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METASTABLE Γ-EXPANSION OF FINITE STATE MARKOV

CHAINS LEVEL TWO LARGE DEVIATIONS RATE

FUNCTIONS.

L. BERTINI, D. GABRIELLI, AND C. LANDIM

Abstract. We examine two analytical characterisation of the metastable be-
havior of a Markov chain. The first one expressed in terms of its transition

probabilities, and the second one in terms of its large deviations rate func-

tional.
Consider a sequence of continuous-time Markov chains (X

(n)
t : t ≥ 0)

evolving on a fixed finite state space V . Under a hypothesis on the jump

rates, we prove the existence of times-scales θ
(p)
n and probability measures

with disjoint supports π
(p)
j , j ∈ Sp, 1 ≤ p ≤ q, such that (a) θ

(1)
n → ∞,

θ
(k+1)
n /θ

(k)
n →∞, (b) for all p, x ∈ V , t > 0, starting from x, the distribution

of X
(n)

tθ
(p)
n

converges, as n → ∞, to a convex combination of the probability

measures π
(p)
j . The weights of the convex combination naturally depend on x

and t.

Let In be the level two large deviations rate functional for X
(n)
t , as t→∞.

Under the same hypothesis on the jump rates and assuming, furthermore,
that the process is reversible, we prove that In can be written as In = I(0) +∑

1≤p≤q(1/θ
(p)
n ) I(p) for some rate functionals I(p) which take finite values

only at convex combinations of the measures π
(p)
j : I(p)(µ) <∞ if, and only if,

µ =
∑
j∈Sp

ωj π
(p)
j for some probability measure ω in Sp.

1. Introduction

The metastable behavior of continuous-time Markov chains has attracted some
interest in recent years. We refer to the monographs [52, 13, 32, 37] for the lat-
est developments. In this article, we propose to investigate the Markov chains
metastable behaviour from an analytical perpective, by showing that the Markov
chains semigroup and large deviations rate function encode the metastable proper-
ties of the process. The main results explain how to extract from these functionals
the metastable time-scales, states and wells.

To tackle this problem we consider a sequence of continuous-time Markov chains

(X
(n)
t : t ≥ 0) evolving on a finite state space V . Under a natural hypothesis on the

jump rates of these chains, stated in equation (2.4) below, we prove the existence
of

(a) time-scales θ
(1)
n , . . . , θ

(q)
n such that, as n→∞, θ

(1)
n →∞, θ

(p+1)
n /θ

(p)
n →∞

for 1 ≤ p < q;

(b) and metastable states π
(p)
1 , . . . , π

(p)
np , 1 ≤ p ≤ q.
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The parameter p is called the level and indicates the depth of the wells or, equiva-
lently, the time-scale at which a metastable behaviour is observed. The metastable

states π
(p)
j are probability measures on V . It will be shown that, for each fixed

level p, the support of the measures π
(p)
1 , . . . , π

(p)
np are disjoint. They represent the

wells among which the process X
(n)
t evolves in the time-scale θ

(p)
n . The number

of metastable set decreases as the time-scales increase: np+1 < np. A metastable
state at level p+ 1 is a convex combination of metastable states at level p: for each

1 ≤ p < q and 1 ≤ m ≤ np+1, π
(p+1)
m =

∑
j ω

(m)
j π

(p)
j for some probability measure

ω(m) on {1, . . . , np}.
The first main result of this article, Theorem 3.1.(b), states that for all t > 0,

x ∈ V , the distribution of X
(n)

tθ
(p)
n

starting from x converges to a convex combination

of the measures π
(p)
j , 1 ≤ j ≤ np. More precisely, denote by p

(n)
t (x, y) the transition

probabilities of the Markov chain X
(n)
t . Then, for each 1 ≤ p ≤ q, t > 0, x ∈ V ,

there exists a probability measure ω
(p)
t,x ( · ) on {1, . . . , np} such that

lim
n→∞

p
(n)

tθ
(p)
n

(x, · ) =

np∑
j=1

ω
(p)
t,x (j) π

(p)
j ( · ) . (1.1)

The weights ω
(p)
t,x (j) of this convex combination naturally depend on x and t, and

are obtained by a recursion procedure.
Theorem 3.1 also characerises the asymptotic behavior of the transition proba-

bilities at all intermediate time-scales βn. Fix 0 ≤ p ≤ q, set θ
(0)
n = 1, θ

(q+1)
n = +∞,

and consider a sequence βn such that βn/θ
(p)
n → ∞, βn/θ

(p+1)
n → 0. Theorem 3.1

provides a formula for the limit of p
(n)
βn

(x, · ) as n→∞. It corresponds to the limit

obtained in (1.1) by letting t→∞ after n→∞.
Freidlin and Koralov [20], after [3] and [43], examined sequences of Markov

chains on finite state spaces under the same hypothesis (2.4) assumed below and
taken from [3, 43]. Their main results describes the asymptotic behavior of the
transition probabilities at the intermediate time-scales βn introduced above. These
results demonstrate the interest of the theory developed in [1, 5, 35, 51, 37], which
permits to investigate the asymptotic behavior of the Markov chain exactly at the
metastable time-scale, and not just before or after it.

We turn to the large deviations. Denote by In the level two large deviations

rate functional of the Markov chain X
(n)
t , as t → ∞ [56]. Under the hypothesis

of reversibility, the second main result of this article provides a Γ-expansion of the
functional In as

In = I(0) +

q∑
p=1

1

θ
(p)
n

I(p) . (1.2)

This expansion has to be understood in the sense that In, θ
(p)
n In, 1 ≤ p ≤ q, Γ-

converge to I(0), I(p), respectively. The rate functionals I(p) take finite values only

at convex combinations of the metastable states π
(p)
j : I(p)(µ) < ∞ if, and only if,

µ =
∑
j∈Sp

ωj π
(p)
j for some probability measure ω in Sp.
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Therefore, both the semigroup and the level two large deviations rate functionals
encode all characteristics of the metastable behaviour of a Markov chain. They pro-
vide the time-scales, the metastable states and the wells. In particular, it becomes
a natural problem to prove such an expansion in other contexts.

We believe that the inductive approach presented here provides a general method
to derive these results, as well as the metastable behavior in the classical sense [1],
of Markov chains with wells of different depths, even if the state space is not fixed,
as assumed here. To be applied, one needs (a) to show that the process quickly
reaches one of the wells (the initial step of the induction procedure) and (b) to
compute the capacities (2.7) and the asymptotic jump rates (2.10).

More precisely, inspecting the proof of Theorem 3.3 reveals that it essentially
relies on the convergences of the generator of the trace process on the wells (more

exactly on the convergence of the average rates r
(p)
n (i, j) introduced in (2.9) be-

low). Since this convergence has been obtained in many different contexts, by
following the strategy proposed here it should be possible to derive the metastable
Γ-expansion of the large deviations level two rate function for dynamics in which
the state space is not fixed.

This includes random walks in potential fields [39, 41], condensing zero-range
models [2, 31, 54], inclusion processes [25, 17, 9, 27, 28], or statistical mechanical
models in which the volume grows as the temperature decreases. For example, the
Curie-Weiss model in random environment [11, 10], the Blume-Capel model [34],
the Potts model [40, 30, 44], or the Kawasaki dynamics for the Ising model [24].

In particular, it should be possible to apply this approach to non-reversible
diffusions in potential fields,[55, 12, 38, 42, 53, 45, 46], extending Di Gesù and
Mariani [23], who prove the Γ-expansion in the reversible case in which there is
only one well at each different depth.

2. The model

Let G = (V,E) be a finite directed graph, where V represents the finite set

of vertices, and E the set of directed edges. Denote by (X
(n)
t : t ≥ 0), n ≥ 1,

a sequence of V -valued, irreducible continuous-time Markov chains, whose jump
rates are represented by Rn(x, y). We assume that Rn(x, y) > 0 for all (x, y) ∈ E
and n ≥ 1. The generator reads as

(Lnf)(x) =
∑

y : (x,y)∈E

Rn(x, y) { f(y) − f(x) } .

Denote by λn(x), x ∈ V , the holding rates of the Markov chainX
(n)
t and by pn(x, y),

x, y ∈ V , the jump probabilities, so that Rn(x, y) = λn(x) pn(x, y).
Let πn stand for the unique stationary state. The so-called Matrix tree The-

orem [21, Lemma 6.3.1] provides a representation of the measure πn in terms of
arborescences of the graph (V,E).

Denote by D(R+,W ), W a finite set, the space of right-continuous functions
x : R+ →W with left-limits endowed with the Skorohod topology and the associated
Borel σ-algebra. Let Px = Pnx , x ∈ V , be the probability measure on the path space

D(R+, V ) induced by the Markov chain X
(n)
t starting from x. Expectation with

respect to Px is represented by Ex.
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Denote by p
(n)
t (x, y) the transition probability of the Markov chain X

(n)
t :

p
(n)
t (x, y) := Pnx

[
Xt = y

]
, x , y ∈ V , t > 0 .

Since the chain is irreducible and πn its stationary state, by the ergodic theorem
for finite state-spaces Markov chains,

lim
t→∞

p
(n)
t (x, y) = πn(y) for all x, y ∈ V .

Longer time-scales. Assume that limnRn(x, y) exists for all (x, y) ∈ E, and
denote by R0(x, y) ∈ [0,∞) its limit:

R0(x, y) := lim
n
Rn(x, y) , (x, y) ∈ E . (2.1)

Let E0 be the set of edges whose asymptotic rate is positive: E0 := { (x, y) ∈
E : R0(x, y) > 0 }, and assume that E0 6= ∅. The jump rates R0(x, y) induce a
continuous-time Markov chain on V , denoted by (Xt : t ≥ 0), which, of course, may
be reducible. Denote by L(0) its generator.

Denote by V1, . . . ,Vn, n ≥ 1, the closed irreducible classes of Xt, and let

S := {1, . . . , n} , V :=
⋃
j∈S

Vj , ∆ := V \ V . (2.2)

The set ∆ may be empty and some of the sets Vj may be singletons.
Let Qx be the probability measure on D(R+, V ) induced by the Markov chain

Xt starting from x.
For two sequences of positive real numbers (αn : n ≥ 1), (βn : n ≥ 1), αn ≺ βn or

βn � αn means that limn→∞ αn/βn = 0. Similarly, αn � βn or βn � αn indicates
that either αn ≺ βn or αn/βn converges to a positive real number a ∈ (0,∞).

Let

γn := max
(x,y)∈E\E0

Rn(x, y)

so that γn ≺ 1. Choose a sequence βn such that 1 ≺ βn ≺ γ−1
n . Couple X

(n)
t and

Xt making them jump as much as possible together. Denote by P̂x the coupling
measure. Since βn ≺ γ−1

n , for all x ∈ V

lim
n→∞

P̂x
[
X

(n)
t = Xt , 0 ≤ t ≤ βn

]
= 1 .

In particular, for all x, y ∈ V

lim
n→∞

p
(n)
βn

(x, y) = lim
n→∞

P̂x
[
Xβn = y

]
=
∑
j∈S

a(0)(x, j)π]j(y) ,

where π]j , 1 ≤ j ≤ n, represents the stationary states of the Markov chain X
restricted to Vj and a(0)(x, j) the probability that the chain Xt starting from x is
absorbed by the closed recurrent class Vj :

a(0)(x, j) := lim
t→∞

Qx
[
Xt ∈ Vj

]
. (2.3)

In the first part of this article, we investigate the asymptotic behaviour of

p
(n)
βn

(x, y) in different time-scales βn. The definition of the time-scales and the

description of the asymptotic behaviour is based on a construction of a tree [3, 43]
presented after the statement of the main hypothesis of the article.
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The main assumption. Two sequences of positive real numbers (αn : n ≥ 1),
(βn : n ≥ 1) are said to be comparable if αn ≺ βn, βn ≺ αn or αn/βn → a ∈ (0,∞).
This condition excludes the possibility that the sequence αn/βn oscillates between
two finite values and does not converge.

A set of sequences (αu
n : n ≥ 1), u ∈ R, of positive real numbers, indexed by some

finite set R, is said to be comparable if for all u, v ∈ R the sequence (αu
n : n ≥ 1),

(αv
n : n ≥ 1) are comparable.
Let Z+ = {0, 1, 2, . . . }, and let Σm, m ≥ 1, be the set of functions k : E → Z+

such that
∑

(x,y)∈E k(x, y) = m. We assume throughout this article that for every

m ≥ 1 the set of sequences( ∏
(x,y)∈E

Rn(x, y)k(x,y) : n ≥ 1
)
, k ∈ Σm , (2.4)

is comparable.

Remark 2.1. This hypothesis on the jump rates is taken from [3] and [43]. It also
appears in [20], what supports the assertions that this condition is natural in the
context of metastability.

As observed in [3], assumption (2.4) is fulfilled by all statistical mechanics models
which evolve on a fixed state space and whose metastable behaviour has been derived.
This includes the Ising model [49, 50, 7, 15], the Potts model with or without a small
external field [48, 29], the Blume-Capel model [18, 33], and conservative Kawasaki
dynamics [14, 22, 26, 6].

A rooted tree. In this subsection, we present the construction, proposed in [3, 43],
of a rooted tree which describes all different metastable behaviours of the Markov
chain X

(n)
t . This construction plays a fundamental role in the statement of the

main theorems of this article. The reader will find at the end of this section a
simple example which may help to understand the construction.

The tree satisfies the following conditions:

(a) Each vertex of the tree represents a subset of V ;
(b) Each generation forms a partition of V ;
(c) The children of each vertex form a partition of the parent.
(d) The generation p+ 1 is strictly coarser than the generation p.

The tree is constructed by induction starting from the leaves to the root. It
corresponds to a deterministic coalescence process. Denote by q the number of steps
in the recursive construction of the tree. At each level 1 ≤ p ≤ q, the procedure

generates a partition {V(p)
1 , . . . ,V

(p)
np ,∆p}, a time-scale θ

(p)
n and a {1, . . . , np}-valued

continuous-time Markov chains X(p)
t which describes the evolution of the chain

X
(n)

tθ
(p)
n

among the subsets V
(p)
1 , . . . ,V

(p)
np , called hereafter wells.

The leaves are the sets V1, . . . ,Vn,∆ introduced in (2.2). We proceed by in-

duction. Let S1 = S, n1 = n, V
(1)
j = Vj , j ∈ S1, ∆1 = ∆, and assume that the

recursion has produced the sets V
(p)
1 , . . . ,V

(p)
np ,∆p for some p ≥ 1, which forms a

partition of V .
Denote by HA, H+

A , A ⊂ V , the hitting and return time of A:

HA := inf
{
t > 0 : X

(n)
t ∈ A

}
, H+

A := inf
{
t > τ1 : X

(n)
t ∈ A

}
, (2.5)
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where τ1 represents the time of the first jump of the chain X
(n)
t : τ1 = inf{t > 0 :

X
(n)
t 6= X

(n)
0 }.

For two non-empty, disjoint subsets A, B of V , denote by capn(A,B) the capacity
between A and B:

capn(A,B) :=
∑
x∈A

πn(x)λn(x)Pnx
[
HB < H+

A

]
. (2.6)

Set Sp = {1, . . . , np}, and let θ
(p)
n be defined by

1

θ
(p)
n

:=
∑
i∈Sp

capn(V
(p)
i , V̆

(p)
i )

πn(V
(p)
i )

, where V̆
(p)
i :=

⋃
j∈Sp\{i}

V
(p)
j . (2.7)

The ratio πn(V
(p)
i )/capn(V

(p)
i , V̆

(p)
i ) represents the time it takes for the chain X

(n)
t ,

starting from a point in V
(p)
i to reach the set V̆

(p)
i . Therefore, θ

(p)
n corresponds to

the smallest time needed to observe such a jump.
Recall from (A.1) the definition of the trace of a Markov chain. Denote by

{Y n,pt : t ≥ 0} the trace of {X(n)
t : t ≥ 0} on V(p), and by R

(p)
n : V(p) × V(p) → R+

its jump rates. By equation (2.5) in [32],

R(p)
n (x, y) = λn(x) Pnx

[
Hy = H+

V(p)

]
, x , y ∈ V(p) , x 6= y . (2.8)

Denote by r
(p)
n (i, j) the mean rate at which the trace process jumps from V

(p)
i to

V
(p)
j :

r(p)
n (i, j) :=

1

πn(V
(p)
i )

∑
x∈V(p)

i

πn(x)
∑
y∈V(p)

j

R(p)
n (x, y) . (2.9)

Under the assumption (2.4), [43] proved that the sequences θ
(p)
n r

(p)
n (i, j) converge

for all i 6= j ∈ Sp. Denote the limits by r(p)(i, j):

r(p)(i, j) := lim
n→∞

θ(p)
n r(p)

n (i, j) ∈ R+ . (2.10)

Denote by (X(p)
t : t ≥ 0) the Sp-valued continuous-time Markov chain induced

by the jump rates r(p)(j, k), and by L(p) its generator. Let Φp : V(p) → Sp be the

projection which sends the points in V
(p)
j to j:

Φp :=
∑
k∈Sp

k χ
V

(p)
k

.

In this formula and below, χ
A

stands for the indicator function of the set A.
Next theorem is the main result in [43].

Theorem 2.2. Assume that condition (2.4) is in force. Then, for each 1 ≤ p ≤ q,

j ∈ Sp, x ∈ V
(p)
j , under the measure Pnx , the sequence of Sp-valued, hidden Markov

processes Φp(X
(n)

tθ
(p)
n

) converges weakly in the Skorohod topology to X(p)
t . Moreover,

the time spent in ∆p is negligible in the sense that for all t > 0,

lim
n→∞

max
y∈V(p)

Enx

[ ∫ t

0

χ
∆p

(X
(n)

sθ
(p)
n

) ds
]

= 0 .
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The process X(p)
t describes therefore how the chain X

(n)
t evolves among the wells

V
(p)
j in the time-scale θ

(p)
n . Let p

(p)
t (i, j) be the transition probabilities:

p
(p)
t (i, j) = Q(p)

i [Xt = j ] , t ≥ 0 , i , j ∈ Sp , (2.11)

where Q(p)
i stands for the probability measure on the path space D(R+, Sp) induced

by the Markov chain X(p)
t starting from i.

By [43, Theorem 2.7], there exists j, k ∈ S such that r(p)(j, k) > 0. Actually, by
the proof of this result∑
k 6=j

r(p)(j, k) > 0 for all j ∈ Sp such that lim
n→∞

θ(p)
n

capn(V
(p)
j , V̆

(p)
j )

πn(V
(p)
j )

> 0 . (2.12)

Denote by R
(p)
1 , . . . ,R

(p)
np+1 the recurrent classes of the Sp-valued chain X(p)

t , and

by Tp the transient states. Let R(p) = ∪jR(p)
j , and observe that {R(p)

1 , . . . ,R
(p)
np+1 ,Tp}

forms a partition of the set Sp. This partition of Sp induces a new partition of the
set V . Let

V(p+1)
m :=

⋃
j∈R(p)

m

V
(p)
j , T(p+1) :=

⋃
j∈Tp

V
(p)
j , m ∈ Sp+1 := {1, . . . , np+1} ,

so that V = ∆p+1 ∪ V(p+1), where

V(p+1) =
⋃

m∈Sp+1

V(p+1)
m , ∆p+1 := ∆p ∪ T(p+1) . (2.13)

The subsets V
(p+1)
1 , . . . ,V

(p+1)
np+1 ,∆p+1 of V are the result of the recursive proce-

dure. We claim that conditions (a)–(d) hold at step p+ 1 if they are fulfilled up to
step p in the induction argument.

The sets V
(p+1)
1 , . . . ,V

(p+1)
np+1 , ∆p+1 constitute a partition of V because the sets

R
(p)
1 , . . . ,R

(p)
np+1 , Tp form a partition of Sp, and the sets V

(p)
1 , . . . ,V

(p)
np , ∆p one of

V . Conditions (a)–(c) are therefore satisfied.

To show that the partition obtained at step p+1 is strictly coarser than {V(p)
1 , . . . ,

V
(p)
np ,∆p}, observe that, by (2.12), r(p)(j, k) > 0 for some k 6= j ∈ Sp. Hence,

either j is a transient state for the process X(p)
t or the closed recurrent class which

contains j also contains k. In the first case ∆p ( ∆p+1, and in the second one

there exists m ∈ Sp+1 such that V
(p)
j ∪ V

(p)
k ⊂ V

(p+1)
m . Therefore, the new partition

{V(p+1)
1 , . . . ,V

(p+1)
np+1 ,∆p+1} of V satisfies the conditions (d).

The construction terminates when the Sp-valued Markov chain X(p)
t has only one

recurrent class so that np+1 = 1. In this situation, the partition at step p + 1 is

V
(p+1)
1 , ∆p+1.
This completes the construction of the rooted tree. Recall that we denote by q

the number of steps of the scheme. As claimed at the beginning of the procedure, for

each 1 ≤ p ≤ q, we generated a time-scale θ
(p)
n , a partition Pp = {V(p)

1 , . . . ,V
(p)
np ,∆p},

where P1 = {V1, . . . ,Vn,∆}, Pq+1 = {V(q+1)
1 ,∆q+1}, and a Sp-valued continuous-

time Markov chain X(p)
t .

Furthermore, by construction,

∆p ⊂ ∆p+1 , 1 ≤ p ≤ q , (2.14)
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by [43, Assertion 8.B],

θ(p)
n ≺ θ(p+1)

n , 1 ≤ p < q , (2.15)

and by [43, Assertion 8.A] or equation (8.2) of this article,

lim
n→∞

πn(x)

πn(V
(p)
j )

exists and belongs to (0, 1] (2.16)

for all 1 ≤ p ≤ q + 1, j ∈ Sp, x ∈ V
(p)
j .

The partitions P1, . . . ,Pq+1 form a rooted tree whose root (0-th generation) is V ,

first generation is {V(q+1)
1 ,∆q+1} and last ((q+1)-th) generation is {V1, . . . ,Vn,∆}.

Note that the set V(p+1) corresponds to the set of recurrent points for the chain

X(p)
t . In contrast, the points in ∆p+1 are either transient for this chain or negligible

in the sense that the chain X
(n)
t remains a negligible amount of time on the set ∆p

in the time-scale θ
(p)
n (cf. [3, 43]).

Example. We conclude this section with an example to help the reader under-
standing the tree’s construction. Let V = {0, . . . , 29}, and consider the energy
H : V → {0, . . . , 4} given in Figure 1. Note that H(k + 1) − H(k) = ±1 for
0 ≤ k < 29. The energy H has 9 local minima, represented in Figure 1 by x1, . . . x9.

Consider the V -valued continuous-time Markov chain X
(n)
t whose jump rates are

given by Rn(k, j) = 0 if j 6= k± 1 and Rn(k, k± 1) = exp{−n [H(k± 1)−H(k)]+},
where a+ = max{a, 0}. Hence if H(k ± 1)−H(k) = −1 the chain jumps from k to
k ± 1 at rate 1, while if H(k ± 1) − H(k) = +1 it jumps from k to k ± 1 at rate
e−n. More simply, observing the energy landscape presented in Figure 1, the chain
jumps “downwards” at rate 1 and jumps “upwards” at rate e−n.

It is easy to check that the stationary state, denoted by πn, is given by πn(k) =
(1/Zn) exp{−nH(k)}, where Zn is a normalising constant, and that πn satisfies the
detailed balance conditions. In particular, and since the downward jump rates are
equal to 1, cn(j, k) := πn(j)Rn(j, k) = πn(j) ∧ πn(k). It follows from this identity
and Lemma 7.3 below that the capacities introduced in (2.6) are easy to estimate
in this example.

x1 x2 x3 x4 x5 x6 x7 x8 x9

Figure 1. The energy landscape of the Markov chain X
(n)
t .

Consider the tree construction presented at the beginning of this section.

Step 1: the leaves. In the first step we determine the leaves of the tree, which
correspond to the closed irreducible classes of the chain Xt. In this example, the
closed irreducible classes are the local minima of the energy H so that n = 9,
Vj = {xj}, 1 ≤ j ≤ 9, ∆ = V \ {x1, . . . , x9}, and the leaves are the sets ∆ and Vj ,
1 ≤ j ≤ 9.
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Denote by q + 1, q ≥ 0, to total number of generations of the tree. The exact
value of q + 1 will only be known at the end of the construction.

Step 2: the generation q. The second step consists in determining the smallest
transition time between a well Vj to a well Vk. This is the smallest time-scale it

takes for the process X
(n)
t starting from Vj to hit Vk. In the above example this

time-scale is θ
(1)
n = en. In this time scale, the trace of X

(n)
t on V = ∪jVj evolves as

a Markov chain and converges, as n→∞, to a V-valued Markov chain, represented

by X(1)
t . The states x1 and x2 are transient states for X(1)

t and absorbed at the

recurrent state x3. Similarly, the states x5 and x6 are transient states for X(1)
t and

are absorbed by x4. The states x7, x8 form a closed irreducible class of X(1)
t , as

well as the point x9.

Therefore, T1 = {1, 2, 5, 6}, R
(1)
1 = {3}, R

(1)
2 = {4}, R

(1)
3 = {7, 8}, R

(1)
4 =

{9}, so that V
(2)
1 = {x3}, V

(2)
2 = {x4}, V

(2)
3 = {x7, x8}, V

(2)
4 = {x9}, T2 =

{x1, x2, x5, x6}. Moreover, the generation q of the tree has 5 elements: ∆2 = ∆∪T2,

and V
(2)
j , 1 ≤ j ≤ 4.

Step 3: the generation q− 1. At this point, we need to determine the smallest

transition time between the wells V
(2)
1 , V

(2)
2 , V

(2)
3 and V

(2)
4 . In this example the

smallest transition time is θ
(2)
n = e2n.

Let V(2) = ∪1≤j≤4V
(2)
j , and denote by Y n,2t the trace of the process X

(n)
t on V(2).

Consider the projection Φ2 : V(2) → S2 = {1, 2, 3, 4} which sends the points in V
(2)
j

to j. Note that Φ2 is not a bijection. In consequence the process Φ2(Y n,2t ) is not a

Markov chain. It is however possible to prove (cf. [1]) that the process Φ2(Y n,2
tθ

(2)
n

)

converges to a S2-valued Markov chain, denoted by X(2)
t .

The states 1 and 3, which corresponds to the sets V
(2)
1 and V

(2)
3 , respectively, are

transient for the chain X(2)
t , while the states 2 and 4, which corresponds to the sets

V
(2)
2 and V

(2)
4 , respectively, form closed irreducible classes. The state 1 is absorbed

at 2, while the state 3 may be absorbed at 2 or 4.

Thus, in this example, T2 = {1, 3}, R(2)
1 = {2}, R(2)

2 = {4}, so that V
(3)
1 = {x4},

V
(3)
2 = {x9}, T3 = {x3, x7, x8}. The generation q − 1 of the tree has 3 elements:

∆3 = ∆2 ∪ T3, and V
(3)
j , j = 1, 2.

Step 4: the generation q− 2. We need now to determine the smallest transition

time between the wells V
(3)
1 and V

(3)
2 . In this example it is θ

(3)
n = e3n.

Let V(3) = V
(3)
1 ∪ V

(3)
2 , and denote by Y n,3t the trace of the process X

(n)
t on

V(3). It is however possible to prove (cf. [1]) that the process Y n,3
tθ

(3)
n

converges to a

{1, 2}-valued Markov chain, denoted by X(3)
t .

The states {1, 2} form a irreducible class for X(3)
t . Hence T3 is empty and

R(3) = R
(3)
1 = {1, 2}, so that V

(4)
1 = {x4, x9}, T4 = ∅. The generation q− 2 of the

tree has 2 elements: ∆4 = ∆3, and V
(4)
1 .

As there is only one closed irreducible class, the construction is completed and

the value of q is revealed. The partition {∆4 , V
(4)
1 } of V corresponds to the first

generation. Since, by construction, it is also the (q − 2)-th generation, we deduce
that q = 3 and that the tree has q + 1 = 4 generations. To get a rooted tree,
we declare that the root, which corresponds to the zeroth generation, is the set
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V = ∆4∪V(4)
1 . The tree associated to the example presented in Figure 1 is depicted

in Figure 2.

{x4} {x9} {x3} {x7} {x8} {x1} {x2} {x5} {x6} ∆1

{x4} {x9} {x3} {x7, x8} ∆2

{x4} {x9} ∆3

{x4, x9} ∆4

V

Figure 2. The tree or coalescence process generated by the

Markov chain X
(n)
t .

3. The main results

In this section, we enunciate the main results of the article. The statements
require a further layer in the tree construction presented in the previous section.

At each step 1 ≤ p ≤ q + 1, we introduce a set of probability measures π
(p)
j ,

j ∈ Sp, on V . The construction of these measures is carried out below by induction.

In Proposition 3.2, however, we characterise the measure π
(p)
j as the limit of the

stationary state πn conditioned to V
(p)
j . In particular,

the support of π
(p)
j is the set V

(p)
j . (3.1)

Moreover, in Theorem 3.1.(b) we show that for all t > 0, x ∈ V , the distribution

of X
(n)

tθ
(p)
n

starting from x converges to a convex combination of the measures π
(p)
j ,

j ∈ Sp. The weights of this convex combination depend on x and t. This result

asserts, therefore, that the measures π
(p)
j are the metastable states of the process

X
(n)
t observed on the time-scale θ

(p)
n .

We proceed by induction. Let π
(1)
j , j ∈ S1, be the probability measure on V

(1)
j

given by π
(1)
j = π]j , where, recall, π]j represents the stationary states of the Markov

chain Xt restricted to the closed irreducible set V
(1)
j = Vj . Clearly, condition (3.1)

is fulfilled.
Fix 1 ≤ p ≤ q, and assume that the probability measures π

(p)
j , j ∈ Sp, has been

defined and satisfy condition (3.1). Denote by M
(p)
m (·), m ∈ Sp+1, the stationary

state of the Markov chain X(p)
t restricted to R

(p)
m . The measure M

(p)
m is understood
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as a measure on Sp = {1, . . . , np} which vanishes on the complement of R
(p)
m . Let

π
(p+1)
m be the probability measure on V

(p)
m given by

π(p+1)
m (x) :=

∑
j∈R(p)

m

M (p)
m (j)π

(p)
j (x) , x ∈ V . (3.2)

Clearly, condition (3.1) is in force. Moreover, π
(p+1)
m is a convex combination of

the measures π
(p)
j , j ∈ R

(p)
m . A fortiori, for each 1 ≤ p ≤ q + 1, m ∈ Sp, π(p)

m is a

convex combination of the measures π]j , j ∈ S.

We further add absorption probabilities at each step. Let a(0)(x, j), x ∈ V ,
j ∈ S1, be the probability that the Markov chain Xt starting from x is absorbed at

the closed irreducible set V(1)
j :

a(0)(x, j) := lim
t→∞

Qx
[
Xt ∈ Vj

]
. (3.3)

Note that a(0)(x, · ) is a probability measure on S1 for each x ∈ V .
Fix 1 ≤ p ≤ q and assume that a(p−1)(x, j) has been defined. Let A(p)(j,m),

j ∈ Sp, m ∈ Sp+1, be the probability that the chain X(p)
t starting from j has been

absorbed at the closed irreducible set R
(p)
m :

A(p)(j,m) := lim
t→∞

∑
k∈R(p)

m

p
(p)
t (j, k) , j ∈ Sp , m ∈ Sp+1 . (3.4)

For x ∈ V , m ∈ Sp+1, let

a(p)(x,m) :=
∑
j∈Sp

a(p−1)(x, j)A(p)(j,m) . (3.5)

Since A(p)(j, · ) is a probability measure on Sp+1, it is easy to show by induction

that a(p)(x, · ) is a probability measure on Sp+1 for each x ∈ V , 1 ≤ p ≤ q.

Let θ
(0)
n = 1, θ

(q+1)
n = +∞ for all n ≥ 1. The first main result of the article

reads as follows. It provides a complete description of the ergodic behavior of the

Markov chain X
(n)
t .

Theorem 3.1. Assume that condition (2.4) is in force. Then,

(a) For each 1 ≤ p ≤ q+1, sequence (βn : n ≥ 1) such that θ
(p−1)
n ≺ βn ≺ θ

(p)
n ,

and x ∈ V ,

lim
n→∞

p
(n)
βn

(x, · ) = Πp−1(x, · ) :=
∑
j∈Sp

a(p−1)(x, j)π
(p)
j ( · ) . (3.6)

(b) For each 1 ≤ p ≤ q, t > 0, x ∈ V ,

lim
n→∞

p
(n)

tθ
(p)
n

(x, · ) =
∑
j∈Sp

ω
(p)
t (x, j)π

(p)
j ( · ) , (3.7)

where

ω
(p)
t (x, j) =

∑
k∈Sp

a(p−1)(x, k) p
(p)
t (k, j) .

(c) For all 1 ≤ p ≤ q, j ∈ Sp, x ∈ V ,

lim
t→0

lim
n→∞

p
(n)

tθ
(p)
n

(x, · ) =
∑
j∈Sp

a(p−1)(x, j)π
(p)
j ( · )
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(d) For all 1 ≤ p ≤ q, 1 ≤ j ≤ np, x ∈ V ,

lim
t→∞

lim
n→∞

p
(n)

tθ
(p)
n

(x, · ) =
∑

m∈Sp+1

a(p)(x,m)π(p+1)
m ( · ) .

Moreover,

lim
n→∞

πn(∆q+1) = 0 , lim
n→∞

πn(x) exists and belongs to (0, 1] (3.8)

for all x ∈ V(q+1).

Note that the right-hand side of (c) and (d) coincide with the one obtained in

(a). These assertion state that at the time-scale θ
(p)
n a smooth transition between

two different regimes is observed.
Part (b) of this theorem states that, starting from x, the distribution of the

process at time tθ
(p)
n is close to a convex combination of the measures π

(p)
k , k ∈ Sp.

The weight of the measure π
(p)
k is given by the probability that the process is

initially attracted to a well V
(p)
j times the probability that the dynamics among the

wells drives the process from the well Vj to the well Vk in the “macroscopic” time
intervall [0, t].

The next result provides a formula for the measures π
(p)
j and for the absorbing

probabilities a(p−1)(x, j). Recall that for each x ∈ V , a(p−1)(x, · ) is a probability
measure on Sp.

Proposition 3.2. Fix 1 ≤ p ≤ q + 1, j ∈ Sp. For all z ∈ V
(p)
j ,

lim
n→∞

πn(z)

πn(V
(p)
j )

= π
(p)
j (z) .

If x ∈ V
(p)
j , then a(p−1)(x, k) = δj,k, k ∈ Sp. On the other hand, if x 6∈ V(p), then

a(p−1)(x, j) = lim
n→∞

Pnx
[
H

V
(p)
j

< H
V̆

(p)
j

]
.

Large deviations rate function expansion. We assume from now on that the
dynamics is reversible: πn(x)Rn(x, y) = πn(y)Rn(y, x) for all (x, y) ∈ E. For a
probability measure ν on a finite space W and two functions f , g : W → R, let

〈 f , g 〉ν =
∑
x∈W

f(x) g(x) ν(x) .

By [56], for each fixed n ≥ 1, the occupation time distribution of the chain Xn
t ,

defined by

1

t

∫ t

0

δXn
s
ds ,

satisfies a large deviations principle as t → ∞, the so-called level 2 LDP. In this
formula, δx, x ∈ V , represents the Dirac measure concentrated at x, so that

t−1
∫ t

0
δXn

s
ds is a random element of P(V ), the space of probability measures on

V . Denote by In : P(V )→ [0,∞] the level two large deviations rate function:

In(µ) = − inf
u

∑
x∈V

(Lnu)(x)

u(x)
µ(x) , (3.9)
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where the infimum is performed over all functions u : V → (0,∞). Since we
assumed reversibility and πn(x) > 0 for all x ∈ V , for all measures µ ∈ P(V ), by
[19, Theorem 5],

In(µ) = 〈
√
fn , (−Ln)

√
fn 〉πn

, (3.10)

where fn(x) = µ(x)/πn(x).
The second main result of this article provides an expansion of the rate function

In. Recall that we denote by L(0) the generator of the Markov chain Xt introduced
right after (2.1). Let I(0) : P(V )→ R+ be given by

I(0)(µ) = − inf
u>0

∑
x∈V

µ(x)
(L(0)u)(x)

u(x)
, (3.11)

where the supremum is carried over all functions u : V → (0,∞). Theorem 3.3
below states that the sequence of rate functions In Γ-converges to I(0). In (8.8),
we show that I(0)(µ) = 0 if and only if there exists a probability measure ω on S1

such that

µ =
∑
j∈S1

ωj π
(1)
j . (3.12)

For such measures µ, it is natural to consider the limit βnIn(µ) for some sequence
βn →∞.

Fix 1 ≤ p ≤ q. Denote by P(Sp) the set of probability measures on Sp. Let

I(p) : P(V )→ [0,+∞] be the functional given by

I(p)(µ) :=


− inf

h

∑
j∈Sp

ωj
L(p)h

h
if µ =

∑
j∈Sp

ωj π
(p)
j and ω ∈ P(Sp) ,

+∞ otherwise .

(3.13)

In this formula, the infimum is carried over all functions h : Sp → (0,∞). We prove
in (8.12) that

I(p+1)(µ) < ∞ if and only if I(p)(µ) = 0 .

By (3.12), this assertion holds also for p = 0.
Recall the definition of Γ-convergence. We refer to [16] for an overview on this

subject. Fix a Polish space X and a sequence (Un : n ∈ N) of functionals on X ,
Un : X → [0,+∞]. The sequence Un Γ-converges to the functional U : X → [0,+∞]
if and only if the two following conditions are met:

(i) Γ-liminf. The functional U is a Γ-liminf for the sequence Un: For each
x ∈ X and each sequence xn → x, we have that lim infn Un(xn) ≥ U(x).

(ii) Γ-limsup. The functional U is a Γ-limsup for the sequence Un: For each
x ∈ X there exists a sequence xn → x such that lim supn Un(xn) ≤ U(x).

Theorem 3.3. The functional In Γ-converges to I(0). Moreover, for each 1 ≤ p ≤
q, the functional θ

(p)
n In Γ-converges to I(p).

This theorem provides an expansion of the large deviations rate function In
which can be written as

In = I(0) +

q∑
p=1

1

θ
(p)
n

I(p) . (3.14)
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Therefore, the rate function In encodes all the characteristics of the metastable

behavior of the chain X
(n)
t . The time-scales θ

(p)
n appear as the weights of the

expansion, and the meta-stable states π
(p)
j , j ∈ Sp, generate the space where the

rate functional I(p)(µ) is finite. Indeed, by (8.9), I(p)(µ) is finite if and only if µ is

a convex combination of the measures π
(p)
j , j ∈ Sp.

Next result is a simple consequence of the level two large deviations principle
and the Γ-convergence stated in Theorem 3.3 (cf. Corollary 4.3 in [47]).

Corollary 3.4. Fix 0 ≤ p ≤ q and recall that θ
(0)
n = 1. For every x ∈ V , closed

subset F and open subset G of P(V ),

lim sup
n→∞

lim sup
t→∞

θ
(p)
n

t
log Pnx

[ 1

t

∫ t

0

δXn
s
ds ∈ F

]
≤ − inf

µ∈F
I(p)(µ) ,

lim inf
n→∞

lim inf
t→∞

θ
(p)
n

t
log Pnx

[ 1

t

∫ t

0

δXn
s
ds ∈ G

]
≥ − inf

µ∈G
I(p)(µ) .

Theorem 3.3 extends to the context of continuous-time Markov chains evolving
on finite state-spaces a result by Di Gesù and Mariani [23] proved for reversible
diffusions with a single valley at each different depth.

Remark 3.5. Theorem 3.3 should hold for nonreversible dynamics. Reversibility
is assumed here only to compute the Γ-limsup through formula (3.10). It should
also be possible to obtain a metastable Γ-expansion for the level 2.5 large deviations
rate function derived in [8].

Remark 3.6. The proof of Theorems 3.1 and 3.3 do not require the full strength
of assumption (2.4), but only the ability to compute some capacities, the limit of
the ratio of some measures and of mean jump rates. Stating, however, the minimal
conditions would require much work.

4. The first time-scale

In this section, we prove conditions (a) and (b) of Theorem 3.1 for p = 1.
Throughout the article, we adopt the following notation, O(ε) represents a term
whose absolute value is bounded by C0 ε for some constant C0 independent of n
and ε. Similarly, on(1) represents a term which vanishes as n→∞.

Recall that we denote by (Xt : t ≥ 0) the V -valued continuous-time Markov
chain with jump rates R0(x, y), and by Qx the probability measure on D(R+, V )
induced by the chain Xt with jump rates R0 starting from x. For x, y ∈ S, let

ω(x, y) := lim
t→∞

Qx
[
Xt = y

]
. (4.1)

Clearly,

ω(x, y) = 0 , y ∈ ∆ and ω(x, y) = a(0)(x, j)π]j(y) , y ∈ Vj , (4.2)

where a(0)(x, j) has been introduced in (3.3).
Denote by Wj , j ∈ S, the set of points in V which may end in the set Vj :

Wj :=
{
x ∈ V : a(0)(x, j) > 0

}
. (4.3)

Note that V = ∪jWj . Let Bj be the set of points attracted to Vj :

Bj :=
{
x ∈ V : a(0)(x, j) = 1

}
.



METASTABLE Γ-EXPANSION OF LARGE DEVIATIONS RATE FUNCTIONS 15

Clearly, Vj ⊂ Bj ⊂Wj , and Bj = Wj \(∪k 6=jWk) = V \(∪k 6=jWk). In other words,

Bcj = ∪k 6=jWk. Moreover, as a(0)(x, j) = 0 for x ∈ ∪k 6=jBk and a(0)(x, j) = 1 for
x ∈ Bj ,

ω(x, y) = 0 , ω(x, z) = π]j(z) , x , z ∈ Vj , y ∈ Vk , k 6= j . (4.4)

The first result describes the asymptotic behavior of p
(n)
t (x, y) in the slowest

time-scale, t = O(1).

Lemma 4.1. For every ε > 0, there exists Tε such that

lim sup
n→∞

∣∣Pnx [XTε = y ] − ω(x, y)
∣∣ ≤ ε for all x , y ∈ V ,

where ω(x, y) has been introduced in (4.1).

Proof. Fix ε > 0. By the ergodic theorem, there exists Tε <∞ such that∣∣Qx[XTε
= y ] − ω(x, y)

∣∣ ≤ ε (4.5)

for all x, y ∈ V .

Couple X
(n)
t and Xt making them jump together as much as possible. Denote

by P(n)
x the measure on D(R+, V × V ) induced by the basic coupling starting from

(x, x). By (2.1), for all T > 0,

lim
n→∞

P(n)
z

[
Xt = X

(n)
t , 0 ≤ t ≤ T

]
= 1 . (4.6)

The assertion of the lemma follows from (4.5) and (4.6) with T = Tε. �

Recall the definition of the sets Vj , 1 ≤ j ≤ n, introduced in (2.2). The chain Xt
has only one closed irreducible class if, and only if, n = 1.

Corollary 4.2. Assume that n = 1, Then, limn→∞ p
(n)
βn

(x, y) = π](y) for all x,
y ∈ V , βn � 1.

Proof. Fix ε > 0, and let Tε be the constant given by Lemma 4.1. By the Markov
property,

p
(n)
βn

(x, y) =
∑
z∈V

p
(n)
βn−Tε

(x, z) p
(n)
Tε

(z, y) .

By Lemma 4.1 and (4.2), since a(0)(y, 1) = 1 for all y ∈ V , the right-hand side is
equal to∑

z∈V
p

(n)
βn−Tε

(x, z)π](y) + O(ε) + on(1) = π](y) + O(ε) + on(1) ,

which completes the proof of the corollary. �

Corollary 4.2 shows that the asymptotic behavior of the transition probability

p
(n)
t is trivial if n = 1, that is if the Markov chain Xt has a unique closed irreducible

class. Assume that n ≥ 2.
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The time-scale θ
(1)
n . Recall the definition of n1, S1, and the sets V

(1)
j , j ∈ S1, ∆1,

introduced just above (2.5). Let θn = θ
(1)
n be given by (2.7) with p = 1.

Recall from [43, Section 2.3] the definition of the sequence αn. In the present
context, by (2.1), the sequence αn converges to a positive real number. By Asser-
tions 7.B and equation (7.4) in [43], θn � 1. The next result is the first assertion
of Theorem 3.1.

Proposition 4.3. Let (βn : n ≥ 1) be a sequence such that 1 ≺ βn ≺ θn. Then,
(3.6) holds for all x, y ∈ V .

Recall that we call the sets Vj wells. A time scale βn ≺ θn is not long enough
to allow the process to jump from a well to another. This is the content of the
next two results. Lemma 4.4 states that starting from a well Vj the process does

not visit another well (the set V̆j introduced in (2.7)) in a time-scale βn such that
βn ≺ θn. Corollary 4.5 extends this result asserting that the points that might end
up in another well (the set ∪k 6=jWk) are also not visited in this time-scale.

Lemma 4.4. Let (βn : n ≥ 1) be a sequence such that βn ≺ θn. Then, for all
j ∈ S1, x ∈ Vj,

lim
n→∞

Pnx
[
H

V̆j
< βn

]
= 0 .

Proof. Fix j ∈ S, x ∈ Vj . By Lemma A.4 and (2.16), the probability appearing in

the statement of the lemma is bounded by C0 βn capn({x} , V̆j)/πn(Vj) for some
finite constant C0, independent of n and whose value may change from line to line.

By equation (B2) in [32], this expression is bounded by C0 βn capn(Vj , V̆j)/πn(Vj).
By the definition (2.7) of θn, this expression is less than or equal to C0 βn / θn. This
concludes the proof of the lemma. �

Corollary 4.5. Let (βn : n ≥ 1) be an increasing sequence such that βn ≺ θn.
Then, for all j ∈ S, x ∈ Vj,

lim
n→∞

Pnx
[
HBc

j
< βn

]
= 0 .

Proof. Assume first that βn � 1. Fix j ∈ S and x ∈ Vj and keep in mind that
Bcj = ∪k 6=jWk.

We proceed by contradiction. Suppose the assertion does not hold. In this case,
there exists δ > 0, k 6= j, z ∈ Wk and a subsequence n′, still denoted by n, such
that Pnx [Hz < βn ] > δ for all n. By the strong Markov property and this bound,

Pnx
[
H

V̆j
< 2βn

]
≥ Pnx [Hz < βn ]Pnz

[
H

V̆j
< βn

]
≥ δPnz

[
H

V̆j
< βn

]
.

Since z ∈Wk, there exists δ′ > 0 and T0 <∞, such that Qz
[
HVk

< T0

]
> δ′. By

(4.6) this estimate extends to X
(n)
t : Pnz

[
HVk

< T0

]
> δ′/2 for all n sufficiently

large.
Combining the previous estimates yields that Pnx [H

V̆j
< 2βn ] ≥ δ δ′/2 for

all n sufficiently large because βn → ∞. This result contradicts the assertion of
Lemma 4.4 and completes the proof of the corollary in the case βn � 1.

If the sequence βn is bounded, the result follows from the coupling (4.6) because
Qx[HWk

<∞ ] ≤ Qx[HVc
j
<∞ ] = 0 for all x ∈ Vj , k 6= j. �
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Proof of Proposition 4.3. Fix x, y ∈ V , ε > 0, and recall the definition of ω(x, y)
introduced in (4.1). Since V represents the set of recurrent points of the chain Xt,
there exists Tε > 0 such that

Qw
[
XT ∈ V

]
≥ 1 − ε ,

∣∣Qw[XT = z
]
− ω(w, z)

∣∣ ≤ ε (4.7)

for all w, z ∈ V , T ≥ Tε.
Assume first that y ∈ ∆. By the Markov property,

Pnx
[
Xβn

= y
]

=
∑
z∈V

Pnx
[
Xβn−Tε

= z
]
Pnz
[
XTε

= y
]
.

By (4.6), (4.7) and (4.2), the right-hand side is bounded by on(1) + ε, which proves
(3.6) for y ∈ ∆.

Assume that y ∈ Vk for some k ∈ S1. By the Markov property,

Pnx
[
Xβn

= y
]

=
∑
z∈V

Pnx
[
XTε

= z
]
Pnz
[
Xβn−Tε

= y
]
.

By (4.6), (4.7) and (4.2), the right-hand side is equal to∑
j∈S

∑
z∈Vj

a(0)(x, j)π]j(z)P
n
z

[
Xβn−Tε = y

]
+ on(1) + O(ε) .

Since βn ≺ θn, by Corollary 4.5, we may add inside the probability the event
{HBc

j
≥ βn}. The previous sum is thus equal to∑

j∈S

∑
z∈Vj

a(0)(x, j)π]j(z)P
n
z

[
Xβn−Tε

= y , HBc
j
≥ βn

]
+ on(1) + O(ε) .

As y belongs to Vk and Vk ∩Bj = ∅ if j 6= k, this sum is equal to∑
z∈Vk

a(0)(x, k)π]k(z)Pnz
[
Xβn−Tε

= y , HBc
k
≥ βn

]
+ on(1) + O(ε) .

In view of the presence of the event {HBc
k
≥ βn}, the previous probability is equal

to ∑
w∈Bk

Pnz
[
Xβn−Tε = y , Xβn−2Tε = w , HBc

k
≥ βn

]
By Corollary 4.5, we may remove the event {HBc

k
≥ βn} at a cost on(1) and apply

the Markov property to conclude that the previous sum is equal to∑
w∈Bk

Pnz
[
Xβn−2Tε = w

]
Pnw
[
XTε = y

]
+ on(1) .

By (4.6), (4.7) and (4.2), this expression is equal to∑
w∈Bk

Pnz
[
Xβn−2Tε

= w
]
a(0)(w, k)π]k(y) + on(1) + O(ε) .

Since w belongs to Bk, a(0)(w, k) = 1 and the previous expression is equal to

π]k(y)Pnz
[
Xβn−2Tε

∈ Bk
]

+ on(1) + O(ε) .

Since z belongs to Vk and {Xβn−2Tε 6∈ Bk} ⊂ {HBc
k
≤ βn}, by Corollary 4.5, the

expression in the previous displayed equation is equal to π]k(y) + on(1) + O(ε).
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Combining the previous estimates yields that

Pnx
[
Xβn

= y
]

=
∑
z∈Vk

a(0)(x, k)π]k(z)π]k(y) + on(1) + O(ε)

= a(0)(x, k)π]k(y) + on(1) + O(ε) ,

as claimed. �

The time-scale t θn. We turn to the proof of Theorem 3.1.(b) for p = 1.

Proposition 4.6. Assertion (3.7) holds for p = 1 and all t > 0, x ∈ V .

The proof of this result relies on the following lemma.

Lemma 4.7. Recall the definition of the set ∆ introduced in (2.2). Then,

lim
δ→0

lim sup
n→∞

max
j∈S

max
x∈Vj

sup
2δ≤s≤3δ

Pnx
[
Xsθn ∈ ∆

]
= 0 .

Proof. Fix ε > 0 and let Tε be the constant given by Lemma 4.1. By the Markov
property, the probability appearing in the statement of the lemma is bounded by

max
y∈V

Pny
[
XTε

∈ ∆
]

By (4.2) and Lemma 4.1, this expression is bounded by ε+ on(1), which proves the
lemma. �

By [35, Proposition 2.1], [43, Theorem 2.7] and Lemma 4.7, for every t > 0, j,
k ∈ S1, x ∈ Vj ,

lim
n→∞

Pnx
[
Xtθn ∈ Vk

]
= p

(1)
t (j, k) , (4.8)

where the transition probability p
(1)
t has been introduced in (2.11).

Proof of Proposition 4.6. Suppose that y ∈ ∆ and fix t > 0, ε > 0. In this case, by
the Markov property

Pnx
[
Xtθn = y

]
=
∑
z∈V

Pnx
[
Xtθn−Tε = z

]
Pnz
[
XTε = y

]
,

where Tε is given by Lemma 4.1. By this lemma, the second probability on the
right hand side is bounded by ω(z, y) + ε+ on(1). By (4.2), as y ∈ ∆, ω(z, y) = 0
so that

lim
n→∞

Pnx
[
Xtθn = y

]
= 0 ,

as claimed.
Suppose that y ∈ Vm for some m ∈ S1 and fix t > 0, ε > 0. By the Markov

property

Pnx
[
Xtθn = y

]
=

∑
z,z′∈V

Pnx
[
XTε

= z
]
Pnz
[
Xtθn−2Tε

= z′
]
Pnz′
[
XTε

= y
]
,

where Tε is given by Lemma 4.1. By this lemma and (4.2), which asserts that
ω(x′, y′) = 0 if y′ ∈ ∆, this expression is equal to∑

z′∈V

∑
j∈S1

∑
z∈Vj

ω(x, z)Pnz
[
Xtθn−2Tε

= z′
]
ω(z′, y) + ε + on(1) .
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The first part of the proof permits to restrict the first sum to z′ ∈ V. Since y ∈ Vm,
by (4.4), we may further restrict the sum to z′ ∈ Vm, and then replace ω(z′, y) by

π
(1)
m (y). Hence the previous sum is equal to

π(1)
m (y)

∑
j∈S1

∑
z∈Vj

ω(x, z)Pnz
[
Xtθn−2Tε

∈ Vm
]

+ ε + on(1) ,

where we summed over z′ ∈ Vm. By (4.8), as n→∞, this expression converges to

π(1)
m (y)

∑
j∈S1

∑
z∈Vj

ω(x, z) p
(1)
t (j,m) + ε =

∑
j∈S1

a(0)(x, j) p
(1)
t (j,m)π(1)

m (y) + ε ,

as claimed. �

5. Longer time-scales

In this section, we complete the proof of Theorem 3.1. We first derive some
properties of the weights a(p) needed in the argument. Recall that q represents the
number of time-scales or steps in the construction of the rooted tree in Section 2.

Moreover, the chain X(q)
t has only one closed irreducible class.

Next result states that a point in the closed irreducible class V
(p+1)
` is not ab-

sorbed at V
(p+1)
m for m 6= `.

Lemma 5.1. For all 0 ≤ p < q, ` ∈ Sp+1, x ∈ V
(p+1)
` ,

a(p)(x,m) = 0 for all m ∈ Sp+1 \ {`} . (5.1)

Proof. The proof is by induction in p. For p = 0, by definition (3.3) of a(0), for all
` ∈ S1, x ∈ V`, m ∈ S1 \ {`},

a(0)(x,m) = lim
t→∞

Qx
[
Xt ∈ Vm

]
= 0

because the sets Vk are the closed irreducible classes of the chain Xt.
Assume that (5.1) holds for 0 ≤ p ≤ r − 1. Fix ` ∈ Sr+1, x ∈ V

(r+1)
` , m ∈

Sr+1 \ {`}. By definition of a(r)(x,m),

a(r)(x,m) :=
∑
j∈Sr

a(r−1)(x, j)A(r)(j,m) .

We may restrict the sum to j ∈ R
(r)
m . Indeed, since Sr \ R(r)

m = ∪k∈Sr+1\{m}R
(r)
k

and since the sets R
(r)
k , k ∈ Sr+1, are the closed irreducible classes of the chain

X(r)
t , A(r)(j,m) = 0 for j ∈ Sr \R(r)

m . Hence,

a(r)(x,m) :=
∑

j∈R(r)
m

a(r−1)(x, j)A(r)(j,m) .

On the other hand, as x ∈ V
(r+1)
` = ∪

i∈R(r)
`

V
(r)
i and R

(r)
` ∩ R

(r)
m = ∅ because

` 6= m, x belongs to some V
(r)
i with i 6∈ R

(r)
m . Thus, by the induction assumption

a(r−1)(x, j) = 0 for all j ∈ R
(r)
m , which yields that a(r)(x,m) = 0, as claimed. �

The previous result is stated for p < q because X(q)
t has only one irreducible class

which makes Sq+1 a singleton.
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It has been noted, just before the statement of Theorem 3.1, that a(p)(x, · ) is a
probability measure on Sp+1 for all x ∈ V . Therefore, by the previous lemma, for

all 1 ≤ p < q, ` ∈ Sp+1, x ∈ V
(p+1)
` ,

a(p)(x, `) = 1 so that Πp(x, · ) = π
(p+1)
` ( · ) , (5.2)

where Πp(x, · ) has been introduced in (3.6). In particular, under these conditions
on ` and x,

Πp(x, y) = 0 (5.3)

for all y ∈ V
(p+1)
m , m ∈ Sp+1 \ {`}.

This identity can be extended. Since the support of the measure π
(p+1)
m ( · ) is the

set V
(p+1)
m , m ∈ Sp+1, and ∪mV

(p+1)
m = V(p+1),

Πp(x, y) = 0 for all x ∈ V , y ∈
(
V(p+1)

)c
= ∆p+1 . (5.4)

Induction hypotheses: Assume that we proved for some 1 ≤ p < q that for all
t > 0, x, y ∈ V ,

lim
n→∞

p
(n)

t θ
(p)
n

(x, y) =
∑
k∈Sp

ω
(p)
t (x, k) π

(p)
k (y) , (5.5)

where ω
(p)
t , π

(p)
k are as in the statement of Theorem 3.1. This assertion for p = 1

is the content of Proposition 4.6.

The time scale tθ
(p)
n , as t → ∞. Recall the definition of A(p)(j,m), m ∈ Sp+1,

j ∈ Sp, introduced in (3.4). With this notation, for every j, k ∈ Sp,

lim
t→∞

p
(p)
t (j, k) =

∑
m∈Sp+1

A(p)(j,m) M (p)
m (k) , (5.6)

where, recall, M
(p)
m (·), m ∈ Sp+1, the stationary state of the Markov chain X(p)

t

restricted to R
(p)
m . In particular, limt→∞ p

(p)
t (j, k) = 0 for every k ∈ Tp.

By the induction assumption (5.5), the definition of ω
(p)
t , (5.6) and the fact that

the support of the measure M
(p)
m is the set R

(p)
m , for all x ∈ V ,

lim
t→∞

lim
n→∞

p
(n)

t θ
(p)
n

(x, · ) =
∑
j∈Sp

∑
m∈Sp+1

∑
k∈R(p)

m

a(p−1)(x, j)A(p)(j,m)M (p)
m (k)π

(p)
k ( · ) .

By definition of the measures π
(p+1)
m and by the one of a(p)(x,m), given in (3.5),

this expression is equal to∑
j∈Sp

∑
m∈Sp+1

a(p−1)(x, j)A(p)(j,m)π(p+1)
m ( · ) =

∑
m∈Sp+1

a(p)(x,m)π(p+1)
m ( · ) .

Hence, we proved that for all x ∈ V ,

lim
t→∞

lim
n→∞

p
(n)

t θ
(p)
n

(x, · ) =
∑

m∈Sp+1

a(p)(x,m)π(p+1)
m ( · ) = Πp(x, · ) . (5.7)

The argument above shows that Theorem 3.1.(d) follows from Theorem 3.1.(b).

Assertion (c) of this theorem follows from the fact that p
(p)
t (j, k) converges to δj,k

as t→ 0.
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The time scale θ
(p)
n ≺ βn ≺ θ(p+1)

n . By (5.7) and (5.4),

lim
t→∞

lim
n→∞

max
x∈V

Pnx
[
X
tθ

(p)
n
6∈ V(p+1)

]
= 0 . (5.8)

In particular,

lim
t→∞

lim sup
n→∞

max
x∈V

Pnx
[
H

V̆(p+1) > tθ(p)
n

]
= 0 . (5.9)

Suppose that Sp+1 is a singleton. In other words, that the chain X(p)
t has a

unique closed irreducible class. In this case p = q and θ
(p+1)
n = +∞ for all n ≥ 1.

If Sp+1 is not a singleton, recall from (2.7) the definition of θ
(p+1)
n . As stated in

(2.15), by [43, Assertion 8.B], θ
(p)
n ≺ θ(p+1)

n .

Lemma 5.2. Let (βn : n ≥ 1) be a sequence such that θ
(p)
n ≺ βn ≺ θ

(p+1)
n . Then,

for all m ∈ Sp+1,

lim
n→∞

max
x∈V(p+1)

m

Pnx
[
H

V̆
(p+1)
m

< βn
]

= 0 ,

where V̆
(p+1)
m has been introduced in (2.7).

Proof. Fix m ∈ Sp+1, x ∈ V
(p+1)
m . By Lemma A.4 and (2.16), the probability

appearing above is bounded by C0 βn capn({x} , V̆(p+1)
m )/πn(V

(p+1)
m ) for some finite

constant C0 independent of n. By equation (B2) in [32], this expression is bounded

by C0 βn capn(V
(p+1)
m , V̆

(p+1)
m )/πn(V

(p+1)
m ). By the definition (2.7) of θ

(p+1)
n , this

expression is less than or equal to C0 βn / θ
(p+1)
n . This concludes the proof of the

lemma. �

Let ∆p+1,m, m ∈ Sp+1, be the set of points in ∆p+1 which may be absorbed by

a set V
(p+1)
` , ` 6= m, in the time-scale θ

(p)
n :

∆p+1,m :=
{
x ∈ ∆p+1 :

∑
`∈Sp+1\{m}

a(p)(x, `) > 0
}
.

Corollary 5.3. Let (βn : n ≥ 1) be a sequence such that θ
(p)
n ≺ βn ≺ θ(p+1)

n . Then,
for all m ∈ Sp+1,

lim
n→∞

max
x∈V(p+1)

m

Pnx
[
H∆p+1,m < βn

]
= 0 .

Proof. Suppose the assertion is not true. Then, there exists δ > 0, x ∈ V
(p+1)
m and

a subsequence n′, still denoted by n, such that

Pnx
[
H∆p+1,m

< βn
]
≥ δ

for all n sufficiently large.
Fix t > 0 to be chosen later. Denote by ϑs : D(R+, V )→ D(R+, V ), s ≥ 0, the

semigroup of translations of a trajectory: (ϑsx)(r) = x(r+ s), r ≥ 0. By the strong
Markov property,

Pnx
[
H

V̆
(p+1)
m

< βn + t θ(p)
n

]
≥ Pnx

[
H∆p+1,m < βn , HV̆

(p+1)
m

◦ ϑH∆p+1,m
< t θ(p)

n

]
≥ Pnx

[
H∆p+1,m

< βn
]

min
z∈∆p+1,m

Pnz
[
H

V̆
(p+1)
m

< t θ(p)
n

]
≥ Pnx

[
H∆p+1,m

< βn
]

min
z∈∆p+1,m

Pnz
[
X
t θ

(p)
n
∈ V̆(p+1)

m

]
.
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By the first part of the proof, the first term is bounded below by δ for n sufficiently
large. By Theorem 3.1.(d), proved in the previous subsection for p, for each z ∈
∆p+1,m, the second probability converges, as n→∞ and then t→∞, to∑

`∈Sp+1\{m}

a(p)(z, `) .

By definition of ∆p+1,m, this term is strictly positive for each z ∈ ∆p+1,m. There-
fore, there exist δ′ > 0 and t0 <∞ such that

lim inf
n→∞

min
z∈∆p+1,m

Pnz
[
X
t0 θ

(p)
n
∈ V̆(p+1)

m

]
≥ δ′ .

Putting together the previous estimates yields that

lim inf
n→∞

Pnx
[
H

V̆
(p+1)
m

< βn + t0 θ
(p)
n

]
> 0 ,

in contradiction with the statement of Lemma 5.2. This completes the proof of the
corollary. �

For m ∈ Sp+1, let

U(p+1)
m :=

{
x ∈ V : a(p)(x,m) = 1

}
.

By (5.2) and the definition of the set ∆p+1,m, introduced just before the statement

of Corollary 5.3, the set U
(p+1)
m is equal to V

(p+1)
m ∪ [ ∆p+1 \ ∆p+1,m ]. Thus,

(U
(p+1)
m )c = V̆

(p+1)
m ∪∆p+1,m.

Proposition 5.4. Let θ
(p)
n ≺ βn ≺ θ(p+1)

n . Then, for all x ∈ V ,

lim
n→∞

p
(n)
βn

(x, · ) = Πp(x, · ) ,

where Πp(x, · ) has been introduced in (3.6).

Proof. Fix ε > 0. By (5.7), there exists tε such that∣∣∣ lim
n→∞

p
(n)

t θ
(p)
n

(x, y) − Πp(x, y)
∣∣∣ < ε (5.10)

for all x, y ∈ V , t > tε.
Fix t > tε. By the Markov property,

p
(n)
βn

(x, y) =
∑
z∈V

p
(n)

t θ
(p)
n

(x, z) p
(n)

βn−t θ(p)
n

(z, y) .

By (5.10) and (5.4), this expression is equal to∑
z∈V(p+1)

Πp(x, z) P
n
z

[
X
βn−t θ(p)

n
= y

]
+ on(1) + O(ε) . (5.11)

Fix s > 0, and rewrite the sum appearing in (5.11) as∑
m∈Sp+1

∑
z∈V(p+1)

m

∑
w∈V

Πp(x, z) P
n
z

[
X
βn−t θ(p)

n
= y , X

βn−(t+s) θ
(p)
n

= w
]
.

We have shown just above the statement of the proposition that (U
(p+1)
m )c =

V̆
(p+1)
m ∪ ∆p+1,m. Hence, by Lemma 5.2 and Corollary 5.3, we may restrict the



METASTABLE Γ-EXPANSION OF LARGE DEVIATIONS RATE FUNCTIONS 23

third sum to w ∈ U
(p+1)
m by paying a price of order on(1). Apply the Markov

property to rewrite the resulting expression as∑
m∈Sp+1

∑
z∈V(p+1)

m

∑
w∈U(p+1)

m

Πp(x, z) P
n
z

[
X
βn−(t+s) θ

(p)
n

= w
]
Pnw
[
X
s θ

(p)
n

= y
]
.

By (5.7) the last probability converges, as n→∞, and then s→∞, to Πp(w, y).

By definition of Πp and the one of U
(p+1)
m , since w ∈ U

(p+1)
m and a(p)(x, · ) is

a probability measure on Sp+1, Πp(w, y) = π
(p+1)
m (y). This expression does not

depend on w. By Lemma 5.2 and Corollary 5.3, the previous sum is thus equal to∑
m∈Sp+1

∑
z∈V(p+1)

m

Πp(x, z) π
(p+1)
m (y) + on(1) .

By the definition (3.6) of Πp, this expression is equal to∑
`∈Sp+1

a(p)(x, `) π
(p+1)
` (y) ,

as claimed. �

The time scale θ
(p+1)
n . If Sp+1 is a singleton, p = q, θ

(p+1)
n = +∞ for all n and the

proof of Theorem 3.1 ends at the previous step where we considered the time-scale

θ
(p)
n ≺ βn ≺ θ(p+1)

n ≡ +∞.
Assume that Sp+1 is not a singleton. The next result completes the recursive

argument and the proof of Theorem 3.1. It states that the induction hypothesis
(5.5) holds at level p+ 1 if it holds at level p.

Proposition 5.5. For all t > 0, x, y ∈ V ,

lim
n→∞

p
(n)

t θ
(p+1)
n

(x, y) =
∑

m∈Sp+1

ω
(p+1)
t (x,m) π(p+1)

m (y) .

The proof of this result is based on Lemma 5.6 below.

Lemma 5.6. Recall the definition of the set ∆p+1 introduced in (2.13). Then,

lim
δ→0

lim sup
n→∞

max
m∈Sp+1

max
x∈V(p+1)

m

sup
2δ≤s≤3δ

Pnx
[
X
sθ

(p+1)
n

∈ ∆p+1

]
= 0 .

Proof. Fix δ > 0, ε > 0. By (5.8), there exists tε <∞

lim
n→∞

max
x∈V

Pnx
[
X
tθ

(p)
n
6∈ V(p+1)

]
≤ ε (5.12)

for all t ≥ tε. By the Markov property, since θ
(p)
n ≺ θ(p+1)

n , the probability appearing
in the statement of the lemma is bounded by

max
y∈V

Pny
[
X
tεθ

(p)
n
∈ ∆p+1

]
for all x ∈ V , s ∈ [2δ, 3δ]. By (5.12), this expression is bounded by ε+on(1), which
proves the lemma. �

By [35, Proposition 2.1], [43, Theorem 2.7] and Lemma 5.6 for every t > 0, `,

m ∈ Sp+1, x ∈ V
(p+1)
` ,

lim
n→∞

Pnx
[
X
tθ

(p+1)
n

∈ V(p+1)
m

]
= p

(p+1)
t (`,m) , (5.13)
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where, recall, p
(p+1)
t (`,m) is the transition probability of the Sp+1-valued Markov

chain X(p+1)
t .

Proof of Proposition 5.5. Suppose that y ∈ ∆p+1 and fix t > 0, ε > 0. Recall the
definition of tε introduced in (5.12). By the Markov property,

Pnx
[
X
tθ

(p+1)
n

= y
]

=
∑
z∈V

Pnx
[
X
tθ

(p+1)
n −tεθ(p)

n
= z

]
Pnz
[
X
tεθ

(p)
n

= y
]

≤ max
z∈V

Pnz
[
X
tεθ

(p)
n

= y
]
.

By (5.12), this maximum is bounded by ε+ on(1), so that

lim
n→∞

Pnx
[
X
tθ

(p+1)
n

= y
]

= 0 ,

as claimed.
Suppose that y ∈ V

(p+1)
m for some m ∈ Sp+1 and fix t > 0, ε > 0. Recall the

definition of Πp, introduced in (3.6). Choose tε large enough for

max
z,z′∈V

∣∣∣ lim
n→∞

p
(n)

t θ
(p)
n

(z, z′) − Πp(z, z
′)
∣∣∣ ≤ ε (5.14)

for all t ≥ tε.
By the Markov property, as θ

(p)
n ≺ θ(p+1)

n ,

Pnx
[
X
tθ

(p+1)
n

= y
]

=
∑

z,z′∈V
Pnx
[
X
tε θ

(p)
n

= z
]
Pnz
[
X
tθ

(p+1)
n −2tε θ

(p)
n

= z′
]
Pnz′
[
X
tε θ

(p)
n

= y
]
.

By (5.14) and (5.4), this expression is equal to∑
z′∈V

∑
`∈Sp+1

∑
z∈V(p+1)

`

Πp(x, z)P
n
z

[
X
tθ

(p+1)
n −2tε θ

(p)
n

= z′
]

Πp(z
′, y) + O(ε) + on(1) .

The first part of the proof permits to restrict the first sum to z′ ∈ V(p+1). Since

y ∈ V
(p+1)
m , by (5.3) we may further restrict the sum to z′ ∈ V

(p+1)
m . At this point,

by (5.2), we may replace Πp(z
′, y) by π

(p+1)
m (y). Hence, the previous sum is equal

to

π(p+1)
m (y)

∑
`∈Sp+1

∑
z∈V(p+1)

`

Πp(x, z)P
n
z

[
X
tθ

(p+1)
n −2tε θ

(p)
n
∈ V(p+1)

m

]
+ O(ε) + on(1) ,

where we summed over z′ ∈ V
(p+1)
m . By (5.13), as n→∞, this expression converges

to ∑
`∈Sp+1

∑
z∈V(p+1)

`

Πp(x, z) p
(p+1)
t (`,m)π(p+1)

m (y) + O(ε) .

By the definition (3.6) of Πp and since the measure π
(p+1)
k ( · ), k ∈ Sp+1, is supported

on V
(p+1)
k , the previous expression is equal to∑

`∈Sp+1

a(p)(x, `) p
(p+1)
t (`,m)π(p+1)

m (y) + O(ε) ,

as claimed. �
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Proof of (3.8). Recall that θ
(q+1)
n ≡ +∞, and fix a sequence βn such that θ

(q)
n ≺

βn ≺ θ(q+1)
n . Since πn is the stationary state,

πn(∆q+1) =
∑
x∈V

πn(x)Pnx
[
Xβn

∈ ∆q+1

]
≤ max

x∈V
Pnx
[
Xβn

∈ ∆q+1

]
.

By the tree construction, Sq+1 is a singleton and there is only one measure at

step q + 1, the measure π
(q+1)
1 which is concentrated on V

(q+1)
1 = V(q+1). Since

π
(q+1)
1 (∆q+1) = 0, by (3.6), and the previous displayed equation,

lim sup
n→∞

πn(∆q+1) ≤ π
(q+1)
1 (∆q+1) = 0 .

It follows from the previous estimate that limn→∞ πn(V(q+1)) = 1. Hence, by
(2.16), for all x ∈ V(q+1),

lim
n→∞

πn(x) exists and belongs to (0, 1] .

6. Proof of Proposition 3.2

The proof is divided in several lemmata. We start with the asymptotic behavior
of the stationary states πn.

Lemma 6.1. For all j ∈ S1, x ∈ Vj,

lim
n→∞

πn(x)

πn(Vj)
= π](x) > 0 .

Proof. Fix j ∈ S1. By (2.16), the limit πn(x)/πn(Vj) exists for all x ∈ Vj and is
strictly positive. It remains to show that it is equal to π](x). Denote the limit by
m(x). Since πn is a stationary state, for all x ∈ Vj ,∑

y∈V
πn(x)Rn(x, y) =

∑
y∈V

πn(y)Rn(y, x) ≥
∑
y∈Vj

πn(y)Rn(y, x) .

As Vj is a closed irreducible class for the chain Xt, dividing by πn(Vj) and passing
to the limit yields that∑

y∈Vj

m(x)R0(x, y) ≥
∑
y∈Vj

m(y)R0(y, x) .

Summing over x ∈ Vj shows that this inequality must be an identity for all x ∈ Vj .
Therefore, m is a stationary state for the chain Xt on Vj what implies that m = π],
as claimed. �

Lemma 6.2. Fix 1 ≤ p ≤ q. For all m ∈ Sp+1, j ∈ R
(p)
m ,

lim
n→∞

πn(V
(p)
j )

πn(V
(p+1)
m )

= M (p)
m (j) .

Proof. Fix 1 ≤ p ≤ q and m ∈ Sp+1. Consider the sequence of measures on R
(p)
m

defined by mn(j) = πn(V
(p)
j )/πn(V

(p+1)
m ). By (2.16), it converges to a limiting

measure, denoted by m(j).
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By [1, Proposition 6.3], πn( · )/πn(V(p)) is the stationary state of the chain Y n,pt ,

the trace of X
(n)
t on V(p). Hence, for all j ∈ R

(p)
m , x ∈ V

(p)
j ,∑

y∈V(p)

πn(x)R(p)
n (x, y) =

∑
y∈V(p)

πn(y)R(p)
n (y, x) ≥

∑
k∈R(p)

m

∑
y∈V(p)

k

πn(y)R(p)
n (y, x) .

Sum over all x ∈ V
(p)
j to get that∑

k∈Sp

∑
x∈V(p)

j

πn(x)R(p)
n (x,V

(p)
k ) ≥

∑
k∈R(p)

m

∑
y∈V(p)

k

πn(y)R(p)
n (y,V

(p)
j ) ,

where R
(p)
n (z,V

(p)
` ) =

∑
w∈V(p)

`

R
(p)
n (z, w). Remove on both sides of this inequality

the case k = j. By (2.9), this new expression divided by πn(V
(p+1)
m ) is equal to

πn(V
(p)
j )

πn(V
(p+1)
m )

∑
k∈Sp\{j}

r(p)
n (j, k) ≥

∑
k∈R(p)

m \{j}

πn(V
(p)
k )

πn(V
(p+1)
m )

r(p)
n (k, j) .

By the assumption on the measure mn and by (2.10), as n → ∞, this expression

multiplied by θ
(p)
n on both sides converges to

m(j)
∑

k∈Sp\{j}

r(p)(j, k) ≥
∑

k∈R(p)
m \{j}

m(k) r(p)(k, j) .

Since R
(p)
m is a closed irreducible class for the chain X(p)

t , r(p)(j, k) = 0 for all

k 6∈ R
(p)
m , and the first sum can be restricted to this later set. Summing over j

yields that this inequality must be an identity for all j. Therefore, m is a stationary

state for the Markov chain X(p)
t restricted to R

(p)
m . By ergodicity, m = M

(p)
m , as

claimed. �

Corollary 6.3. Fix 1 ≤ p ≤ q + 1. For all j ∈ Sp, x ∈ V
(p)
j ,

lim
n→∞

πn(x)

πn(V
(p)
j )

= π
(p)
j (x) .

Proof. The proof is performed by induction. Lemma 6.1 covers the case p = 1.
Assume that this corollary has been proven for all 1 ≤ p < p0, where p0 ≤ q + 1.

Fix j ∈ Sp0 and x ∈ V
(p0)
j . By construction of V

(p0)
j , there exists k ∈ Sp0−1 such

that x ∈ V
(p0−1)
k ⊂ V

(p0)
j . We can write

πn(x)

πn(V
(p0)
j )

=
πn(x)

πn(V
(p0−1)
k )

πn(V
(p0−1)
k )

πn(V
(p0)
j )

·

By Lemma 6.2 and the induction assumption, as n→∞, this expression converges
to

π
(p0−1)
k (x)M

(p0−1)
j (k) .

By (3.2), this expression is equal to π
(p0)
j (x) as claimed. �

We turn to the absorbing probabilities. We first consider the case where the
state belongs to the valley.

Lemma 6.4. For all 1 ≤ p ≤ q + 1, j ∈ Sp and x ∈ V
(p)
j , a(p−1)(x, j) = 1.
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Proof. The proof is by induction on p. Fix j ∈ S1 and x ∈ Vj . By (3.3), a(0)(x, j) =
1 because Vj is a closed irreducible class for Xt and x belongs to Vj .

Suppose that the results has been proved for p − 1. This means that if j ∈ Sp
and x ∈ V

(p)
j , then a(p−1)(x, j) = 1. As a(p−1)(x , · ) is a probability measure on Sp,

a(p−1)(x, k) = 0 for all k ∈ Sp \ {j}.
Fix m ∈ Sp+1 and x ∈ V

(p+1)
m . As V

(p+1)
m = ∪

j∈R(p)
m

V
(p)
j , x ∈ V

(p)
j for some

j ∈ R
(p)
m . By (3.5), and since, by the induction hypothesis, a(p−1)(x, k) = δj,k,

a(p)(x,m) =
∑
k∈Sp

a(p−1)(x, k)A(p)(k,m) = A(p)(j,m) .

As j ∈ R
(p)
m and R

(p)
m is a closed irreducible class for X(p)

t , by the definition (3.4) of
A(p), A(p)(j,m) = 1, which completes the proof of the lemma. �

It follows from this lemma and from (3.6) that for all 1 ≤ p ≤ q + 1, j ∈ Sp,
x ∈ V

(p)
j and sequences βn such that θ

(p−1)
n ≺ βn ≺ θ

(p)
n

lim
n→∞

p
(n)
βn

(x, · ) = π
(p)
j ( · ) . (6.1)

Lemma 6.4 provides a formula for a(p−1)(x , · ) when x ∈ V(p). Lemma 6.5
completes the characterisation of a(p−1)(x , · ). The proof of this result relies on the
following bound.

We claim that for all a > 0, 1 ≤ p ≤ q + 1, x 6∈ V(p) and sequence βn such that

θ
(p−1)
n ≺ βn ≺ θ

(p)
n ,

lim
n→∞

max
x∈V

Pnx
[
HV(p) > aβn

]
= 0 . (6.2)

If x ∈ V(p), there is nothing to prove. Fix x 6∈ V(p) and observe that {HV(p) >
aβn} ⊂

∫
[0,aβn]

χ∆p
(Xn

s ) ds ≥ a βn. Hence, by Chebyshev inequality,

Pnx
[
HV(p) > aβn

]
≤ Pnx

[ ∫ aβn

0

χ∆p
(Xn

s ) ds ≥ a βn
]
≤ 1

a

∫ a

0

Enx
[
χ∆p

(Xn
sβn

) ds
]
.

The last term can be written as∑
z∈∆p

1

a

∫ a

0

p
(n)
sβn

(x, z) ds .

For each fixed 0 < s < a the sequence sβn satisfies the hypotheses of Theorem

3.1.(a). Hence, since π
(p)
j (∆p) = 0 for all j ∈ Sp, p(n)

sβn
(x, z)→ 0. Therefore, by the

dominated convergence theorem, the previous expression vanishes, which proves
claim (6.2).

Lemma 6.5. For all 1 ≤ p ≤ q + 1, j ∈ Sp, x ∈ V ,

a(p−1)(x, j) = lim
n→∞

Pnx
[
H

V
(p)
j

< H
V̆

(p)
j

]
.

Proof. Fix 1 ≤ p ≤ q + 1 and j ∈ Sp. If x ∈ V(p), this result follows from Lemma

6.4. Assume that x 6∈ V(p) and fix a sequence βn such that θ
(p−1)
n ≺ βn ≺ θ

(p)
n .

On the one hand, by (3.6),

lim
n→∞

∑
y∈V(p)

j

p
(n)
βn

(x, y) = a(p−1)(x, j) .
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On the other hand,∑
y∈V(p)

j

p
(n)
βn

(x, y) = Pnx
[
Xβn

∈ V
(p)
j

]
=
∑
k∈Sp

Pnx
[
H

V
(p)
k

= HV(p) , Xβn
∈ V

(p)
j

]
.

Fix k ∈ Sp and 0 < ε < 1. By (6.2), the previous probability for the fixed k is
equal to

Pnx
[
HV(p) < εβn , HV

(p)
k

= HV(p) , Xβn
∈ V

(p)
j

]
+ on(1) .

By the strong Markov property at HV(p) , the previous probability is equal to

Enx

[
HV(p) < εβn , HV

(p)
k

= HV(p) , PnX(H
V(p) )

[
Xβn−HV(p)

∈ V
(p)
j

] ]
.

In this formula, one computes the probability PnX(H
V(p) )[Xβn−t ∈ V

(p)
j ] and then

replace t by HV(p) . After the proof of this lemma, we show that for all z ∈ V

sup
t≤εβn

Pnz
[
Xβn−t ∈ V

(p)
j

]
≤ max

y∈V(p)
j

Pny
[
H

V̆
(p)
j
< εβn

]
+ Pnz

[
Xβn

∈ V
(p)
j ∪∆p

]
.

(6.3)
By (6.4),

lim
n→∞

max
y∈V(p)

j

Pny
[
H

V̆
(p)
j
< εβn

]
= 0 .

Therefore, up to this point, we proved that

a(p−1)(x, j) ≤∑
k∈Sp

lim inf
n→∞

Enx

[
HV(p) < εβn , HV

(p)
k

= HV(p) , PnX(H
V(p) )

[
Xβn ∈ V

(p)
j ∪∆p

] ]
.

By (3.6) and Lemma 6.4, if k 6= j the previous expectation vanishes as n→∞. If
k = j by the same reasons, the probability inside the expectation converges to 1 as
n→∞. Hence,

a(p−1)(x, j) ≤ lim inf
n→∞

Pnx
[
HV(p) < εβn , HV

(p)
j

= HV(p)

]
.

Therefore, by (6.2), for all j ∈ Sp,

a(p−1)(x, j) ≤ lim inf
n→∞

Pnx
[
H

V
(p)
j

= HV(p)

]
.

The previous inequality implies that equality holds for all j ∈ Sp. Indeed, assume

that strict inequality holds for some j ∈ Sp. Then, as a(p−1)(x , · ) is a probability
measure on Sp,

1 =
∑
j∈Sp

a(p−1)(x, j) <
∑
j∈Sp

lim inf
n→∞

Pnx
[
H

V
(p)
j

= HV(p)

]
≤ lim inf

n→∞

∑
j∈Sp

Pnx
[
H

V
(p)
j

= HV(p)

]
= 1 ,

which is a contradiction. �
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We turn to the proof of (6.3). Inserting the event {Xβn
∈ V

(p)
j ∪ ∆p} and its

complement inside the probability appearing on the left-hand side of (6.3) yields
that this probability is bounded by

Pnz
[
Xβn−t ∈ V

(p)
j , Xβn 6∈ V

(p)
j ∪∆p

]
+ Pnz

[
Xβn ∈ V

(p)
j ∪∆p

]
≤ max

y∈V(p)
j

Pny
[
Xt 6∈ V

(p)
j ∪∆p

]
+ Pnz

[
Xβn

∈ V
(p)
j ∪∆p

]
,

where we used the Markov property to estimate the first by the second line. As
t ≤ ε βn, this expression is clearly bounded by

max
y∈V(p)

j

Pny
[
H

V̆
(p)
j
< εβn

]
+ Pnz

[
Xβn

∈ V
(p)
j ∪∆p

]
,

as claimed in (6.3).
To complete the proof of Lemma 6.5, it remains to show that for all 1 ≤ p ≤ q,

j ∈ Sp,
lim
a→0

lim sup
n→∞

max
x∈V(p)

j

Pnx
[
H

V̆
(p)
j

< aθ(p)
n

]
= 0 . (6.4)

Fix 1 ≤ p ≤ q, j ∈ Sp, x ∈ V
(p)
j . Recall that Y n,p represents the trace of the

process Xn
t on V(p), and that Φp : V(p) → Sp stands for the projection which sends

x ∈ V
(p)
j to j. By [43, Theorems 2.1 and 2.12], under Pnx , the process Φp(Y

n,p

tθ
(p)
n

)

converges weakly in the Skorohod topology to X(p)
t . In particular,

lim
a→0

lim sup
n→∞

Pnx
[
H

V̆
(p)
j

(Y n,p) < aθ(p)
n

]
= 0 .

In this formula, H
V̆

(p)
j

(Y n,p) stands for the hitting time of V̆
(p)
j for the process Y n,pt .

Since H
V̆

(p)
j

(Y n,p) ≤ H
V̆

(p)
j

, assertion (6.4) follows from this last result.

We complete this section with a consequence of Lemma 6.5. Recall from (2.11)

that Q(p)
k stands for the measure on D(R+, Sp) induced by the process X(p)

t starting
from k ∈ Sp.

Lemma 6.6. For all 2 ≤ p ≤ q, i ∈ Sp−1 and x ∈ V
(p−1)
i ,

a(p−1)(x, j) = Q(p−1)
i

[
H

R
(p)
j

< H
R̆

(p)
j

]
, j ∈ Sp ,

where R̆
(p)
j = ∪k∈Sp\{j}R

(p)
k .

Proof. Recall that Y n,p−1
t represents the trace of X

(n)
t on V(p−1). By [3, Theo-

rem 2.1], under the measure Pnx the process Xn,p−1
t := Φp−1(Y n,p−1

tθ
(p−1)
n

) converges

weakly in the Skorohod topology to the Sp−1-valued process X(p−1)
t introduced

below (2.10).
Clearly, under the measure Pnx ,{

H
V

(p)
j

(Xn) < H
V̆

(p)
j

(Xn)
}

=
{
H

V
(p)
j

(Y n,p−1) < H
V̆

(p)
j

(Y n,p−1)
}
.

This identity asserts that the process X(n) hits the set V
(p)
j before the set V̆

(p)
j if

and only if this happens to the trace process Y n,p−1. By projecting the process
Y n,p−1 with Φp−1, the last event becomes{

H
R

(p)
j

(Xn,p−1) < H
R̆

(p)
j

(Xn,p−1)
}
,
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Therefore, by Lemma 6.5, for 2 ≤ p ≤ q + 1, j ∈ Sp

a(p−1)(x, j) = lim
n→∞

Pnx
[
H

V
(p)
j

< H
V̆

(p)
j

]
= lim

n→∞
Pnx
[
H

R
(p)
j

(Xn,p−1) < H
R̆

(p)
j

(Xn,p−1)
]
.

As Xn,p−1 converges weakly in the Skorohod topology to X(p−1),

lim
n→∞

Pnx
[
H

R
(p)
j

(Xn,p−1) < H
R̆

(p)
j

(Xn,p−1)
]

= Q(p−1)
i

[
H

R
(p)
j

< H
R̆

(p)
j

]
,

as claimed. �

7. Preliminary estimates

In this section, we present some estimates needed in the proof of Theorem 3.3.
We assume throughout it that the process is reversible. We start with some esti-
mates on the stationary state, now assumed to be reversible.

Fix x ∈ ∆. As x is a transient state for the chain Xt, it is eventually absorbed
by a closed irreducible class Vk, k ∈ S1. Fix j ∈ S1 such that a(0)(x, j) > 0, where
a(0)(x, j) has been introduced in (2.3). We claim that

πn(x) ≺ πn(Vj) . (7.1)

Indeed, as a(0)(x, j) > 0, there exists a sequence x = x0, . . . , x` of elements of V
such that R0(xi, xi+1) > 0, xi ∈ ∆, 0 ≤ i < `, x` ∈ Vj . By reversibility,

πn(xi)

πn(xi+1)
=

Rn(xi+1, xi)

Rn(xi, xi+1)
·

Since Rn(xi, xi+1) → R0(xi, xi+1) > 0, by (2.1), πn(xi) � πn(xi+1). As x`−1 ∈ ∆,
x` ∈ Vj , Rn(x`, x`−1)→ R0(x`, x`−1) = 0, so that πn(x`−1) ≺ πn(x`), which proves
claim (7.1).

Next result extends this estimate

Lemma 7.1. Fix 2 ≤ p ≤ q, j ∈ Sp, x ∈ V(p−1) \ V(p). If a(p−1)(x, j) > 0, then,

πn(x) ≺ πn(V
(p)
j ).

Proof. The proof is similar to the one presented to derive (7.1). Suppose that

x ∈ V
(p−1)
i \ V(p) for i ∈ Sp−1. As x does not belong to V(p), i ∈ Tp−1.

As a(p−1)(x, j) > 0, by Lemma 6.6, there exists a sequence i = i0, . . . , i` of

elements of Sp−1 such that r(p−1)(ia, ia+1) > 0, ia ∈ Tp−1, 0 ≤ a < `, i` ∈ R
(p−1)
j .

By reversibility, (2.8) and (2.9),

πn(V
(p−1)
ia

)

πn(V
(p−1)
ia+1

)
=

r
(p−1)
n (ia+1, ia)

r
(p−1)
n (ia, ia+1)

· (7.2)

Since θ
(p−1)
n r

(p−1)
n (ia, ia+1)→ r(p−1)(ia, ia+1) > 0, by (2.10), πn(V

(p−1)
ia

) � πn(V
(p−1)
ia+1

).

As i`−1 ∈ Tp−1, i` ∈ R
(p−1)
j , θ

(p−1)
n r

(p)
n (i`, i`−1) → r(p)(i`, i`−1) = 0, so that

πn(V
(p−1)
i`−1

) ≺ πn(V
(p−1)
i`

). Since i` ∈ R
(p−1)
j , V

(p−1)
i`

⊂ V
(p)
j , and the lemma is

proved. �

Corollary 7.2. Fix 2 ≤ p ≤ q, j ∈ Sp, x ∈ V \ V(p). If a(p−1)(x, j) > 0, then,

πn(x) ≺ πn(V
(p)
j ).
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Proof. Fix x ∈ V \ V(p) and let r(x) be the element r of {1, . . . , p} such that
x ∈ V(r−1) \ V(r), where V(0) = V . The proof is by induction on r(x).

If r(x) = p, the assertion corresponds to the one of Lemma 7.1. Suppose that
the corollary has been proved for y ∈ V(r−1) \ V(r) and all r ∈ {s + 1, . . . , p}, and
fix x ∈ V(s−1) \ V(s). By the strong Markov property at time HV(s) ,

a(p−1)(x, j) = lim
n→∞

Pnx
[
H

V
(p)
j

< H
V̆

(p)
j

]
= lim

n→∞

∑
k∈Ss

∑
z∈V(s)

k

Pnx
[
H

V
(s)
k

= HV(s) , X(HV(s)) = z
]
Pnz
[
H

V
(p)
j

< H
V̆

(p)
j

]
.

The sum can be restricted to elements k ∈ Ss and z ∈ V
(s)
k such that a(s−1)(x, k) >

0, a(p−1)(z, j) > 0. By Lemma 7.1, πn(x) ≺ πn(V
(s)
k ) and by the induction assump-

tion, πn(z) � πn(V
(p)
j ). The previous estimate may not be strict as it might happen

that z belongs to V
(p)
j . By (2.16), πn(V

(s)
k ) ∼ πn(z) so that πn(x) ≺ πn(V

(p)
j ), as

claimed. �

Potential theory. We turn to estimates involving the capacity. Recall the defini-
tion of comparable sequences introduced just before the main hypothesis (2.4). Let
cn : E → R+ be given by cn(x, y) := πn(x)Rn(x, y) and note that cn is symmetric.
It follows from (2.4) (cf. equation (2.5) in [3]) that the sequences cn(x, y) are com-
parable. A self-avoiding path γ from A to B, A, B ⊂ V , A∩B = ∅, is a sequence of
sites (x0, x1, . . . , xm) such that x0 ∈ A, xm ∈ B, xi 6= xj , i 6= j, Rn(xi, xi+1) > 0,
0 ≤ i < m. Denote by ΓA,B the set of self-avoiding paths from A to B and let

cn(A,B) := max
γ∈ΓA,B

cn(γ) , cn(γ) := min
0≤i<m

cn(xi, xi+1) .

Note that there might be more than one optimal path and that cn({x}, {y}) ≥
cn(x, y), with possibly a strict inequality. Next result is [3, Lemma 4.1].

Lemma 7.3. There exists a positive and finite constant C1 such that

C−1
1 ≤ capn(A,B)

cn(A,B)
≤ C1

for all n ≥ and non-empty, disjoint subsets A, B of V .

Fix two disjoint, non-empty subsets A, B of V , and let hA,B be the equilibrium
potential between A and B:

hA,B(x) := Pnx [HA < HB] , x ∈ V .

Denote by Dn(f) the Dirichlet form of a function f : V → R:

Dn(f) := 〈 f , (−Ln)f 〉πn
.

It is well known [32, equation (B.7)], that

capn(A , B) = Dn(hA,B) .

Lemma 7.4. There exists a finite constant C0, independent of n, such that

hA,B(x)2 ≤ C0
capn(A , B)

capn({x} , B)

for all x 6∈ A ∪B.
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Proof. Let h =A,B, and let γ = (x = x0, . . . , xm) be a self-avoiding path between
x and B. Hence Rn(xi, xi+1) > 0, xi 6∈ B, 0 ≤ i < m and xm ∈ B. As xm ∈ B,
h(xm) = 0 so that

h(x)2 = (h(x0)−h(xm) )2 ≤
m−1∑
i=0

cn(xi, xi+1) [h(xi+1−h(xi) ]2
m−1∑
i=0

1

cn(xi, xi+1)
·

As the path is self-avoiding, this quantity is bounded by

|E|Dn(h) max
0≤i<m

1

cn(xi, xi+1)
= |E| capn(A , B) max

0≤i<m

1

cn(xi, xi+1)
·

Minimising over all possible paths γ from x to B yields that

hA,B(x)2 ≤ |E| capn(A , B)
1

maxγ min0≤i<m cn(xi, xi+1)
·

The assertion of the lemma follows from Lemma 7.3. �

Lemma 7.5. Fix 1 ≤ p ≤ q, and suppose that r(p)(j, k) > 0 for some j, k ∈ Sp.
Then,

lim inf
n→∞

θ
(p)
n

πn(V
(p)
j )

capn(V
(p)
j , V

(p)
k ) > 0 .

We do not exclude the possibility that this lim sup is +∞.

Proof. We argue by contradiction, proving that if the lim sup vanishes than r(p)(j, k) =
0, but we first derive a consequence of the positivity of r(p)(j, k).

Fix x ∈ V
(p)
j . The main result in [3] states that under the measure Pnx , the

process Xn,pt = Φp(Y
n,p

tθ
(p)
n

) converges weakly in the Skorohod topology to the Sp-

valued process X(p)
t . Hence, if r(p)(j, k) > 0, for every a > 0,

lim inf
n→∞

Pnx
[
H

V
(p)
k

(Y n,p) < aθ(p)
n

]
≥ Q(p)

j

[
Hk < a

]
> 0 . (7.3)

Denote by Y n,j,kt the trace of Xn
t on V

(p)
j ∪ V

(p)
k . By [1, Theorem 2.6] (for the

process Y n,j,kt and with B = W = V
(p)
j , Bc = V

(p)
k ) and [3, Theorem 7.1] (Condition

T4 ensures that the hypothesis (2.14) of [1, Theorem 2.6] is in force), under Pnx ,
the random variable H

V
(p)
k

(Y n,j,k)/θj,kn converges in distribution to a mean-one

exponencial random variable. In this formula,

θj,kn =
πj,kn (V

(p)
j )

capj,kn (V
(p)
j , V

(p)
k )

, πj,kn (V
(p)
j ) =

πn(V
(p)
j )

πn(V
(p)
j ∪ V

(p)
j )

,

and capj,kn stands for the capacity with respect to the trace process Y n,j,kt . By [1,

Lemma 6.9], capn(V
(p)
j , V

(p)
k ) = πn(V

(p)
j ∪ V

(p)
j ) capj,kn (V

(p)
j , V

(p)
k ), so that

θj,kn =
πn(V

(p)
j )

capn(V
(p)
j , V

(p)
k )
·

Suppose by contradiction that the limit appearing in the statement of the lemma

vanishes, so that θ
(p)
n /θj,kn → 0 and Pnx [H

V
(p)
k

(Y n,j,k) < aθ
(p)
n ] → 0 for all a > 0.
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Hence, as H
V

(p)
k

(Y n,j,k) ≤ H
V

(p)
k

(Y n,p),

lim
n→∞

Pnx
[
H

V
(p)
k

(Y n,p) < aθ(p)
n

]
= 0 .

This contradicts (7.3), and therefore one must have that r(p)(j, k) = 0, completing
the proof of the lemma by contradiction. �

Fix 1 ≤ p ≤ q, j ∈ Tp. Let Aj be the recurrent points of the chain X(p)
t which can

be hit before any other recurrent point when the chain starts from j. More precisely,
` ∈ Aj if, and only if, ` ∈ R(p) and there exists a path j0 = j, j1, . . . , jm = ` such

that r(p)(ja, ja+1) > 0, ja ∈ Tp, 0 ≤ a < m. Let Aj = ∪`∈Aj
V

(p)
` .

Lemma 7.6. Fix 1 ≤ p ≤ q, x ∈ V
(p)
j , j ∈ Tp. Then,

lim inf
n→∞

θ
(p)
n

πn(x)
capn({x} , Aj) > 0 .

Proof. As x ∈ V
(p)
j , j ∈ Tp, there exists a path j0 = j, j1, . . . , jm such that

r(p)(ja, ja+1) > 0, ja ∈ Tp, 0 ≤ a < m, jm ∈ Aj . Moreover, for 0 ≤ a < m,

by (7.2), with p instead of p− 1, πn(V
(p)
ja

) � πn(V
(p)
ja+1

), and, by Lemma 7.5,

lim inf
n→∞

θ
(p)
n

πn(V
(p)
ja

)
capn(V

(p)
ja
, V

(p)
ja+1

) > 0 .

This limit is finite because this capacity is bounded by the one obtained by replacing

V
(p)
ja+1

by V̆
(p)
ja

, and the limit for this later one is finite in view of (2.10).

By the previous displayed equation and Lemma 7.3, the exist a positive constant

c0 and self-avoiding paths γa from V
(p)
ja

to V
(p)
ja+1

such that cn(γa) ≥ c0 πn(V
(p)
ja

)/θ
(p)
n ≥

c0 πn(V
(p)
j )/θ

(p)
n , 0 ≤ a < m.

Denote by ya, 0 ≤ a < m, the starting points of the paths γa, and by xa+1 its

ending point. Let x0 = x. Hence xa, ya belongs to the same well V
(p)
ja

. By Property

(T4) in [3, Theorem 7.1] and Lemma 7.3, there exist self-avoiding paths γ′a from

xa to ya such that cn(γ′a) ≥ c0πn(V
(p)
ja

)/θ
(p−1)
n ≥ c0πn(V

(p)
j )/θ

(p)
n , where the value

of the constant c0 may change from line to line.
By concatenating the paths γa, γ′a, we obtain a path γ from x to Aj such that

cn(γ) ≥ c0πn(V
(p)
j )/θ

(p)
n . If it is not self-avoiding, we may shorten it improving the

lower on cn(γ) and keeping it as a path from x to Aj . At this point, the assertion
of the lemma follows from Lemma 7.3 and (2.16). �

Fix x ∈ ∆. Let Ax be the recurrent points of the chain Xt which can be hit
before any other recurrent point when the chain starts from x. More precisely,
y ∈ Ax if, and only if, y ∈ V and there exists a path x0 = x, x1, . . . , xm = y such
that R0(xa, xa+1) > 0, xa ∈ ∆, 0 ≤ a < m.

Lemma 7.7. Fix x ∈ ∆. Then,

lim inf
n→∞

1

πn(x)
capn({x} , Ax) > 0 .

Proof. By definition of the path from x to Ax, R0(xa, xa+1) > 0 for all 0 ≤ a < m.
Hence πn(xa) � πn(xa+1) and cn(xa, xa+1) = πn(xa)Rn(xa, xa+1) � πn(xa) �
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πn(x). This proves that cn(γ) � πn(x) and completes the proof of the lemma in
view of Lemma 7.3. �

Lemma 7.8. Fix 1 ≤ p ≤ q. Then, for all for x 6∈ V(p), j ∈ Sp,

lim
n→∞

πn(x)

πn(V
(p)
j )

Pnx
[
H

V
(p)
j

= HV(p)

]2
= 0 .

Proof. If πn(x)/πn(V
(p)
j ) → 0, the conclusion is straightforward. If πn(V

(p)
j ) ∼

πn(x), by Corollary 7.2, a(p−1)(x, j) = 0, so that, by Lemma 6.5,

lim
n→∞

Pnx
[
H

V
(p)
j

= HV(p)

]
= 0 ,

and the assertion of the lemma follows.
Assume that πn(V

(p)
j ) ≺ πn(x), and suppose that x ∈ V. Let 1 ≤ r < p such that

x ∈ V
(r)
k for some k ∈ Tr. Such r exists and is smaller than p because x 6∈ V(p).

Recall the definition of the sets Ak, Ak introduced just before Lemma 7.6. Add
the index r to recall that k ∈ Tr and write Ar,k, Ar,k instead of Ak, Ak, respectively.

By definition, Ar,k ⊂ V(r+1).

By the tree construction, since r < p, there exists B ⊂ Sr+1, such that V
(p)
j =

∪i∈BV(r+1)
i . By Lemma 7.1, πn(x) ≺ πn(V

(r)
` ), ` ∈ Ar,k. Thus, as πn(V

(p)
j ) ≺ πn(x),

πn(V
(r+1)
i ) ≺ πn(V

(r)
` ) for all i ∈ B, ` ∈ Ar,k. Hence, since by (2.16), all elements

of the same valley have measures of the same order, Ar,k ∩ V
(p)
j = ∅.

The proof is by induction on r. We first prove it for r = p− 1. In the sequel, we
show that if it holds for all r ∈ {r0 + 1, . . . , p− 1}, then it holds for r0 also. First,
assume that r = p−1 (and keep the index r of Ar,k as r, though r = p−1). In this

case, since Ar,k ⊂ V(p) and Ar,k ∩ V
(p)
j = ∅, we have that Ar,k ⊂ V̆

(p)
j . Therefore,

Pnx
[
H

V
(p)
j
< H

V̆
(p)
j

]
≤ Pnx

[
H

V
(p)
j
< HAr,k

]
.

By Lemma 7.4,

πn(x)

πn(V
(p)
j )

Pnx
[
H

V
(p)
j
< HAr,k

]2 ≤ C0
πn(x)

πn(V
(p)
j )

capn(V
(p)
j , Ar,k)

capn({x} , Ar,k)
(7.4)

for some finite constant C0. By equation (B.2) in [32],

capn(V
(p)
j , Ar,k) ≤ capn(V

(p)
j , V̆

(p)
j ) .

By (2.7), this expression is bounded by C0 πn(V
(p)
j )/θ

(p)
n for some finite constant

C0 whose value may change from line to line.
On the other hand, by Lemma 7.6, as r = p− 1,

capn({x} , Ar,k) ≥ c0 πn(x)/θ(p−1)
n (7.5)

for some positive constant c0. Putting together the two previous estimates, we
obtain that the expression in (7.4) vanishes as n → ∞. This completes the proof
of the lemma in the case r = p− 1.

We turn to the induction argument. Fix r < p and assume that the result holds
for r + 1, . . . , p − 1. Recall the notation introduced at the beginning of the proof
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and write

Pnx
[
H

V
(p)
j

= HV(p)

]
≤ Pnx

[
H

V
(p)
j
< HAr,k

]
+ Pnx

[
HAr,k

< H
V

(p)
j
< H

V̆
(p)
j

]
.

(7.6)
We estimate separately the square of each term on the right-hand side.

The argument for the first term is similar to the one presented for r = p− 1. By
Lemma 7.4, (7.4) holds for some finite constant C0. By equations (B.1) and (B.2)
in [32],

capn(V
(p)
j , Ar,k) ≤

∑
i∈B

capn(V
(r+1)
i , Ar,k) ≤

∑
i∈B

capn(V
(r+1)
i , V̆

(r+1)
i ) .

By (2.7), this expression is bounded by
∑
i∈B πn(V

(r+1)
i )/θ

(r+1)
n = πn(V

(p)
j )/θ

(r+1)
n .

On the other hand, by Lemma 7.6, (7.5) is in force with θ
(r)
n in place of θ

(p−1)
n and

some positive constant c0. Putting together the two previous estimates, we obtain
that the expression in (7.4) vanishes as n→∞.

We turn to the second term in (7.6). By the strong Markov property, it is
bounded by

max
z∈Ar,k

Pnz
[
H

V
(p)
j
< H

V̆
(p)
j

]
.

To complete the proof, it remains to show that for all z ∈ Ar,k,

lim
n→∞

πn(x)

πn(V
(p)
j )

Pnz
[
H

V
(p)
j
< H

V̆
(p)
j

]2
= 0 .

Since πn(x) ≺ πn(z), it is enough to show that

lim
n→∞

πn(z)

πn(V
(p)
j )

Pnz
[
H

V
(p)
j
< H

V̆
(p)
j

]2
= 0 . (7.7)

This follows from the induction hypothesis. Indeed, as z ∈ V(r+1), either z belongs

to V(p) or z belongs to some V
(s)
` , r < s < p, for some ` ∈ Ts. In the first case,

the probability vanishes because z ∈ V̆
(p)
j (as z ∈ V(p) ∩ Ar,k and Ar,k ∩ V

(p)
j = ∅,

z ∈ V̆
(p)
j ). In the second case, (7.7) holds by the induction hypothesis.

It remains to consider the case where πn(V
(p)
j ) ≺ πn(x) and x ∈ ∆. We repeat

the induction argument. Write (7.6) with Ax instead of Ar,k. We estimate the
first term on the right-hand side of (7.6) as before, applying Lemma 7.7 instead of
Lemma 7.6. The second term is also bounded as before. At the end of the argument

one needs to estimate (7.7) for z ∈ V, πn(V
(p)
j ) ≺ πn(z). This has been done in the

first part of the proof. �

8. Proof of Theorem 3.3

We assume in this section that the dynamics is reversible: πn(x)Rn(x, y) =
πn(y)Rn(y, x) for all (x, y) ∈ E.

Elementary properties of πn. The proof of Theorem 3.3 requires some prepara-

tion. We first introduce the transient equivalent classes of the chain X
(n)
t . We

say that y is equivalent to x, y ∼ x if y = x or if there exists a sequence
x = x0, . . . , x` = y, y0 = y, . . . , ym = x such that R0(xi, xi+1) > 0, R0(yj , yj+1) > 0
for all 0 ≤ i < `, 0 ≤ j < m.
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This relation divides the set V into equivalent classes. Clearly the sets Vj are
equivalent classes, but there might be others. Denote by C1, . . . ,Cm the equivalent
classes which have more than one element and are not one of the sets Vj , 1 ≤ j ≤ n.
Note that the sets C1, . . . ,Cm, V1, . . . ,Vn may not exhaust V : the set V may contain
elements which do not belong to one of the Ck’s nor to one of the Vj ’s.

The first assertion extends (2.16) to the sets Ck. We claim that if x, y belong to
the same class Ck, then

lim
n→∞

πn(x)

πn(y)
= a ∈ (0,∞) . (8.1)

Indeed, by definition, there exists a sequence x = x0, . . . , x` = y, such that
R0(xi, xi+1) > 0, for all 0 ≤ i < `. By reversibility,

πn(x)

πn(y)
=

Rn(x`, x`−1) . . . Rn(x1, x0)

Rn(x0, x1) . . . Rn(x`−1, x`)
·

By hypothesis, the denominator converges to a positive real number. On the other
hand, by (2.1), the numerator converges to a non-negative real number. This proves
that πn(x)/πn(y) → a ∈ [0,∞). Inverting the roles of x and y we conclude that
a ∈ (0,∞), as claimed in (8.1).

Fix an oriented edge (x, y) ∈ E whose endpoints belong to the same equivalent

class V
(1)
j or Ck, j ∈ S1, 1 ≤ k ≤ m. We claim that

R0(x, y) > 0 if and only if R0(y, x) > 0 . (8.2)

Indeed, assume that R0(x, y) > 0. Since πn(x)Rn(x, y) = πn(y)Rn(y, x), by (2.16)
and (8.1), limn→∞Rn(y, x) = R0(x, y) limn→∞ πn(x)/πn(y) > 0.

Denote by L(0)
j , L(0)

T,k, j ∈ S1, 1 ≤ k ≤ m, the generators associated to the rates

R0 restricted to the equivalent classes V
(1)
j , Ck, respectively. This means that we

set to 0 all jumps from Ck to its complement. Denote by νk the stationary state of

the Markov chain associated to the generator L(0)
T,k.

We claim that for all 1 ≤ k ≤ m,

lim
n→∞

πn(x)

πn(Ck)
= νk(x) for all x ∈ Ck and that νk is reversible . (8.3)

This result extends Lemma 6.1 to the transient sets Ck. To establish (8.3), let
m ∈ P(Ck) be the limit of the sequence of measures πn( · )/πn(Ck). This limit
exists by (8.1). By reversibility, for all x, y ∈ Ck,

πn(x)

πn(Ck)
Rn(x, y) =

πn(y)

πn(Ck)
Rn(y, x) .

Passing to the limit yields that m satisfies the detailed balance conditions with
respect to R0. Hence m is stationary (actually, reversible), and, by uniqueness,
m = νk. This proves that the sequence of measures πn( · )/πn(Ck) converges to νk
and that νk is reversible.

The same statement yields that π
(1)
j is a reversible measure for the chain Xt

restricted to Vj , j ∈ S1.
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The functionals I(p). The first result of this section provides an alternative for-
mula for the functional I(0) introduced in (3.11). Its proof relies on the construction
of a directed graph without directed loops. The equivalence classes of the chain Xt
form the set of vertices of this directed graph. Denote them by Q1, . . . ,Q`. The
sets Vj and Ck belongs to this set and are vertices of the graph. In other words, for
each j ∈ S1, there exists 1 ≤ a ≤ ` such that Vj = Qa. A similar statement holds
for the sets Ck.

Draw a directed arrow from Qa to Qb if there exists x ∈ Qa and y ∈ Qb such that
R0(x, y) > 0. Denote the set of directed edges by A and the graph by G = (Q,A),
where Q is the set {Q1, . . . ,Q`} of vertices.

A path in the graph G = (Q,A) is a sequence vertices (Qaj : 0 ≤ j ≤ m), such
that there is a directed arrow from Qaj to Qaj+1

for 0 ≤ j < m.
This directed graph has no directed loops because the existence of a directed

loop would contradict the definition of the sets Qa as equivalent classes. (Mind
that undirected loops might exist). On the other hand, since the sets Vj are closed
irreducible classes, these sets are not the tail of a directed edge in the graph.
Finally, fix an equivalent class Qa which is not a set Vj . Hence, the elements of Qa
are transient for the chain Xt. In particular, there is a path (Qa = Qa0

, . . . ,Qam)
such that Qaj is not a closed irreducible class for 0 ≤ j < m, and Qam is one.

Fix an equivalent class Qa which is not a set Vj . Denote by D(Qa) the length
of the longest path from Qa to a closed irreducible class. The function D is well
defined because (a) the set of vertices is finite, (b) there is at least a path, (c) there
are no directed loops in the graph.

Fix a, b such that there is a directed arrow from Qa to Qb. Then,

D(Qa) ≥ D(Qb) + 1 . (8.4)

Indeed, it is enough to consider the longest path from Qb to the irreducible classes.
Qa does not belong to the path because there are no directed loops. By adding Qa
at the beginning of the path from Qb to the irreducible classes, we obtain a path
from Qa to the irreducible classes of length D(Qb) + 1, proving (8.4).

We may lift the function D to V by setting D(x) = D(Qa) for all x ∈ Qa.
Let J(0) : P(V )→ [0,+∞] be the functional defined by

J(0)(µ) =
∑
j∈S1

〈√
fj , (−L(0)

j )
√
fj
〉
π

(1)
j

+

m∑
k=1

〈√
gk , (−L(0)

T,k)
√
gk
〉
νk

+

m∑
k=1

∑
x∈Ck

∑
y 6∈Ck

µ(x)R0(x, y) +
∑

x 6∈C∪V

∑
y∈V

µ(x)R0(x, y) .

(8.5)

In this formula, C = ∪kCk, fj(x) = µ(x)/π
(1)
j (x), gk(z) = µ(z)/νk(z), x ∈ V

(1)
j ,

z ∈ Ck.

Lemma 8.1. For every µ ∈ P(V ), I(0)(µ) = J(0)(µ).

Proof. Fix µ ∈ P(V ). We first prove that J(0)(µ) ≤ I(0)(µ). By definition of the
generator L(0),

I(0)(µ) = sup
u>0
−

∑
(x,y)∈E0

µ(x)

u(x)
R0(x, y) [u(y)− u(x) ] , (8.6)

where the sum is performed over all directed edges of E0.
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Fix ` ≥ 1, and define u` : V → (0,∞) by

u`(x) = `D(x)

√
µ(x) + ε

π
(1)
j (x)

, u`(y) = `D(y)

√
µ(y) + ε

νk(y)
, u`(z) = `D(z) ,

for x ∈ Vj , j ∈ S1, y ∈ Ck, 1 ≤ k ≤ m, and z 6∈ V∪C. Here, ε = 1/` and guarantees

that u is positive. By definition of I(0),

I(0)(µ) ≥ lim sup
`→∞

−
∑

(x,y)∈E0

µ(x)

u`(x)
R0(x, y) [u`(y)− u`(x) ] . (8.7)

We examine the asymptotic behavior of the right-hand of (8.7). Fix (x, y) ∈ E0,
and suppose, first, that x, y ∈ Vj for some j ∈ S1. In this case, the factors `D

cancel, and, as `→∞, the corresponding term in (8.7) converges to

π
(1)
j (x)

√
fj(x)R0(x, y)

[√
fj(y) −

√
fj(x)

]
where fj(x) = µ(x)/π

(1)
j (x). Therefore, the contributions to the right-hand side of

(8.7), of the sum over the edges (x, y) ∈ E0 such that x, y ∈ Vj is〈√
fj , (−L(0)

j )
√
fj
〉
π

(1)
j

.

The same argument yields that the contributions to the right-hand side of (8.7),
of the sum over the edges (x, y) ∈ E0 such that x, y ∈ Ck for some 1 ≤ k ≤ m, is〈√

gk , (−L(0)
T,k)
√
gk
〉
νk
,

where gk(x) = µ(x)/νk(x).
Up to this point we considered all edges (x, y) ∈ E0 whose head and tail belong

to the same equivalent class Vj or Ck. Assume now that this is not the case, and
consider the term

− µ(x)

u`(x)
R0(x, y) [u`(y)− u`(x) ] = µ(x)R0(x, y) − µ(x)

u`(x)
R0(x, y)u`(y) .

By definition, and since the measures π
(1)
j , νk are strictly positive, u`(y) ≤ C0 `

D(y),

µ(x)/u`(x) ≤ C0 `
−D(x) for some finite constant C0 independent of x, y and `. The

absolute value of the second term is thus bounded above by C0 `
D(y)−D(x). Since

there is an edge from x to y, by (8.4), D(x) ≥ D(y) + 1, which proves that the
second term of the previous displayed equation vanishes as `→∞.

Fix an edge (x, y) ∈ E0 whose head and tail do not belong to the same equivalent
class Vj or Ck. Since Vj is a closed irreducible class, x 6∈ V. Suppose that x ∈ Ck.
Hence, y 6∈ Ck because they do not belong to the same class. These are the terms
which respond for the third sum in (8.5). the terms in which x 6∈ C respond for the
fourth sum in (8.5), completing the proof that I(0)(µ) ≥ J(0)(µ).

We turn to the reverse inequality, J(0)(µ) ≥ I(0)(µ). By (8.6),

I(0)(µ) ≤
∑
j∈S1

I
(0)
Vj

(µ) +

m∑
k=1

I
(0)
Ck

(µ) + I
(0)
R (µ) ,

where I
(0)
Vj

(µ) is given by formula (8.6) when the sum is performed over the directed

edges (x, y) whose head and tail belong to Vj . I
(0)
Ck

(µ) is defined similarly, while

I
(0)
R (µ) contains the remaining edges.
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By [56, Theorem 5],

I
(0)
Vj

(µ) =
〈√

fj , (−L(0)
j )
√
f
〉
π

(1)
j

,

where fj(x) = µ(x)/π
(1)
j (x), x ∈ Vj . An analogous result holds for I

(0)
Ck

(µ). These

two terms correspond to the first two terms in (8.5).

We turn to I
(0)
R (µ), which can be written as

I
(0)
R (µ) =

∑
(x,y)

µ(x)R0(x, y) + sup
u>0
−
∑
(x,y)

µ(x)

u(x)
R0(x, y)u(y) .

where the sums are performed over directed edges whose head and tail belong to
different equivalent classes. Since the second term is negative,

I
(0)
R (µ) ≤

∑
(x,y)

µ(x)R0(x, y) .

We have seen in the first part of the proof that this sum can be written as the third
and fourth terms in J(0)(µ), completing the proof of the lemma. �

Note that for each 1 ≤ k ≤ m, there exists at least on x ∈ Ck such that R0(x, y) >

0 for some y 6∈ Ck. On the other hand, as the Markov chain associated to L(0)
T,k is

ergodic,
〈√

g , (−L(0)
T,k)
√
g
〉
νk

= 0 entails that g is constant. Therefore, I(0)(µ) = 0

if and only if there exists a probability measure ω on S1 such that

µ =
∑
j∈S1

ωj π
(1)
j . (8.8)

Fix 1 ≤ p ≤ q, and let J(p) : P(V )→ [0,+∞] be the functional defined as follows.

If µ =
∑
j∈Sp

ωj π
(p)
j for some probability measure ω in Sp, ω ∈ P(Sp),

J(p)(µ) :=
∑

m∈Sp+1

〈√
fm , (−L(p)

m )
√
fm
〉
M

(p)
m

+
∑
j∈Tp

∑
k∈Sp

ωj r
(p)(j, k) . (8.9)

In this formula, L(p)
m stands for the generator associated to Markov chain X(p)

t

restricted to the closed irreducible set R
(p)
m and fm(j) = ωj/M

(p)
m (j), j ∈ R

(p)
m . To

complete the definition of J(p), set

J(p)(µ) := +∞ if µ is not a convex combination of π
(p)
j , j ∈ Sp . (8.10)

Recall from (3.13) the definition of the functional I(p) : P(V ) → [0,+∞]. The
proof of Lemma 8.1 yields that

Lemma 8.2. For all 1 ≤ p ≤ q, µ ∈ P(V ), I(p)(µ) = J(p)(µ).

Note that, by (8.9) and (3.2), I(p)(µ) = 0 if and only if there exists a probability
measure ω̂ in Sp+1 such that

µ =
∑

m∈Sp+1

ω̂m
∑

j∈R(p)
m

M (p)
m (j)π

(p)
j =

∑
m∈Sp+1

ω̂m π
(p+1)
m . (8.11)

On the other hand, if µ is not of this form, by (8.10), I(p+1)(µ) is set to be equal to
+∞. Hence, the functional I(p+1) is finite only at the 0-level set of I(p). Further-
more, since the right-hand side of (8.9) is always finite,

I(p+1)(µ) < ∞ if and only if I(p)(µ) = 0 . (8.12)
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By (8.8), this assertion holds also for p = 0.

The Γ-convergence. We turn to the proof of Theorem 3.3. We proceed by induc-
tion. We first show that In Γ-converges to the functional I(0). Then, we observe
that, according to (8.8), the 0-level set of I(0) corresponds to the convex combina-

tions of the measures π
(1)
j , j ∈ S1. In the sequel, we prove that θ

(1)
n In Γ-converges

to I(1). Clearly, by definition, I(1)(µ) = +∞ if µ is not a convex combinations of

the measures π
(1)
j , j ∈ S1, while I(1)(µ) < +∞ if it is. By (8.11), the 0-level set of

I(1) consists of the convex combinations of the measures π
(2)
j , j ∈ S2.

At this point, we iterate the procedure by examining the behavior of θ
(2)
n In, and

so on until proving that θ
(q)
n In Γ-converges to I(q). The 0-level set of this functional

is the singleton formed by the measure π(q+1). As the level set is a singleton, the
iterative procedures ends. Note that this approach produced the state π(q+1) which
is is the limit of the stationary measures πn: π(q+1)(x) = limn→∞ πn(x), x ∈ V .

We turn to the proof that In Γ-converges to I(0).

Proposition 8.3. The functional In Γ-converges to I(0).

Proof. We start with the Γ− lim sup. Fix µ ∈ P(V ) and consider the sequence µn
constant equal to µ. By (3.10),

In(µ) =
1

2

∑
(x,y)∈E

πn(x)Rn(x, y)
{√ µ(y)

πn(y)
−

√
µ(x)

πn(x)

}2

,

Fix an edge (x, y) ∈ E. We examine the asymptotic behavior of

πn(x)Rn(x, y)
{√ µ(y)

πn(y)
−

√
µ(x)

πn(x)

}2

. (8.13)

By reversibility, this term is symmetric in x, y.
There are three types of edges. Assume first that Rn(x, y)→ 0 and Rn(y, x)→ 0.

By [43, Lemma 3.1], either πn(x)/πn(y) converges to a nonnegative real number or
so does πn(y)/πn(x). Assume, without loss of generality because (8.13) is symmet-
ric, that πn(y)/πn(x)→ a ∈ [0,∞). In this case, (8.13) is equal to

Rn(y, x)
{√µ(x)πn(y)

πn(x)
−
√
µ(y)

}2

,

which vanishes as n→∞.
Assume that Rn(x, y) 6→ 0 and Rn(y, x)→ 0. Hence, R0(x, y) > 0, R0(y, x) = 0.

In particular, as the set Vj are closed irreducible classes, x 6∈ V (if x ∈ Vj and
R0(x, y) > 0, then y ∈ Vj because it is a closed irreducible class. Hence, by (8.2),
R0(y, x) > 0, which is a contradiction). Two possibilities remain, either x ∈ Ck for
some k or x 6∈ C.

By reversibility, πn(x)/πn(y)→ 0. Hence, (8.13) is equal to

Rn(x, y)
{√µ(y)πn(x)

πn(y)
−
√
µ(x)

}2

,

which converges to µ(x)R0(x, y). If x ∈ Ck, by (8.2), y 6∈ Ck. These are the pairs
which appear in the third term on the right-hand side of (8.5). If x 6∈ C these pairs
are responsible for the fourth term on the right-hand side of (8.5).
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Finally, assume that Rn(x, y) 6→ 0 and Rn(y, x) 6→ 0. This means that x and
y belong to the same equivalence class, say Vj or Ck. Assume that x and y ∈
Vj . The argument is identical if we replace Vj by Ck. Replace πn(x), πn(y) by
πn(x)/πn(Vj), πn(y)/πn(Vj), respectively. By Lemma 6.1, πn(x)/πn(Vj) converges

to π]j(x) = π
(1)
j (x) > 0. Hence, (8.13) converges to

π
(1)
j (x)R0(x, y)

{√ µ(y)

π
(1)
j (y)

−
√

µ(x)

π
(1)
j (x)

}2

.

Putting together the previous estimates yields that In(µ)→ J(0)(µ). To complete
the proof of the Γ− lim sup, it remains to recall the statement of Lemma 8.1.

We turn to the Γ− lim inf. Fix µ ∈ P(V ) and a sequence of probability measures
µn in P(V) converging to µ. By definition of In,

In(µn) ≥ −
∫
V

Lnu

u
dµn = −

∑
x∈V

µn(x)

u(x)

∑
y∈V

Rn(x, y) [u(y)− u(x) ]

for all u : V → (0,∞). As µn → µ and Rn → R0, this expression converges to

−
∑

(x,y)∈E0

µ(x)

u(x)
R0(x, y) [u(y)− u(x) ] .

Therefore,

lim inf
n→∞

In(µn) ≥ sup
u>0
−

∑
(x,y)∈E0

µ(x)

u(x)
R0(x, y) [u(y)− u(x) ] = I(0)(µ) ,

which completes the proof of the lemma. �

Recall from (8.9) the definition of the functionals I(p), 1 ≤ p ≤ q.

Proposition 8.4. Fix 1 ≤ p ≤ q. The functional θ
(p)
n In Γ-converges to I(p).

Proof. We start with the Γ − lim sup. Fix µ ∈ P(V ). If µ is not a convex combi-

nations of the measures π
(p)
j , j ∈ Sp, there is nothing to prove. Assume, therefore,

that µ =
∑
j∈Sp

ωj π
(p)
j for some weights ωj .

Let fn : V(p) → R+ be the function given by fn =
∑
j∈Sp

ωj(n)χ
V

(p)
j

, where

ωj(n) = ωj/πn(V
(p)
j ). To extend this function to V , solve the Poisson equation

(A.2) with L = Ln, V0 = V(p), g =
√
fn. Denote by hn the solution of the

equation. Let µn = αn h
2
n πn, where αn is a normalizing constant which turns µn

into a probability measure.
We claim that αn → 1 and µn → µ. By definition,

α−1
n =

∑
x 6∈V(p)

hn(x)2 πn(x) +
∑
j∈Sp

∑
x∈V(p)

j

fn(x)πn(x) .

By definition of hn, for x 6∈ V(p),

hn(x)2 πn(x) =
{ ∑
j∈Sp

√
ωj(n)Pnx

[
H

V
(p)
j

= HV(p)

] }2

πn(x)

≤ C0

∑
j∈Sp

ωj

πn(V
(p)
j )

Pnx
[
H

V
(p)
j

= HV(p)

]2
πn(x) ,
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where the constant C0 bounds the cardinality of V . By Lemma 7.8, this expression
vanishes as n → ∞. By definition of fn, the second term of the penultimate
displayed equation is equal to∑

j∈Sp

∑
x∈V(p)

j

ωj

πn(V
(p)
j )

πn(x) = 1 ,

which proves that αn → 1.
The previous argument shows that µn(x) = αn hn(x)2 πn(x) → 0 = µ(x) if

x 6∈ V(p). If x ∈ V
(p)
j , µn(x) = αn fn(x)πn(x) = αn ωj πn(x)/πn(V

(p)
j ). Since

αn → 1, by Corollary 6.3, the previous expression converges to ωj π
(p)
j (x) = µ(x).

To complete the proof of the Γ−lim sup, it remains to show that lim supn θ
(p)
n In(µn) ≤

I(p)(µ). By (3.10) and the definition of µn,

In(µn) = αn 〈hn , (−Ln)hn 〉πn
.

By Corollary A.2 and the definition of hn, the right-hand side is equal to

αn πn(V(p)) 〈
√
fn , (−L(p)

n )
√
fn〉π(p)

n

= −αn
∑

x,y∈V(p)

πn(x)R(p)
n (x, y)

√
fn(x)

{√
fn(y) −

√
fn(x)

}
,

where L
(p)
n stands for the generator of the trace process Y n,pt introduced in (2.8),

and π
(p)
n for the measure πn conditioned to V(p). Since fn is constant and equal to

ωj(n) on each set V
(p)
j , the previous expression is equal to

− αn
∑
j∈Sp

√
ωj(n)

∑
k∈Sp\{j}

{√
ωk(n) −

√
ωj(n)

} ∑
x∈V(p)

j

πn(x)
∑
y∈V(p)

k

R(p)
n (x, y)

= −αn
∑
j∈Sp

√
ωj(n)

∑
k∈Sp\{j}

{√
ωk(n) −

√
ωj(n)

}
πn(V

(p)
j ) r(p)

n (j, k) ,

where r
(p)
n (j, k) is defined in (2.9). Up to this point, we proved that

θ(p)
n In(µn) =

αn
2
θ(p)
n

∑
j,k∈Sp

πn(V
(p)
j ) r(p)

n (j, k)
{√

ωk(n) −
√
ωj(n)

}2

,

where we used that πn(V
(p)
j ) r

(p)
n (j, k) = πn(V

(p)
k ) r

(p)
n (k, j), an identity which fol-

lows from the reversibility assumption.
Recall that αn → 1. In view of the definition of ωi(n), it remains to examine the

asymptotic behavior of

πn(V
(p)
j ) θ(p)

n r(p)
n (j, k)

{√ ωk

πn(V
(p)
k )
−
√

ωj

πn(V
(p)
j )

}2

. (8.14)

As in the proof of Proposition 8.3, we divide the pairs (j, k) in three types.

Assume first that θ
(p)
n r

(p)
n (j, k) → 0 and θ

(p)
n r

(p)
n (k, j) → 0. By [43, Lemma 3.1],

and (2.16), either πn(V
(p)
j )/πn(V

(p)
k ) converges to a nonnegative real number or so

does πn(V
(p)
k )/πn(V

(p)
j ). Assume that πn(V

(p)
k )/πn(V

(p)
j )→ a ∈ [0,∞). In this case,
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by reversibility, (8.14) is equal to

θ(p)
n r(p)

n (k, j)
{√

ωk −

√√√√ωj
πn(V

(p)
k )

πn(V
(p)
j )

}2

, (8.15)

which vanishes as n→∞.
Next, suppose that θ

(p)
n r

(p)
n (j, k) → 0 and θ

(p)
n r

(p)
n (k, j) → r(p)(k, j) > 0, where

r(p)(k, j) has been introduced in (2.10). In particular, k is a transient state of the

chain X(p)
t . By reversibility, πn(V

(p)
k )/πn(V

(p)
j ) = r

(p)
n (j, k)/r

(p)
n (k, j) → 0. Hence,

(8.14), which is equal to (8.15), converges to

r(p)(k, j)ωk .

Finally, suppose that θ
(p)
n r

(p)
n (j, k)→ r(p)(j, k) > 0 and θ

(p)
n r

(p)
n (k, j)→ r(p)(k, j) >

0. This means that j and k belong to some closed irreducible class R
(p)
m of the chain

X(p)
t . By Lemma 6.2, the expression (8.14) converges to

M (p)
m (j) r(p)(k, j)

{√ ωk

M
(p)
m (k)

−
√

ωj

M
(p)
m (j)

}2

.

Combining the previous estimates yields that θ
(p)
n In(µn) converges to J(p)(µ), which

completes the proof of the Γ− lim sup in view of Lemma 8.2.
We turn to the Γ− lim inf where we use an induction argument. Fix 1 ≤ p ≤ q

and assume that the Γ-convergence of θ
(p−1)
n In to I(p−1) has been proved. Fix a

probability measure µ on V and a sequence µn converging to µ.

Suppose that I(p−1)(µ) > 0. In this case, since θ
(p−1)
n In Γ-converges to I(p−1)

and θ
(p)
n /θ

(p−1)
n →∞,

lim inf
n→∞

θ(p)
n In(µn) = lim inf

n→∞

θ
(p)
n

θ
(p−1)
n

θ(p−1)
n In(µn) ≥ I(p−1)(µ) lim

n→∞

θ
(p)
n

θ
(p−1)
n

= ∞ .

On the other hand, by (8.12), I(p)(µ) = ∞. I(p−1)(µ) = ∞. This proves the
Γ− lim inf convergence for measures µ such that I(p−1)(µ) > 0.

Assume that I(p−1)(µ) = 0. By (8.10), there exists a probability measure ω on

Sp such that µ =
∑
j∈Sp

ωj π
(p)
j . By (3.9),

In(µn) ≥ −
∫
V

Lnu

u
dµn

for all u : V → (0,∞).

Fix a function h : V(p) → (0,∞) which is constant on each V
(p)
j , j ∈ Sp: h =∑

j∈Sp
h(j)χ

V
(p)
j

. Let un : V → R be the solution of the Poisson equation (A.2)

with L = Ln, V0 = V(p) and g = h. By the representation (A.3), it is clear that
un(x) ∈ (0,∞) for all x ∈ V .

Since un is harmonic on V \ V(p) and un = h on V(p), by Lemma A.1, the
right-hand side of the previous displayed equation with u = un is equal to

−
∫
V(p)

Lnun
un

dµn = −
∫
V(p)

Lnun
h

dµn = −
∫
V(p)

L
(p)
n h

h
dµn .
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Here, as in the first part of the proof, L
(p)
n stands for the generator of the trace

process Y n,pt introduced in (2.8).

Since h is constant on each set V
(p)
j (and equal to h(j)), the last integral is equal

to

−
∑
j,k∈Sp

[h(k)− h(j) ]

h(j)

∑
x∈V(p)

j

πn(x)
µn(x)

πn(x)
R(p)
n (x,V

(p)
k ) ,

where R
(p)
n (x,V

(p)
k ) =

∑
y∈V(p)

k

R
(p)
n (x, y). By Proposition 3.2, πn(x)/πn(V

(p)
j ) →

π
(p)
j (x) for all x ∈ V

(p)
j . Thus, since µn → µ =

∑
j∈Sp

ωj π
(p)
j ,

lim
n→∞

πn(V
(p)
j )

µn(x)

πn(x)
= ωj for all x ∈ V

(p)
j .

Therefore, by (2.10), as n → ∞, the penultimate expression multiplied by θ
(p)
n

converges to

−
∑
j∈Sp

ωj
1

h(j)

∑
k∈Sp

r(p)(j, k) [h(k)− h(j) ] = −
∑
j∈Sp

ωj
L(p)h

h
.

Summarising, we proved that

lim inf
n→∞

θ(p)
n In(µn) ≥ sup

h
−
∑
j∈Sp

ωj
L(p)h

h
,

where the supremum is carried over all functions h : Sp → (0,∞). By (3.13), the

right-hand side is precisely I(p)(µ), which completes the proof of the Γ− lim inf. �

Appendix A. Potential theory

We present in this section some results on potential theory used in the article.
We do not assume reversibility. We keep the same notation of the article, removing
the index n. In particular, Xt is a V -valued, continuous-time irreducible Markov
process whose jump rates are represented by R(x, y). Denote by (Ft : t ≥ 0) the
canonical filtration induced by the chain Xt. Hence, Ft is the σ-algebra generated
by the variables Xs, 0 ≤ s ≤ t.

We first recall for the reader’s convenience the definition of the trace of a process
on a subset.

Trace process. Fix a non-empty subset W of V . Denote by TW (t) the total time
the process Xt spends in W in the time-interval [0, t]:

TW (t) =

∫ t

0

χW (Xs) ds ,

where, recall, χW represents the indicator function of the set W . Denote by SW (t)
the generalized inverse of TW (t):

SW (t) = sup{ s ≥ 0 : TW (s) ≤ t } .
The trace of Xt on W , denoted by (XW

t : t ≥ 0), is defined by

XW
t = XSW (t) ; t ≥ 0 . (A.1)

By Propositions 6.1 and 6.3 in [1], the trace process is an irreducible, W -valued
continuous-time Markov chain, obtained by turning off the clock when the process
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Xt visits the set W c, that is, by deleting all excursions to W c. For this reason, it
is called the trace process of Xt on W .

Denote by LW , RW , λW , pW and πW its generator, jump rates, holding times,
transition matrix and stationary state, respectively. The measure πW is obtained
by conditioning π to W : πW (x) = π(x)/π(W ).

Let PWx , x ∈ W , be the probability measure on the path space D(R+,W )
induced by the Markov chain XW

t starting from x. Expectation with respect to
PWx is represented by EWx .

Poisson equation. Fix a non-empty proper subset V0 of V and a function g :
V0 → R. Let f be the solution of the Poisson equation{

Lf = 0 , V \ V0 ,

f = g , V0 .
(A.2)

Recall from (2.5) the definition of the hitting and return times to a subset A of
V . By the strong Markov property, the solution of the Poisson equation can be
represented as

f(x) = Ex[ g(XHV0
) ] , x ∈ V . (A.3)

Fix V0 ⊂W ⊂ V and denote by fW the solution of the Poisson equation{
LW f = 0 , W \ V0 ,

f = g , V0 .
(A.4)

Mind that W may be equal to V0.
Starting from x 6∈ V0, the processes Xt and XW

t hit the set V0 at the same point:
XW
HV0

(XW ) = XHV0
, Px a.s. In this formula and below, HV0

(XW ), H+
V0

(XW ) stand

for hitting and return time to V0 for the process XW . By the representation (A.3)
and the previous observation, for x ∈W

fW (x) = EWx [ g(XHV0
) ] = Ex[ g(XW

HV0
(XW )) ] = Ex[ g(XHV0

) ] = f(x) .

(A.5)

Lemma A.1. Fix V0 ⊂ W ⊂ V . Denote by f , fW the solutions of the Poisson
equations (A.2), (A.4), respectively. Then,

(Lf)(x) = (LW fW )(x) , x ∈ V0 .

Proof. Fix x ∈ V0. The left-hand side of the identity appearing in the statement of
the lemma can be written as

λ(x)
∑
y∈V

p(x, y) [ f(y) − f(x) ] .

Without loss of generality, assume that p(z, z) = 0 for all z ∈ V (if this is not the
case, one redefines the holding time λ(z) for the identity to hold). By (A.3), f(y) =
Ey[ g(XHV0

) ] for all y ∈ V , and by the strong Markov property Ex[ g(XH+
V0

) ] =∑
y∈V p(x, y) f(y). Hence, the previous sum can be written as

λ(x)
{
Ex[ g(XH+

V0

) ] − f(x)
}
. (A.6)

Recall that we denote by XW
t the trace of the process Xt on W . We consider two

cases. If H+
W < H+

x then the process Xt and XW
t return to V0 at the same point

XH+
V0

(to prove this assertion, consider separately the two situations {H+
V0
< H+

x }
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and {H+
V0

= H+
x }). Thus, if H+

W < H+
x we may replace in (A.6) g(XH+

V0

) by

g(XW
H+

V0
(XW )

).

If H+
W = H+

x , the process Xt returns to V0 (and also to W ) at x. In contrast, in

the time interval [0, H+
W ] the trace process on W remains at x, and XW

t may return
to V0 at a point y 6= x. In particular, Xt and XW

t may return to V at different
points. In this case, since H+

V0
= H+

x , we have

Ex
[
g(XH+

V0

)χ(H+
x = H+

W )
]

= g(x)Px
[
H+
x = H+

W

]
.

Up to this point, we proved that for x ∈ V0,

Ex
[
g(XH+

V0

)
]

= Ex
[
g(XW

H+
V0

(XW )
)χ

Ac

]
+ g(x)Px[A ] ,

where A is the event {H+
x = H+

W }. Write χ
Ac as 1 − χ

A
. On the event A,

H+
V0

(XW ) = H+
V0

+ H+
V0

(XW ) ◦ ϑH+
V0

. Hence, conditioning on FH+
V0

, since A is

FH+
V0

-measurable and X(H+
V0

) = x on the event A, by the strong Markov property,

Ex
[
g(XW

H+
V0

(XW )
)χ

A

]
= Px[A ]Ex

[
g(XW

H+
V0

(XW )
)
]
.

Therefore, for x ∈ V0,

Ex
[
g(XH+

V0

)
]
− g(x) = Px[H+

W < H+
x ]
{
Ex
[
g(XW

H+
V0

(XW )
)
]
− g(x)

}
. (A.7)

By equation (6.9) in [1], λ(x)Px[H+
W < H+

x ] = λW (x). Therefore, (A.6) is equal
to

λW (x)
{
EWx [ g(XH+

V0

) ] − f(x)
}
.

By the strong Markov property and (A.5), this expression is equal to

λW (x)
∑
y∈W

pW (x, y)
{
EWy [ g(XHV0

) ] − f(x)
}

= λW (x)
∑
y∈W

pW (x, y)
{
fW (y) − fW (x)

}
= (LW fW )(x) ,

as claimed. �

Denote by D(f) the Dirichlet form of a function f : V → R:

D(f) := 〈 f , (−L)f 〉π .

Corollary A.2. Fix V0 ⊂ W ⊂ V . Denote by f , fW the solutions of the Poisson
equations (A.2), (A.4), respectively. Then,

D(f) = π(W ) 〈 fW , (−LW )fW 〉πW
. (A.8)

Proof. By definition of the Dirichlet form,

D(f) = 〈 f , (−L)f 〉π = −
∑
x∈V

π(x) f(x) (Lf)(x) .

Since f is harmonic on V c0 , the sum can be restricted to V0. Hence, the previous
expression is equal to

−
∑
x∈V0

π(x) f(x) (Lf)(x) .
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By (A.5) and Lemma A.1, this sum is equal to

−
∑
x∈V0

π(x) fW (x) (LW fW )(x) .

Since fW is LW -harmonic on W \ V0, we may extend the sum to W . To complete
the proof, it remains to recall that πW ( · ) = π( · )/π(W ). �

The same proof yields the following result.

Corollary A.3. Fix V0 ⊂ V , g : V0 → R, and let u be the solution of (A.2). Then,∫
V

Lu

u
dµ =

∫
V0

LV0
g

g
dµ

for all probability measures µ on V .

Proof. Since u is harmonic on V \ V0, we may restrict the integral to V0. By
Lemma A.1, on V0 we may replace Lu by LV0

uV0
, where uV0

is the solution of
(A.4) with W = V0. However, as W = V0, the solution of (A.4) is uV0 = g. Hence,
LV0uV0 = LV0g. As u = g on V0, the proof is complete. �

We turn to an estimate of hitting times. Denote by πA, A ⊂ V , the stationary
measure π conditioned to A

πA(x) =
π(x)

π(A)
, x ∈ A .

Next result is [36, Proposition 8.4]. It holds for non-reversible dynamics. The
assertion in the case where A is a singleton follows from the proofs of [5, Corollary
4.2] and [36, Proposition 8.4].

Lemma A.4. Let A, B be two nonempty disjoint subsets of E. Then, for every
probability measure ν concentrated on the set A and % > 0

Pν
[
HB ≤ %

]2 ≤ e2EπA

[ ( ν

πA

)2 ] cap(A, B)

π(A)
% .

If A is a singleton, A = {x}, then for every % > 0

Px
[
HB ≤ %

]
≤ e

cap({x}, B)

π(x)
% .

This result helps in showing that the left-hand side vanishes asymptotically if
[ capn({x}, B)/πn(x) ] %n → 0.

Remark A.5. For two sets A, B satisfying the hypotheses of Lemma A.4, let νA,B
be the equilibrium measure on A:

νA,B(x) =
1

cap(A , B)
π(x)λ(x)Px[HB < H+

A ] , x ∈ A .

By Chebychev inequality and [4, Proposition A.2],

PνA,B

[
HB ≥ %

]
≤ 1

%
EνA,B

[
HB

]
=

Eπ[h∗A,B ]

% cap(A, B)
,

where h∗A,B stands for the equilibrium potential of the time-reversed process (some-

times called the adjoint process): h∗A,B(y) = P∗y [HA < HB ], and P∗ stands for the
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distribution of the continuous-time Markov chain with jump rates R∗(x, y) given by
R∗(x, y) = π(y)R(y, x)/π(x). In many cases, EνA,B

[HB ] = [1+o(1)]π(A) so that

PνA,B

[
HB ≥ %

]
≤ [1 + o(1)]

π(A)

% cap(A, B)
.

This inequality demonstrates that the bound in Lemma A.4 is sharp whenever
EνA,B

[HB ] = [1 + o(1)]π(A).
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P.le Aldo Moro 2, 00185 Roma, Italy

Email address: bertini@mat.uniroma1.it

Davide Gabrielli

DISIM, Università dell’Aquila
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