
coordinated effort of these processes and disentangle their underlying
neural mechanisms. Importantly, this framework forms a new bench-
mark against which to continue to interrogate the neural systems
involved in dynamic decision-making aswell as characterise how these
systems differ in neurodegenerative and neuropsychiatric
disorders59,60 and how they change across development61 and aging62.

Methods
Participants
Participants were recruited from the Experimental Subject Pool in the
School of Psychology (University of Glasgow), who indicated the
absence of diagnosed mental disorders and had normal or corrected-
to-normal vision. All participants provided written, informed consent,
and were reimbursed for their time at a rate of £6 per hour. We
recruited 25 participants to meet our pre-registered plan (https://osf.
io/5d8nh/63) to include 20 participants in the analysis, replacing par-
ticipants whose performance did not rise significantly above chance

(58.3% correct, given 100 trials per condition, 2 excluded), whose
reaction times were too slow (median > 2 s, the maximum duration of
the stimulus, none excluded), or with poor quality EEG (3 excluded, for
technical issues). Ethical approval for this study was granted by the
College of Science and Engineering Ethics Committee at the University
of Glasgow (application number 200210194). Data64 and code65 are
made available of OSF.

Materials
Stimuli were presented on a 68 cm ASUS G-SYNCTM monitor
(2560 × 1440 pix, running at 120Hz), controlled using Matlab and the
Psychophysics toolbox66–68. Responses were entered via a Cedrus
button box (RB-740, Cedrus Corporation). Gaze and pupil dilation
were monitored using video-based pupil and corneal reflection (Tobii
Pro X3-120 eye-tracker, sampling pupil size at 40Hz), controlled using
the Titta toolbox for Matlab69. EEG was recorded using a 64-channel
BrainCap (EasyCap, GmbH).

Stimuli
On each trial, observers were presented with up to 2 s of dynamic sti-
muli, formed of an array of 100 white dots whose position was updated
at each frame, a variation of the classic random dot motion stimulus70.
The classic stimulus was modified such that the previous dot position
remained visible for 58ms, appearing as if the dots trace outlines on the
screen,meaning there is no ambiguity about the correspondence of one
dot’s position from frame to frame (but adding an explicit orientation
cue to motion direction). Dot positions were updated in each frame
according to a direction ofmotion (with speed 4deg/sec) sampled from
a circular Gaussian (Von Mises) distribution71. The direction was
assigned to each dot for that dot’s lifetime (83ms), after which the dot
was replaced. Dot lifetimewas staggered such that in each frame, 10% of
the dots were replaced by dots in new positions, with directions sam-
pled from a new distribution. The mean and variance of the sampling
distributions were updated throughout the first second of stimulus
presentation to form nine conditions combining increasing, decreasing,
or stable mean (angular distance from vertical) with increasing,
decreasing, or stable variance. Dots sampled from a distribution with
greater mean and low variance provide stronger evidence for the deci-
sion, whereas a smaller mean and high variance provide weaker evi-
dence for the decision. The dots moved within a circular annulus with
outer radius 4 degrees of visual angle (dva) and inner radius 1 dva. Dots
whose positions moved outside the outer radius were replaced by dots
with the same direction elsewhere. Dots whose positions moved inside
the inner radius were transported to the other side of the inner annulus.
A red fixationmark (diameter 0.12 dva) was presented at the centre and
was present throughout each block of trials. The presented stimuli for
all observers were sampled (with replacement) from a set of 360 unique
stimuli with pre-defined dot directions.

The stimulus was removed immediately following a response (or
after 2 s), and 200ms later, the observer was cued to enter a con-
fidence rating using a dial53. The dial was formedof thewhite outline of
a circular annulus (radius 4 dva) with radial modulation of the annulus
thickness to symbolise high (thick) and low (thin) confidence, with a
line halfway to mark average confidence. The participant moved a
white marker around the annulus by holding a response button until
the marker reached their desired confidence. The marker moved at 1
cycle per second, and always started at low confidence, with unlimited
revolutions to get the desired confidence report. The confidence dial
was presented at a random orientation in each trial. This confidence
dial design limited motor and eye-movement artefacts that could
disrupt the EEG measures.

Task
Participants sat in an adjustable chair, positioned such that their head
was ~ 76 cm from the stimulus presentationmonitor. On each trial, the
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participant was asked to decide, as quickly and accurately as possible,
if the dots were moving more leftward rightward or vertical, and then
report their confidence that they made a correct decision. The sti-
mulus continued (for up to two seconds) until the observer entered
their response by pressing a button on the response box with their
right hand. The confidence response was cued 200ms after this and
was followed by a 500ms inter-trial interval. To prevent motion
adaptation72, in every second trial, the decision axis was vertically
upwards and otherwise vertically downwards (where stimuli relative to
the vertically downward decision axis appeared similar to falling snow,
while vertically upward stimuli were rotated 180 degrees). Though the
change in axis was entirely predictable, it was also cued each trial at
fixation: the relevant armof thefixation cross changed toblack300ms
before stimulus onset. Before beginning the experiment, the partici-
pant was shown four clear examples (leftward and rightward motion
from vertically upwards and downward), andwere given practice on 16
easy trials and 20 trials like those presented in the experiment,
including practice with the confidence dial.

Participants performed a total of 900 trials (100 in each condi-
tion), for under 1 h duration. One participant performed 879 trials
before a technical error (EEG battery depletion) prevented continua-
tion, but was still included in the analysis. Participants were offered a
break every 90-trial block. Before continuing after this break, partici-
pants were reminded to respond faster if their median reaction time
for that block was greater than 1.5 seconds or to try to be more accu-
rate if their average performance in that block was less than 60%
correct.

Analysis
Behaviour. Summary statistics (proportion correct, median response
time, and median confidence) were examined to assess whether
exclusion criteria were met, and differences across conditions were
assessed using repeated measures ANOVAs with the appropriate
transformations (d’, median log reaction time, and median z-scored
confidence), post-hoc t tests comparing pairs of conditions are pre-
sented in Supplementary Tables S1–S3. In addition, we assessed the
relationship between discrimination performance, response times,
and confidence, presented in Supplementary Fig. S1.

Computational modelling. The stimulus design enabled tracking of
the objective decision evidence presented to the observer on each
frame of each trial. The objective decision evidence was computed by
estimating themean and variance of the presented dot directions. The
probability density of the Von Mises distribution at an angle θ is

V θjμt , κt

� �
=
eκtcos θ�μtð Þ
2πI0 κt

� � ð1Þ

with μt and κt the mean and concentration estimated from the pre-
sented dot directions at time t, and I0, the modified Bessel function of
order 0. The probability density to the left, p μθ <θ0jμt , κt

� �
is esti-

mated by numerical integration,

p μθ <θ0 jμt , κt

� �
=

R θ0
θ0�πV θ jμt , κt

� �
dθR θ0 +π

θ0�πV θ jμt , κt

� �
dθ

ð2Þ

where θ0 is vertical (π2 for downward and 3π
2 for upward). The evidence

for a leftward response is νL, t , the log probability that the dot direction
was more leftward,

νL, t = log p μθ <θ0 jμt, κt

� �� � ð3Þ

All models were constrained to this evidence as the basis of
accumulation, as opposed to estimating drift rates. We validated this

assumption that this objective evidence informs behaviour using a
GLManalysis topredictdecisions and (separately) confidence from the
objective evidence, which provided positive and mostly very strong
coefficients for all observers (Supplementary Fig. S1).

Classic single-integration model. We implemented a version of a
classic race/diffusion model of bounded evidence accumulation, in
which there is no online control of decision processes that could
respond to the dynamic changes in sensory evidence quality. The
model accumulated evidence for left and right choices separately,
determining the choice by the first to reach the bound (more akin to a
race model). This was to make the framework more directly compar-
able to the double-integration model (below), but note that this for-
mulation is equivalent to taking the difference in evidence to
determine the choice based on an upper vs lower bound (more akin to
a DDM). Accumulating the difference in log probabilities over time is a
sequential probability ratio test, theBayes optimal solution (in the case
of no additive noise affecting the decision evidence).

Themodel has two free parameters describing decision processes
(σ, the standard deviation of additiveGaussian noise, ε � Nð0, σ2Þ; and
b, the height of the bound), and two free parameters describing non-
decision time (for computational speed, non-decision time was sam-
pled from the absolute of a Gaussian, jN μU , σ

2
U

� �j, which forms a right-
skewed distribution similar to reaction times, so long as μU is small).
Evidence accumulation takes the classic form,

xL, t = xL, t�1 + νL, t + εL, t ð4Þ

where νL, t is the current sample of evidence for a leftward choice (log
probability based on the presented dots), and εL, t is noise, indepen-
dent from the previous sample and the sample applied to the right-
ward accumulator. Because of the stimulus evidence constraint, the
timing of integration is constrained by the monitor refresh rate,
Δt =0:0083s. A leftward choice is made at time t, if:

xL, t ≥ b \ xR, t <b ð5Þ

(And vice-versa for a rightward choice). We also fit a model with
non-linear bounds, requiring three free parameters describing a
cumulative Weibull function24, but the additional parameters were not
parsimonious (Supplementary Fig. S2).

Double-integration model with confidence control. The classic
model is the best process an observer can use, in the case that they
have no knowledge of their own uncertainty. However, if the observer
has knowledge of their own uncertainty, they could use this to opti-
mise their decision processes further. Given that the noise affecting
the evidence representation is temporally independent, the observer
can use amoving average to actively filter out their ownnoise. They do
this using a double-integration process, based on an extension of the
Leaking Integrating Threshold model19 (LIT).

The double-integration model has two accumulation stages. The
first (primary, x) is the sameas the classicmodel (Eq. 4). The secondary
(motor, y) accumulator(s) re-integrate the already integrated evidence
from the primary accumulator(s) with a smoothing factor, α, deter-
mining the choice at a bound, b (leaving the primary accumulator
unbounded). We propose this smoothing is implemented mechan-
istically as a leakage in the motor accumulator. The smoothing is
applied computationally using an exponentially weighted moving
average:

yL, t = yL, t�1 +αL, tðxL, t � yL, t�1Þ ð6Þ

This temporal smoothing increases the signal-to-noise ratio of the
motor accumulator evidence: decreasing α increases the smoothing
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but also slows the rate atwhich the evidence reaches themotorbound.
The LIT used a value of α that is stable over time within a trial (but can
be modulated across speed-accuracy trade-off conditions). The fit of
this non-dynamic version is shown in Supplementary Fig. S2.

Here, we extended the LIT to incorporate confidence control, thus
allowing dynamic modulation of decision processes according to
fluctuations in sensory evidence quality. Although the general mod-
elling approach was pre-registered, the exact implementation of con-
fidence control was exploratory. First, the α parameter was set to be
modulated by confidence in the choice, based on the primary accu-
mulated evidence. The standard definition of confidence is the prob-
ability of the choice being correct2,73. For the ideal observer with no
noise, confidence, c, equates to

cL, t =
p LjxL, t

� �
p RjxR, t

� �
= exL, t�xR, t

ð7Þ

since the accumulated primary evidence is the sum of log prob-
abilities. The human observer is affected by additional noise and uses
an estimate of the variability of this noise, σ2

c , to weight their con-
fidence according to a sigmoid function:

cL, t =
1

1 + e
� xL, t�xR, t

σ2c

� � ð8Þ

1
σ2
c
=

β

β+ σ2
t

ð9Þ

The additional parameter, β, modulates the relative weight of the
cumulative variability of thedecisionevidence, σ2

t , which is assumed to
be monitored online. This can be interpreted as over- or under-
estimating the variability itself and/or the probability ratio of the evi-
dence for each choice. The α parameter controlling the temporal
smoothing factor is then set (for each choice separately):

αt = ðct � pcÞ× ct >pc

� � ð10Þ

With pc =0:5, themotor accumulator only integrates evidence for
choices when confidence in a correct choice is greater than chance.

The effect of the external evidence variability on choices and
response times (which slows down decisions to a greater extent than
manipulating the mean; Fig. 1c) can be captured via a multiplicative
effect on internal noise, such that ε � Nð0, σ2

t Þ, with σ2
t equal to the

internal variability parametermultiplied by the circular variance of the
external stimulus ð1� I1 κtð Þ

I0 κtð ÞÞ.
Other models employing an online updating of decision com-

mitment strategies6,13,16, incorporate some form of cost function to
minimise the time and effort of decision processes.We tested a simple
form of cost function by assuming the observer aims to commit to
their decision by stimulus offset (2 s from stimulus onset). We imple-
mented this at the level of the temporal smoothing parameter by
assuming a lineardecrease in pc from some time, td , such that pc =0 by
stimulus offset. In this way, the observer can implement less temporal
smoothing with lower confidence, pushing lower-quality evidence
toward the motor bound as the urgency to commit to a decision
increases.

Finally, we found we were able to simplify the model by fixing the
bound parameter across participants. Thus, the final model had five
free parameters, three describing decision processes via the internal
noise (σ), the relative weight of this noise for confidence (β) and the
time constant of the cost-function (td), plus the two parameters for
non-decision time. Supplementary Fig. S2 shows the effects of mod-
ulating these parameters on behaviour.

As an additional check, we examined whether a weighting on the
variability of the decision evidence could explain behaviour in a
bottom-up manner, that is, affecting the primary evidence as it is
accumulated in a single-integration framework (Fig. 3b). We imple-
mented this by applying the weighting described by Eq. 9 on the pri-
mary evidence as it is accumulated.

xL, t = xL, t�1 +
β

β+ σ2
t
νL, t + εL, t ð11Þ

This formalisation proved worse at the computational level, as
well as providing a poorer prediction of the EEG, and cannot explain
post-decision confidence without further modifications (Supplemen-
tary Fig. S6).While bottom-up explanationsmay be appealing in terms
of their mechanistic simplicity, the double-integration framework
could be considered more comprehensive in terms of the additional
behaviour and neural processes it encompasses.

Model fitting and comparison. Parameters were fit to minimise the
negative log-likelihood (NLL) of choices and response times (RT) using
Bayesian Adaptive Direct Search74. AMonte Carlo simulation approach
was used to estimate the NLL over 10 quantiles of choice-RT data75,
with 2000 simulations for each stimulus.Modelswere compared using
the Bayesian Information Criterion (BIC) and exceedance
probabilities76,77.

Pupillometry. Pupil data were pre-processed by interpolating outlier
samples and then using a moving average filter (window size 4 sam-
ples/160ms). Blinks were identified and interpolated (5 sample win-
dows) based on 10x the median absolute deviation in the derivative.
Further outlier samples were identified by iteratively interpolating
over samples thatdiffered from the trendbymore than 10x themedian
absolute deviation until no additional outliers were identified (or up to
10 iterations). This differed from our pre-registered plan to use a
standard deviation criterion, but the median absolute deviation is
more in line with established recommendations78. Pre-processing was
performed on the data from each eye separately before averaging the
eyes and then z-scoring. Data were then epoched into two time win-
dows of interest: from −0.5 to 2 s around the time of stimulus onset;
and from −2 to 1 s around the time of the response. Trials where a time
window contained more than 30% of samples interpolated were
removed from further analysis. Two participants’ data were removed
from further analysis becausemore than 1/3 of the trials were removed
in this process. Data were baselined to the average from 500ms prior
to stimulus onset. We performed an exploratory analysis, presented in
Supplementary Fig. S5.

EEG. EEG data were pre-processed using the PREP pipeline79 imple-
mented in EEGlab80: line noise was removed (notch filter at 50Hz), and
robust average re-referencing was applied on detrended data (1 Hz).
Data were then filtered between 0.5 and 80Hz and downsampled to
250Hz. Independent Components Analysis was used to remove arte-
facts caused by blinks and excessive muscle movement.

A preliminary, classical EEG analysis was conducted: Central Par-
ietal Positivity (CPP43; which frequently aligns with decoded evidence
accumulation81) and Response Readiness Potentials (RRP82) were
extracted from the data epoched around the time of the response
(from 2 s prior to 1 s after the response). These classical EEG response
functions were compared across behavioural variables, as reported in
Supplementary Fig. S3. This analysis may bemore directly comparable
to previous work. The classic EEG components show typical dynamics,
but also align with several predictions of the double-integration fra-
mework: CPP ramps up to the time of the response, but doesn’t appear
to terminate at a single bound; RRP also appears to ramp prior to the
response, with differences between fast and slow responses leading up
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to the response, but only small differences by the time of the response
itself (consistent with a bounded accumulator). This offers indirect
support for the proposed role of associative and motor processes
under the double-integration framework.

Decoding analysis. The decoding analysis of the EEG used an inverted
linear encoding model to estimate weights on sensor activity to best
predict variables of interest.

The inverted linear encoding model83,84, assumes the EEG sensor
signals (Y ) encode a linear weighting (w) of the variable of interest (X),
estimated by ordinary least-squares:

bw= XTX
� ��1

XTY ð12Þ

The variable of interest is then predicted by applying these
weights to held-out data (10-fold cross-validation):

bX = bwT bw� ��1 bwTY ð13Þ

We examined how the model-predicted (primary and motor)
evidence accumulationmight be represented in the EEG sensor signals
using this decoding analysis. To do this, we simulated evidence accu-
mulation in each trial, using the double-integration framework and the
parametersfit to eachparticipant. For each trial, we took themedian of
the simulated evidence accumulation traces that predicted the
observer’s behaviour (same choice made within 100ms of their
response time). Both the simulated primary and motor accumulators
(for the chosenoption) tended to increase over time andwere strongly
correlated over time (average Fisher transformed correlation z = 1.02).
This correlation was broken by taking the derivative, where the slope
of the primary accumulator in the lead-up to the response is much
flatter than that of the motor accumulator (z = 0.23). To match the
sampling frequency of the evidence (120Hz) with the sampling fre-
quency of the EEG (250Hz), the slopes of each EEG sensor were cal-
culated over a 6-samplewindow (linear regression coefficient; ~ 42Hz),
while the slope of the simulated evidence was calculated over 3 sam-
ples (40Hz). We found that applying a lowpass filter (8Hz) on the EEG
data prior to this stage improved the reliability of the decoding ana-
lysis (a comparisonoffilter choices is shown inSupplementary Fig. S4).
We then applied the above decoding analysis to estimate the weights
(w) on EEG sensors (Y ) that predict the simulated evidence (X) in the
400ms window prior to the response (a comparison of windows of
300 and 500ms is shown in Supplementary Fig. S4). To maximally
distinguish EEG signals corresponding to the primary and motor evi-
dence, weightswere estimated simultaneously (with an intercept term,
X and w are of size n x 3).

The precision of the decoding can then be assessed by taking the
correlation between the EEG-predicted evidence and the model
simulated evidence (applying a Fisher transform for normalisation, for
the primary accumulator, mean z =0.024, t(18) = 5.90, p = 1:10 × 10�5;
for the motor accumulator, mean z =0.086, t(18) = 9.07,
p = 2:47× 10�8). The precision computed separately at each sensor
gives an indication of the topography of the contributions to the EEG
representation (shown in Fig. 4b).

The same approachwasused to decodepost-decision confidence,
but in this case, each trial is associated with a single value of post-
decision confidence (from the behavioural ratings) that is assumed to
emerge from neural processes around the time of the response. For
this reason, we examined decoding precision using EEG data at each
time point in the response-locked epochs separately. We found pre-
cision tended to increase in the lead-up to the response and continue
increasing after, however, there was a dip in decoding precision at
200ms following the response (presumably due to interference of the
confidence response cue). We therefore took the weights estimated

from the time-point with the greatest precision for each participant
from the time window 0–200ms following the response. We used
these weights to estimate online confidence by applying them over
time in the lead-up to the response.

Granger causal analysis. For each participant, we calculated the EEG-
predictedmotor and confidence components by applying the weights
estimated using the decoding analysis above to the full (not epoched)
timeseries. Largewindowsof non-task-related recordings (greater than
twice themaximum tested lagof 800ms; for example, breaks between
blocks) were excluded. For each participant, vector autoregressive
models were estimated with lags from 200 to 800ms (50 to
200 samples) and the model with the minimum Akaike Information
Criterionwas selected (on average, lagswere 570ms, ranging from272
to 784ms). All models were found to be stable. Leave-one-out Granger
causal tests were conducted within subjects, and all participants
showed significant evidence against the null hypothesis to exclude the
history of the confidence component in predicting the motor com-
ponent (in addition to the motor component itself).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study (raw behaviour in CSV and Matlab format,
raw EEG, and raw pupillometry) are available on the Open Science
Framework: https://doi.org/10.17605/OSF.IO/5D8NH.

Code availability
Analysis code scripts are available on the Open Science Framework:
https://doi.org/10.17605/OSF.IO/5D8NH.
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