
HAL Id: hal-04767869
https://hal.science/hal-04767869v1

Submitted on 5 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

VideoJam: Self-Balancing Architecture for Live Video
Analytics

Youssouph Faye, Francescomaria Faticanti, Shubham Jain, Francesco Bronzino

To cite this version:
Youssouph Faye, Francescomaria Faticanti, Shubham Jain, Francesco Bronzino. VideoJam: Self-
Balancing Architecture for Live Video Analytics. ACM/IEEE Symposium on Edge Computing, Dec
2024, Rome, Italy. �hal-04767869�

https://hal.science/hal-04767869v1
https://hal.archives-ouvertes.fr


VideoJam: Self-Balancing Architecture
for Live Video Analytics

Youssouph Faye1, Francescomaria Faticanti2, Shubham Jain3, Francesco Bronzino2
1Université Savoie Mont Blanc, LISTC

2ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, LIP, UMR 5668
3Stony Brook University

Abstract—Edge-based live video analytics are a promising
approach to reduce bandwidth overheads caused by the trans-
mission of raw video streams to the cloud. However, the limited
resources available on edge devices make it challenging to
successfully process video streams in real-time. This gets further
exacerbated when attempting to process video streams from
mobile cameras. While mobile cameras are a desirable source
of information, thanks to them being in the right place at the
right time, they are inherently dynamic and unpredictable. To
address these challenges, we propose VideoJam, a decentralized
load balancing solution for live video analytics. VideoJam
uses a set of load balancers to balance incoming video traffic
across replicas without the need of centralized coordination.
Exploiting the inherent load dynamicity generated by different
video sources, VideoJam predicts the incoming load for each
processing component and offloads excessive traffic to less-
loaded neighbors. Further, VideoJam operates independently
of deployed configurations and cameras present in the system,
dynamically adapting to handle load changes and balance video
traffic across available resources. Our evaluation shows that
VideoJam can adapt to different mixes of mobile and fixed
cameras, as well as quickly adapting to configuration changes
occurring at runtime. Compared to state-of-the-art solutions,
VideoJam achieves 2.91× lower response time, while reducing
video data loss by more than 4.64× and generating lower
bandwidth overheads.

Index Terms—Video Analytics, Load balancing, Distributed
System.

I. INTRODUCTION

Video camera flows are a pervasive source of information.
Cities are increasingly deploying closed-circuit cameras that
are used for safety, security, and traffic control applications [1],
[2], [3]. To process the incoming videos streams in real-
time, live video analytics architectures have been proposed to
support a multitude of applications across navigation, safety,
and control [4], [5], [6], [7], [8]. However, the increasing
amounts of video data produced by available cameras has
forced the community to move away from centralized cloud-
based architectures [9], [4].

Edge-based live video analytics are a promising approach
to reduce bandwidth overheads caused by the transmission of
raw video streams to centralized clouds [10]. Unfortunately, in
contrast with the quasi-infinite resources of data-centers, edge
devices are often co-located with existing network equipment
and deploy limited computational resources. As a result, they
can rapidly become overloaded by the incoming video frames,
causing data loss and reduced accuracy [7], [11]. To address

this challenge, various solutions have been proposed to dis-
tribute the workload across locations, ranging from vertically
splitting the processing between edge devices and the central
cloud, wherein excess traffic is offloaded to the cloud [12],
[13] to horizontally across different edge clusters, exploiting
the dynamicity of processing requests incurred at each loca-
tion [11], [14]. However, all these architectures assume that
video flows are generated from fixed cameras (e.g., traffic
cameras deployed at street corners) and that their workflows
present predictable patterns [7].

With the rising penetration of mobile cameras, an oppor-
tunity emerges to include these cameras into the design of
video analytics architectures. Mobile devices, such as cars or
drones, come equipped with high quality camera sensors that
have been demonstrated to be very effective for navigation,
safety, and control applications [15], [3]. These cameras often
have the unique advantage of being in the right place at the
right time. However, the scenes that mobile cameras capture
vary more rapidly than for fixed camera.

Owing to the high mobility and dynamic content of mobile
cameras, we identify three key challenges in accommodat-
ing these cameras in video analytics architectures. First, the
workload generated by mobile cameras is more dynamic and
unpredictable, requiring constant adjustments to the processing
infrastructure. Existing solutions such as Distream [6] recog-
nize the need for adaptation to varying processing loads, but
ultimately fall short of developing a solution that adjusts at
the rate imposed by mobile cameras (we expose such problem
in detail in Section V). Second, the continuously changing
scenes captured by mobile cameras make customary process-
ing pipelines ineffective. For example, a typical pipeline used
to process a video feed incoming from a fixed camera might
employ a lightweight background subtractor to isolate moving
objects, reducing the need for deploying more expensive object
detection modules [6]. Finally, as mobile cameras appear
and disappear from the deployment, they generate constant
changes in the deployment configuration and the number of
sources to process. This introduces the need to deploy different
processing pipelines for different cameras. Overall, existing
video analytics architectures are ill equipped to handle such
video traffic.

In this paper, we tackle the challenge of designing a video
analytics architecture capable of handling a mix of fixed and
mobile video camera flows. We build on the recent idea [6] that



the dynamicity of the workload generated by video cameras
can be exploited to balance the load across different edge
clusters. However, we observe that: (1) While highly dynamic,
the workload generated by mobile cameras is not completely
unpredictable. In fact, the scenes captured by mobile cameras
reveal sufficient patterns to make it possible to predict the
amount of objects that will need to be processed in the next
few seconds. (2) Enabling the coexistence of diverse video
analytics pipelines requires dividing the processing problem
into smaller components that function independently, even
when pipelines later converge to the same set of modules.
(3) The constant changes in the deployment configuration,
such as the addition or removal of processing components,
require an online approach to load balancing that can adapt
to these changes without requiring a complete reboot of the
processing pipelines.

We leverage these observations to build VideoJam, a
load balancing solution for live video analytics. VideoJam
deploys a set of load balancers co-located with every task
in the analytics pipeline. Each load balancer monitors the
incoming flow of frames or objects to process and periodically
shares this information with its neighbors. Based on the
information collected, the load balancers take independent
decisions on how much traffic to process locally and whether
to offload some of their workload to less-loaded neighbors. To
make these decisions, VideoJam uses a lightweight machine
learning model to predict the incoming workload for each
processing component for the near future, as well as for its
neighbors. Finally, the load balancers recover to eventual pre-
diction errors via a congestion prevention signalling system.
VideoJam operates independently of deployed configurations
and dynamically adapts to handle eventual changes (e.g., new
camera arrivals or departures) without requiring hard reboots
balancing incoming traffic accordingly.

We implement and evaluate VideoJam using a typical ve-
hicular safety application, i.e., vehicle plate detection, adapted
to both fixed and mobile cameras. Our evaluation shows
that VideoJam can achieve a 2.91× lower response time
and reduce 4.64× video frames loss than a state-of-the-art
approach [6], while also reducing network overheads. Further,
we demonstrate the ability of VideoJam to dynamically adapt
to changes in the deployment configuration, i.e., change in
number of function replicas or number of cameras in the
system, without requiring any hard reboots. VideoJam adapts
to the new configuration in less than 28 seconds (i.e., +27% the
failure time), to the incurred change. We release VideoJam
as open source software for the community to use and extend.

II. BACKGROUND AND MOTIVATION

In this section we present the characteristics of video
analytics pipelines, providing motivation for integrating mo-
bile video sources into the analytics architecture. We then
present the key differences between fixed and mobile cameras,
highlighting the challenges that we face when we integrate
different types of cameras into such systems.

Background
Substractor

Vehicle
Detection

Number
Plate OCR

Object
Recognition

Fig. 1: The functions composing a vehicles’ number plate de-
tection application pipeline. Different sources require different
processing functions.

A. Live Video Analytics

Live video analytics center around analyzing video camera
streams in real-time, using algorithmic and computer vision
techniques to extract valuable information. Incoming frames
traverse a series of modules (or functions) that perform differ-
ent tasks, such as object detection, classification, and tracking.
These functions are combined into a pipeline, conventionally
represented by a directed acyclic graph, where the output of
one function is the input of the next and the final output
depends on the analytics application deployed. Figure 1 shows
an example of video analytics pipelines for a typical traffic
control application: vehicles’ number plate detection.

Historically, video analytics research has focused its atten-
tion on the placement problem occurring at deployment time.
Deploying a video analytics application involves taking an
orchestration decision of where to place the instances of the
application’s pipeline. Placement decisions are taken based on
the available resources in the compute infrastructure and the
workload generated by available cameras. Early work on video
analytics focused on how to efficiently transmit video traffic
to centralized clouds for processing [5], [8], [16]. Yet, while
centralized datacenters offer unbounded compute resources,
transporting the increasing amounts of video streams to these
locations can result in network bottlenecks, requiring either to
preprocess video frames on premises [13], [12] or to reduce
the quality of the video transported [17], potentially affecting
the performance of deployed applications.

To combat these challenges, recent work has focused on
deploying video analytics pipelines at the edge of the net-
work [6], [7], [14]. These approaches aim to take advantage
of compute resources deployed close to video cameras and
bypass the transmission to remote locations. However, edge
compute devices are often co-located with the existing network
equipment and deploy limited computational resources. As a
result, they can rapidly become overloaded by incoming video
frames causing data loss and reduced accuracy. To address this
challenge, different solutions have been proposed to distribute
the workload across locations. For example, Distream [6]
exploits the inherent load dynamics present in video flows
to split the processing pipeline between two hierarchical
locations, i.e., the camera and the edge compute machine.
Chameleon [7] instead optimizes the pipelines configuration
based on temporal and spatial predictions on the contents of
camera sources.



(a) Fixed camera with back-
ground subtractor.

(b) Mobile camera with back-
ground subtractor.

Fig. 2: A comparative example on the performance of back-
ground substractor functions on fixed and mobile cameras.

Yet, all these architectures assume that video flows are
generated from fixed cameras (e.g., traffic cameras deployed at
street corners) and that their workflows present predictable pat-
terns allowing reconfiguration decisions to be taken at longer
timescales, for example when traffic conditions change during
the day due to commute patterns. However, mobile cameras
have become pervasive in the last decade. Mobile devices,
from smartphones to cars and drones all come equipped with
high quality camera sensors. These cameras often have the
unique advantage of being in the right place at the right time,
offering the potential to enhance existing architectures and
improve application performance. Unfortunately, video feeds
generated by mobile cameras are fundamentally different from
fixed camera ones, posing unique challenges into the path for
their integration.

B. Challenges in Incorporating Mobile Cameras

Mobile cameras bring the advantage of providing a unique
perspective on the captured scenes. They can be in the right
place at the right time, capturing scenes that would be other-
wise invisible from fixed cameras. However, this benefit comes
at the implicit cost of having to handle fundamentally different
dynamics. Mobile cameras are constantly moving, capturing
new scenes; they can appear and disappear from a deployment;
and the scenes they capture can vary more rapidly than for
fixed cameras. For these reasons, the differences between fixed
and mobile cameras can greatly impact the deployment choices
of a video analytics pipeline architecture that aims to process
their video feeds. With the goal of designing a video analytics
architecture that can handle both fixed and mobile cameras, we
identify three core challenges that arise from the coexistence
of these cameras in the same deployment.

Challenge #1: Heterogeneous performance profiles. The
majority of existing video analytics solutions [7] assume the
homogeneity in the performance of the processing components
deployed. Distream [6] relaxes this assumption by considering
the presence of heterogeneous processing devices and accounts
for this disparity in implementing load balancing policies
within its architecture. However, mobile cameras are inher-
ently in constant movement, quickly capturing new scenes.
This makes the processing pipelines that are effective for fixed
cameras ineffective for mobile cameras.

To exemplify the difference between fixed and mobile cam-
eras, we consider a vehicles’ number plate detection applica-

0 1 2 3 4 5 6 7
Number of car objects

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Fixed camera
Mobile camera

(a) Number of detected vehicles.

Fixed camera Mobile camera
0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

In
fe

re
nc

e 
tim

e 
(s

)

(b) Inference time.

Fig. 3: Vehicle detection performance for fixed (background
substractor + detection) vs mobile (YOLOv5) cameras.

tion. The goal of this application consists of detecting vehicles
from a camera frame using a vehicle detection module and ex-
tract their number plate via an Optical Character Recognition
(OCR) module. To lighten the load of the processing pipeline,
the first step involves isolating objects in the frame to limit
vehicle detection executions solely on cropped images [6].
This is typically done using a background subtractor module
that compares the current frame with a background model
and outputs a mask of the foreground objects [6]. Figure 2a
shows the output of a background subtractor module applied
to a fixed camera frame. We observe that the background
subtractor is able to isolate the moving objects in the frame
while still objects (e.g., parked cars) are not detected as they
are still in the frame. Unfortunately, while the application of
a background subtractor is effective for fixed camera streams,
the same pipeline becomes ineffective for mobile cameras. By
nature, mobile cameras are constantly moving, capturing new
scenes. As a consequence, when applied to a moving subject,
the subtractor model is not capable of adapting to new scenes,
causing erroneous detections or, in the worst case, detecting
the entire frame as foreground (as shown in Figure 2b).

To compensate for the degraded performance of the back-
ground substractor module, existing solutions tailored for
mobile cameras [18], [19] replace the early stages of the
pipeline with an object recognition module (e.g., YOLO [20])
that is capable of detecting and classifying objects in the
frame in a single operation. However, this comes at a price,
as detection models are more resource-intensive, especially for
scenarios where no object is in the frame. Figure 3 shows the
performance difference between the two approaches on two
selected videos, a fixed and mobile one. We observe that, while
the number of detected vehicles is relatively similar across
videos, the characteristics of the inference times for the two
approaches highly varies depending on the processed frame. In
fact, while YOLO performs consistently due to its single pass
nature, the fixed camera pipeline’s performance varies based
on the number vehicles present in the frame. Ultimately, this
leads to the conclusion that the two approaches should not be
treated as interchangeable and that the choice of the pipeline
to deploy should be tailored to the video source type.

Challenge #2: Highly variable workloads. Previous work has
highlighted how video camera feeds differ in the amount of
objects of interest they capture depending on their deployment
location (e.g., a building entrance vs. an emergency exit) and



Function

Data flow

Signals

Vehicle 
Detection

Num. Plate OCR

Num. Plate OCR
Object

Detection

Load Balancer

Vehicle 
Detection

Background
Sub

Background
Sub

Object
Detection

Fig. 4: VideoJam architecture.

the time of capture (e.g., at night vs during the day) [21], [22].
These differences generate variability in the workload that
the video analytics pipeline needs to process and have been
exploited to design more efficient processing pipelines [7],
[6]. Distream [6] proposed to exploit this variability to dy-
namically balance the workloads across processing clusters,
taking advantage of periods of lower usage from some nodes
in the architecture to support overloaded ones. Their solution
achieves this through the use of two main design elements:
(1) A cross-device workload balancer that takes the cross-
camera workload correlations and the heterogeneous compute
capabilities of smart cameras and edge clusters to optimize
cross-camera workload balancing via an optimization problem;
and (2) a workload adaption controller which triggers the
cross-camera workload balancer when cross-camera workload
imbalance is detected.

Unfortunately, this approach assumes that workloads have
predictable profiles, either due to the cameras’ relative loca-
tions, their time of capture [7], or, more generally, by training
a prediction model based on previous patterns [6]. However,
the introduction of mobile cameras generates a new level of
variability in the workload that is not easily predictable. First,
mobile cameras constantly vary their point of observation
and might capture different scenes at different instances in
time. Second, the inherent moving nature of mobile cameras
causes them to appear or disappear from the deployment,
generating sudden changes in the workload that the video
analytics pipeline needs to process. Overall, relying on long
term prediction models to infer incoming load is not sufficient,
or even potentially counter-productive, to correctly balance the
load in the presence of mobile cameras.

Challenge #3: Varying configurations. Early work in video
analytics focused on the problem of optimizing the placement
in the infrastructure of the functions that belong to the pro-
cessing pipelines. The placement decisions behind this opti-
mization are conventionally driven by the available resources
in the compute infrastructure, i.e., the number of available
servers or GPUs, and the workload generated by available
cameras, i.e., the number of camera flows to process [5], [8],
[16]. Due to the overhead incurred, changes in the deployment
configuration, such as the addition or removal of processing
components, occur a longer time scales due long term pattern

Function

Dispatcher

Monitor Table
state 
...

Arrivals from

previous function

Data flow

Action

Arrivals from

neighbors

update table

update table

Offloaded to

neighbors

Outgoing to

next function

load balancer

Fig. 5: VideoJam’s load balancer.

shifts (e.g., day vs night scenes) [7], [6]. However, the presence
of mobile cameras introduces a new level of dynamism in
the deployment that has yet to be accounted for. Mobile
cameras can appear or disappear from the deployment, and
the processing pipeline needs to be able to adapt to these
changes without requiring a complete reboot of the processing
pipelines. This introduces the need for an online approach to
load balancing that can adapt to changes in the deployment
configuration, such as the addition or removal of processing
components, without requiring any hard reboots and quickly
adapting, in less than a few seconds, to the incurred changes.

To tackle the identified challenges, we present in the follow-
ing section VideoJam, a live video analytics solution aimed
at supporting the coexistence of fixed and mobile cameras
within the same processing pipeline.

III. VIDEOJAM ARCHITECTURE

This section presents the general design of
VideoJam, a self-balancing architecture for live video
analytics. VideoJam is designed around three design
guidelines:
1) Per-function type-based load balancing. To cope with

the heterogeneous performance profiles and highly variable
workloads, we design VideoJam to implement a decen-
tralized set of load balancers on a per-function type basis.

2) Short-term load forecasting. To enhance frames offload-
ing across functions but avoid errors from unreliable long-
term trends, we design VideoJam to solely rely on short-
term forecasting of incoming workload trends.

3) Robustness to configuration changes. Finally, to work
independently from variations in configurations changes
and camera arrivals and departures, we design VideoJam
to solely rely on observed performance patterns (e.g.,
incoming rate) rather than any pre-compute knowledge of
deployment configuration.

In the rest of the section, we first present the global overview
of the VideoJam architecture, then describe in details the
components of the system.

A. System Overview

The core VideoJam’s architecture leans on a set of load
balancers, one associated with each and every replica the



processing functions deployed among the set of available
edge servers, as shown in Figure 4. In VideoJam, each
load balancer (shown in Figure 5) communicates with the
rest of load balancers installed on the functions of the same
type (e.g., background subtractor, object recognition, etc.), also
called neighbors. The load balancer wraps a function replica
and mainly consists of two components: the Monitor and the
Dispatcher. Through these two modules the load balancer
takes decisions about incoming frames from the previous
functions in the pipeline and from the neighbors to compute
the (1) the output to the next function in the pipeline, and
(2) a load balancing policy, i.e., the amount of frames to be
offloaded towards its neighbor. Such policy is calculated on
the basis of a state table containing the information on the
states of each neighbor, presented in rows. This information
includes the estimates of load for the neighbors derived from
predictions generated by a forecasting model.

B. Message Exchange

In VideoJam’s system of load balancers, each compo-
nent computes its state and load balancing policy based on
local information, i.e., the incoming load from the previous
function in the pipeline, and information collected from the
neighbors acquired through a set of message interactions listed
below. These mechanisms are designed to ensure that the load
balancers converge to a common policy and compensate for
potential errors in load forecasting.

Information Request. Load balancers submit a request for
neighbor state information when their local data is missing
or obsolete. In this case, a load balancer sends, together with
its table, an information request to its neighbor, asking for
information about its status. Based on the response (described
below), the receiver then updates its table according to the
table received, substituting the rows containing obsolete infor-
mation.

State Update. A state update is always sent by a load
balancer in one of two scenarios: (1) at bootstrap to announce
its presence to neighbors; (2) after receiving an information
request from one of its neighbors. State responses contain a
summarization of the local system state, including current and
forecasted loads, as well as expected incoming loads from
neighbors. State updates are also sent when a prediction error
is detected after receiving an offloaded workload from one of
the neighbors. Such an error quantifies the difference between
the expected load (according to the predictions) and the actual
load received from the neighbor.

Congestion Risk Signal. A congestion risk signal is sent by a
load balancer to one of its neighbors only when it detects, after
updating its table and according to the last computed policy,
that a given neighbor is transmitting offloaded traffic to itself,
while this was not expected given previous exchanges, i.e.,
when the neighbor is not present in the list of neighbors from
which it should receive offloaded video data.

Data Offloading. Beyond the actual offloaded workload, the
data transferred from a load balancer to one of its neighbors

may also contain the sender’s table. It is worth noting that a
load balancer cannot receive workloads from the neighborhood
while it is offloading to another neighbor. Hence, the receiver
first checks whether it is offloading to one or more neighbors
according to its computed policy. In this case, it recomputes
the load balancing policy and checks whether, according to
the new policy, it is supposed to receive some data. If not, it
sends a congestion risk signal back to the sender. Otherwise,
it receives the workload, computes the prediction error and
sends a status update if the error is above a certain threshold.

C. System state computation

In VideoJam, the system state is computed periodically
and represents the current state of the load balancer based on
the incoming load from the previous function in the pipeline,
the processing rate, the queue size, and the offload rate to its
neighbors. Here we formally describe the computation of the
system state.

Operational Time Windows. Each load balancer associated to
function c, operates over a time windows W k

j , which consists
of k ∈ N+ consecutive time-slots and is defined as

Wj = W k
j = {wi}ki=1,

where wi is the ith time-slot of the time window. All the
time-slots within the time window have the same duration of
∆ seconds. The next time window is denoted as Wj+1.

Each load balancer Sc,n is characterized by its state, and
keeps track of the states of all its neighbors (identified by
S∗
c ) in a table. We further indicate with Sc the set of all load

balancers associated to function c deployed among the edge
nodes.

State. At each time window W k
j = {wi}ki=1, the state of load

balancer Sc,n is defined by (1) its processing rate µc,n, (2) the
historical incoming load {λc,n

wi
}wi∈Wh

j
of h ≥ k previous time-

slots, (3) its current queue size φc,n
Wj

, and (4) the offload δcn, i.e.,
the total workload offloaded towards its neighbors. The table of
each load balancer contains an estimation of all its neighbors’
states. Such an estimation is based on the last information the
load balancer has received from the neighborhood and it is
updated every r time windows. When this time expired, i.e.,
r = 0, the load balancer sends an information request to the
neighborhood. As shown in Figure 5, the interaction of the
two main components, i.e., the Monitor and the Dispatcher, of
each load balancer, determines the final offloading policy. We
describe in detail how the dispatcher calculates the offloading
policy in the next section.

The Monitor is in charge of monitoring the state and
performance of the load balancer over time. More precisely,
it supervises the incoming load from the prior function in
the pipeline, and the processing rate. At each time-slot wi

of a given time window, the monitor measures the amount
of workload λc,n

wi
coming from the previous function in the

pipeline. At the end of each time window, the monitor updates
the historical incoming load of the state of the load balancer
by shifting its h− k values to the left and replacing the last k



values with the load received in the window Wj . After such an
update, the monitor triggers the Dispatcher for the computation
of the load balancing policy.

D. Load Balancer Algorithm

Here we describe in details the algorithm executed by each
load balancer to compute its local offloading policy. The
Dispatcher is in charge of computing the load balancing policy
of VideoJam through the computation of the queue size
and the prediction of future incoming workload for the load
balancer. For a given function c, the policy is determined
in such a way that the load is fairly distributed among
all the load balancers in Sc. In this manner, the load is
processed at approximately the same time, as shown in [23].
Regarding the prediction of future incoming workload, given
the limited capabilities of computational resources at the edge,
state-of-the-art methods, such as Long Short-Term Memory
(LSTM) [24], result to be computationally intensive and,
hence, prohibitive for the described scenario [25]. Further-
more, when it comes to video analytics, learning the specific
distribution of the load results to be a non-trivial task due
to concept-drift problems [26], especially when dealing with
mobile cameras. For these reasons, the dispatcher relies on
lightweight ML models to predict the incoming workload.
In particular, we have developed a lightweight convolution-
based neural network model based on a few convolution layers
for predictions [27]. This model presents fast inference time
and high accuracy metrics. The complete pseudocode of the
dispatcher is described in Algorithm 1.

Determine the Queue Size. Within a given time window Wj ,
each load balancer determines the queue size φc,n

Wj+1
, which

is the load at the beginning of the next window Wj+1, by
counting the amount of load currently waiting for processing
(line 2 of Algorithm 1). The queue size of each neighbor
Sc,m ∈ S∗

c is estimated by adding (1) the difference between
the incoming load and the processing rate, and (2) the total
amount of workload exchanged with the neighborhood, to
the previous expected load (lines 3–7 of Algorithm 1). More
formally,

φ̃c,m
Wj+1

= φ̃c,m
Wj

+
∑

wi∈Wj

(λc,m
wi

− µc,m) + δcm, (1)

where, δcm =
∑

p∈N δcm|p, δcm|p is the offload between Sc,m

and Sc,p, where δcm|p < 0 if data is offloaded from Sc,m to
Sc,p, and δcm|p > 0 if Sc,p is sending data to Sc,m.

Predict Future Incoming Workload. The load balancer
forecasts its load and the incoming load of its neighbors for
the next time window. For such predictions we rely on a
convolution-based neural network model used to predict short-
term workload [28] (more details on the model are available
in Section IV). The input of the predictive model is the
historical incoming load Wh (i.e., {λc,n

wi
} consisting of h ≥ k

previous time-slots) for all load balancers. While the output
is the incoming load for the next window Wj+1. So when the
predicted workload deviates from the actual workload during

the monitoring phase, the Monitor can detect it and react to
make adjustments at any time.

Offloading Policy Computation. Within a given time window
Wj , each load balancer Sc,n determines the offloading policy,
i.e., δcn|m for each Sc,m ∈ Sc for the next time-window Wj+1.
Such a policy is computed through the following steps:

(1) First, the estimation of the global load, ϕ̃c,n, is computed
according to

ϕ̃c,n = φ̃c,n
Wj+1

+
∑

wi∈Wj+1

λc,n
wi

, (2)

i.e., the estimated queue size at the beginning of the next
time window plus the expected incoming load. The queue size
estimate is performed for all its neighbors in S∗

c , whereas it
can simply be obtained from the load balancer queue.

(2) Then, based on the estimation of the global load, each
load balancer Sc,n estimates the actual load that every load
balancer in Sc should handle:

ϕ̄c,n =

∑
n∈N ϕ̃c,n ∗ µc,n∑

n∈N µc,n
, (3)

where ϕ̃c,n is the global load that should be processed by
Sc,n with a process rate of µc,n, and

∑
n∈N µc,n is the total

processing capacity of all the load balancers associated to
function c.

(3) The load balancer computes the unbalanced load for all
the load balancers associated to function c (line 12 in Algo-
rithm 1) as

θc,n = ϕ̄c − ϕ̃c,n. (4)

Positive values for θc,n indicate that the function associated to
the load balancer will be underutilized. In this case, it should
receive workload from neighbors Sc,m with negative values of
θc,m. Negative values for θc,n, on the other hand, point out
that the function will be overloaded requiring to offload some
workload to the neighbors.

(4) Finally, the amount of workload to be offloaded towards
each neighbor Sc,m, i.e., the offloading policy δcn|m, is finally
computed based on θc,n as described from line 14 to 27
of Algorithm 1. Until all the θ’s are set to 0, the dispatcher
takes the most loaded Sc,n to balance to the least leaded Sc,m

in Sc. The load is transferred from Sc,n to Sc,m if there is
enough room for the load, and the unbalanced load of Sc,n

is set to 0. Otherwise, Sc,n transfers to Sc,m the maximum
load that can be received θc,m and the unbalanced load of the
receiver is set to 0.

IV. IMPLEMENTATION AND DEPLOYMENT
CONFIGURATION

In this section we present the details on how we imple-
ment VideoJam, i.e., the set of parameters of the architecture
and the video analytics components. Further, we present our
evaluation setup, including the evaluation metrics, the datasets
we have select for evaluating the system, and the baselines we
compare VideoJam with.



Algorithm 1: Dispatcher algorithm procedure

1 Function dispatcher(φ, λ, µ, δ, Sc)
/* 1. Determine the queue size */

2 φc,n
Wj+1

= getQsize()

/* 1. Estimation load for neighbors,
i.e., S∗

c */
3 for Sc,m ∈ S∗

c do
4 φ̃c,m

Wj+1
= φ̃c,m

Wj
+

∑
wi∈Wj

(λc,m
wi

− µc,m) + δcm;
5 end
6 for Sc,n ∈ Sc do

/* 2. Forecast the future incoming
load, i.e., λc,n

wi
, wi ∈ Wj+1 */

7 λc,n
wi

= model({λc,n
wi

}wi∈Wh);
/* Estimation of global load */

8 ϕ̃c,n = φ̃c,n
Wj+1

+
∑

wi∈Wj+1
λc,n
wi

;
9 end

/* Compute the unbalanced load */
10 for Sc,n ∈ Sc do

/* balanced load ϕ̄c,n */

11 ϕ̄c,n =
∑

n∈N ϕ̃c,n∗µc,n∑
n∈N µc,n

;
/* unbalanced load */

12 θc,n = ϕ̄c − ϕ̃c,n

13 end
/* 3. Compute the offloading policy */

14 while any(θc,n < 0) and any(θc,n > 0) do
/* the most overloaded */

15 n = argmin(θc);
/* the less overloaded */

16 m = argmax(θc);
17 q = |θc,n|;
18 if q < θc,m then

/* load from Sc,n to Sc,m */
19 δcn|m = q;
20 θc,n = 0;
21 θc,m = θc,m − q;
22 else
23 δcn|m = θc,m;
24 θc,n = θc,n + θc,m;
25 θc,m = 0;
26 end
27 end
28 end

A. Prototype Implementation

We implement VideoJam with about 400 lines of Python 3
code, using the asyncio [29] library to handle I/O operations of
incoming frames and objects to process, and OpenCV v4.5.3
with Cuda v11.2.2 support for various vision models. The
library is designed to easily support a variety of existing video
analytics applications. We integrate the system in a docker
image can be pulled from a public docker hub or built from
the Dockerfile available in our public GitHub repository 1. To
evaluate the design effectiveness, we implement the functions
of a typical traffic control application: vehicles’ number plate
detection.

Video Analytics Components. We implement the vehicles’

1The VideoJam implementation code is freely available at
https://github.com/ENSL-NS/VideoJam.git

4g.20gb

OCR
YOLO

1

3g.20gb

OCR Vehicle
Detection

Fixed
Camera

2

3g.20gb

OCR

Vehicle
Detection

Fixed
Camera

3

2g.20gb

OCR

Mobile
CameraYOLO

4

1g.20gb

OCR

Mobile
Camera

YOLO

5

Node

Function

Data flow/Signals

Data flow

Fig. 6: An example of heterogeneous deployment of
VideoJam. Note that not all links between functions are
represented to reduce image complexity.

number plate detection pipeline by integrating the following
video analytics functions: video source and decoder, back-
ground subtractor and vehicle detection (for fixed camera
sources), YOLO object detection (for mobile sources), and
number/license plate recognition.

The decoder represents the entry point of the pipeline and
takes as input an encoded stream (for the evaluation in this
paper we use pre-recorded videos, yet the system supports live
streams as well). The decoded video frames are then passed
on to the next function for further processing.

For fixed cameras, frames are transmitted to the background
subtractor. The background subtractor is a function that gen-
erates a foreground mask using a static camera. This mask is
then used on the current image to subtract the static scene,
i.e., the background, while each moving scene is detected
and classified as an object of interest. Extracted objects are
then passed to the vehicle detection function, which embeds
a machine learning model trained to detect vehicles within an
image [30]. Detected vehicles are passed along to the next
function, while other objects are discarded.

For detecting vehicles in mobile sources, we integrate a
YOLOv5 model [20]. YOLOv5 is the fifth version of the
YOLO (You Only Look Once) object detection model. It
performs detection and classification, and returns a box for
each object in the image taken in input, along with their
classes with a high degree of accuracy. This is computationally
intensive and is generally used on GPUs to achieve fast
and accurate results in real-time. There are many pre-trained
check-points available, as well as input size pixel images. For
our purposes, we use YOLOv5s with a high (640) and low
(416) input pixels size.

Finally, detected vehicles are passed to an object character
recognition (OCR) function that used to detect license plates
on cars. Numerous frameworks have been developed for this
task. In our implementation we integrate Tesseract [31], an
open source OCR engine that combines traditional image
processing techniques with modern machine learning methods

https://github.com/ENSL-NS/VideoJam.git


Parameter Value and description

∆ 1 second (the monitoring duration)
k 10, represents a monitoring window of 10 ∗ ∆ = 10

seconds
h 50, the history for short-term forecasting
model short-term forecasting: DNN for Vehicle detection and

Number plate OCR, none for YOLOv5

TABLE I: VideoJam configuration

to accurately recognize and convert text from images into a
digital format.

We use these functions to create a heterogeneous application
with two different pipelines. The first takes as input fixed video
camera feeds passed along to the background subtractor, which
forwards the data to the vehicle detector for classification
before the final function, the license plate detection. The sec-
ond pipeline takes data from a moving camera and processes
them using YOLO, then passes the result to the license plate
detection. This last function is shared by both pipelines for
reuse and optimization. With such a deployment, a workload
imbalance situation can arise at any time, and forecasting
becomes more challenging. The complete application used for
deployment is presented in fig. 6.

System configuration and model tuning. We configure
the VideoJam load-balancing system using the parameters
summarized in Table I. Regarding the predictive model, we
opt for an architecture that minimizes inference time while
guaranteeing acceptable performance. We choose a neural
network (NN) with a single dense layer of 512 units trained
over 100 epochs. The model takes in input a window of
size h and can predict a window of size k (see Table I for
the values of these parameters). We also tried out different
architectures, such as a convolutional neural networks (CNN),
and LSTMs. However, such models result to be difficult to
use since (1) CNN requires a significant amount of time for
the inference, although it has high levels of accuracy; (2) in
our case, LSTM presents poor performance in terms of both
accuracy and inference time given its specific use on time
series (different from our case).

B. Evaluation Setup

Baselines. We evaluate VideoJam compared against three
different baselines: (1) a video analytics pipeline that does
not implement any load balancing, (2) one that implements
Weighted Round Robin (WRR), and (3) Distream [6], a
state-of-the-art solution. In WRR, neighbors determine their
processing rates based on an initial estimation, share this in-
formation with their neighbors, and collectively assign weights
based on their capacity to create a load-balancing policy. They
then apply this policy to distribute incoming workload to their
local queues or to neighbors, with offloaded work being placed
directly in a neighbor’s local queue. For Distream, we start
with the version available at the project repository2. We then

2https://github.com/AIoT-MLSys-Lab/Distream/tree/main

Model Dell PowerEdge R7525
CPU AMD EPYC 7452 (Zen 2), 2 CPUs/node, 32 cores/CPU
Memory 128 GB
GPU 2 x Nvidia A100-PCIE-40GB, Compute capability: 8.0

TABLE II: Server configuration used for experiments.

transform the Golang code into Python for integration into
our deployment framework. Finally, we also adapt the code
to support batch processing, mentioned in the article but not
implemented in the open source version. The final code is also
available on our public GitHub. Note that Distream does not
support heterogeneous pipelines, thus we solely integrate the
pipeline with YOLO into its architecture.

Deployment Infrastructure. We conduct experiments deploy-
ing multiple docker containers on a server grade machine
equipped with Nvidia A100 GPUs (full specifications are
shown in Table II). For functions necessitating access to GPU
resources, we leverage the MIG (Multi-Instance GPU) that
Nvidia GPU offers to split the available GPUs into multiple
instances. We emulate an heterogenous edge infrastructure by
splitting the GPU into six nodes with heterogeneous compute
cores (i.e., 4g.20gb, 2× 3g.20gb, 2g.10gb and 2× 1g.5gb) [32].
Given the lack of enough CPU cores we leave all containers
to concurrently use all available CPUs. While this reduces the
realism in terms of CPU isolation, the implemented functions
mostly rely on the GPU for heavier computations, thus not
introducing unwanted bottlenecks to the setup. Finally, the
bandwidth between containers is limited to 1Gbit/s with the
traffic control (tc) tool.

Evaluation metrics. We evaluate the performance of
VideoJam and the other baselines using three metrics: (1)
the response time, (2) the loss rate, and (3) the total bandwidth
utilization. The response time for a frame refers to the time
elapsed from its introduction into the system (i.e., from the
source) to its complete processing by the last function in the
pipeline. It can also be measured at the level of a specific
pipeline function. For example, the response time for a frame
measured at the vehicle detection level corresponds to the
time elapsed between its entry into the pipeline and its exit
from this function. A low response time is an indicator of the
system’s ability to quickly extract the information generated
by the application. The percentage of losses corresponds to
the number of objects lost over the total number of objects
to be processed. In general, each function has a queue with
a maximum number of items that can be held in it. When
the incoming load exceeds a function’s capacity, it begins
to accumulate load in its queue. When the queue is full,
any new incoming objects arrive they are dropped. Since
we do not focus on function selection, losses become the
main indicator of accuracy reduction. Finally, total bandwidth
utilization corresponds to the total amount of data transmitted
during load balancing between functions. This is an important
measure, as it enables us to measure the impact of the different



Type of camera Duration (min) Resolution Total videos

Mobile 11-80 720p 9
Fixed 5-60 720p 11

TABLE III: Video cameras used for experiments.

approaches used on network resources.

Datasets. We use public videos from YouTube for both fixed
and mobile cameras. These videos have different resolutions
and durations, as shown in Table III. Part of this data is
used for training the forecasting model we used for short-
term forecasting. Note that, while fixed and mobile videos
do not target the same scene, they are used to evaluate the
system’s ability to handle different types of video sources.
As VideoJam, does not rely on any correlation between the
videos, we do not expect this to affect obtained results.

V. EVALUATION

We evaluate VideoJam in different scenarios and against
the three baselines previously described. First, we compare it
against Distream [6] to demonstrate the benefits of localized
load balancing at function level, rather than a centralized ap-
proach for global load balancing. Next, we evaluate the system
under different levels of loads to measure the performance of
VideoJam as the workload increases. In addition, we test
VideoJam’s ability to adapt to system configuration changes
or failures, by subjecting it to critical situations such as the
failure of a function or the failure of a node. Finally, we test
the system’s ability to deal with mobile cameras leaving and
joining the architecture, demonstrating VideoJam’s ability to
adapt to forecasting errors caused by sudden changes of video
content.

A. Comparison with Distream

Distream’s load balancing architecture is based on two main
key concepts: the cross-camera workload and the partition
point. The cross-camera workload determines the workload
balance among cameras (also called “Ends”) only. The par-
tition point defines which functions of each pipeline are
processed by Ends, while other functions are then executed on
the server (called “Edge”). The choice of offload proportion
is handled in one of two different ways by the Ends: either
a full-stochastic (FS) or semi-stochastic (SS) partitioning.
In full-stochastic partitioning, the Ends generate a random
partitioning proportion based on a Bernoulli random variable
with probability set proportionally to the compute power of
the Edge and End nodes. At every step of the pipeline, Ends
draw a value from this variable and determine whether to
process the function locally or offload it to the Edge. In semi-
stochastic, the random value is drawn only at the partition
point. In this case, the partition point is calculated as the
point in the pipeline that evenly splits it proportionally to the
compute power of the two components.

VideoJam outperforms baselines in heterogeneous de-
ployments. We compare VideoJam and other baselines in

Distream SS
Distream FS WRR

VideoJam
(Yolo only) VideoJam

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Re
sp

on
se

 ti
m

e 
(s

)

(a) Response time.

Distream SS
Distream FS WRR

VideoJam
(Yolo only) VideoJam

0

5

10

15

20

25

Pe
rc

en
ta

ge
 lo

ss
es

(b) Percentage losses.

Fig. 7: Evaluation on a heterogeneous architecture shows a
response time up to 2.91× lower than comparative approaches,
and with fewer losses.

dealing with mixed traffic of mobile and fixed video cameras.
To carry out this experiment, we deploy Distream using five
GPU-equipped nodes (as described in Section IV). We deploy
one instance of YOLO and one instance of OCR on each
node, as required by Distream. We use the same five nodes
for VideoJam, but we partition nodes hosting the pipeline
for fixed and mobile cameras. In particular, we deploy two
vehicle detection instances, three YOLOs, and five OCRs.
We also deploy two other baselines, WRR and a VideoJam
version that solely employs YOLOs for detection, and using
the same configuration as VideoJam. Finally, we use four
video sources, two mobile cameras and two fixed ones, draw
randomly from the dataset presented in Section IV and set to
20 frames per second.

Figure 7 shows that VideoJam outperforms all other
solutions, both in terms of response time, with 2.91× and
1.77× less response time compared to Distream’s solutions,
and reduces objects loss by 19% and 4%, respectively. This
highlights the advantages of using a localized load balancing
technique like VideoJam, and the limitation of approaches
like Distream or a simplistic WRR. Further, the figure high-
lights that the use of mixed pipelines for different sources
of traffic improves response time. Indeed, the use of dedi-
cated pipelines for fixed and mobile cameras, i.e., background
substractor vs YOLO as explained Section II, improves clas-
sification performance incurring less load depending on the
number of objects in each frame. Consequently, if the amount
of objects in the video scene is low, no action, i.e., inference,
will be taken, whereas detection techniques such as YOLO
will take action even if no objects are present in the frames.
This is supported by the performance improvement observed
when comparing the two approaches on VideoJam (i.e., the
one using vehicle detection over the one using only YOLOs).
Furthermore, the results show that VideoJam has a response
time 1.11× lower than VideoJam with YOLO only.

VideoJam outperforms Distream in mobile only scenarios.
In the previous experiment we have shown that VideoJam
outperforms baselines when processing mixed types of video
traffic. We now explore whether our solution can still outper-
form Distream when solely processing video traffic generated
by mobile cameras. We do so to evaluate VideoJam’s load
balancing technique, understanding whether the advantages
presented previously are to be solely attributed to the use of
different pipelines for different types of traffic or to the load



Distream SS Distream FS WRR VideoJam

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Re

sp
on

se
 ti

m
e 

(s
)

(a) Response time.

Distream SS Distream FS WRR VideoJam
0

1

2

3

4

5

6

Pe
rc

en
ta

ge
 lo

ss
es

(b) Percentage losses.

Fig. 8: Evaluation on mobile cameras shows that VideoJam’s
response time is 1.25× shorter than Distream’s.

balancing as well. In this experiment, we use the same experi-
mental setup as in the previous experiment, the only difference
being that we use YOLOs throughout the deployment for all
baselines, and we use four mobile cameras.

Figure 8 shows the performance of WRR, Distream, and
VideoJam. We can observe that the semi-stochastic version
of Distream incurs the worst performance in terms of both
response time and loss: about 2.02× and 3.68×, respectively,
compared to VideoJam. Indeed, given the design of Dis-
tream, it is difficult to define the load balancing policy when
considering the pipeline as a whole. In fact, two different
functions (e.g., YOLO and OCR) on different nodes may
become overloaded as traffic loads vary in time. This makes
it very difficult to define an optimal load balancing policy
for load distribution. Furthermore, in our observation, the
considerable loss observed is due to the fact that a large portion
of the video traffic remains continuously blocked in the Edge,
which is unable to empty it quickly enough.

Nevertheless, we observe similar response time results
between the full-stochastic approach and VideoJam. The
reason for this lies behind the simple offload policy imple-
mented in this approach: as the pipeline consists of only two
functions, the partition is only necessary at either YOLO or
OCR, often leaving the Edge in charge of the full processing.
Yet, this simplicity can incur increased loss, when these nodes
become overloaded (about 3% loss). We also observe that
WRR experiences a lower percentage of loss compared to
VideoJam. This is due to WRR’s simpler load-balancing
policy, which in some cases can be beneficial to loss, when
frames spend more time being transmitted between nodes,
slowing down the volume of traffic reaching the OCRs. In fact,
we observe that WRR tends to balance load more aggressively
across all available instances, thus increasing network usage
(more details on this later in this section). Consequently, these
frames are not queued fast enough to fill the ORC queues,
explaining the small loss for WRR. This also explains the
WRR’s lower performance in terms of response time (1.22×
lower response time than WRR). Ultimately, this shows that in
certain instances, there might be a tradeoff to explore between
response time and information loss. We leave this exploration
for future work.

VideoJam better handles node failures. The aim of this
experiment is to determine the impact of node failure on the
performance of Distream, WRR, and VideoJam. To do this,
we simulate two types of failure: the first is an End failure,
the second an Edge failure.

Distream SS Distream FS WRR VideoJam
0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Re
sp

on
se

 ti
m

e 
(s

)

(a) Response time.

Distream SS Distream FS WRR VideoJam
0
2
4
6
8

10
12
14
16

Pe
rc

en
ta

ge
 lo

ss
es

(b) Percentage losses.

Fig. 9: Evaluation of Distream and VideoJam in the event
of node failure, with the latter recording fewer losses while
maintaining better response time.

Figure 9 summarizes the performance of each solution.
We can observe a significant loss for Distream (about 15%
of the total traffic). The reason for this large loss is that after
the Edge has failed, the last policy calculated by the Edge,
i.e., the partitioning point, is still executed by the Ends and is
not updated during the Edge’s absence. So when the Edge
comes back, the computation it is supposed to be dealing
with since the last partition point update suddenly arrives,
saturating the Edge in the process and causing several losses.
Also, Distream’s low response time is due to the fact that
fewer frames are waiting in the queue to be processed after a
large proportion of them have been lost.

Furthermore, we see the ability of VideoJam to be robust
to failures and to react a recovery. Indeed, when a node
failure occurs, VideoJam adapts the load balancing policy
calculation to the available resources. When the failed node
returns, the policy is recomputed and all the workload already
accumulated is redistributed. This explains the low losses
of around 2% which are 6× lower than Distream’s ones.
WRR, on the other hand, does not present the same ability of
robustness to failures, even though its policy is updated every
time the system is stressed. And since its policy does not take
into account the workload of the instances, the load previously
accumulated during the downtime is not redistributed.

B. Load Balancing Ablation Study

In this section, we evaluate the effectiveness of
VideoJam’s load balancing algorithm with respect to
two alternative baselines, no load balancing and WRR.

VideoJam Under Different Workloads. To evaluate the
sensitivity of VideoJam to the level of workload, we subject
it to different workloads, increasing the number of source
cameras given a fixed function placement (deployment). In
this scenario, we use six GPU-equipped nodes, and we set
the number of YOLO and OCR instances to three and five
respectively, while we increase the number of mobile cameras
from two to five with a rate of 15 frames per second.

Figure 10 shows the system response time, the percentage
of lost frames, and the bandwidth used during the offloading.
VideoJam generally shows better performance with respect
to the other compared solutions. The poor performance of no-
balancing strategy highlights the need of load balancing solu-
tions in this context. WRR reasonably shows longer response
times as the load increases since such solution struggles in
presence of network congestion. This is also highlighted by



2 Cameras 3 Cameras 4 Cameras 5 Cameras
0

2

4

6

8

10

12

14
Re

sp
on

se
 ti

m
e 

(s
) No load balancing

WRR
VideoJam

(a) Response time of the system.

2 Cameras 3 Cameras 4 Cameras 5 Cameras
0

5

10

15

20

25

Pe
rc

en
ta

ge
 lo

ss
es

No load balancing
WRR
VideoJam

(b) Percentage of frame lost.

2 Cameras 3 Cameras 4 Cameras 5 Cameras
0

25

50

75

100

125

150

Ba
nd

wi
dt

h 
(M

bi
t/s

) WRR
VideoJam

(c) Bandwidth used for offloading to
neighbors.

Fig. 10: Evaluation on several configurations shows the need for a load-balancing technique and the effectiveness of VideoJam
in achieving lower response times with less bandwidth usage.

0 50 100 150 200 250 300 350
Time (s)

0

2

4

6

8

10

12

14

Av
er

ag
e 

re
sp

on
se

 ti
m

e 
(s

)

WRR
VideoJam
Instance absent

(a) Averages for frames exiting YOLO.

WRR VideoJam
0

5

10

15

20

25

30

35

Re
sp

on
se

 ti
m

e 
(s

)

(b) Response time.

Fig. 11: Evaluation under node failure conditions: WRR’s poor
performance and VideoJam’s adaptability under failures.

the increase in the bandwidth utilization showed in Figure 10c.
VideoJam, on the other hand, even in the event of conges-
tion, only offloads the difference between instances to prevent
two instances from sending load to each other, which explains
the low bandwidth used. Furthermore, given the efficient
collaboration among neighbors, VideoJam maintains stable
performance as the workload increases.

In summary, this experiment has shown that VideoJam
balances the workload without compromising performance,
while minimizing system response time. In addition, while
WRR statically balances incoming workload to neighbors,
VideoJam adapts to the current situation by computing the
most appropriate policy, and prevents bandwidth wastage due
to bidirectional load migration.

VideoJam’s Adaptation to Functions Placement. We eval-
uate the impact that different placement strategies can of
on VideoJam, particularly in the case of real-time changes.
Many studies have been carried out to find a better solution
for placing components or functions to maximize the use of
hardware resources while maintaining good precision [33],
[12]. As VideoJam is agnostic of the placement strategy, we
aim to evaluate if performance remains stable across different
configurations. To do this, we start with four sources (15fps),
three low-resolution YOLOs and five OCRs. Firstly, we delib-
erately remove a YOLO function before it is deployed at high
resolution, which is more accurate than the first solution, but
slower (lower throughput). This corresponds to a configuration
change that can occur when placement techniques are used. In
a second step, we kill all components (YOLO and OCR) on
another node before restarting them after 15 seconds. This
simulates a node failure that can occur at any time when
dealing with edges.

WRR VideoJam

2

4

6

8

10

12

Re
sp

on
se

 ti
m

e 
(s

)

Fig. 12: Little effect of source mobility and abrupt flow
changes on VideoJam performance.

The system response time and the average response time
of frames, as they leave the YOLO component, are shown
in Figure 11b and Figure 11a respectively. Initially, YOLOs
maintain a consistently low response time, as they efficiently
handle the incoming workload that is below their capabilities.
At ∼100s (Figure 11a), a YOLO instance fails, with the source
previously connected to it now sending its stream to another
instance. This results in a sudden increase in the load that
is badly distributed between instances for WRR. In contrast,
in with VideoJam, instances remain capable of handling
all the load generated by the sources. When the function is
reintroduced into the system with a different configuration
(higher resolution), WRR shows a gradual and slow decrease
in response time, as it is unable to redistribute the loads already
allocated to instances.

A similar behavior is observed at ∼220s, where a YOLO
and an OCR deployed in the same node are killed due to
node failure. Here again, the response time increases for WRR
and VideoJam. In this particular case, the remaining YOLOs
(one high-resolution and one low-resolution) are unable to
handle the incoming workload, resulting in an increase in
response time. In contrast, VideoJam excludes the outgoing
instance from the load-balancing policy until it returns, or new
functions are added, allowing previously accumulated overload
to be efficiently redistributed between instances.

Impact of Mobility. One of the key features of mobile
cameras is their ability to be in the right place to retrieve
useful information. Nevertheless, in some cases their stream
is interrupted by a number of factors (e.g., displacement),
before eventually resuming after a period of time. In this
experiment, we therefore used three mobile cameras (20fps)
that send their streams to four respective YOLOs, and then
to five OCR instances. We want to evaluate the impact of



mobility on VideoJam. At some point, one camera stops
sending its stream to the next function for a short period of
∼15 seconds. Which represents a camera leaving the system.
This has a direct impact on load, as the incoming workload
correlation is broken. We observe the system response time
in Figure 12. When a source stops sending its data stream
to the next function, the latter sees its incoming load drop
drastically and then fails the VideoJam’s prediction. Even
though WRR is agnostic to these events as it continues to
distributed frames independently of sources, VideoJam’s
load balancing compensates for eventual forecasting errors,
maintaining 1.25× better response time.

VI. RELATED WORK

In recent years, several techniques have been developed to
improve the performance of video analytics applications [34],
[35], [10]. Such a topic has been tackled from different
perspectives, including the design of different data processing
architectures [11], [8], [7], the improvement of pipelines’ pro-
cessing [16], [13], [36], [37] and the privacy of the extracted
data [38], [39], [40].

Architecture scaling. Different approaches have been pro-
posed to efficiently manage the computational resources for
video analytics [11], [8], [7], [33]. Chameleon, presented
in [7], frequently reconfigures the placement of video analytics
pipelines to reduce resource consumption with small loss in
accuracy. Another example is Spatula [11], which exploits
the spatial and temporal correlations among different camera
flows to reduce the network and computation costs. However,
such solutions only consider video flows coming from fixed
cameras.

Deployment strategies. Other solutions mainly focused on
the deployment strategies of video analytics applications [6],
[33], [41]. Distream [6] is a distributed framework based
capable of adapting to workload dynamics to achieve low-
latency, high-throughput and scalable live video analytics.
Pipelines are deployed on both the smart cameras and the
edge, and are jointly partitioned so that part is computed
on the smart cameras, while the rest is sent towards the
edge, which has more computing power at its disposal. The
deployment of application pipelines is adapted to the vary-
ing processing load, however there is a lack of adaptability
required by the rate of mobile cameras. The work in [41]
presents experimental results showing that smartly distributing
and processing vision modules in parallel across available
edge compute nodes, can ultimately lead to better resource
utilization and improved performance. The same approach is
also used by VideoStorm [33] which places different video
functions across multiple available workers to satisfy users’
requests. We assume a deployment of pipelines in line with
this latter work given the higher flexibility, higher scalability
and the better use of resources of this approach.

Load balancing strategies. Once the video analytics ap-
plications have been deployed on a distributed edge infras-
tructure, load balancing strategies play a fundamental role

in guaranteeing requirements of accuracy and efficiency. In
this perspective, several methods has been proposed in video
analytics [6], [23], [28]. In [23], authors proposed two dy-
namic, adaptive and decentralized load balancing algorithms
for grid computing environments to minimize response time.
The main strength of such an approach is the estimation
of system parameters (e.g., arrival rate), which is achieved
using exponential smoothing. However, the workload arrival
rate assumption and the use of exponential smoothing for
prediction may not be suitable for all systems, especially from
heterogeneous video sources.

Workload prediction. Workload predictions, based on ma-
chine learning models, have been proved to be effective in
the design of load balancing policies [42], [43], [28], [6].
In [44], authors used reinforcement learning for performing
real-time estimation for dynamic assigning task to the optimal
server. While the work in [28], focused on load forecasting
by using linear regression model. However, reinforcement
learning solution, even though effective, require a significant
amount of resources and continuous online training to avoid
concept-drift problems [45]. Such a solution method is not
suitable for the computational-constrained devices at the edge.
In addition, the rapid changes in scenes captured by mobile
cameras are more difficult to predict. Therefore, there is a need
of lightweight forecasting models that can predict short-term
trends, suitable for edge devices and fast enough for real-time
prediction.

VII. CONCLUSION

We present VideoJam, a new approach designed to meet
the challenges of video analytics applications that integrate
heterogeneous camera sources, i.e., both fixed and mobile.
VideoJam responds to scenarios incurring high load variabil-
ity (such as mobile cameras) by integrating short term load
prediction and performing load balancing at function level.
Further, the system adapts to varying deployment configura-
tions, not requiring any hard reboots to compensate for them.
Thanks to its design, VideoJam reduces response times by
2.91× lower response time, while reducing video data loss by
more than 4.64× and generating lower bandwidth overheads.

In future work, we plan to tackle the need of accounting
of additional constraints in the analytics pipeline. Currently,
VideoJam does not consider inter-function link bandwidths
to determine load balancing policies. In heterogeneous net-
work environments, where link speeds differ, this omission
can have an impact on overall system efficiency. Further, while
VideoJam works independently of the existing deployment
configuration (e.g., number of replicas for each function), it
does not compensate for scenarios where the load exceeds the
existing processing capabilities (e.g., too many video sources
to process). Future work will address these limitations, with
the aim of improving resource utilization and exploring more
adaptive deployment strategies.



ACKNOWLEDGMENTS

This work was supported by the ANR Project No ANR-21-
CE25-0013 (PARFAIT) and the National Science Foundation
under Award numbers 2055520 and 2106594.

REFERENCES

[1] R. Parascandola, “New NYPD surveillance cameras to cover stretch
of upper east side not easily reached by patrol cars,” Dec 2018.
[Online]. Available: https://www.nydailynews.com/new-york/nyc-crime/
ny-metro-argus-cameras-east-20181024-story.html

[2] J. Ratcliffe, “How many CCTV cameras are there in London? (update
for 2020/21),” Nov 2020. [Online]. Available: https://www.cctv.co.uk/
how-manfIPOy-cctv-camerfSECas-are-there-in-london/

[3] G. Grassi, K. Jamieson, P. Bahl, and G. Pau, “Parkmaster: An in-vehicle,
edge-based video analytics service for detecting open parking spaces in
urban environments,” in Proc. of the IEEE/ACM Symposium on Edge
Computing (SEC), 2017.

[4] G. Ananthanarayanan, P. Bahl, P. Bodı́k, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” IEEE Computer, vol. 50, no. 10, pp. 58–67,
2017.

[5] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket: A
serverless video processing framework,” in Proceedings of the ACM
Symposium on Cloud Computing, 2018, pp. 263–274.

[6] X. Zeng, B. Fang, H. Shen, and M. Zhang, “Distream: scaling live
video analytics with workload-adaptive distributed edge intelligence,”
in Proceedings of the 18th Conference on Embedded Networked Sensor
Systems, 2020, pp. 409–421.

[7] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, 2018, pp. 253–266.

[8] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
delay-tolerance,” in 14th USENIX Symposium on Networked Systems
Design and Implementation, 2017.

[9] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-
aware video analytics on edge computing platform,” in Proceedings of
the Second ACM/IEEE Symposium on Edge Computing, 2017, pp. 1–13.

[10] M. Hu, Z. Luo, A. Pasdar, Y. C. Lee, Y. Zhou, and D. Wu, “Edge-based
video analytics: A survey,” arXiv preprint arXiv:2303.14329, 2023.

[11] S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan, J. Jiang, Y. Shu,
P. Bahl, and J. Gonzalez, “Spatula: Efficient cross-camera video analytics
on large camera networks,” in 2020 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2020, pp. 110–124.

[12] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams
using hierarchical clusters,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2018, pp. 115–131.

[13] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, 2015, pp. 155–168.

[14] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri, “Hetero-
edge: Orchestration of real-time vision applications on heterogeneous
edge clouds,” in Proc. of IEEE INFOCOM, 2019, pp. 1270–1278.

[15] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S.-W. Yang,
and M. Satyanarayanan, “Bandwidth-efficient live video analytics for
drones via edge computing,” in Proc of the IEEE/ACM Symposium on
Edge Computing (SEC), 2018.

[16] S. Fouladi and al., “Encoding, fast and slow:{Low-Latency} video
processing using thousands of tiny threads,” in Proc. of USENIX NSDI,
2017, pp. 363–376.

[17] C. Pakha, A. Chowdhery, and J. Jiang, “Reinventing video streaming for
distributed vision analytics,” in 10th USENIX workshop on hot topics in
cloud computing (HotCloud 18), 2018.

[18] H. Qiu, X. Liu, S. Rallapalli, A. J. Bency, K. Chan, R. Urgaonkar,
B. Manjunath, and R. Govindan, “Kestrel: Video analytics for augmented
multi-camera vehicle tracking,” in 2018 IEEE/ACM Third International
Conference on Internet-of-Things Design and Implementation (IoTDI).
IEEE, 2018, pp. 48–59.

[19] J. He, G. Baig, and L. Qiu, “Real-time deep video analytics on mobile
devices,” in Proceedings of the Twenty-second International Symposium
on Theory, Algorithmic Foundations, and Protocol Design for Mobile
Networks and Mobile Computing, 2021, pp. 81–90.

[20] G. Jocher, “Yolov5 by ultralytics,” if you use YOLOv5, please cite it
as below. [Online]. Available: https://github.com/ultralytics/yolov5

[21] E. Yildiz, K. Akkaya, E. Sisikoglu, and M. Y. Sir, “Optimal camera
placement for providing angular coverage in wireless video sensor
networks,” IEEE transactions on computers, vol. 63, no. 7, pp. 1812–
1825, 2013.

[22] H. Guo, S. Yao, Z. Yang, Q. Zhou, and K. Nahrstedt, “Crossroi: cross-
camera region of interest optimization for efficient real time video
analytics at scale,” in Proceedings of the 12th ACM Multimedia Systems
Conference, 2021, pp. 186–199.

[23] R. Shah, B. Veeravalli, and M. Misra, “On the design of adaptive
and decentralized load balancing algorithms with load estimation for
computational grid environments,” IEEE Transactions on parallel and
distributed systems, vol. 18, no. 12, pp. 1675–1686, 2007.

[24] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE transactions on neural
networks and learning systems, vol. 28, no. 10, pp. 2222–2232, 2016.

[25] V. S. Lalapura, J. Amudha, and H. S. Satheesh, “Recurrent neural
networks for edge intelligence: a survey,” ACM Computing Surveys
(CSUR), vol. 54, no. 4, pp. 1–38, 2021.

[26] R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu, N. Kar-
ianakis, K. Hsieh, P. Bahl, and I. Stoica, “Ekya: Continuous learning
of video analytics models on edge compute servers,” in 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22), 2022, pp. 119–135.

[27] P. Remy, “Temporal convolutional networks for keras,” https://github.
com/philipperemy/keras-tcn, 2020.

[28] R. K. Kombi, N. Lumineau, and P. Lamarre, “A preventive auto-
parallelization approach for elastic stream processing,” in 2017 IEEE
37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2017, pp. 1532–1542.

[29] “asyncio — asynchronous i/o,” https://docs.python.org/3/library/asyncio.
html, 2024.

[30] A. W. Ibrahim, “Vehicle detection, cnn.” [On-
line]. Available: https://www.kaggle.com/code/abdallahwagih/
vehicle-detection-cnn-acc-99-3/input

[31] “Tesseract.” [Online]. Available: https://github.com/tesseract-ocr/tessdoc
[32] Nvidia multi-instance gpu user guide. [Online]. Available: https:

//docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
[33] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and

M. J. Freedman, “Live video analytics at scale with approximation and
Delay-Tolerance,” in 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). Boston, MA: USENIX
Association, Mar. 2017, pp. 377–392. [Online]. Available: https://www.
usenix.org/conference/nsdi17/technical-sessions/presentation/zhang

[34] N. Ibrahim, P. Maurya, O. Jafari, and P. Nagarkar, “A survey of perfor-
mance optimization in neural network-based video analytics systems,”
arXiv preprint arXiv:2105.14195, 2021.

[35] R. Xu, S. Razavi, and R. Zheng, “Edge video analytics: A survey on
applications, systems and enabling techniques,” IEEE Communications
Surveys & Tutorials, 2023.

[36] A. Padmanabhan, A. P. Iyer, G. Ananthanarayanan, Y. Shu, N. Kari-
anakis, G. H. Xu, and R. Netravali, “Towards memory-efficient inference
in edge video analytics,” in Proceedings of the 3rd ACM Workshop on
Hot Topics in Video Analytics and Intelligent Edges, 2021, pp. 31–37.

[37] A. Padmanabhan, N. Agarwal, A. Iyer, G. Ananthanarayanan, Y. Shu,
N. Karianakis, G. H. Xu, and R. Netravali, “Gemel: Model merging for
{Memory-Efficient},{Real-Time} video analytics at the edge,” in 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), 2023, pp. 973–994.

[38] F. Cangialosi, N. Agarwal, V. Arun, J. Jiang, S. Narayana, A. Sarwate,
and R. Netravali, “Privid: Practical, privacy-preserving queries on public
video,” in 19th USENIX Symposium on Networked Systems Design and
Implementation, 2022.

[39] R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos, and R. A. Popa,
“Visor:{Privacy-Preserving} video analytics as a cloud service,” in 29th
USENIX Security Symposium (USENIX Security 20), 2020, pp. 1039–
1056.

[40] H. Wu, X. Tian, M. Li, Y. Liu, G. Ananthanarayanan, F. Xu, and
S. Zhong, “Pecam: privacy-enhanced video streaming and analytics via

https://www.nydailynews.com/new-york/nyc-crime/ny-metro-argus-cameras-east-20181024-story.html
https://www.nydailynews.com/new-york/nyc-crime/ny-metro-argus-cameras-east-20181024-story.html
https://www.cctv.co.uk/how-manfIPOy-cctv-camerfSECas-are-there-in-london/
https://www.cctv.co.uk/how-manfIPOy-cctv-camerfSECas-are-there-in-london/
https://github.com/ultralytics/yolov5
https://github.com/philipperemy/keras-tcn
https://github.com/philipperemy/keras-tcn
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://www.kaggle.com/code/abdallahwagih/vehicle-detection-cnn-acc-99-3/input
https://www.kaggle.com/code/abdallahwagih/vehicle-detection-cnn-acc-99-3/input
https://github.com/tesseract-ocr/tessdoc
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang


securely-reversible transformation,” in Proceedings of the 27th Annual
International Conference on Mobile Computing and Networking, 2021,
pp. 229–241.

[41] S. P. Rachuri, F. Bronzino, and S. Jain, “Decentralized modular
architecture for live video analytics at the edge,” in Proceedings
of the 3rd ACM Workshop on Hot Topics in Video Analytics and
Intelligent Edges, ser. HotEdgeVideo ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 13–18. [Online].
Available: https://doi.org/10.1145/3477083.3480153

[42] T. Heinze, V. Pappalardo, Z. Jerzak, and C. Fetzer, “Auto-scaling
techniques for elastic data stream processing,” in Proceedings of
the 8th ACM International Conference on Distributed Event-Based
Systems, ser. DEBS ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 318–321. [Online]. Available:
https://doi.org/10.1145/2611286.2611314

[43] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for
data stream processing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 6, pp. 1447–1463, 2013.

[44] H. Yuan, G. Tang, X. Li, D. Guo, L. Luo, and X. Luo, “Online
dispatching and fair scheduling of edge computing tasks: A learning-
based approach,” IEEE Internet of Things Journal, vol. 8, no. 19, pp.
14 985–14 998, 2021.

[45] H. Zhang, W. Liu, and Q. Liu, “Reinforcement online active learning
ensemble for drifting imbalanced data streams,” IEEE Transactions on
Knowledge and Data Engineering, vol. 34, no. 8, pp. 3971–3983, 2020.

https://doi.org/10.1145/3477083.3480153
https://doi.org/10.1145/2611286.2611314

	Introduction
	Background and Motivation
	Live Video Analytics
	Challenges in Incorporating Mobile Cameras

	VideoJam Architecture
	System Overview
	Message Exchange
	System state computation
	Load Balancer Algorithm

	Implementation and Deployment Configuration
	Prototype Implementation
	Evaluation Setup

	Evaluation
	Comparison with Distream
	Load Balancing Ablation Study

	Related work
	Conclusion
	References

