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We discuss the effective diffusion constant Deff for stochastic processes with spatially-dependent noise. Start-
ing from a stochastic process given by a Langevin equation, different drift-diffusion equations can be derived
depending on the choice of the discretization rule 0 ≤ α ≤ 1. We initially study the case of periodic heteroge-
neous diffusion without drift and we determine a general result for the effective diffusion coefficient Deff , which
is valid for any value of α . We study the case of periodic sinusoidal diffusion in detail and we find a relation-
ship with Legendre functions. Then, we derive Deff for general α in the case of diffusion with periodic spatial
noise and in the presence of a drift term, generalizing the Lifson-Jackson theorem. Our results are illustrated by
analytical and numerical calculations on generic periodic choices for drift and diffusion terms.

I. INTRODUCTION

The concept of heterogeneous diffusion with a spatially
varying diffusivity is widely discussed in the literature to de-
scribe anomalous diffusion processes, see, e.g., [1–8]. Multi-
plicative noise plays an essential role in describing the behav-
ior of several physical and biological phenomena including
the transmission of signals in neuron models [9, 10], pheno-
typic variability and gene expression [11, 12], the stochastic
thermodynamics of holonomic systems [13–15], the ballistic-
to-diffusive transition of heat propagation [16, 17], the fluctu-
ations effects in lasers and semiconductors [18–20], the statis-
tical theory of turbulence [21, 22], and the modeling of stock
prices, particularly through the Black-Scholes model of option
pricing [23, 24]. This long but clearly non-exhaustive list of
examples shows that heterogeneous diffusion is an extremely
useful and versatile tool for the comprehension of a large va-
riety of phenomena ranging from physics to biology, and to
finance.

Recently, we have addressed the role of the discretization
rule of stochastic processes with heterogeneous, i.e. spatially-
dependent noise, in both long- and short-time limits [25, 26].
The discretization rule refers to the rule of integration of the
Langevin equation, and commonly involves the introduction
of a real parameter α , with 0 ≤ α ≤ 1, with the common
cases being the Fisk-Stratonovich (midpoint) rule, α = 1/2
[27, 28], or the endpoint rules α = 0 (Itô) [29] and α = 1
(Hänggi-Klimontovich) [20, 30]. In our earlier work [25, 26],
we established a number of limitations for the existence of
the probability distributions in short-and long-time regimes of
certain Fokker-Planck equations, thereby demonstrating the
relevance of the discretization rule for the physical context in
which the corresponding equations might be employed.

In this work, we continue our discussion of the importance
of the discretization rule. Here, we address the derivation of
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the effective diffusion constant for stochastic heterogeneous
(drift-)diffusion processes. Effective diffusion constants are
well established quantities describing the long-time and large
length scale transport properties in heterogeneous systems,
see, among many others, Refs. [31–38]. They characterize,
e.g., the mean-squared displacement (MSD) of particles mov-
ing in an external potential at late times via [39]

⟨[X(t)−X(0)]2⟩ ≃ 2Deff t . (1)

The effective diffusion constant Deff can be determined for
drift-diffusion equations, i.e. the Fokker-Planck equation, or,
more simply diffusion laws in heterogeneous media, in which,
at the level of the Langevin equation, the discretization rule of
the stochastic process in general matters, in contrast to the
process occurring under the action of simple (constant) noise
[40–43]. A general formula for the effective diffusion con-
stant was provided already long ago by Lifson and Jackson
[44] and also others (see below); however, to the best of our
knowledge, without addressing the role of the discretization
of the underlying stochastic process.

While most studies on heterogeneous diffusion consider ar-
bitrary spatially-dependent noise g(x), in this paper we focus
our attention to the case of spatially periodic noise g(x). Spa-
tially periodic noise has been discussed in the literature early
on, see the classic work by Büttiker [45] and Landauer [46].
Büttiker specifically considered the interplay between a peri-
odic drift and a periodic noise, and observed that current flow
can arise when the two modulations are out of phase [45].
Landauer studied systems with nonuniform temperature ob-
serving that particles move out of the hot regions with greater
velocity than out of the cold regions, eventually modifying the
overall dynamics [46]. Recently, the problem has been taken
up again by us in the context of the motion of the Brownian
particle in a tilted periodic potential (also called washboard
potential) [47] - a celebrated problem with a huge literature,
see the references listed in Ref. [47].

Our focus in the present paper is the determination of the
effective diffusion coefficient with an arbitrary value of 0 ≤
α ≤ 1. We will first address the case of the absence of drift,
and then combining drift and diffusion. Thereby we obtain
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a generalization the Lifson-Jackson formula for general α , a
result we believe has not been obtained previously.

The structure of our paper is as follows. Section II presents
the mathematical formulation of the problem studied in this
paper and outlines the logic followed in our developments. In
Section III, we first calculate the effective diffusion constant
Deff in the Fisk-Stratonovich case with α = 1/2. Here, the de-
termination of Deff can be performed analytically, for which
we present two slightly alternative versions (the second one
in Appendix A). Our result is then applied to an exemplary
case, where the heterogeneous diffusion varies sinusoidally in
space. In this case we determine not only Deff but also the
full probability density of the process. In Section IV, we pro-
pose a method to obtain the effective diffusion constant for
the periodic heterogeneous diffusion problem with arbitrary
stochastic interpretation, i.e. for any value of α . Finally, in
Section V, we consider an additive drift term in the Langevin
equation to study the combined effects of periodic drift and
periodic diffusion. We prove a generalized form of the Lifson-
Jackson theorem, which allows us to obtain the effective dif-
fusion coefficient under these conditions. As a special case,
we numerically study the problem when drift and diffusion
are both sinusoidal, with an arbitrary phase shift between the
two terms. We then discuss the physical phenomena induced
by diffusion-drift interaction in this particular case.

II. HETEROGENEOUS DIFFUSIONS: MODEL
DEFINITION AND THE CALCULATION OF Deff

We start our discussion with the case of heterogeneous par-
ticle diffusion problems in the absence of forces, i.e. we con-
sider stochastic differential equations of Langevin type

dx
dt

= g(x)ξ (t), (2)

where g(x) is a spatially-dependent multiplicative noise with
g(x)> 0 for any x ∈ R. The process ξ (t) in Eq. (2) is a Gaus-
sian white noise with average value E(ξ (t)) = 0, and corre-
lation E(ξ (t)ξ (τ)) = 2δ (t − τ), where δ (t) is the Dirac delta
function.

In order to properly define the mathematical meaning of
Eq. (2), we need to specify the type of stochastic interpreta-
tion adopted, or equivalently the discretization parameter α ,
as discussed in the Introduction. The equivalent diffusion or
Fokker-Planck equation associated with Eq. (2) contains α

explicitly as a simple parameter. For general α , it is given by
the expression

∂W (x, t)
∂ t

=
∂

∂x

{
g2α(x)

∂

∂x

[
g2(1−α)(x)W (x, t)

]}
, (3)

for the probability density W (x, t) [25]. For the above men-
tioned cases of α = 1/2,1,0, one thus obtains three distinct

expressions of Fokker-Planck type

∂W
∂ t

=
∂

∂x

[
g

∂

∂x
(gW )

]
, α = 1/2, (4)

∂W
∂ t

=
∂

∂x

[
g2 ∂W

∂x

]
, α = 1, (5)

∂W
∂ t

=
∂ 2

∂x2

[
g2W

]
, α = 0 (6)

that have all appeared before in the scientific literature. The
first equation is referred to as Wereide’s equation [48], the
second corresponds to the classical Fick law [49], and the third
is known as Chapman’s law [50].

Wereide’s diffusion law has been originally obtained to
study the particles diffusion in a region where there is a spa-
tially varying temperature field [48]. Today, the Wereide law
has been shown to correctly describe biological processes
of invasion into periodically fragmented environments [51].
Fick’s law, firstly introduced by Adolf Fick in 1855 [49],
governs the transport of mass through diffusive phenomena,
as largely confirmed by experimental results. Fick’s law is
in strong analogy with other mathematical expressions de-
scribing similar phenomena: the Darcy law for the hydraulic
flow in porous media, the microscopic Ohm law describing
the charge transport in electrical conductive materials, and
Fourier’s law explaining the heat transport in thermally con-
ductive media. Finally, Chapman’s law has been introduced,
by means of statistical mechanics arguments, to describe dif-
fusion processes in non-uniform fluids [50]. Recently, it has
been demonstrated that Chapman’s diffusion law describes
protein transport in heterogeneous biological environments
better than the Fick diffusion law [52]. While the comparison
among the different stochastic interpretations is performed in
Refs.[53, 54], the corresponding diffusion processes are ana-
lyzed and discussed in Refs.[55–57].

On the level of the probability density W (x, t), we now want
to define a homogeneous diffusion equation

∂W
∂ t

= Deff
∂ 2W
∂x2 (7)

that should represent, in a sense that needs to be precisely
specified, the homogenized version of the previous Fokker-
Planck equations. Thus arises the question on how to define
the effective diffusion constant. One possibility is [58]

Deff ≡ D = lim
t→∞

〈
x2
〉

2t
. (8)

Another possible definition of the effective diffusion constant
is the given by the expression

Deff ≡
a

2T FP
, (9)

where a is the length of a finite box and T FP is the mean first
passage time. Both expressions are equivalent [58], and we
will indeed apply them both.

In the following, we are concerned with determining the ef-
fective diffusion coefficient in the case of a periodic function
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g(x), by using Eqs.(8) and (9). The proposed approach will be
valid even with certain types of discontinuity in the function
g(x), as long as it remains positive and finite. For example,
we can admit a finite discontinuity in the derivative to repre-
sent sawtooth functions, or we can admit a finite discontinuity
in the function itself to describe rectangular waveforms. More
generally, we can say that the theory is valid for periodic func-
tions g(x) that can be developed in Fourier series.

In the following Section III, we will first determine the
effective diffusion coefficient in the case of periodic hetero-
geneous diffusion studied under the hypothesis of the Fisk-
Stratonovich interpretation. Indeed, in this case the general
solution of Eq. (4) is known for an arbitrary function g(x)
and, of course, it can be used for a periodic g(x). The knowl-
edge of the probability density allows the application of Eq.
(8) since we can directly calculate the average value

〈
x2
〉
,

and eventually obtain the effective diffusion constant under
the Fisk-Stratonovich interpretation. For this reason, we first
started to approach the problem when α = 1/2. Unfortu-
nately, for the other cases with α ̸= 1/2, the corresponding
Fokker-Planck equations cannot be solved in closed form in
order to obtain the relevant probability density. That is why, in
the absence of the probability density, we preferred Eq. (9) to
determine the effective diffusion coefficient. Even before car-
rying out this calculation, note that in the case of the Hänggi-
Klimontovich stochastic interpretation, we obtain the classi-
cal Fick diffusion law described by Eq. (5). In this case, the
effective diffusion constant is well-known thanks to several
homogenization methods applied to one-dimensional or strat-
ified media and is given by Deff =

〈
1/g2

〉−1 [59–63]. Here,
⟨·⟩ represents the mean value of the argument over one pe-
riod. We observe that this expression is different from the one
obtained for the case with α = 1/2, which is Deff = ⟨1/g⟩−2

(see next Section III). This proves that the discretization pa-
rameter plays an important role in the characterization of ef-
fective diffusion. This fact motivated us to look for a general
result, based on Eq. (9), and we demonstrate in Section IV
that Deff =

〈
1/g2α

〉−1 〈1/g2−2α
〉−1. This result is consistent

with previous particular cases and generalizes the determina-
tion of the effective diffusion coefficient to any value of α .
It will be studied in detail for the case of a sinusoidal func-
tion g(x). To conclude, in Section V, we propose a general-
ization of the classical Lifson-Jackson theorem for the case
with spatially periodic drift superposed to a periodic hetero-
geneous diffusion. This problem is approached by means of a
formal analogy with the case without drift, solved in the pre-
vious Sections.

III. PERIODIC HETEROGENEOUS DIFFUSION IN THE
FISK-STRATONOVICH INTERPRETATION

We determine here the effective diffusion coefficient for
a periodic heterogeneous diffusion model under the Fisk-
Stratonovich interpretation. Our starting point for this calcula-
tion is the closed form expression of the propagator of Eq.(4)

that we recently formulated (α = 1/2) [26]. It is given by

W (x, t;x0, t0) =
exp
[
− 1

4(t−t0)

(∫ x
x0

dη

g(η)

)2
]

g(x)
√

4π(t − t0)
, (10)

for the deterministic initial condition W (x, t0;x0, t0) = δ (x−
x0). The Wiener process is obviously retrieved when g(x) is
a constant. The result in Eq. (10) is correct for any func-
tion g(x), and in particular is valid for a periodic function
g(x) = g(x+L) with period L ∈ R. The periodicity assump-
tion will always be adopted in the following. Eq. (10) can
be specialized for x0 = 0 and t0 = 0, yielding the probability
density ρ(x, t) = W (x, t;0,0). In this particular case, it is in-
teresting to study the effective diffusion constant, as defined
in Eq. (8). We can write

D = lim
t→∞

〈
x2
〉

2t
= lim

t→∞

1
2t

∫ +∞

−∞

x2
ρ(x, t)dx

= lim
t→∞

1
2t

∫ +∞

−∞

x2
exp
[
− 1

4t

(∫ x
0

dη

g(η)

)2
]

g(x)
√

4πt
dx. (11)

If g(x) is periodic, bounded and strictly positive, 1/g(x) is
also periodic, bounded, and strictly positive and we can use
the Fourier series representation

1
g(x)

=
+∞

∑
k=−∞

Ck exp
(

2πikx
L

)
, (12)

where

Ck =
1
L

∫ L

0

1
g(x)

exp
(
−2πikx

L

)
dx, (13)

with C−k =C∗
k , since g(x) ∈ R (in particular, it means that C0

is real). We define D(x) =
∫ x

0
dη

g(η) , and we easily get

D(x) =
+∞

∑
k=−∞

Ck

∫ x

0
exp
(

2πikx
L

)
dx (14)

=C0x+
+∞

∑
k=−∞
k ̸=0

CkL
2πik

[
exp
(

2πikx
L

)
−1
]

=C0x+ p(x),

where

p(x) =
+∞

∑
k=−∞
k ̸=0

CkL
2πik

[
exp
(

2πikx
L

)
−1
]

(15)

is a periodic bounded function. Since D ′(x) = 1/g(x), we can
rewrite the effective diffusion constant as

D = lim
t→∞

1
2t

∫ +∞

−∞

x2
exp
[
−D2(x)

4t

]
√

4πt
D ′(x)dx, (16)
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where

D2(x) = [C0x+ p(x)]2 = x2
[
C2

0 +2C0
p(x)

x
+

p2(x)
x2

]
. (17)

When the time t is large, the exponential in Eq. (16) is in-
creasingly flat and close to one, and therefore, the area for
large values of x becomes more and more important in cal-
culating the integral. Moreover, p(x) is bounded and periodic
and therefore p(x)/x → 0 when x →±∞. Hence, we can write

D = lim
t→∞

1
2t

∫ +∞

−∞

x2
exp
(
−C2

0 x2

4t

)
√

4πt

+∞

∑
k=−∞

Ck exp
(

2πikx
L

)
dx,

(18)

and the integral can be calculated using∫ +∞

−∞

x2e−ax2
eibxdx =

√
π

a3/2 e−
1
4

b2
a

(
1
2
− b2

4a

)
. (19)

The application of Eq. (19) to each term of Eq. (18), for k
ranging from −∞ to +∞, shows that only the term for k = 0
contributes to the result, which is eventually obtained in the
simple form

D =
1

C2
0
=

〈
1
g

〉−2

, (20)

where the operator ⟨·⟩ represents the mean value of the argu-
ment over one period. This expression can be further con-
firmed by an alternative derivation discussed for the sake of
completeness in Appendix A.

We now consider the simplest case of periodic diffusion,
which is described by a sinusoidal profile

g(x) = G0

(
1+ ε cos

2πx
L

)
, (21)

where G0 > 0 and ε2 < 1. These limitations ensure that we
always have g(x)> 0 ∀x ∈ R. The Fourier coefficients can be
calculated as

Ck =
1
L

∫ L

0

1
G0
(
1+ ε cos 2πx

L

) exp
(
−2πikx

L

)
dx

=
1

πG0

∫
π

0

cos(ky)
1+ ε cosy

dy, (22)

where we used the change of variable y = 2πx/L and the par-
ity of the cosine function (here k ∈ Z). By considering the
integral [64, 65]

∫
π

0

cos(ny)
1+ ε cosy

dy =
π√

1− ε2

(√
1− ε2 −1

ε

)n

, (23)

valid for n ∈ N and ε2 < 1, we directly obtain

Ck =
1

G0
√

1− ε2

(√
1− ε2 −1

ε

)|k|

, (24)

for G0 > 0, ε2 < 1, and k ∈ Z. This result, by using Eq. (20),
allows the determination of the explicit expression for the ef-
fective diffusion constant for this sinusoidal case, within the
Fisk-Stratonovich interpretation

D = G2
0(1− ε

2). (25)

We also want to determine the full form of the probability
density in this particular case. By recalling the definition of
D(x), we obtain

D(x) =
1

G0
√

1− ε2

x+
L

2πi

+∞

∑
k=−∞
k ̸=0

β |k|

k

[
exp
(

2πikx
L

)
−1
] ,

(26)

where we introduced β = (
√

1− ε2 − 1)/ε to simplify the
notation. For the following calculations, it is useful to note
that β 2 < 1 if and only if ε2 < 1. Moreover it is evident that

+∞

∑
k=−∞
k ̸=0

β |k|

k
= 0, (27)

and therefore the expression of D(x) is simplified as follows

D(x) =
1

G0
√

1− ε2

x+
L

2πi

+∞

∑
k=−∞
k ̸=0

β |k|

k
exp
(

2πikx
L

) .

(28)

We prove in Appendix B that the series appearing in the ex-
pression for D(x) can be calculated in closed form. This de-
velopment leads to the following final formula

D(x) =
1

G0
√

1− ε2

{
x+

L
π

[
arctan

(√
1− ε

1+ ε
tan

πx
L

)
−arctan

(
tan

πx
L

)]}
. (29)

The latter result can be directly used in the expression of the
probability density

ρ(x, t) =
exp
[
−D2(x)

4t

]
G0

√
4πt
(
1+ ε cos 2πx

L

) , (30)

in order to study the space and time evolution of the stochastic
system.

An example of application of this result can be seen in Fig.
1, where we represent the density ρ(x, t) as a function of x,
and parameterised by t, for four different cases (with L = 1):
(i) G0 = 1 and ε = 0.3; (ii) G0 = 1 and ε = 0.7; (iii) G0 = 5
and ε = 0.3; (iv) G0 = 5 and ε = 0.7. First of all, we can
observe that the general trend corresponds to the familiar one
of classical diffusion (think of the Wiener process given by
Eq. (10) with g(x) constant) in which, as time increases, the
density broadens on the spatial axis, increasing the variance.
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FIG. 1. Evolution of the probability density for a system with heterogeneous diffusion described by the sinusoidal behavior in Eq. (21). We
represented the density ρ(x, t) as a function of x, and parameterised by t. We considered four cases with the following values of G0 and ε: (i)
G0 = 1 and ε = 0.3; (ii) G0 = 1 and ε = 0.7; (iii) G0 = 5 and ε = 0.3; (iv) G0 = 5 and ε = 0.7. We always considered L = 1.

This is true for any choice of parameters G0 and ε . How-
ever, in our case, we observe a perturbation to the classical
Gaussian shape consisting of oscillations arising from hetero-
geneous periodic sinusoidal diffusion. The points at which
the density has local minima correspond to the maxima of
the local diffusion function g(x); reciprocally, the points at
which the density has local maxima correspond to the min-
ima of g(x). This is explained by the fact that the function
g(x) somehow represents the mobility of the particle that is
moving, under overdamped assumptions, in the periodic dif-
fusive system. In other words, it can be said that periodic dif-
fusion induces particle trapping phenomena (corresponding to
density maxima) in areas of low mobility, where the particle
moves with more difficulty. Since in reality the local diffusion
coefficient depends on both the temperature and the friction
coefficient, these trapping phenomena can be achieved both
with heterogeneous temperatures and with variable friction.
This is in accord with the work of Landauer [46], discussed in
the Introduction. From Fig. 1, we deduce that the evolution
of the diffusion phenomenon is faster for increasing values of
G0 and slower for increasing values of ε . This is consistent

with the expression of the effective diffusion constant given
in Eq. (25): Deff is indeed increasing with G0 and decreasing
with ε . We finally observe that the trapping phenomenon is
particularly amplified for large values of G0 and values of ε

close to 1.

IV. PERIODIC HETEROGENEOUS DIFFUSION WITH
ARBITRARY STOCHASTIC INTERPRETATION

We now study the effective diffusion coefficient Deff for the
stochastic differential equation with periodic heterogeneous
diffusion in the case of a general discretization parameter
0 ≤ α ≤ 1. This means that we need to study the properties
of Eq. (3). In particular, the standard notation for the propa-
gator that solves Eq. (3) is given by W = W (x, t;x0, t0). We
use the initial condition W (x, t0;x0, t0) = δ (x− x0) for defin-
ing this propagator. In the following calculations, we set the
initial time t0 = 0 and, in order to simplify the notation, use
only the first two arguments for W to denote it as W (x, t), as-
sociated with the initial condition W (x,0) = δ (x − x0). To
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further simplify the following development, we also introduce
the quantities

A (x)≡ 1
g2α(x)

, (31)

B(x)≡ 1
g2(1−α)(x)

, (32)

that are both periodic functions with period L. We therefore
analyse the differential problem

∂W (x, t)
∂ t

=
∂

∂x

{
1

A (x)
∂

∂x

[
1

B(x)
W (x, t)

]}
, (33)

W (x,0) = δ (x− x0), (34)

with the aim of finding the effective diffusion constant Deff in
terms of A (x) and B(x). If A and B were constant in space,
then the diffusion coefficient would be 1/(A B).

For this general problem, it is probably impossible to obtain
a closed form expression for the probability density W (x, t),
and for this reason we now use the definition of the effective
diffusion constant given by

Deff ≡
a

2T FP
, (35)

and will give a precise meaning of a and T FP for our problem.
In this case, in addition to the initial condition W (x,0) =

δ (x − x0), the Fokker-Planck equation is considered to be
equipped with two adsorbing conditions at the points x0 − a
and x0 + a. Hence, the interval between the boundary con-
ditions is symmetric with respect to the position of the ini-
tial condition; thus we have the supplementary conditions
W (x0−a, t) = 0 and W (x0+a, t) = 0. The particle is adsorbed
at these boundary points, and the density gradually tends to
zero in the inner range as time passes. The quantity T FP is
the mean first passage time, i.e., the average value of the time
it takes for the particle starting at x0 to arrive at one of the
two boundary points x0 −a or x0 +a. In other words, it is the
average time to wait for the particle to leave the considered
interval or, equivalently, the average time the particle needs to
travel the length a toward the left or toward the right, from the
initial position x0.

Since we are studying a periodic system, we choose the
length a equal to a multiple n of the period L. Then

W (x0 −nL, t) = 0, (36)
W (x0 +nL, t) = 0 . (37)

Next we define the survival probability

S(t) =
∫ x0+nL

x0−nL
W (x, t)dx, (38)

which is the probability for the particle to be in the interval
(x0 − nL,x0 + nL). The survival probability also represents
the probability that the first passage time TFP exceeds a given
time value t [42, 43]

Pr{TFP > t}= S(t) =
∫ x0+nL

x0−nL
W (x, t)dx. (39)

Note the first passage time TFP, defined as the time to reach
either extremity placed at x0 ±a = x0 ±nL, is a random vari-
able whose distribution law and density can be defined, as we
will see shortly below. Through these, we can then define the
mean first passage time, which is the key quantity in this pro-
cedure. Indeed, from Eq. (39) we have that

Pr{TFP ≤ t}= 1−Pr{TFP > t}= 1−
∫ x0+nL

x0−nL
W (x, t)dx

(40)

is the probability distribution of the first passage time. The
corresponding probability density is therefore given by

f (t) =
d
dt

Pr{TFP ≤ t}=−
∫ x0+nL

x0−nL

∂W (x, t)
∂ t

dx. (41)

We can calculate the mean first passage time as

T FP =
∫ +∞

0
t f (t)dt =−

∫ +∞

0
t
∫ x0+nL

x0−nL

∂W (x, t)
∂ t

dxdt

=−
∫ x0+nL

x0−nL

∫ +∞

0
t
∂W (x, t)

∂ t
dtdx, (42)

and an integration by parts on the internal time integral yields

T FP =
∫ x0+nL

x0−nL

∫ +∞

0
W (x, t)dtdx. (43)

By introducing

k(x) =
∫ +∞

0
W (x, t)dt, (44)

we obtain the final expression

T FP =
∫ x0+nL

x0−nL
k(x)dx. (45)

We now determine the function k(x) for our problem stated in
Eqs. (33), (34), (36) and (37). We start by integrating Eq. (33)
over the time from 0 to +∞, and we find

W (x,+∞)−W (x,0) =
d
dx

{
1

A (x)
d
dx

[
k(x)
B(x)

]}
. (46)

Here and in the sequel we use the differential operator d
dx in-

stead of ∂

∂x since the time variable is no longer present. Since
W (x,+∞)→ 0 and W (x,0)= δ (x−x0), as defined in Eq. (34),
we have an equation for k(x)

−δ (x− x0) =
d
dx

{
1

A (x)
d
dx

[
k(x)
B(x)

]}
, (47)

for which the boundary conditions in Eqs. (36) and (37) can
be rewritten as k(x0 −nL) = 0 and k(x0 +nL) = 0. The solu-
tion of this equation is relegated to the Appendix C, and the
final result can be written as

k(x) =
{ 1

2B(x)
∫ x

x0−nL A (ξ )dξ , x0 −nL ≤ x < x0,
1
2B(x)

∫ x0+nL
x A (ξ )dξ , x0 < x ≤ x0 +nL.

(48)
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Now, the mean first passage time can be explicitly calcu-
lated through Eq. (45), eventually yielding

T FP =
1
2

∫ x0

x0−nL
B(x)

∫ x

x0−nL
A (ξ )dξ dx

+
1
2

∫ x0+nL

x0

B(x)
∫ x0+nL

x
A (ξ )dξ dx, (49)

where, remember, A and B are periodic functions with pe-
riod L. To simplify the obtained expression for T FP, we apply
the substitution y = x+nL to the first integral, and we get

T FP =
1
2

∫ x0+nL

x0

B(y−nL)
∫ y−nL

x0−nL
A (ξ )dξ dy

+
1
2

∫ x0+nL

x0

B(x)
∫ x0+nL

x
A (ξ )dξ dx. (50)

Now, the periodicity of B yields

T FP =
1
2

∫ x0+nL

x0

B(x)
[∫ x−nL

x0−nL
A (ξ )dξ +

∫ x0+nL

x
A (ξ )dξ

]
dx,

(51)

and the periodicity of A leads to

T FP =
1
2

∫ x0+nL

x0

B(x)
[∫ x

x0

A (ξ )dξ +
∫ x0+nL

x
A (ξ )dξ

]
dx.

(52)

Therefore, the mean first passage time is simplified as

T FP =
1
2

∫ x0+nL

x0

B(x)dx
∫ x0+nL

x0

A (ξ )dξ

=
n2

2

∫ L

0
B(x)dx

∫ L

0
A (ξ )dξ . (53)

To conclude, we can use Eq. (35) with a = nL, and we obtain
the effective diffusion constant as

Deff =
(nL)2

2T FP
=

L2∫ L
0 B(x)dx

∫ L
0 A (ξ )dξ

=
1

⟨A ⟩⟨B⟩ . (54)

This is the key result of the present Section and, for the inter-
ested readers, we prove in the Appendix D that it is fully con-
sistent with a classical steady-state homogenization approach.
Our result can be explicitly rewritten in terms of the function
g(x) from the definitions of A and B

Deff =
1〈

1
g2α (x)

〉〈
1

g2(1−α)(x)

〉 , (55)

where the symbol ⟨·⟩ represents the mean value of the argu-
ment over a period. This result is consistent with the effec-
tive diffusion constant found in Section III for Wereide’s law
(α = 1/2), and for the well-known effective diffusion constant
for Fick’s law (α = 1). It also provides a new result for Chap-
man’s diffusion law (α = 0), which coincides with the result
concerning the Fick’s law. Indeed, Deff in Eq. (55) is invariant
under the substitution α ⇄ 1−α .

We can now obtain the explicit result for the exemplary
sinusoidal function g(x) given in Eq. (21). By considering
ν = 2α or ν = 2(1−α), we can calculate each of the average
values in Eq. (55) as〈

1
gν(x)

〉
=

1
L

∫ L

0
G−ν

0

(
1+ ε cos

2πx
L

)−ν

dx, (56)

where, as before, G0 > 0 and ε2 < 1. By the change of vari-
able ϑ = 2πx/L, we obtain〈

1
gν(x)

〉
=

1
2π

∫ 2π

0
G−ν

0 (1+ ε cosϑ)−ν dϑ . (57)

Now, we can introduce the parameters k and z defined in such
a way that kz = G0 and k

√
z2 −1 = G0ε . By straightforward

calculations we have k = G0
√

1− ε2 and z = 1/
√

1− ε2, and
therefore the average value assumes the form〈

1
gν(x)

〉
=

1
2π

∫ 2π

0
k−ν

(
z+
√

z2 −1cosϑ

)−ν

dϑ . (58)

We can remember the Legendre function representation by
means of the following Laplace integral [64, 65]

Pµ(z) =
1

2π

∫ 2π

0

(
z+
√

z2 −1cosϑ

)µ

dϑ , (59)

which can be used with both the argument z and the order µ

in the real domain, and we get

〈
1

gν(x)

〉
= k−ν P−ν(z) =

P−ν

(
1√

1−ε2

)
(

G0
√

1− ε2
)ν . (60)

Finally, the expression for the effective diffusion constant in
this sinusoidal case is given by the closed form expression

Deff =
G2

0(1− ε2)

P−2α

(
1√

1−ε2

)
P−2(1−α)

(
1√

1−ε2

) , (61)

which shows explicitly the dependence of Deff on the dis-
cretization parameter α ∈ [0,1] and the perturbation ampli-
tude ε (with ε2 < 1). Of course, Deff is an even function of
ε . We observe that Deff = G2

0 when ε = 0, as expected, since
Pµ(1) = 1∀µ . Moreover, considering that P−1(z) =P0(z) = 1,
and P−2(z) = P1(z) = z, we have the following particular re-
sults: (i) for α = 1/2, we get Deff = G2

0(1−ε2), in agreement
with Eqs. (20), (24), and (25); (ii) for α = 0 and α = 1, we
get the identical result Deff = G2

0(1− ε2)3/2.
To further show the relationship between Deff and α , we

can determine the approximation of the obtained result for
small values of ε . It means that we consider small periodic
perturbation of the function g(x), see Eq. (21). To this aim,
we evaluate the Legendre function for small values of ε , as



8

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

FIG. 2. Behavior of the effective diffusion constant with a periodic multiplicative noise described by g(x) in Eq. (21). The behavior of Deff /G2
0

given in Eq. (61) is represented versus ε in the left panel and versus α in the right panel.

follows

Pµ(z) =
zµ

2π

∫ 2π

0

(
1+

√
z2 −1

z
cosϑ

)µ

dϑ

=
zµ

2π

∫ 2π

0

(
1+

√
z2 −1

z
µ cosϑ

+
1
2

µ(µ −1)
z2 −1

z2 cos2
ϑ + ...

)
dϑ , (62)

where we applied the Newton binomial theorem. Performing
the integration and recalling that z = 1/

√
1− ε2, we get the

second-order expansion

Pµ

(
1√

1− ε2

)
= 1+

1
4

µ(µ +1)ε2 + ..., (63)

which is valid for small values of ε . We can use this approxi-
mation in Eq. (61), and we obtain

Deff = G2
0

[
1− 1

2
(
3−4α +4α

2)
ε

2 + ...

]
, (64)

which shows even more explicitly the dependence of the dif-
fusion constant on the parameter α , also for small perturba-
tions of g(x). Importantly, we observe that Deff ≤ G2

0 since
3−4α +4α2 is positive for any value of α . From a physical
point of view, this means that periodically perturbing a diffu-
sion coefficient means decreasing its effective value. We also
remark that the polynomial 3− 4α + 4α2 is invariant to the
substitution α ⇄ 1−α , as expected, since the approximated
relation given in Eq. (64) has been derived from the general
solution stated in Eq. (55).

A numerical implementation of Eq. (61) is presented in
Fig. 2, where we represent Deff /G2

0 versus ε and α . In the
left panel we find the effective diffusion constant as a func-
tion of ε and parameterized by the discretization coefficient
α . Reciprocally, in the right panel we find the effective dif-
fusion constant as a function of α and parameterized by the

amplitude ε of the periodic perturbation. The ranges of vari-
ation of these parameters are clearly specified within the pan-
els. In the left panel we see that the effective diffusion coeffi-
cient decreases monotonically with ε and reaches zero when
ε = 1. This decrease is explained by the fact that as ε in-
creases, areas with weak local diffusion appear and thus the
particle moves less easily, thus reducing the effective diffu-
sion constant. In the limit of ε = 1, the local diffusion be-
comes zero at certain points that the particle will be prevented
from passing through. From a physical point of view, the first-
order stochastic differential equation can be thought of as cor-
responding to overdamped motion, and so the absence of iner-
tial effects helps even more to understand this cancellation of
diffusion. Regarding the effects of the discretization parame-
ter α , we observe that when it varies between 1/2 and 1, the
effective diffusion constant is monotonically decreasing. It is
easily seen that this result is consistent with the approximate
formula given in Eq. (64). This point will be further com-
mented in the next Section. In the right panel we can come to
the same conclusions, and we also see the graphical represen-
tation of the symmetry induced by the invariance of the result
under the substitution α ⇄ 1−α . This finally allows us to
observe that for any fixed value of ε , the maximum value of
effective diffusion constant is obtained for α = 1/2, that is, in
the stochastic Fisk-Stratonovich interpretation (or Wereide’s
diffusion law).

V. GENERALIZED LIFSON-JACKSON THEOREM

The result obtained in the previous Section is closely related
to the Lifson-Jackson theorem concerning the effective diffu-
sion constant for a particle embedded in a periodic potential
energy [44]. We briefly summarize the result of this theorem
in order to develop a generalization to the case of heteroge-
neous diffusion superimposed on the effects of the potential
energy.
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For a particle that is experiencing an overdamped motion
under the effect of any potential energy U(x), we can write
the first order Langevin’s equation

dx
dt

=− 1
mγ

dU
dx

+

√
kBT
mγ

ξ (t), (65)

where m is the particle mass, γ is its friction coefficient, T is
the temperature, and kB is Boltzmann’s constant. For now, the

value of
√

kBT
mγ

is constant, and then we have a standard addi-
tive noise. The associated Fokker-Planck (or Smoluchovski)
equation can be written as

∂W
∂ t

=
1

mγ

∂

∂x

(
∂U
∂x

W
)
+

kBT
mγ

∂ 2W
∂x2 , (66)

which is equivalent to the more useful form

∂W
∂ t

=
kBT
mγ

∂

∂x

[
e−

U
kBT

∂

∂x

(
e+

U
kBT W

)]
. (67)

Incidentally, this second form is well adapted to recognize
that the asymptotic solution is correctly given by the Gibbs-

Boltzmann distribution W (x,+∞) = e−
U

kBT /Z, where the par-
tition function Z it is used to normalize the probability density.
For this problem, with periodic potential energy and homo-
geneous diffusion constant, the effective diffusion constant is
given by

Deff =

kBT
mγ〈

e−
U(x)
kBT

〉〈
e+

U(x)
kBT

〉 , (68)

where kBT/mγ is the diffusion constant of the homogeneous
system with U = 0, see Eq. (66).

In their original paper [44], Lifson and Jackson proved
their theorem through a method proposed by Pontryagin, An-
dronow and Witt that provides a differential equation for the
average time taken by a particle moving under the combined
effect of thermal agitation and a stationary force field to reach
a given boundary [66]. Given the elegance and application im-
portance of this theorem, many different demonstrations have
been presented in the literature. For instance, the concept of
mean first passage time has been used in Refs.[58, 67, 68],
a thorough technique based on an eigenfunction expansion
applied to the Smoluchovski equation has been proposed in
Ref.[69], and a clever demonstration based on a few physical
arguments has been developed in Ref.[70]. In all these devel-
opments, the noise is always additive and therefore there is no
influence of the discretization parameter α .

Here, we propose a generalization taking into account a het-
erogeneous diffusion generated by a spatially varying friction
coefficient γ(x), and an arbitrary discretization coefficient α .
In this situation, the Langevin equation assumes the form

dx
dt

= h(x)+g(x)ξ (t), (69)

where h(x) and g(x) are defined as follows

h(x) =− 1
mγ(x)

dU(x)
dx

, (70)

g(x) =

√
kBT

mγ(x)
, (71)

and where U(x) and γ(x) are periodic with period L. It is
easily seen that the heterogeneous diffusion is induced by the
variable periodic friction coefficient.

The probability density W (x, t) is the solution of the
Fokker-Planck equation [40–43, 71–73]

∂W
∂ t

=− ∂

∂x

[(
h+2αg

∂g
∂x

)
W
]
+

∂ 2

∂x2

(
g2W

)
, (72)

which can be rewritten as

∂W
∂ t

=
∂

∂x

[
g2α e−

U
kBT

∂

∂x

(
g2(1−α)e+

U
kBT W

)]
. (73)

This is a crucial result for the continuation of the discussion.
The equivalence between these two forms can be proved by
performing the derivatives and by recalling the definitions of
h(x) and g(x) in Eqs.(70) and (71). We remark that, if g is
constant (i.e., γ is constant), we retrieve Eq. (67), and if U = 0,
we retrieve Eq. (3). Now, this new form of the Fokker-Planck
equation can be compared with Eq. (33) provided that we
introduce the new variable coefficients

A (x) =
1

g2α(x)e−
U(x)
kBT

, (74)

B(x) =
1

g2(1−α)(x)e+
U(x)
kBT

, (75)

and therefore we can directly write down the expression for
the effective diffusion constant

Deff =
1〈

e
−U(x)

kBT

g2(1−α)(x)

〉〈
e
+

U(x)
kBT

g2α (x)

〉

=
1〈[

mγ(x)
kBT

]1−α

e−
U(x)
kBT

〉〈[
mγ(x)
kBT

]α

e+
U(x)
kBT

〉 , (76)

which generalizes the Lifson-Jackson theorem stated in Eq.
(68). This result takes into consideration the combined ef-
fects of the periodic potential energy and the periodic hetero-
geneous diffusion, introduced through the variable friction co-
efficient. Of course, this result still depends on α , but we have
lost the symmetry induced by the substitution α ⇄ 1−α .

An interesting general property of this result can be derived
by means of the Cauchy-Schwartz inequality[∫ L

0
f (x)ℓ(x)dx

]2

≤
∫ L

0
f 2(x)dx

∫ L

0
ℓ2(x)dx, (77)
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FIG. 3. Behavior of the effective diffusion constant with a periodic multiplicative noise described by g(x) in Eq. (79) and by a periodic
potential described by U(x) in Eq. (80). The behavior of Deff /G2

0 given in Eq. (76) is represented versus ε and parameterized by the energy
ratio E0/(kBT ) and the discretization coefficient α .

which can be directly applied to the denominator of Eq. (76).
Straightforward calculations deliver

Deff ≤
1〈
1
g

〉2 , (78)

which means that the diffusion coefficient, regardless of po-
tential energy and stochastic interpretation, is always smaller
or equal than that corresponding to Wereide’s diffusion (Fisk-
Stratonovich interpretation) without drift. This can be easily
seen in the right panel of Fig. 2, where each curve shows a
maximum point for α = 1/2. Moreover, if g(x) is constant,
i.e. γ(x) is constant, we obtain that Deff ≤ kBT/(mγ) for any
potential energy U(x). It means that any shape of the peri-
odic potential energy can only reduce the effective diffusion
constant of the system with respect to the case with U = 0.

We represent some numerical results concerning the effec-
tive diffusion constant given in Eq.(76). To do this, we choose
the following profiles of heterogeneous diffusion and periodic

potential

g(x) = G0

(
1+ ε cos

2πx
L

)
, (79)

U(x) = E0 cos
(

2πx
L

+ϕ

)
, (80)

where ϕ represents a phase shift between the two sinusoidal
shapes. Experimental systems where the phase shift between
drift and noise is achievable can be superlattices where the
effect of friction (noise) is decoupled from the applied fields
(drift). A particular case is represented by Moiré superlattices
whose mechanical friction properties are well-known [74].
Obviously, the potential energy is defined except for an arbi-
trary additive constant that has no effect on the value of Deff ,
as is easy to see from Eq. (76). In this case, it is not pos-
sible to calculate in closed form the effective constant Deff ,
and the following results are therefore obtained with standard
procedures for numerical integration. In Fig. 3, we show the
behavior of Deff for four different values of the phase shift
ϕ = 0,π/3,2π/3,π , in order to better explore the response
of the system. In each plot, we have reported five groups of
curves, identified by different colours, corresponding to dif-
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FIG. 4. Behavior of the effective diffusion constant with a periodic multiplicative noise described by g(x) in Eq. (79) and by a periodic potential
described by U(x) in Eq. (80). The behavior of Deff /G2

0 given in Eq. (76) is represented versus ϕ and parameterized by ε = 0.1,0.2,0.3, ...,0.9
(the thickest line corresponds to ε = 0.9). We adopted E0/(kBT ) = 5 and the five different values of the discretization coefficient α .

ferent values of the energy ratio E0/(kBT ) = 0,1/2,1,3/2,2.
In each of these groups, the four curves of the same color cor-
respond to different values of α = 1/2,2/3,5/6,1. To iden-
tify these curves, we remark that the topmost curve in each
group always corresponds to the value α = 1/2, and the bot-

tom curve always corresponds to the value α = 1. We can
observe the following general trends that explain the dynam-
ics of the system. First, in contrast to the case without drift, as
ε increases, we observe in some curves an initial increase fol-
lowed by a decrease in the effective diffusion constant. This
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is due to the interaction between potential energy and het-
erogeneous diffusion. When ε = 1, we observe that in each
case such an effective diffusion is zero because the particle
cannot go through the points where the local diffusion coef-
ficient is zero. As before, this point can be interpreted with
an overdamped particle motion, where all inertial effects are
completely neglected. We also observe that the energy ra-
tio E0/(kBT ) strongly influences the evolution of the effec-
tive diffusion constant. Of course, when E0 = 0 we get the
same results as in Fig. 2 (left panel), which correspond to
the blue groups of curves in Fig. 3. In fact, in this case the
drift is not present and only the heterogeneous diffusion acts
on the system. Increasing the value of E0 with respect to the
thermal energy kBT shows a sharp decrease in effective dif-
fusion justified by the fact that the particle in this case must
cross an energy barrier of increasing amplitude. The values of
Deff /G2

0 for ε = 0 correspond the the original Lifson-Jackson
theorem stated in Eq. (68), and the observed decreasing trend
with the increasing ratio E0/(kBT ) corresponds to the previ-
ous analysis based on the Cauchy-Schwartz inequality. The
behavior induced by the discretization coefficient α is analo-
gous to the one already observed in the case without drift, and
can be summarized by saying that when alpha increases from
1/2 to 1 the coefficient Deff is monotonically decreasing, in
agreement with the inequality given in Eq. (78). In addition,
one is reminded of the symmetry of the response described
by the invariance to the interchange α ⇄ 1−α . The analysis
of the effects of the phase shift ϕ is more intricate because
it represents the interaction between the profiles of heteroge-
neous diffusion and periodic potential. We can simply observe
that the curvature of the response in the (Deff /G2

0,ε) plane de-
creases as the phase shift increases from 0 to π . In fact, the
maximum value of the effective diffusion constant gradually
decreases as ϕ increases between 0 and π . This behavior is
reproduced periodically for values of the phase shift outside
this range. A better explanation of the behavior of the diffu-
sion constant versus the phase shift between drift and diffu-
sion can be found in Fig. 4. Here, the behavior of Deff /G2

0,
given in Eq. (76), is represented versus ϕ and parameterized
by ε = 0.1,0.2,0.3, ...,0.9 (the thickest line corresponds to
ε = 0.9). We adopted E0/(kBT ) = 5, and the five different
values of the discretization coefficient α . The particular case
with α = 1/2, corresponding to the Fisk-Stratonovich inte-
gration rule, can be interpreted as follows. To begin, we can
state that overcoming an energetic barrier is easier if the max-
imum of the noise occurs where the external force is largest.
In this case, the noise would help to bring the particle over
the energetic barrier. When α = 1/2, we see that the effective
diffusion constant is larger if the phase shift is π/2 or 3π/2.
It is easily seen that at these two points a maximum of g(x)
always corresponds to the point at which there is a maximum
of force. This explains the behavior of the graphs for α = 1/2.
This interpretation is perfectly consistent with the findings of
Landauer [46], and Breoni et al. [47]. It is then seen that the
behavior is opposite in Itô-type and anti-Itô-type regions. In
fact, in the Itô-type region we see a maximum of diffusivity
for ϕ = π , while in the anti-Itô-type region we see a mini-
mum of diffusivity for ϕ = π . The observation of the five

panels in Fig. 4 shows a continuity in behavior with respect
to α , described by the maximum of the Itô trend and the min-
imum of the anti-Itô trend, which are split into two maxima
when α tends to 1/2. However, the behavior away from Fisk-
Stratonovich type region remains difficult to be interpreted
physically because the stochastic integration does not follow
the conventional rules of mathematical analysis.

VI. CONCLUSIONS

In this work we have addressed the calculation of the ef-
fective diffusion constant for stochastic processes described
by Fokker-Planck equations for different discretizations of
the underlying Langevin equation. The discretization pa-
rameter 0 ≤ α ≤ 1 enters the Fokker-Planck equation as a
simple parameter. We have determined the effective diffu-
sion constant specifically for heterogeneous diffusions in the
presence of a periodically modulated noise. First, we ad-
dressed such stochastic processes in the Fisk-Stratonovich in-
terpretation by two different approaches. In this case with
α = 1/2, the Fokker-Planck equation is typically referred to
as Wereide’s equation [48], and it is different from the more
classical Fick’s law [33, 49]. It is interesting to remark that the
Fisk-Stratonovich interpretation [27, 28], which is the most
used at least in physical applications, leads to a diffusion equa-
tion not corresponding to the widely adopted Fick’s law. Any-
way, our approach provided the result Deff = ⟨1/g⟩−2 for the
effective diffusion constant. If we now consider the Hänggi-
Klimontovich interpretation of the stochastic calculus with
α = 1 [20, 30], in the associated Fokker-Planck equation we
immediately recognize the Fick’s law [49]. In this more clas-
sical case, the current probability density J =−g2 ∂W

∂x is given
by the heterogeneous diffusion constant g2 times the gradi-
ent of the density (with opposite sign), as typically occurs
in the transport of heat, mass, or electrical charge [33, 75].
For this Fick’s law, the effective diffusion constant is given
by Deff =

〈
1/g2

〉−1, as can be shown by different homog-
enization techniques applied to one-dimensional or stratified
media [59–63]. Therefore, the effective behavior of Fick’s
law is different from that of Wereide’s law. The value of α

is therefore of central importance in determining the effec-
tive diffusion constant. Moreover, to the authors’ knowledge,
no homogenization law was known for Chapman’s diffusion,
corresponding to α = 0 (Itô stochastic interpretation [29]).
For these reasons, we have discussed the case of general α ,
which includes the three previous particular situations. The
problem has been approached by determining the mean first
passage time for a problem with adsorbing boundary condi-
tions, which are symmetric with respect to the initial condi-
tion. In the Appendix D, we have also provided an equiva-
lent demonstration based on standard homogenization tech-
niques. We obtained an α-dependent result for the diffusion
constant, namely Deff =

〈
1/g2α

〉−1 〈1/g2−2α
〉−1. This ex-

pression is invariant under the substitution α ⇄ 1−α , and
therefore yields the same result for Fick’s and Chapman’s dif-
fusion law. Moreover, Wereides’s diffusion law always gives
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the highest value of the diffusion constant. As an illustration
of our results, we have applied them to a simple sinusoidal
case, which can be treated in analytical detail. Interesting, the
effective diffusion constant in this case can be written in terms
of Legendre functions. Finally, we have formulated a gener-
alization of the Lifson-Jackson theorem for the case of com-
bined periodic potentials and diffusion coefficients. We dis-
cussed an example where potential energy and heterogeneous
diffusion are both sinusoidal, with a variable phase shift. In
this case, the calculation cannot be performed analytically and
therefore we applied classical numerical techniques. The re-
sults have been discussed in terms of physical parameters de-
scribing the system. Note in particular the importance of the
discretization parameter α when studying the dependence of
Deff on the shift angle ϕ . An interesting perspective of our
work concerns the generalization of the obtained results to the
case of a biased or tilted periodic potential energy (or wash-
board potential). It means that in addition to the periodic
potential, one could consider a linear term representing a su-
perimposed constant external force. In this case, we can define
an average drift velocity and an effective diffusion constant.
While this problem has been largely studied for homogeneous
diffusion [76–81], the case with heterogeneous diffusion still
needs to be investigated in more detail.

Appendix A: Alternative derivation of the diffusion constant in
the Fisk-Stratonovich interpretation

We propose here an alternative derivation of Eq. (20). Since

∂

∂x
exp
[
−D2(x)

4t

]
=−D(x)D ′(x)

2t
exp
[
−D2(x)

4t

]
, (A1)

we can write the effective diffusion constant defined in Eq.
(16) as

D = lim
t→∞

∫ +∞

−∞

− x2

D(x)

∂

∂x exp
[
−D2(x)

4t

]
√

4πt

dx. (A2)

Now, integrating by parts we easily obtain

D = lim
t→∞

∫ +∞

−∞

∂

∂x

(
x2

D(x)

) exp
[
−D2(x)

4t

]
√

4πt
dx

= lim
t→∞

∫ +∞

−∞

2xD(x)− x2D ′(x)
D2(x)

exp
[
−D2(x)

4t

]
√

4πt
dx. (A3)

First of all, we have to prove that there are no singularities for
x = 0, even if D(x) when x = 0. Since D(x) =C0x+ p(x), see
Eq. (14), the fraction appearing in Eq. (A3) can be rewritten
as

2xD(x)− x2D ′(x)
D2(x)

=
C0 +2 p(x)

x − p′(x)

C2
0 +2C0

p(x)
x + p2(x)

x2

. (A4)

Here, the function p(x) is given in Eq. (15) and, therefore,
we obtain

p(x)
x

=
+∞

∑
k=−∞
k ̸=0

CkL
2πik

exp
( 2πikx

L

)
−1

x
. (A5)

We can use the well-known property stating that (eh − 1)/h
approaches 1 when h approaches 0. So doing, we get the lim-
iting behavior p(x)/x → ∑

+∞

k=−∞,k ̸=0 Ck = 1/g(0)−C0, when
x → 0. By using this result in Eq. (A4), we finally obtain the
limiting behavior

lim
x→0

2xD(x)− x2D ′(x)
D2(x)

= g(0), (A6)

which excludes any possible singularity in the same fraction.
As before, when the time t is large, the exponential in Eq.
(A3) is increasingly flat and close to one, and the area for
large values of x becomes more and more important. Thus,
being p(x) bounded and periodic, we can neglect p(x)/x and
p2(x)/x2 in Eq. (A4) for large time, and we get

D = lim
t→∞

∫ +∞

−∞

C0 − p′(x)
C2

0

exp
(
−C2

0 x2

4t

)
√

4πt
dx.

Recalling the Fourier development for p(x) and applying the
integral formula∫ +∞

−∞

e−ax2
eibxdx =

√
π

a
e−

1
4

b2
a , (A7)

we easily achieve the same result as obtained in Eq. (20). This
new verification has the advantage of having used the integral
in Eq. (A7), which is simpler than Eq. (19). However, the
function that is integrated to find the diffusion coefficient must
be worked out properly, as seen above, in order to apply this
simplification.

Appendix B: Explicit calculation of the quantity D(x) for the
sinusoidal profile

We calculate here the closed form expression for the quan-
tity D(x), starting from Eq. (28) of the main text, for the sinu-
soidal heterogeneous diffusion. We must then sum the series
contained in that equation. To begin, we define z = 2πx/L,
and we observe that

+∞

∑
k=−∞
k ̸=0

β |k|

k
eikz =

+∞

∑
k=1

(
βeiz

)k

k
−

+∞

∑
k=1

(
βe−iz

)k

k

= Fβ (z)−Fβ (−z), (B1)

where we introduced Fβ (z) = ∑
+∞

k=1

(
βeiz

)k
/k. In order to

calculate a closed form expression for Fβ (z), we start by ob-
serving that

+∞

∑
k=1

(
βeiz)k

=
βeiz

1−βeiz =
β (cosz−β )+ iβ sinz

1−2β cosz+β 2 , (B2)



14

where the geometric series is always convergent since β 2 < 1.
If we integrate term by term the series in Eq. (B2) we get∫ s

0

+∞

∑
k=1

(
βeiz)k

dz =
+∞

∑
k=1

β k

ik

(
eiks −1

)
, (B3)

and therefore we can write

Fβ (s) =
+∞

∑
k=1

β k

k
+ iR(s)−I (s)

= ln
1

1−β
+ iR(s)−I (s), (B4)

where we used the classical logarithmic series and we defined
the real and imaginary parts of the integral of Eq. (B2), as
follows

R(s) =
∫ s

0

β (cosz−β )

1−2β cosz+β 2 dz, (B5)

I (s) =
∫ s

0

β sinz
1−2β cosz+β 2 dz . (B6)

The first integral can be tackled through the substitution t =
tan(z/2), which leads to the new form

R(s) =
2β

(1+β )2

∫ tan s
2

0

1− t2 −β (1+ t2)[
t2 +

(
1−β

1+β

)2
]
(t2 +1)

dt. (B7)

After partial fraction decomposition, we obtain

R(s) =
∫ tan s

2

0

 1−β

1+β

t2 +
(

1−β

1+β

)2 − 1
t2 +1

dt, (B8)

and the final result is

R(s) = arctan
(

1+β

1−β
tan

s
2

)
− arctan

(
tan

s
2

)
. (B9)

The second integral turns elementary with the substitution t =
cosz, and the result follows

I (s) =
1
2

ln
1−2β coss+β 2

1−2β +β 2 . (B10)

Summing up, thanks to Eq. (B4), we can obtain the closed
form for the function Fβ (s)

Fβ (s) = ln
1

1−β
+ iarctan

(
1+β

1−β
tan

s
2

)
− iarctan

(
tan

s
2

)
− 1

2
ln

1−2β coss+β 2

1−2β +β 2

=
1
2

ln
1

1−2β coss+β 2

+ i
[

arctan
(

1+β

1−β
tan

s
2

)
− arctan

(
tan

s
2

)]
.

(B11)

Incidentally, by separating the real and imaginary parts of the
series defining the function Fβ (s), we obtain these two results

+∞

∑
k=1

β k

k
cos(ks) =

1
2

ln
1

1−2β coss+β 2 , (B12)

+∞

∑
k=1

β k

k
sin(ks) = arctan

(
1+β

1−β
tan

s
2

)
− arctan

(
tan

s
2

)
,

(B13)

which can be also proved with different standard techniques
to sum complex series. Coming back to the heterogeneous
sinusoidal diffusion, we can obtain the function D(x) through
Eq. (28)

D(x) =
1

G0
√

1− ε2

{
x+

L
2πi

[
Fβ

(
2πx

L

)
−Fβ

(
−2πx

L

)]}
.

(B14)

By substituting Eq. (B11) in Eq. (B14) and by considering

the relationship 1+β

1−β
=
√

1−ε

1+ε
, we get the final result

D(x) =
1

G0
√

1− ε2

{
x+

L
π

[
arctan

(√
1− ε

1+ ε
tan

πx
L

)
−arctan

(
tan

πx
L

)]}
, (B15)

which proves Eq. (29) of the main text. In making the above
substitution, we observed that the real part of Fβ is an even
function while the imaginary part is an odd function.

Appendix C: Solution of the differential equation for k(x)

We describe here the solution of the differential equation
for the quantity k(x), defined in Eq. (47). To solve Eq. (47),
we first consider the left region x0 −nL ≤ x < x0, and here we
have

0 =
d
dx

{
1

A (x)
d
dx

[
k(x)
B(x)

]}
, (C1)

from which we can take

1
A (x)

d
dx

[
k(x)
B(x)

]
= cL, (C2)

where cL is a constant (L means left). By integration we obtain∫ x

x0−nL

d
dξ

[
k(ξ )
B(ξ )

]
dξ = cL

∫ x

x0−nL
A (ξ )dξ , (C3)

or equivalently

k(x)
B(x)

− k(x0 −nL)
B(x0 −nL)

= cL

∫ x

x0−nL
A (ξ )dξ . (C4)

Since k(x0 −nL) = 0, we get

k(x) = cLB(x)
∫ x

x0−nL
A (ξ )dξ , (C5)
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in the left region x0 −nL ≤ x < x0.
We consider now the right region x0 < x ≤ x0 +nL, and we

have from Eq. (47) the equation

0 =
d
dx

{
1

A (x)
d
dx

[
k(x)
B(x)

]}
, (C6)

from which we find

1
A (x)

d
dx

[
k(x)
B(x)

]
= cR, (C7)

where cR is another constant (R means right). Again by inte-
gration we get

∫ x0+nL

x

d
dξ

[
k(ξ )
B(ξ )

]
dξ = cR

∫ x0+nL

x
A (ξ )dξ , (C8)

or equivalently

k(x0 +nL)
B(x0 +nL)

− k(x)
B(x)

= cR

∫ x0+nL

x
A (ξ )dξ . (C9)

Since k(x0 +nL) = 0, we get

k(x) =−cRB(x)
∫ x0+nL

x
A (ξ )dξ , (C10)

in the right region x0 < x ≤ x0 +nL.
We search now for the connection conditions for the two

solutions in Eqs. (C5) and (C10). To this end, we integrate
Eq. (47) in a small symmetric interval of radius ε around x0,
namely

−
∫ x0+ε

x0−ε

δ (x− x0)dx =
∫ x0+ε

x0−ε

d
dx

{
1

A (x)
d
dx

[
k(x)
B(x)

]}
dx,

(C11)

which yields

−1 =
1

A (x)
d
dx

[
k(x)
B(x)

]∣∣∣∣x0+ε

x0−ε

= cR − cL. (C12)

Moreover, we remember that W (x, t) is a continuous func-
tion of x for x ∈ (x0 − nL,x0 + nL). In particular, W (x−0 , t) =
W (x+0 , t), and since k(x) =

∫ +∞

0 W (x, t)dt, we deduce that
k(x−0 ) = k(x+0 ). Given that the function A (x) is periodic,
Eqs. (C5) and (C10), combined with k(x−0 ) = k(x+0 ), re-
sult in cL = −cR. Hence, the system composed by the two
connection conditions −1 = cR − cL and cL = −cR delivers
cL =−cR = 1/2, and the final solution for k(x) is

k(x) =
{ 1

2B(x)
∫ x

x0−nL A (ξ )dξ , x0 −nL ≤ x < x0,
1
2B(x)

∫ x0+nL
x A (ξ )dξ , x0 < x ≤ x0 +nL,

(C13)

which corresponds to Eq.(48).

Appendix D: Homogenization approach

We consider Eq. (33), and we prove that the obtained effec-
tive diffusion constant in Eq. (54) is coherent with the follow-
ing ad-hoc homogenization procedure. In particular, we take
into account the stationary version of Eq. (33), which reads

0 =
d
dx

{
1

A (x)
d
dx

[
1

B(x)
W (x)

]}
, (D1)

and we introduce the two boundary conditions W (0) =Wa and
W (nL) =Wb, with x ∈ (0,nL). As before, we use the differ-
ential operator d

dx instead of ∂

∂x since the time variable is no
longer present. The steady-state condition involves a constant
flow J, given by

1
A (x)

d
dx

[
1

B(x)
W (x)

]
=−J. (D2)

When A (x) and B(x) are constant functions, we find that
J =− 1

A B
dW (x)

dx , and therefore the effective diffusion constant
can be written as

Deff =
1

A B
=− JnL

Wb −Wa
, (D3)

since in this case the gradient is obtained as dW (x)
dx = (Wb −

Wa)/(nL).
In the general case with A (x) and B(x) being periodic

functions, we can integrate Eq. (D2), eventually obtaining

W (x)
B(x)

− W (0)
B(0)

=−J
∫ x

0
A (ξ )dξ , (D4)

or equivalently

W (x) = B(x)
[

W (0)
B(0)

− J
∫ x

0
A (ξ )dξ

]
. (D5)

This is the behavior of the density over the considered interval,
that is for x∈ (0,nL). From this expression, we can also obtain
a similar result for W (x+L), which assumes the form

W (x+L) = B(x+L)
[

W (0)
B(0)

− J
∫ x+L

0
A (ξ )dξ

]
. (D6)

By using the periodicity of B(x), we obtain

W (x+L)−W (x) =−JB(x)
∫ x+L

x
A (ξ )dξ , (D7)

and by using the periodicity of A (x), we can write

W (x+L)−W (x) =−JB(x)
∫ L

0
A (ξ )dξ . (D8)

It means that the function W (x+L)−W (x) is periodic and it
is proportional to B(x). We can calculate the average value
over one period of the function W (x+L)−W (x) and we get

⟨W (x+L)−W (x)⟩=− J
L

∫ L

0
B(η)dη

∫ L

0
A (ξ )dξ . (D9)
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Similarly to the approach discussed for finding Eq. (D3), we
can assume that

Deff =− JL
⟨W (x+L)−W (x)⟩

. (D10)

This relationship corresponds to assuming that Wb −Wa =
N ⟨W (x+L)−W (x)⟩, as can be seen immediately from Eq.
(D3). This turns out to be quite reasonable when we consider
that the density jump between 0 and nL is given by the sum
of the density jumps over all the periods composing the to-
tal interval and that the function W (x+L)−W (x) is periodic.
Anyway, by combining Eqs. (D9) and (D10), we immediately
obtain the result

Deff =
L2∫ L

0 B(η)dη
∫ L

0 A (ξ )dξ
=

1
⟨A ⟩⟨B⟩ , (D11)

which is consistent with Eq. (54).
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