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Abstract

Charged polymers with quenched charge sequences adopt pearl-necklace structures

due to the interplay between charge disorder and thermal fluctuations. Partially glob-

ular pearl necklace conformations from random (+/−) sequences are intrinsically het-

erogeneous and exhibit various structures characterized by different number of pearls.
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Based on the molecular dynamics simulations of random model polyampholytes (PAs),

we study dynamics of pearls and associated conformational heterogeneity in pearl struc-

tures. Fast nucleation/dissolution of small pearls controls the dynamics of the number

of pearls, which is well described by first order kinetic equations. Most of individ-

ual sequences we considered have a rather stable number of large pearls. Only a few

sequences allow for fast switchings in the number of large pearls following complex

processes (trajectories in parameter space) going through states with different number

of pearls. Processes are most complex in the tail of the switching time distribution.

The specific sequence of two Intrinsically Disordered Proteins (IDPs) is studied along

the same lines. Our study shows the resemblance in shape fluctuations between the

IDP sequences and the fast-switching PA sequences.
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Introduction

Water soluble polymers can be manipulated without organic solvent and are considered

as environmental friendly. Most water soluble polymers are electrically charged and are

called polyelectrolytes (PEs). Polymers comprising charged monomers inserted along their

backbone can be obtained by chemical modification of an otherwise insoluble backbone.

Alternatively a copolymer of neutral and charged monomers can be synthesized.1 Polyelec-

trolytes are widely used in colloid science,2 for membranes,3 to obtain polyanion–polycation

complexes (coacervates) as bulk materials4–6 or at a solid/liquid interface.7 Among charged

polymers there is a special class called polyampholytes (PAs).8 PAs carry charges of both

signs and can form coacervates9,10 Most proteins are PAs. A special class of proteins hav-

ing no well-defined ground state and called Intrinsically Disordered Proteins (IDPs) share

many common features with synthetic PAs.11–15 The conformation of synthetic PAs (with-

out hydrogen bonds) results from a balance between local attraction of opposite charges

promoting collapse and global repulsion due to the net charge (if any) promoting overall

extension. Both PAs and hydrophobic PEs, where the local attraction stems from effective

short range attraction between monomers avoiding the water molecules, can be described by

the pearl-necklace model introduced in the nineties.16,17 In this model, collapsed pearls sat-

isfying local attraction are separated by stretched strings satisfying global repulsion. It was

recognized soon that a regular hydrophobic PEs is usually not accurately described by the

ground-state but includes large fluctuations within the necklace affecting the size and num-

ber of pearls.18 In the case of synthetic PAs where the sequence of charges is not controlled

but random, the disorder along the sequence additionally contributes to the distribution of

conformations for a set of sequences. The first simulation study taking ensemble averages

over random PAs addressed the geometrical polymer size through the averaged square radius

of gyration.19 Scaling arguments illustrated by numerical simulations showed that blockiness

of the sequence controls the overall PA structure.20 In an early study for long PAs with all

monomers charged, a variety of structures with complex topologies was found.21 In our own

studies of shorter partially charged PAs necklaces are rather regular and only rare double

bridges were found.
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In a recent simulation study22 we showed that pearl-necklaces with asymmetric pearls

are most often encountered with a set of preferred conformations counting one large pearl

and a few small ones of comparable size. (See, Fig. 1). Necklaces with two large pearls are

less numerous while necklaces with all beads similarly-sized are hardly found. The previous

study was limited to chains counting N = 202 monomers, of which 68 monomers are charged

with either sign at regular intervals.

In the present work we study the structural heterogeneity residing in random PA and

IDP sequences. We classify randomly generated PA sequences according to their number

of pearls and further analyze subclasses with similar asymmetry (number of large pearls).

Most sequences essentially populate one subclass. Only a few spread over more subclasses.

We then investigate the pearl dynamics in the necklace structures at equilibrium. This is at

variance with the formation of pearls during the collapse transition triggered by a change in

external conditions.23,24 The fluctuation of the number of pearls is first studied qualitatively

by tracking each sequence in the parameter space. While the number of small pearls rapidly

fluctuates, the number of large pearls is much more stable. In a second step, the statistics

of the number of pearls is described by a set of transition rates. The explanation for the

slower fluctuation in the number of large pearls is established mainly based on a relatively

fast fluctuating subset of sequences for which we have better statistics. Finally, our findings

are discussed in a somewhat larger frame encompassing the well-defined sequences of IDPs

which share many features of PAs. It turns out that IDP sequences behave similarly to the

few PA sequences that undergo large shape fluctuations.

Simulation Description

In the molecular dynamics simulations, we consider IDP sequences and single PA chains with

random charge correlations in a weakly poor solvent.

A PA is modeled as a charged bead-spring chain consisting of N monomers including

(N + 2)/3 charged monomers. Every third monomer out of N = 202 monomers carry a

charge ±1 with an unbiased statistics satisfying global average of 〈Q〉 = 0. As such, all end

monomers carry charges. When all sites are positively charged, the corresponding net charge
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Qmax is 68.22 Each Q ensemble consists of those sequences satisfying the given net charge

condition. For each net charge Q = 16, 20, and 24, data of 40 - 45 independent sequences

are considered in a dilute solution at concentration c = 2.02× 10−4 σ−3.

We also consider two IDPs in near Θ-solvent condition. IDP is modeled as a PA consisting

of N monomers at concentration c = 6.41×10−3 σ−3. The charge sequence of monomers and

spacing between charges are faithfully taken from the residues of the corresponding IDP. In

particular, IN and ProTα are considered. IN consisting of 56 residues has the net charge of

−4 where 16 monomers carry charges. ProTα consisting of 110 residues has the net charge

of −43 and there are 63 charged monomers. The sequence informations are given in Table 1.

The electroneutrality is imposed by counterions compensating the net charge on the PA

backbone with no added salt. Counterion condensation effect does not play a role here.22

The excluded volume interactions are modeled by the truncated-shifted Lennard-Jones(LJ)

potential: ULJ(r) = 4εLJ[(σ/r)
12 − (σ/r)6 − (σ/rc)

12 + (σ/rc)
6] for r < rc and 0 elsewhere.

Here εLJ represents the strength of the LJ potential and r denotes the center-to-center dis-

tance between two interacting particles. In simulations of random PAs, the value of the

interaction parameter is set to εLJ = 0.6 kBT and the cutoff distance rc is set to 2.5σ for

monomer-monomer interactions so that polymers are in moderately poor solvent condition.

For monomer–counterion and counterion–counterion interactions, we set the interaction pa-

rameter εLJ = 1.0 kBT and the cut off distance 21/6σ, which leads to the interactions purely

repulsive. In simulations of IDP sequences, the value of interaction parameter is set to

εLJ = 0.4 kBT for monomer–monomer interactions so that IDPs are in near Θ-solvent condi-

tion. Other parameters remain the same as the PA model.

Two charged particles interact via the Coulomb potential UC(r) = kBT lBzizj/rij, where

zi and zj are the charge valence of particle i and j, respectively. The strength of the

electrostatic interactions is determined by the Bjerrum length and it is set to lB = 3 σ and

1.5 σ for PA and IDP, respectively. The long-range electrostatic interactions are calculated

by the particle-particle-particle-mesh (PPPM) method implemented in LAMMPS software

package.25

The chain connectivity is ensured by the finite extension nonlinear elastic (FENE) po-

tential between two consecutive beads22 and the equilibrium bond length is 1.0σ.
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In order to explore the phase space, we integrated Newton’s equations of motion using

the velocity Verlet algorithm with an integration time step δt = 0.01τ , where LJ time τ =

σ(m/εLJ)
1/2 is the characteristic time scale with bead mass m = 1. A Langevin thermostat

with the damping constant 1.0τ−1 was used to keep the system at the fixed temperature T

= 1.0 εLJ/kB.

We first performed 6×106 integration steps (which is equivalent to 6×106 δt = 6×106×

0.01 τ = 6 × 104τ) in order for the mean square radius of gyration of the chain to relax to

its equilibrium values. After equilibration, we ran additional 4× 107(= 4× 105τ) integration

steps and collected data every 104(= 10 τ) time steps.

To identify pearl-necklace structures, we need to determine whether a given monomer

belongs to a globular pearl or to a string. We first apply the algorithm suggested by Liao et

al.26 We make lists of monomers belonging to globules such that the number of neighboring

monomers within the sphere of cutoff radius Rcut = 2.3σ is larger than Ncut = 8. Other

monomers are considered as parts of strings. The second step introduces a merge process

for clusters if their closest distance is smaller than rmin = 1.5σ. These procedures are

repeated until the lists no longer change. In the figures below, monomers belonging to

globules are shown in green and the other ones in white. The adopted criterion works well

for distinguishing monomers belonging to a globular phase.

Results

! = 1

! = 3

! = 2

! = 4

(a) (b)

Figure 1: (a) The probability distributions of n-pearl states P (n) for ensembles of various
net charges Q = 16, 20, and 24. (b) Snapshots show typical structures of pearl-necklaces
with 1- 4 pearls from sequences of Q = 20. Monomers belonging to the globules are shown
in green.
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Figure 2: (left) The segmental diagram of 2-pearl state (a) and triangular diagram of 3-pearl
state (b). Vertex Vnl represents the number of large pearls nl. (right) Classification of PA
sequences. 2-pearl/3-pearl structures are shown for representative single sequences of each
class. The shapes are classified based on their 3-pearl structures: (C1) one large pearl, (C2)
two uneven large pearls, (C3) two comparable large pearls, and (C4) three large pearls. C2-I
and C3-I are variations from C2 and C3 types, respectively and the secondary structures are
found in addition to the most populated structures of C2 and C3. Sequences are given in
Table 1. The net charge is Q = 20 except for C4 where Q = 24. The color bar indicates the
density of states in [0,1] scale. Each snapshot is representative of the most visited regions
for the studied sequence.

Equilibrium Statistics

We obtained configurations from ensembles of Q = 16, 20 and 24, with a time resolution

of 10 τ . The structures are analyzed according to the pearl-necklace model. For each Q

ensemble, the probability distribution of n-pearl states P (n) is very dispersed and the most

common number of pearls increases with Q, (Fig. 1). A necklace contains nl large pearls

and ns small pearls. For a given number of pearls n = nl + ns, the pearl sizes usually vary

widely but not randomly so. The global statistics is dominated by configurations with one

large pearl and much smaller pearls of similar size. (Fig. 1 (b)). Configurations where one

small pearl is replaced by a somewhat larger one are also common. Other configurations are

considerably less abundant, less so for large net charge Q. Each sequence exhibits thermal

fluctuations markedly smaller than the thermal fluctuation of the ensemble of quenched

sequences with the exception of a few rare, but interesting, sequences. In order to characterize

the PA structure, we classify sequences into subclasses, according to their configurational
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fluctuations, here mainly in the two and three pearl states (see, Fig. 2). The two and the

three pearl states lead to similar conclusions. Almost all sequences sampled can be clearly

attributed to one of the four classes: C1, C2, C3 and C4 shown in Fig. 2. For the ensemble

of Q = 20, only about 6% of sequences spread a lot in configuration space (e.g. C2-I, C3-I)

and are subject to large thermal fluctuations between very different shapes occurring with

similar probability. It turned out that frequent changes of the number of pearls mostly

involves fluctuation of small pearls for each of the four sequence classes.

For a given number of pearls, we adopt the simplex representation introduced earlier in

Ref.22 as shown in Fig. 2. First the n-pearls are ordered by decreasing size (i = 1, 2, 3, ...n)

and the mass distribution among pearls Ni (ΣiNi = Np) is characterized by the set of

coordinates xi = Ni/Np − 1/n measuring the difference between the even share fraction 1/n

and the actual share fraction taken by pearl i. By construction the sum of all xi vanishes

(Σxi = 0) and we discard the smallest one. The ranking imposes n−1 extra linear constraints

among the xi. Also, the smallest pearl must have a positive mass, which adds another linear

constraint. For an n-pearl structure, the size-space is a (n − 1)-simplex. For two pearls,

the size-space reduces to the segment x1 ∈ [0, 0.5) (Fig. 2). For three pearls the parameter

space x1, x2 reduces to a triangle (Fig. 2) and the three vertices, V1,V2, and V3, correspond

to one large pearl, two and three equal size large pearls, respectively. In the vicinity of a

vertex, inside the triangle, the distribution is complemented by small pearls. The sides of

the triangle correspond to two equal large pearls, two equal small pearls, the 2-pearl limit,

respectively (Fig. 1 (c) and Fig. 2). Vertices are labeled as Vnl with the number of large

pearls nl. The line connecting V1 and V2 in 3-pearl diagram corresponds to the 2-pearl state.

In Ref.,22 it is suggested that the energetically most favorable configurations comprise one

large pearl and that the distribution spreads with increasing net charge Q. Many examples

of the segmental (two pearls) and triangular (three pearls) representation will be shown

(Figs. 2, 4, 5, 6, 7).

Dynamics of the number of peals n in the necklace.

The survival probability P̃n(t) of the n-pearl structure has been evaluated from the simu-

lations for various number of pearls including the single globule state. The half time t1/2,n,
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Table 1: Sequence informations of selected sequences of PA and IDP. The net charge of PA
sequences is Q = 20 except for C4 where Q = 24. Positive/negative charges are indicated
as 1 and -1. Neutral charges are represented as zeros only for IDP sequences which have
irregular spacings between charges. Some large blocks (≥ 6) are indicated in red.

sequences

C1 -11-1-11-11-11-1 1-111-11-1111 11-1-111111-1 1111-1 11-1-1-1 1-11-11-11-1-11 11-11111111 -111-11111

C2 111-11-111-1-1 11-11111111 -111-1-11-1-111 -11-1111-1-1-1-1 111-1111-111 11111-11-111 1-111-1-11-1

C2-I 11-1-111111-1 11-11111-1-1-1 11-11-1-1-1111 -1-1111-1-1111 1-1111-11111 -1-111-111111 1 -11-111-1-1

C3 -1111111-1-1-1 11-111111-1-1 1-1-111-1-1111 -11-11111111 11-1-111-1-1-11 1111-1-1-111-1 111-11-11 1

C3-I -111111-1111 1-1-1-111-11-11 -11111-11-1-11 111-11-11111 1-1-1-111-1-1-1-1 11-11111111 11111 -1-1 -1

C4 11111-1-1-11-1111-111-111111 1-111-1-11-11-111111-1-11-111111 111-11111-1-11-11-1-11-1-11111

IN (N=56) 00-100-1100-1 -10-11000001 0000-100000 0001-100000 -1100010-100 0000-10

ProTα(N = 110) 00-1000-1000 -10001-101-11 1-100-1-10-100 1-100000000 -1-100-10-10-10 -10-1-1-1-1-1-100

-1-1-1-1-1-1-1-10-1 0-1-1-1-10-1-1-1-1 -10-10000110 0-1-1-1-1-1-1-10-1 011010-1-1-1-1

the time required for the initial population P̃n(t = 0) to be reduced by half, was measured

for each Q ensemble (see, Table 2 (a)). As shown in Fig. 1, Q = 20 offers good statistics

for all values of n considered, but Q = 16 and Q =24 less so. When small number of pearls

are considered (n =1 and 2), Q =16 and 20 show similar half times but the corresponding

values of Q = 24 are smaller. For n = 3 and 4, half times of Q = 20 and Q = 24 are

similar. We also measure the characteristic times td of the extended quasi-exponential tail

in the survival probability: P̃n(t) ∼ e−t/td . The inverse values of the measured relaxation

times t−1
d are shown in Table 2 (b). The single globule state shows markedly longer relax-

ation time than necklaces. The relaxation time is shorter for a higher number of pearls

and bridges. Nonetheless the associated frequency is not just proportional to the number of

bridges (pearls). Under given time resolution of 10τ , many switching events in Q = 24 en-

semble remain unresolved in the simulation and this makes the estimates for relaxation times

and half-life times inaccurate. Due to the occurrence of small pearls which can form/dissolve

easily on pre-existing strings or tails the half times and relaxation times of a given number

of pearls is indeed expected to be short, as observed. We also plot the instantaneous values

of the inverse relaxation time td,n
−1(t) = 1

P̃n(t)

dP̃n(t)
dt

in Table 2 (c). The number of switching

events at short times are significantly larger than the stationary values for small n. The rate

saturates to the stationary value, t−1
d .
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Table 2: (a) Half times t1/2 and (b) inverse relaxation time td
−1 of n-pearl states for each Q

ensemble. Having the time resolution of 10 τ , the half time falls .20τ in units of LJ time
τ . The values are extracted by (linear) extrapolation. (c) Instantaneous values of transition
rate td,n

−1(t) leaving from n-pearl state as a function of time. Symbols represent net charge
of PAs, Q = 16 (red ◦), 20 (blue �), and 24 (green 4).

(a)
t1/2,n n =1 n = 2 n = 3 n = 4
Q =16 13.2 9.8 6.9 5.7
Q = 20 13.9 9.5 8.4 6.7
Q = 24 6.3 7.6 8.2 7.5

(b)
td

−1 n =1 n = 2 n = 3 n = 4
Q =16 0.003 0.032 0.077 0.133
Q = 20 0.007 0.024 0.076 0.105
Q = 24 0.004 0.043 0.070 0.090

(c)

! = 1

! = 3

! = 2

! = 4

' '

'

'
t ( τ ) t ( τ )

t ( τ ) t ( τ )

One way to characterize the dynamics of pearl number distribution is through the tran-

sition rates. Rates between n-pearl state and (n ± 1)-pearl state can be studied from the

simulation data. Transition rates are approximated as constants. To put this approximation

to a test we try to reproduce the evolution of the pearl populations starting out from an out

of equilibrium distribution.

We construct master equations for the populations of n-pearl states, P1, P2, P3..., with

a fixed number of pearls smaller than the cut off nmax. The nmax is 6, 9, and 11 for Q =

16, 20 and 24 ensembles, respectively. Populations with a higher number of pearls (n >

nmax) are negligible. In table 3, we show ωm2,m1 values for m1,m2 ≤ 6. The full data is
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available as SI. The transition rates ωm2,m1 are obtained from the number of switching events

detected in the simulation at equilibrium. If the time resolution used in the detection is small

enough, transitions between non-adjacent states must vanish. This yields a first accuracy

test. Encouraged by the data, we assume a constant transition rate over the whole time (See

the discussion of the time dependence of the apparent ω(t) = t−1
d (t), Table 2).

We count the total number of events Ωm2,m1 switching from the m1-pearl state to the

m2-pearl state for each Q ensemble. The number of switching between m1 and m2 is (al-

most) symmetric, confirming the detailed balance at equilibrium (at least for the retained

populations), (See, SI). The events are counted for 3.5×105τ (Q = 16 and 20) and 3.0×105τ

(Q = 24) with time resolution of 10τ . The mean transition rate ωm2,m1 computed from the

total number of events as ωm2,m1 = Ω̃m2,m1/Pm1 where Ω̃ is the number of events per unit

time averaged by the number of the sequences. The values of ωm2,m1 are listed in Table 3.

The master equations describing the pearl number dynamics with constant switching

rates can be written:

dP1(t)

dt
= −ω21P1(t) + ω12P2(t)

dP2(t)

dt
= ω21P1(t)− (ω12 + ω32)P2(t) + ω23P3(t)

dPn(t)

dt
= ωn,n−1Pn−1(t)− (ωn−1,n + ωn+1,n)Pn(t) + ωn,n+1Pn+1(t)

dPnmax(t)

dt
= ωnmax,nmax−1Pnmax−1(t)− ωnmax−1,nmaxPnmax(t). (1)

To construct the master equation Eqs. 1, we consider switchings {ωm2,m1} satisfying

m2 = m1±1. Unresolved switching events m2 = m1±2, 3 turn out to be rare for Q = 16 less

so for Q = 20 but not at all for Q = 24 where the determination of the rates m2 = m1 ± 1

for the master equation is expected to be inaccurate.

The Fig. 3 shows time evolution of the n-pearl populations Pn(t) for Q =16 and 20.

The evolution of the populations Pn(t) with a chosen initial condition (e.g. 100% in n

=1) is directly extracted from the simulation data using the ensembles satisfying the initial

condition. This evolution is compared to the solution of the corresponding master equation

based on the simple, constant, transitions rates.
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Table 3: The mean transition rate ωm2,m1 for (a) Q = 16 (b) Q = 20 (c) Q =24. The index
m1(m2) corresponds to row (column). The switching rates used for the master equations
(Eq. 1) are highlighted by colors.

m2

(a) Q = 16 1 2 3 4 5 6
m

1

1 - 0.012 0.001 0.000 0.000 0.000
2 0.026 - 0.010 0.001 0.000 0.000
3 0.010 0.039 - 0.004 0.000 0.000
4 0.004 0.032 0.036 - 0.002 0.000
5 0.002 0.020 0.038 0.021 - 0.000
6 0.000 0.001 0.003 0.003 0.002 -

m2

(b) Q = 20 1 2 3 4 5 6

m
1

1 - 0.032 0.007 0.001 0.000 0.000
2 0.013 - 0.027 0.005 0.001 0.000
3 0.004 0.036 - 0.015 0.003 0.000
4 0.001 0.020 0.043 - 0.007 0.001
5 0.001 0.011 0.035 0.035 - 0.003
6 0.000 0.006 0.025 0.037 0.022 -

m2

(c) Q = 24 1 2 3 4 5 6

m
1

1 - 0.439 0.219 0.061 0.010 0.001
2 0.045 - 0.374 0.147 0.031 0.004
3 0.013 0.207 - 0.266 0.081 0.015
4 0.004 0.101 0.334 - 0.161 0.041
5 0.002 0.048 0.227 0.361 - 0.090
6 0.001 0.025 0.145 0.316 0.305 -

(a) (b)

Figure 3: Evolutions of n-pearl state populations Pn(t) from the ensembles for (a) Q =16
and (b) Q = 20. We set the initial configuration with only n = 1 so that P1(t = 0) = 1.
Master equation results using values of wm2,m1 in Table 3 are shown as solid lines. Each
population converges to the equilibrium statistics of n-pearls shown in Fig. 1 (a).
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Data from the simulation and master equation compare favorably for Q = 16 and Q =

20. (Fig. 3) The master equation with the constant transition rates captures the long time

relaxation correctly but misses the short time evolution (t . 10τ). .

Shape fluctuations and the relaxation of large pearls

Figure 4: 2-simplex {x1, x2} (3-pearl state) representations for each PA type in Q = 20
ensemble. The color code indicates the density of visited states on a scale of 0 to 1. Ac-
cumulated probability distributions of n-pearl state P (n) are shown as red histograms for
each group. The sequences are classified into 3 different types depending on the pattern of
visited points in 2-simplex. Each type takes 52.5%, 25% and 22.5%. The global ensemble
of 40 sequences (left panel) has the most visited state closer to the vertex of V 1 where a
single large pearl dominates. The majority are of C1 type of which population density is
similar to global statistics. C1 type and C3 type have the most visited state near V 1 and
V 2, respectively. Most of conformations of C2 type is along a line connecting vertex V 1 and
V 2. No C4 type pattern is found.

To illustrate the structural heterogeneity we mainly refer to the 3-pearl states and distin-

guish several types of sequences according to the patterns of the triangular diagram. What

is surprising is the high heterogeneity of the distribution of configurations inside the triangle

where most of the area is very depleted. Relaxation dynamics of the pearl number n is

dominated by the fluctuation of small pearls. We are interested in the large-scale fluctua-

tions that accompany changes in the number of large pearls nl and in the types of sequences

in which these changes easily occur. A large shape fluctuation would be, for example, be-

tween those conformations involving one large pearl and those involving two large pearls

(e.g. changing corner from V 1 to V 2 or vice versa in the triangular representation). This
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Figure 5: 2-simplex {x1, x2} (3-pearl state) representations for each PA type in Q = 24
ensemble. The color code indicates the density of visited states on a scale of 0 to 1. Accu-
mulated probability distributions of n-pearl state P (n) are shown as red histograms for each
group. 44 sequences are classified into 4 different types depending on the pattern of visited
points in 2-simplex. Each ensemble takes 43.2%, 27.3%, 25% and 4.5% The global ensemble
of 44 sequences has the most visited state closer to the vertex of V 1 where a single large
pearl dominates but spreads more as compared to Q = 20. Due to the large net charge, C4
type where conformations consisting of pearls of alike-size develop. C1 type, C3 type and C4
type have the most visited state near V 1,V 2 and V 3, respectively. Most of conformations of
C2 type are along a line connecting vertex V 1 and V 2.

fluctuation has many paths inside the triangle with a continuous conversion. These paths

go through very rare configurations and hence experience a substantial energy barrier in all

cases investigated. The necklace rather changes number of pearls (say from 3 to 2 and 1)

then undergoes part of the conversion in those states before coming back to 3 pearls in a

new configuration. Such cycles are repeated and the representative point of the PA shifts

progressively in the triangular diagram. The change in nl mainly occurs during visits to the

2-pearl state. These dynamical aspects are detailed below.

Sequences of type C1 are dominant at small Q (The rare 3-pearl states for Q = 16 mostly

belong to C1 type.) For large Q, other types C2, C3, C4 develop. For Q = 20, we find C1,

C2, C3 (Fig. 4). The pearl number distributions are similar (P2 > P3 > P1 > P4) for all

classes. Transition rates (stationary values) are ω2,3 ≈ 0.035 - 0.039 (global average 0.038)

and ω4,3 ≈ 0.021 - 0.022 (global average 0.021). For all classes, the rate ω2,3 is larger than

ω4,3.

For largeQ, likeQ= 24, all C1, C2, C3, C4 types are developed (Fig. 5). The probabilities
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to find n-pearl states Pn are (P3 > P4 > P2 > P5 > P1) for global ensemble of 45 sequences.

We find for C1 type P3 > P2 > P4 > P5 > P1, for C2 and C3 types, P3 ∼ P4 > P2 > P5 > P1,

for C4 type P3 > P4 > P2 ∼ P5 > P6 > P1 ∼ P7. Considering the stationary values of ω2,3,

the global average is ω2,3 ≈ 0.028. C1 type has the largest switching rate ω2,3 ≈ 0.032 and

other types have values between 0.024 – 0.026. Considering the stationary values of ω4,3,

the global average is ω4,3 ≈ 0.032 and C3 has the largest switching rate ωC3
4,3 ≈ 0.039 but

values for other types remain close 0.031 – 0.035. For Q = 24 the transition rates are at

best indicative as is also reflected by the fact that the stationary value of the rates is smaller

than the equilibrium rate shown in Table. 3. The two large pearls are asymmetric in type

C2 and symmetric in C3 type. Conformations of C4 type do have less well-defined pearls

(fat strings).

We trace the switchings and shape fluctuations by recording the shapes and by following

the trajectories in simplex and between simplexes. Some of these trajectories are shown in

Fig. 6 for Q = 24. When a small pearl separates from a large pearl or merges with a large

pearl, switching n accompanies the size change of the large pearl. This type of splitting is

encountered for C2, shown in Fig. 6 (b). Switching of n can occur by fluctuation of small

pearl in the string without interaction of the large pearls. This type of switching is common

for all C1, C2, C3 and dominant in C3 (See, Fig. 6). C1, C2 shapes have high probability to

have a tail. Both termini of C3 types are occupied by a globular cluster/pearl. In all cases

where the configurations are rather localized in the triangular representation, strong shape

fluctuations affecting the number of large pearls nl are not observed in the (relatively) short

time trajectories shown in Fig. 6.

Most of the individual sequences preferentially populate a certain area in the triangle

(and in the segmental 2-pearl representation). There are few sequences with very scrambled

triangular diagrams where two or more distant regions of the diagram are well populated.

Three examples with Q = 20 are presented in Fig. 7. These sequences can easily switch

the number of large pearls, nl. We analyze the dynamics of these sequences. Some are

hybrids between two of the previous types. Examples are (a) within C2 (b) C2-hy-C1, (c)

C3-hy-C1, which we labeled in Fig. 7. as C2, C2-I and C3-I, respectively. In these sequences

fluctuations affecting the large pearls in the 3-pearl state are easily realized. They imply
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Figure 6: Typical shape fluctuations of sequences belong to C1, C2, C3 types (Q = 24).
Accumulated visits (left panels) and short time trajectories (right panels) are shown on 1,2,3-
simplex representation. 1-pearl state is a point, 2-pearl state as a 1-simplex x1 ∈ [0, 0.5), 3-
pearl state is triangular 2-simplex {x1, x2}. The states with larger number of pearls (n ≥ 4)
are shown as a point above the 2-simplex for convenience. n(t) shows the change in the
number of pearls over a short period of time, and snapshots over that times are shown for
each type of sequences. The unit time in graphs is 10τ . A different color for each point
indicates different value of n from the previous time.

multiple switchings in the number of pearls, more so for longer times involving the uniglobule

state. The 2-pearl simplex, which is also scrambled, plays an important role. Large pearls

are deeply affected at times as short as ∼ 100τ with an average relaxation time of . 1000τ .

The average switching time is apparently longer for transitions between more distant regions

despite of large variances.

To extend the analogy between PA and IDP, we construct the simplex diagrams for two

IDPs sequences that we have considered in the context of translocation previously: IN and

ProTα (Fig. 8). We are interested in the sequences here, more/different efforts are needed
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Figure 7: Trajectories of switching events between distant conformations in (a) C2 and in
hybrids (b) C2-I and (c) C3-I. The left panels show the probability distribution P (n) of n-
pearl states for the given sequence, along with a triangular diagram representing the density
of visits. The middle panels show the distributions of switching times between marked
regions in 2-simplexes for C2, C2-I and C3-I. The average switching times are 126τ , 287τ
and 738τ with rms deviations of 309τ , 360τ , 835τ for C2, C2-I and C3-I, respectively. In C2-I,
switching between R1 and m, R2 and m have average times of 242τ and 97τ The right panels
show typical short (< 100τ) and long (∼ 1000τ) trajectories on simplex representations. The
trajectories start at the time leaving from one of the marked box (R2) and end at the time
entering the marked magenta box (R1). 1-pearl state is a point, 2-pearl state as a 1-simplex
x1 ∈ [0, 0.5), 3-pearl state is triangular 2-simplex {x1, x2}. The states with larger number of
pearls (n ≥ 4) are shown as a point above the 2-simplex for convenience.

to describe IDPs in vivo, including chemically realistic residues.

IN sequence is mostly found in uniglobular state (∼ 72%) and about 25% of populations

are found in 2-pearl state. The 2-pearl state segmental simplex representation contains two

populated regions: a broad region (R2) closer to symmetric side, V2, and the other very

narrow region (R1) with large asymmetry V1, which is reminiscent of uniglobular state. The

less abundant 3-pearl structures (∼ 3%) are scrambled between C2-C3 and C4 types. Similar

to some PA sequences (C2-I or C3-I) analyzed in Fig. 7, in Fig. 8 (a), we show switching

time distribution of IN between uniglobular states and 2-pearl states. The average switching

time is ∼ 11± 3τ . In order to switch the number of large pearls within 1-simplex, PEs often
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Figure 8: Structural heterogeneity analysis of IDP: (a) IN and (b) ProTα. The 2-pearl and
3-pearl simplex representation and the pearl number distributions P (n). The bottom panels
(green histogram) are switching time distributions between 1- and 2- pearl states of IN and
between 2- and 3- pearl states of ProTα. Typical conformations are shown where pearls are
identified as green colors.

go through uniglobular state or less often 3-pearl state.

For ProTα, the most abundant state is 3-pearl state ∼ 41% (Fig. 8 (b)). 2- and 4-pearl

states are also common (∼ 25% each). As expected from the large central negatively charged

block (see, Table 1), 2-pearl states are predominantly in symmetric state, yet spread in the

segmental 2-pearl representation. The 3-pearl diagram of ProTα resembles that of IN with

the C3 type region (area closer to V2) being most populated (yet less extended towards

C2). But, at variance with IN, there is no subdominant C4 type region (area closer to V3).

The subdominant region remains almost of C3 type implying that at least one of the pearls

is significantly smaller than others. Thus, the number of large pearls nl remains at 2 for

the most of times and 3- and 4-pearl states are short-lived. The short-time dynamics of

switching between 2- and 3-pearl states with typical switching time ∼ 15±10τ are governed

by small pearl fluctuations.
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Conclusions

The global statistics of the structure of random PAs shows a wide dispersion in the number

of pearls even for a given net charge. It also shows dispersion in the pearl-size distribution for

a fixed number of pearls as can be seen for three pearls from the triangular representations.

In the same time most of the individual sequences have a qualitatively well defined pearl-

size distribution for a given number of pearls and preferentially populate a certain area in

the triangle, which does not necessarily reflect the global distribution over sequences. Few

sequences explore wider areas of the triangle.

The pearl-necklaces are rather versatile with a fast fluctuating number of pearls. This

fluctuations mainly affect small pearls forming and dissolving. The number of large pearls

bearing more than their share (1/n) of the monomers is much more stable. In the simulation

the relaxation time associated with the number of small pearls is only of order a few 10 τ .

The relaxation time of the number of large pearl is typically longer than the time reached

by our simulations.

To further illustrate the relaxation of large pearls we consider in detail the case of medium

charged sequences (Q = 20) in the predominant two and three pearl necklace states. The few

sequences with the characteristics of dispersed triangular diagram (i.e. C2-I, C3-I) rather

easily switch the number of large pearls nl with mean relaxation times of several 100 τ .

However the process usually includes (many) visits to necklace-states with different number

of pearls n. Most of the changes in nl occurs typically in n = 2 state and also during

conversions in n. The switching of nl in the two pearl state (n = 2) occasionally go through

the uni-globule state (n = 1). Closer inspection of these sequences shows good dispersion of

the charge along some long subsequence(s) not involving any large blocks, which is in some

analogy with IDPs. Large blocks of the majority sign can exist away from these subsequences.

To expand on this analogy, we construct simplex diagrams for two IDPs, IN and ProTα. In

the spirit of our PA model we considered the two IDP sequences with the charges regularly

spaced along the sequence and obtained dispersed 2-pearl and 3-pearl diagrams (results not

shown). We also reached similar conclusions by considering sequences reflecting the actual

charge spacing set in the same solvent quality for all residues.
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What is striking for IN is the very scrambled 2-pearl diagram that contains a very local-

ized densely populated asymmetric state and a wide spread more symmetric medium dense

region. This offers the possibility of fast large scale fluctuations between symmetric and

asymmetric necklaces. The 2- and 3-pearl diagrams of ProTα indicate that ProTα exists

as rather symmetric 2-pearl structures, or as 3-pearl structures containing one significantly

smaller pearl than the two other pearls. In accordance with these fluctuation statistics,

both IDPs considered here quickly switch the number of large beads like the minority hybrid

sequences discussed for PAs. While IDPs share generic properties of PAs such as the be-

havior in salty solution,11 the statistics and dynamics of their fluctuations follows those of a

tiny minority of hybrid PA sequences. IDPs are rather peculiar PAs. Our analysis suggests

that synthetic polymers mimicking IDPs which can be synthesized27 show conformational

plasticity like IDPs and could be potentially used as multitaskers.

Ideally, several improvements could be made, but no qualitative change in our results

is expected. Performing sufficient runs with explicit solvents to sample disordered polyam-

pholytes is out of reach. Presence of explicit solvents would provide more realistic Zimm-type

rather than Rouse-type dynamics. The fast and slow dynamic processes described above are

entailed by the complex energy landscape and must remain true when explicit solvents are

present. We did not vary the solvent quality in a systematic way. PA were simulated in

weakly poor solvent condition which is the most common situation for synthetic PA. IDP

were considered in marginal solvent (very close to the theta point). Data for IDP in weakly

poor solvent (similar to that used for synthetic PA) can be found in the SI for comparison.

In the case of poorer solvent, pearls are better defined with sharper interfaces. The simplex

representation retains its overall structure but the highly populated islands are slightly more

diffuse for the marginal solvent. The categories of slow and fast switching sequences are not

affected.

Supporting Information: A. The equilibrium transition rate, B. Total number of switching

events between different numbers of pearl states, C. Dynamics of ProTα structure in two

different solvent conditions.
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