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ABSTRACT
In order to predict the lateral rotordynamics of a high speed

induction motor, an optimization procedure is proposed for iden-

tifying the equivalent constitutive properties especially those of

the magnetic core: an assembly of lamination stack, tie rods and

short-circuit rods. Modal parameters predicted by a finite ele-

ment (FE) branched model based mainly on beam elements, and

measured on an induction motor are included in an original en-

ergy functional. The minimization of this functional by using the

Levenberg-Marquardt algorithm permits extracting the equiva-

lent constitutive properties of the lamination stack.

NOMENCLATURE
c j The jth projection coordinate of an eigenvector partial

derivative in the modal basis.

di Descent direction at iteration i.

din
ti Equivalent inlet diameter of the tie rods, m.

dout
ti Equivalent outlet diameter of the tie rods, m.

E Young modulus, N ·m−2.

E0 Young modulus value at iteration 0, N ·m−2.

f Global energy functional.

G Shear modulus, N ·m−2.

G0 Shear modulus value at iteration 0, N ·m−2.

Hi Approximate Hessian matrix of f at iteration i.

I Identity matrix of rank n.

Iti Second moment of area of the tie rods, m4.

J Jacobian matrix of the error estimation E .

K Global stiffness matrix.

Kcc Global stiffness matrix partition related to the boundary

degrees of freedom.

Kci Global stiffness matrix partition related to the coupling

between the interior and boundary degrees of freedom.

K f Global structural stiffness matrix.

Kic Global stiffness matrix partition related to the coupling
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between the interior and boundary degrees of freedom.

Kii Global stiffness matrix partition related to the interior

degrees of freedom.

KP Global stress stiffening matrix.

Kr Condensed global stiffness matrix.

m Number of eigen-elements.

M Global mass matrix.

Mcc Global mass matrix partition related to the boundary de-

grees of freedom.

Mci Global mass matrix partition related to the coupling be-

tween the interior and boundary degrees of freedom.

Mic Global mass matrix partition related to the coupling be-

tween the interior and boundary degrees of freedom.

Mii Global mass matrix partition related to the interior de-

grees of freedom.

Mr Condensed global mass matrix.

MR Global mass matrix due to the cross-section rotation.

MT Global mass matrix due to the cross-section translation.

n Number of optimization variables.

nc Number of boundary degrees of freedom.

ni Number of interior degrees of freedom.

p Optimization variable index.

q Modal generalized coordinates.

Rk The kth Rayleigh quotient, rad2
.s−2.

R∗
k The kth hybrid Rayleigh quotient, rad2

.s−2.

Sti The whole surface of the tie rods, m2.

T Matrix assuming a condensed global matrix.

x Optimization variables.

xi The ith iterate of the optimization algorithm.

xp The pth optimization variable.

x0 Optimization variable values at iteration 0.

δ Displacements of the degrees of freedom, m.

δc Displacements of the boundary degrees of freedom, m.

δi Displacements of the interior degrees of freedom, m.

Ek Error estimation between the kth predicted and measured

modal quantities.

λk The kth eigenvalue of the condensed FE model,

rad2
.s−2.

λ̂k The kth eigenvalue of the total FE model, rad2
.s−2.

λn
k The kth eigenvalue of the constrained FE model,

rad2
.s−2.

ρi Descent step at iteration i.

µ0 Marquardt’s parameter at iteration 0.

µi Marquardt’s parameter at iteration i.

υ Poisson ratio.

ϕk The kth measured mode shape.

ϕ̃k The kth mode shape of the condensed FE model.

ϕ̂k The kth mode shape of the FE model.

ϕc Matrix of constrained modes.
cϕ̃k The kth modal shape of the boundary degrees of free-

dom.

ϕn Matrix of normal modes.

ϕ∗
k The vector containing the kth measured modal shape and

the modal generalized coordinates q.

ψ Transformation matrix.

ωk The kth measured natural angular frequency, rad.s−1.

ω̂k The kth predicted natural angular frequency, rad.s−1.

∇ Differential operator.

INTRODUCTION

This paper focuses on squirrel cage induction motors, called

MGV (Moteur Grande Vitesse), in the 3 to 30 MW range from

6000 to 18000 rpm used for critical applications, especially mo-

tocompressors, in the oil and gas industry. As shown in Fig. 1,

MGV rotors are mainly composed of two steel shaft ends and

full depth laminations held together by steel tie rods. The squir-

rel cage consists of copper short-circuit rods distributed at the

periphery of the core and linked to two bronze alloy rings placed

at both ends of the stack. The stack and the two rings are tight-

ened by the tie rods, also distributed at the periphery of the core

and screwed in the ends of the two shaft ends.

The problem of modeling the magnetic core and the stacks

of full depth laminations has been given little attention in scien-

tific papers. Refs. [1] and [2] suggested a homogenized bending

rigidity for the entire magnetic core cross-section by adding the

bending rigidity of each cross-section component. Ref. [3] deals

with a stiff shaft design for a squirrel cage rotor but the bending

rigidity of the magnetic core is not described. However, many

authors have attempted to predict the dynamic behavior of in-

duction machine rotors with laminated rotor core mounted on a

solid shaft, i.e. laminations with a central hole. The stiffening ef-

fects of the laminated core are not easy to assess and often require

identification via modal testing. Ref. [4] assesses the influence

of leading parameters, such as stack length, on the natural fre-

quencies of a high-speed permanent magnet brushless machine

by using a three dimensional FE model. Ref. [5] presents the

advantages of a branched model for a laminated rotor. The lami-

nations are considered as several annular rings subsets linked al-

together by elastic connections. Moreover, the subsets are elas-

tically connected to the shaft. Ref. [6] considers an equivalent

Young modulus for the stack and uses a branched beam model for

the magnetic core. The authors of many papers have dealt with a

coefficient called stacking factor which modifies the value of the

mass of lamination stack [7,8]. Also, its weak Young modulus is

due resin or varnish layers on the interfaces between consecutive

laminations [9]. Ref. [5] considers the lamination stack as an or-

thotropic material whose elastic strain-stress relation taking into

account the lamination material and the mean flexibilities (shear

and compressive) of the lamination interfaces. Ref. [10] shows

that the lamination pressure has considerable influence on the

lateral natural frequencies of a rotor. An equivalent diameter and

lumped masses are considered for modeling the entire magnetic

core.
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Figure 1. DIAGRAM OF A SQUIRREL CAGE INDUCTION ROTOR.

In identification procedures, an optimization algorithm is

used so that optimization parameters of a FE model make pre-

dicted data tend toward target values, i.e. measured data. Such

algorithms can use modal data for updating and then identifying

the FE model parameters. Modal error functions are defined to

quantify the difference between predicted and measured natural

frequencies and mode shapes. Thus, Ref. [11] uses a common

modal error function based on natural frequencies in order to

identify the properties of laminated composite plates. Ref. [12]

proposes two original modal error functions based on the diag-

onal and extra-diagonal terms of the modal assurance criterion

(MAC) matrix. Ref. [13] uses a more classical modal error func-

tion, based on the difference between the components of pre-

dicted and measured mode shapes, to identify material param-

eters of a concrete dam. These functions are combined as a

least square functional whose minimization requires its deriva-

tives, with respect to the optimization parameters, that depend

on eigen-element derivatives. Eigenvalue derivatives are ob-

tained from the relationship given by [14] whereas eigenvector

derivatives can be computed by using approximate or exact meth-

ods [15]. Ref. [16] compares different algorithms regarding this

point.

In this paper, a FE model of an induction rotor is presented

with particular attention given to the modeling of the magnetic

core. A branched model is then proposed to model the tie rods

independently of the lamination stack. It mainly uses beam ele-

ments in order to have few degrees of freedom (dof) and to pre-

dict for instance transient responses. Given certain assumptions,

tie and short-circuit rods can be modeled by using only Timo-

shenko’s in-plane beam elements. Even if a beam based model is

used, the constitutive properties of the stack are defined such that

the shear and the Young moduli are independent for taking into

account its orthotropic properties [5]. Thus, the lateral dynamic

behavior of the stack is identified by performing an experimen-

tal modal analysis. The identification strategy consists in min-

imizing the difference between the measured and the predicted

modal data provided by the FE branched model. This differ-

ence is quantified by an energy functional coupled with the Craig

and Bampton reduction in order to make predicted and measured

mode shapes’ size compatible [17]. Moreover, the condensed

model retains local modes of the complete FE model. This func-

tional, inspired by [18], allows homogeneous terms between each

mode and especially provides, for each mode, a unique term

obtained by combining the natural frequency and its associated

mode shape. The functional minimization is performed by us-

ing the Levenberg-Marquardt algorithm which provides a set of

constitutive properties for the lamination stack. Consequently,

this requires eigen-element derivatives computed analytically to

ensure that the optimization algorithm is more efficient.

FINITE ELEMENT MODEL

The FE model of the induction rotor is based on the struc-

tural dynamics theory described in [19]. The expression of the

global stiffness matrix is as follows:

K = K f +KP, (1)

where K f is the structural stiffness matrix and KP is the stress

stiffening matrix if an axial prestressing force acts on the beam

FE [20]. The global mass matrix can be written as:

M = MT +MR, (2)

where MT and MR are due to the translation and the rotatory in-

ertia of the cross-section respectively, the latter being classically

neglected for slender structures. Shear strain and rotatory iner-

tia are taken into account in the Timoshenko’s in-plane beam FE

containing two dof per node: one translation and one rotation.

A shear correction factor dependent on the shape of the cross-

section is used as in [21].

Free-free boundary conditions are taken into account by

adding low stiffness springs (10N ·m−1) at each boundary node.

Disks and landing rings are considered as lumped masses. For

identifying stiffness parameters relative to the lamination stack,

specific assumptions have to be considered to model the tie and

the short-circuit rods. The short-circuit rods can be modeled as

beams whose neutral axes coincide with the neutral axis of the

magnetic core. Indeed, these rods are built in the middle of the

magnetic core thanks to screws and their ends are able to slide

in the short-circuit rings as shown in Fig. 2. Thus, each FE of

the discretized magnetic core is connected to two consecutive

nodes;its elementary matrices being the sum of those related to

the short-circuit rods and the lamination stack. Furthermore, he

tie rods are modeled as an equivalent hollow cylinder clamped
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Figure 2. SHORT-CURCUIT ROD IN BENDING - KINEMATIC ASSUMPTION.

at nodes A0 and B0 (see Fig. 2) to form a FE branched model.

Therefore, the tie rods are independently modeled of the lami-

nation stack. Let dout
ti and din

ti be its outer and inner diameters

respectively and simply calculated by considering the surface Sti

and second moment of area Iti of the tie rods:

dout
ti =

(
8Iti

Sti

+
2Sti

π

) 1
2

,din
ti =

(
8Iti

Sti

−
2Sti

π

) 1
2

. (3)

The screwing torque ensures the stress stiffening in the tie rods

and the prestressing in the lamination stack. The stress stiffening

effect is taken into account by the KP matrix only for the hollow

cylinder. The measuring is performed on the assembled structure

therefore identified parameters implicitly take into account the

prestressing. Since the short-circuit rings, the lamination stack

and the shaft ends connected to each short-circuit rings are drilled

at their periphery for the short-circuit rods and tie rods, Eqn. (3)

is also used for the modeling of these elements’ cross-section.

OPTIMIZATION STRATEGY

The equivalent constitutive properties of the lamination

stack are denoted as x ∈ ❘n so that {xp}p=1...n
. The optimiza-

tion parameters, from the following doublet:

{E,G} , (4)

where E, G are the Young and shear moduli respectively are in-

dependent for modeling anisotropy, as described in [5]. The op-

timization parameter number is then equal to two, i.e. (n = 2).

The identification strategy consists in minimizing the difference

between predicted and measured modal data.

Condensed Modal Functional
An optimization algorithm is used so that optimization pa-

rameters of the FE branched model make predicted data tend to-

ward target values. Let xi be the vector of optimization param-

eters x at iteration i. Let us assume that all variables of the FE

model depend on xi. Let ω̂k and ωk be the predicted and mea-

sured natural frequencies respectively. Let ϕ̂k and ϕk be their as-

sociate mode shapes. They have to be projected in the same spa-

tial basis. The symmetric eigenvalue equations of an undamped

system in structural dynamics can be defined as follows:

(
K − λ̂kM

)
ϕ̂k = 0, λ̂k = ω̂2

k , (k = 1, . . . ,m) , (5)

where m is the number of eigen-elements. The same problem can

be written in a more compact form:

Rk − ω̂2
k = 0, (6)

where Rk denotes the Rayleigh quotient defined as the ratio of

the strain energy over the kinetic energy of the kth mode shape:

Rk=
ϕt

kKϕ̂k

ϕt
kMϕ̂k

. (7)

In this way, an exact correlation between predicted and measured

natural frequencies and mode shapes leads to, for each mode k:

ϕ̂k = ϕk, ω̂2
k = ω2

k . (8)

By taking account of Eqn. (8), Eqn. (6) can be written in adi-

mensional terms:

1−
1

ω2
k

·
ϕt

kKϕ̂k

ϕt
kMϕ̂k

= 0. (9)

However, an exact correlation never appears in real cases. Thus,

we propose to quantify the difference between predicted and

measured modal data with the left part of Eqn. (9) such as:

Ek

(
xi

)
= 1−

1

ω2
k

·
ϕt

kKϕ̂k

ϕt
kMϕ̂k

. (10)

Nevertheless, the problem is that predicted and measured mode

shapes ϕ̃k and ϕk do not have the same size. Indeed, the pre-

dicted mode shapes are composed of two kinds of dof, i.e. lat-

eral deflections and in-plane rotations whereas the experimental
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mode shapes are only composed of the measured lateral deflec-

tions. So, the use of a reduction method is suggested in order to

make predicted and measured mode shapes’ size compatible. By

considering the equivalent hollow cylinder and the rotor as two

substructures, the Craig and Bampton reduction is an appropri-

ate method to condensed the FE branched model. Moreover, by

retaining normal modes, this method provides local modes such

as tie rods modes. The boundary dof δc, of size [nc ×1], are then

chosen to be the lateral deflections of the rotor (measured values)

whereas the interior dof δi, of size [ni ×1], to be the lateral de-

flections of the equivalent hollow cylinder (tie rods) and the all

in-plane rotations [17]. The δ vector of the FE branched model

dof can be partitioned as shown in Eqn. (11):

{δ} = 〈δi,δc〉
t
. (11)

The global mass and stiffness matrices of Eqn. (5) can be ex-

pressed in term of matrix partitions such as:

K =

[
Kii Kic

Kci Kcc

]
,M =

[
Mii Mic

Mci Mcc

]
. (12)

The transformation matrix ψ can be written as follows:

ψ =

[
ϕc ϕn

I 0

]
, (13)

where I is the identity matrix of size [nc ×nc], ϕc means the con-

strained modes obtained by setting the forces at all interior dof

equal to zero:

ϕc = −K−1
ii ·Kic, (14)

and ϕn denotes the normal modes obtained by considering all the

boundary dof as constrained:

(Kii −λn
kMii)ϕn

k = 0, (k = 1, . . . ,ni) , (15)

where λn
k is the kth eigenvalue of the FE model with boundary

constrained. The δ vector can then be written as:

{δ} = ψ ·

{
δc

q

}
, (16)

where q are modal generalized coordinates associated with the

eigenvectors contained in ϕn. The mass and stiffness matrices

can then be written in condensed forms such as:

Mr = ψt ·M ·ψ
Kr = ψt ·K ·ψ

. (17)

Thus, the symmetric eigenvalue equations of the condensed un-

damped system is written as follows:

(Kr −λkMr) ϕ̃k = 0,λk = ω̃2
k , (k = 1, . . . ,nc) , (18)

where λk and ϕ̃k are the eigen-elements of the condensed FE

branched model. The kth eigenvector can be partitioned as fol-

lows:

ϕ̃k =

{
cϕ̃k

q

}
(19)

where cϕ̃k denote the eigenvector of the boundary dof whereas q

denote modal generalized coordinates. In order to make the pre-

dicted and measured mode shapes’ size compatible and also to

retain the spectral content of the condensed FE branched model,

we propose to insert the q coordinates in the ϕk vector such as:

ϕ∗
k =

{
ϕk

q

}
. (20)

So, the condensed energy functional is defined as a function of

a composite Rayleigh quotient by combining predicted and mea-

sured mode shapes:

Ek

(
xi

)
= 1−

R∗
k

ω2
k

, (21)

with

R∗
k=

ϕ∗t
k Krϕ̃k

ϕ∗t
k Mrϕ̃k

. (22)

The identification method is then reduced to the minimization of

a global functional f
(
xi

)
, with respect to optimization parameter

vector xi including n parameters, expressed as a function of each

component of the vector E :

f
(

xi
)

=
1

2

∥∥∥E

(
xi

)∥∥∥
2

=
1

2

m

∑
k=1

E
2

k

(
xi

)
. (23)

The first advantage of this functional is that each term allows the

combination of the kth natural frequency and its associated mode

shape to from an adimensional term. Thus, as the E components

are the same order, the second advantage of this functional is

that weight coefficients are not necessary. To avoid numerical

conditioning problems (a 1012 ratio between the Young Modulus
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and the Poisson ratio), especially for the J
(
xi

)
Jacobian matrix

Eqn. (24), optimization parameters xi are defined relative to ref-

erence values such as the initial values of optimization param-

eters x0. This functional is minimized by using the Levenberg-

Marquardt algorithm, which is generally acknowledged as very

robust and highly efficient in a wide range of problems:





x0
,µ0 given

di = −(Hi +µiI)
−1 ∇ f

(
xi

)

xi+1 = xi +ρidi

,

{
∇ f

(
xi

)
= J

(
xi

)T
E

(
xi

)

Hi ≈ J
(
xi

)T
J
(
xi

)
.

(24)

where I and Hi are respectively the identity and the approximate

Hessian matrices of size [n×n]. If µi → ∞, the method tends to

the steepest descent method, whereas if µi → 0 the method tends

to the Gauss-Newton method. Updating damping parameter µi

is done by calculating a "gain factor", i.e. the ratio of the f
(
xi

)

decrease over the E
(
xi

)
decrease, E

(
xi

)
vector being expanded

with a Taylor series. The descent step ρi can be obtained by a

"Line Search" algorithm. The method proposed by [22] is used

here by setting ρi = 1 and frequently updating µi. This results in

smoother performance and faster convergence than that achieved

by Marquardt’s updating strategy.

Eigen-Derivatives
The Jacobian matrix J

(
xi

)
(of size [m×n]) of the vector

E
(
xi

)
implicitly depends on eigen-elements λk and ϕ̃k Eqn. (18)

of the condensed FE branched model. By taking account of

Eqn. (5) for the condensed model and assuming that the eigen-

vectors are normalized with respect to the condensed mass matrix

Mr:

ϕ̃T
k Mrϕ̃k = 1, (k = 1, . . . ,m) . (25)

Taking partial derivatives of Eqn. (18) and Eqn. (25) with respect

to an optimization parameter xp yields the following governing

equations for eigenvector derivatives [14]:

Ak

∂ϕ̃k

∂xp
= Pk, (26)

and

ϕ̃T
k Mr

∂ϕ̃k

∂xp
= Qk with Qk = −

1

2
ϕ̃T

k

∂Mr

∂xp
ϕ̃k, (27)

where

Ak = (Kr −λkMr) ,Pk = −

(
∂Kr

∂xp
−

∂λk

∂xp
Mr −λk

∂Mr

∂xp

)
ϕ̃k. (28)

Premultiplying Eqn. (26) by ϕ̃T
k and substituting Eqn. (5) and

Eqn. (25), the eigenvalue derivative with respect to xp is obtained

from the relationship:

∂λk

∂xp

= ϕ̃T
k

(
∂Kr

∂xp

−λk

∂Mr

∂xp

)
ϕ̃k. (29)

Concerning the eigenvector derivatives, the problem is that

Eqn. (26) is not invertible since the Ak matrix is of rank (m−1).
The complete modal method assumes that the kth eigenvector

derivative with respect to xp can be expressed as follows:

∂ϕ̃k

∂xp
=

s

∑
j=1

c jϕ̃ j. (30)

Substituting Eqn. (30) and Eqn. (26) and premultiplying by ϕ̃T
k

gives:

c j =
ϕ̃T

j ·Pk

λ j −λk

, j 6= k. (31)

Equation (31) shows that the eigenvector derivative has a unique

expression (linear combination) in term of all the system eigen-

vectors, excluding the kth one:

∂ϕ̃k

∂xp
=

m

∑
j=1
j 6=k

c jϕ̃ j + ckϕ̃k ≡Vk + ckϕ̃k. (32)

Substituting Eqn. (32) and Eqn. (27), ck can be obtained:

ck = Qk − ϕ̃kMrVk. (33)

This method is costly in terms of computational time because

it requires knowing all the eigenvectors of the system. Thus by

substituting Eqn. (32) in Eqn. (26), Ref. [15] proposes removing

the singularity of Ak by canceling a component of Vk, Eqn. (26)

becomes invertible and a part of the solution Vk is obtained. The

complete solution is then given by Eqn. (32) and Eqn. (33). This

method requires as many inversions of Ak matrix of size [m×m]
as eigenvector derivatives needed. However, MGV rotors are

considered as medium systems and the inversion of such matri-

ces is not costly in terms of CPU-time.

Transformation Matrix Derivatives
The partial derivatives of the condensed mass and stiffness

matrices with respect to xp are obtained by differentiating the

6



transformation matrix ψ Eqn. (13):

∂ψ

∂xp

=

[
∂ϕc

∂xp

∂ϕn

∂xp

0 0

]
, (34)

such that
∂ϕn

∂xp
is obtained by applying the Nelson’method in

Eqn. (15). By differentiating Eqn. (14), the left arrow of

Eqn. (34) can be obtained as shown in Eqn. (35):

∂ϕc

∂xp

= −K−1
ii ·

(
∂Kic

∂xp

−
∂Kii

∂xp

ϕc

)
. (35)

The partial derivatives of a condensed matrix Tr are then ex-

pressed as follows:

∂Tr

∂xp

= ψt ·
∂T

∂xp

·ψ+2 ·ψt ·T ·
∂ψ

∂xp

, (36)

where T can denote the global mass or stiffness matrix.

INDUSTRIAL APPLICATION
The experimental modal analysis was conducted on a MGV

rotor hanged on a crane via a swivel hoist ring to achieve free-

free boundary conditions at best (Fig. 3). The total weight and

length of the rotor are 1775 kg and 3.21 m respectively. The

hanging rotor was radially excited along a meridian line with

an impulse force hammer, a load-cell measuring the transmitted

force. A steel impact tip was used to observe a large frequency

spectrum. The meridian line was discretized in a fine mesh, a

set of 87 measurement points (Fig. 4), for establishing accurate

shapes of the measured modes. Module and imaginary part of the

successive accelerances obtained with a dynamic analyser permit

evaluating the measured natural frequencies and mode shapes.

An identification procedure was performed by updating the

FE branched model (Fig. 4) by varying the number of modes

m (natural frequencies and associated mode shapes) in the opti-

mization procedure such that m = 4, . . . ,12. A minimum of four

modes was retained in order to have sufficient measured modal

data such as the dynamics of the studied rotor was preserved. The

Poisson ratio was fixed at 0.28, as in [6]. Thus, the optimization

problem contains two unknowns:the Young and the shear Moduli

of the lamination stack. Initial values of optimization parameters

x0 have been set as follows:

{
E0 = 0.9×1011

,G0 = 0.3×1011
}

. (37)

Figure 5 presents the evolution of the mean global energy func-

Bolt-on 
Attachment 

Swivel
Crane

0.5 m
Accelerometer

Short-
Circuit 
Rings

Lamination 
Stack

Figure 3. EXPERIMENTAL SETUP.
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Figure 4. FINITE ELEMENT BRANCHED MODEL. LUMPED MASSES AND TIE

RODS ARE PLOTTED IN GREEN AND BLACK RESPECTIVELY WHILE BLUE

POINTS REPRESENT MEASUREMENT POINTS.

tional versus the number of modes m at the end of the conver-

gence. The mean global energy functional is defined as the ratio

of f
(
xi

)
functional (see Eqn. (23)) upon the number of modes
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Figure 6. EVOLUTION OF THE YOUNG (CIRCLE) AND SHEAR (TRIANGLE)

MODULUI VERSUS THE NUMBER OF CONSIDERED MODES. VALUES ARE PLOT-

TED IN N ·m−2.

m. This quantity characterizes the difference between the pre-

dicted and measured data for each mode. The mean global en-

ergy functional, plotted in dark, decreases with the number of

considered modes m which means that the orthotropic model of

the lamination stack preserves the dynamics of the studied ro-

tor. The number of considered modes has an influence on the

identifies parameters. Figure 6 shows that the identified equiv-

alent constitutive properties of the lamination stack depend on

the number of considered modes. However, these constitutive

properties tend toward certain asymptotic values from 8 modes.

Therefore, it is necessary to take into account a sufficient number

of modes, more than 8, to identified relevant parameters. The

same identification procedure was performed by considering the

lamination stack as an isotropic material, i.e. the shear modulus

is defined as a linear function of the Young modulus. The mean

global energy functional, plotted in light, is around 14% to 40%

Table 1. FIRST TWELVE PREDICTED AND MEASURED LATERAL NATURAL

FREQUENCIES.

Index Measured (Hz) Predicted (Hz) Error (%)

1st 173.83 174.33 0.3

2nd 291.02 305.92 5.1

3rd 519.14 529.48 1.9

4th 825.78 771.76 −6.5

5th 996.09 992.13 −0.4

6th 1051.6 1071.7 1.9

7th 1402.7 1384.3 −1.3

8th 1705.1 1732.2 1.6

9th 1932.8 1949.3 0.8

10th 2178.9 2127.0 −2.4

11th 2453.5 2432.5 −0.8

12th 2808.6 2854.5 1.6

higher than the mean global energy functional obtained with the

presented model. Morever, the mean global energy functional

tends to stabilize if the number of considered modes m is greater

than 8 while that of the presented model continues to decrease.

Therefore, the identification method presented here is more accu-

rate than classical identification methods considering restrictive

assumptions about the mechanical behavior of a lamination stack

such as isotropic material. The first twelve predicted and mea-

sured natural frequencies are distributed in TAB. 1 while their as-

sociated mode shapes are plotted in Fig. 7. It should be noticed

that the lateral deflections of the tie rods are not available by the

chosen experimental investigation. Moreover, the MAC matrix is

based only on the lateral deflections of the predicted and mea-

sured boundary dof. Thus, the MAC matrix does not highlight

the tie rods contribution in the global lateral deflections. Conse-

quently, there is a virtual coupling between the 5th and the 6th

mode shapes, and also between the 9th and 10th mode shapes.

These 6th and 10th the mode shapes are local modes due to the

tie rods dynamics. The prediction is obtained by considering 12

modes in the optimization procedure. The relative error between

the predicted and measured natural frequencies varies from 0.6%

to 6.5% with a mean value equal to 2%. Figure 8 presents a plot

of the Modal Assurance Criterion, i.e. MAC matrix, between

predicted and measured mode shapes (see Fig. 7). Figure 7 and

Fig. 8 show a good correlation between the predicted and mea-

sured mode shapes and also justify the use of the FE branched

model and therefore the Craig and Bampton reduction. Indeed,
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Figure 7. FIRST TWELVE PREDICTED (SOLID LINE) AND MEASURED

(DASHED LINE) LATERAL MODE SHAPES.

the 6th and 10th modes are local modes mainly due to the tie rods

dynamics which could not be observed if the rotor was modeled
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Figure 8. REPRESENTATION OF THE MAC MATRIX BETWEEN THE PRE-

DICTED AND MEASURED MODE SHAPES.

with a classical FE model or if a static reduction was used. It

proves that the FE branched model is a good way to predict the

dynamics of this kind of real assembled structure.

CONCLUSION

The optimization procedure proposed in this paper has been

tested on a real industrial induction motor which has a complex

design. A finite element branched model was presented by tak-

ing into account that MGV rotors are assemblies made of dif-

ferent components especially in the magnetic core. Therefore,

the prestressed tie rods have been modeled independently of the

lamination stack. Moreover, the finite element branched model

was able to provide the tie rods modes which have been ob-

served. It is stated that the identified equivalent constitutive prop-

erties of the lamination stack depend on the number of consid-

ered modes. However, these constitutive properties tend toward

certain asymptotic values from eight modes. This identification

procedure is very useful for establishing a finite element model

based mainly on beam elements containing few dof, which is a

great advantage for predicting the rotordynamics, i.e. unbalance

responses and transient responses. The reliability of such a pro-

cedure requires applying it to other induction motors, i.e. MGV

rotors, in order to predict the dynamic behavior of the MGV ro-

tors under development, such as the 30 MW range at 6000 rpm.

This will permit the manufacturer to increase reliability for this

range of products.
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