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Abstract: This paper presents a multi-agent simulation implemented in Python, using fuzzy logic
to explore collective battery recharge management for autonomous industrial vehicles (AIVs) in an
airport environment. This approach offers adaptability and resilience through a distributed system,
taking into account variations in AIV battery capacity. Simulation scenarios were based on a proposed
charging/discharging model for an AIV battery. The results highlight the effectiveness of adaptive
fuzzy multi-agent models in optimizing charging strategies, improving operational efficiency, and
reducing energy consumption. Dynamic factors such as workload variations and AIV-infrastructure
communication are taken into account in the form of heuristics, underlining the importance of flexible
and collaborative approaches in autonomous systems. In particular, an infrastructure capable of
optimizing charging according to energy tariffs can significantly reduce consumption during peak
hours, highlighting the importance of such strategies in dynamic environments. An optimal control
model is established to improve the energy consumption of each AIV during its mission. The energy
consumption depends on the speed, as demonstrated via numerical simulations using realistic data.
The speed profile of each AIV is adjusted according to the various constraints within an airport.
Overall, the study highlights the potential of incorporating adaptive fuzzy multi-agent models for
AIV energy management to boost efficiency and sustainability in industrial operations.

Keywords: cooperative mobile robots; intelligent system architectures; fuzzy energy management;
fuzzy multi-agent simulation; optimization control problem; airport 4.0

1. Introduction

Industry 4.0 comes with a high degree of digitalization for industrial processes, as well
as a significant increase in communication and cooperation between the machines that make
it up. This is the case with Autonomous Industrial Vehicles (AIVs) and other cooperative
mobile robots that are proliferating in factories or airports and whose intelligence and
autonomy are increasing.

The deployment of AIV fleets raises several issues, all of which are related to their ac-
tual level of autonomy: acceptance by employees, vehicle localization, traffic flow, collision
detection, and vehicle perception of changing environments. Simulation allows us to take
into account the different constraints and requirements formulated by manufacturers and
future users of these AIVs.

Before starting to test AIV traffic scenarios on a large scale in sometimes complex
industrial or airport situations, it is essential to simulate these scenarios [1]. One significant
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benefit of running simulations is that it provides usable results without the need to apply a
scaling factor.

The main benefits of simulating AIV operations are extensively presented by Tsolakis
et al. [2]: simulation reduces the development time and cost of an AIV, minimizes the
potential operational risks associated with the AIV, enables the feasibility of different AIVs
scenarios to be assessed at a strategic or operational level, provides a rapid understanding of
AIV operations (under conditions of limited data availability), and identifies improvements
in facility layout configurations hosting AIVs.

Simulation also provides flexibility in terms of deployment and redeployment, and
it enables us to study the sharing of responsibility between a central server and robots
(local/global balance) for the various operational decisions. Another advantage of simula-
tions is to introduce humans into scenarios in order to convince people, before the actual
deployment of autonomous mobile robots, of the safe nature of the coexistence and possible
interactions between these future mobile robots and human operators in industry [3].

Agent-based approaches are often proposed for the simulation of autonomous vehi-
cles [4], including path planning in a large-scale contexts [5], or optimal task allocation
with collision and obstacle avoidance [6].

In this article, we focus on collaborative strategies, as we believe the autonomy of each
AIV can be significantly enhanced through collaboration with other AIVs and infrastructure.
By sharing data, drivers can access information beyond their immediate perception, such
as whether charging stations are in use, whether a task can be completed before going to
recharge because there is a wait at the charging stations, etc. Collaboration and collective
strategies can lead to more efficient and better coordinated behavior.

In order to achieve an efficient allocation of energy during each mission of an AIV, an
algorithm based on distance is proposed, utilizing fundamental principles of acceleration
and deceleration distances. This method systematically determines the optimal control
strategy for minimizing the AIV energy consumption during its mission, based on the
distance traveled. From this optimal control strategy, a speed profile is generated by
connecting the maximum speeds at each node. Through the use of Pontryagin’s Maximum
Principle (PMP) [7], these maximum speed values are obtained.

Three strategies are assessed using this technique, each generating an energy con-
sumption profile. The decision of which strategy to use during an AIV mission is made
using a fuzzy logic model, which depends on two inputs: waiting baggage and traffic. This
structured approach allows for more accurate and efficient path planning and control of
the mobile robot, ensuring optimal performance while adhering to physical constraints.

In this article, we begin by presenting a state-of-the-art review of fuzzy agent-based simu-
lations, energy control, and optimization models. In Section 3, we review the various elements
of the fuzzy agent model before introducing our fuzzy decision model for battery recharging
in Section 4. In Section 5, we present the case study and describe our simulation framework
used to test different scenarios for the autonomous management of battery recharging for
AIV. We conduct a comparative analysis between threshold-based approach and fuzzy logic
models with three initial scenarios in Section 6. Section 7 presents the results of three heuristics
simulated in three scenarios, incorporating more realistic constraints of an airport, such as
the flow of baggage arrivals. To achieve a more realistic simulation framework, we further
refine the AIV energy model. Therefore, in Section 8, we propose a methodology with an
optimization model to calculate the energy cost for each AIV based on their speed throughout
their mission in our case study. Section 9 describes in detail an algorithm for the energy
consumed by each strategy and a fuzzy logic model to select the strategy adapted for each
AIV. The different results are presented and discussed in Section 10. Finally, we conclude by
highlighting the potential of incorporating adaptive fuzzy multi-agent models for AIV energy
management to enhance efficiency and sustainability in industrial operations. We also present
various perspectives for future work.
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2. State of the Art
2.1. Fuzzy Agent-Based Simulation

To effectively enhance the autonomy of AIVs, it is important to explore a range of
advanced decision-making techniques that help address the problem of energy manage-
ment. These problems have been tackled using different techniques in the literature [8]. For
example, ref. [9] provides a function for the energy minimization problem. They use meta-
heuristic algorithms such as genetic algorithms and particle swarm optimization methods
to create a more precise robot motion trajectory in their case, resulting in an energy-efficient
robot configuration.

Our current research focuses on the use of fuzzy agents to manage the levels of
imprecision and uncertainty involved in modeling the behavior of simulated vehicles [10].
Fuzzy set theory is well suited to the processing of uncertain or imprecise information that
must lead to decision-making by autonomous agents [11]. The concept of the fuzzy agent
can, therefore, be proposed as a partial implementation of this theory.

Most of the control tasks performed via autonomous mobile robots (perception, lo-
calization, mapping, path and task planning, navigation and motion control, obstacle
avoidance, communication, and energy control [12]) have been the subject of performance
improvement studies using fuzzy logic:

1. The navigation of mobile robots from conceptual, theoretical, or application points
of view [13], the navigation of several mobile robots [14], the navigation and control
of a mobile robot in an unknown environment in real time [15], and a comparison
of the navigation performance of mobile robots obtained using fuzzy logic or neural
networks [16];

2. Obstacle avoidance from conceptual and systemic points of view in an unknown
dynamic environment [17];

3. Path planning strategies focusing on obstacle avoidance [18] or global navigation [19];
4. Motion planning [20];
5. The localization of mobile robots [21];
6. The intelligent management of energy consumption [22].

An agent-based system is fuzzy if its agents perform fuzzy behaviors or if the knowl-
edge they use is fuzzy. This means that agents can have the following:

• Fuzzy knowledge (fuzzy decision rules, fuzzy linguistic variables, and fuzzy linguis-
tic values);

• Fuzzy behaviors (the behaviors adopted by the agents as a result of fuzzy inferences);
• Fuzzy interactions, organizations, or roles [23].

Fuzzy agents can follow the evolution of fuzzy information that comes from their
environment and from the agents [24]. By interpreting the fuzzy information they receive
or perceive, fuzzy agents interact within a multi-agent system; they can also interact in a
fuzzy manner. For example, a fuzzy agent can discriminate a fuzzy interaction value to
evaluate its degree of affinity (or interest) with another fuzzy agent [25].

The different contributions of this article related to fuzzy logic are as follows:

• Propose a system designed from the literature, in particular [26], which aims to manage
decisions regarding energy levels and tasks for a robot or autonomous agent.

• Conduct a comparative analysis between threshold-based approach and the fuzzy
logic model adapted for our case-study scenario proposed in Section 6.

• Refine the AIV model for energy management to take into account more realistic
constraints and the possibility of AIVs communicating with each other and with
infrastructure elements such as charging stations.

2.2. Energy Control Models and Optimization Models

Reducing energy consumption has become a critical issue across all sectors. Optimiza-
tion is an indispensable tool for saving energy, and the choice of the cost function is crucial.
Various mathematical models are defined for mobile robots to address different objectives
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of the problem. The power function is frequently used because it depends on simple
parameters such as speed and motor force [27,28]. Both reducing and increasing speed
have a significant impact on energy consumption, and variations in motor force also affect
energy usage. In this paper, we are interested in an optimal control problem, and the speed
profile generator is determined by the motor force, which depends on the acceleration (or
deceleration) and the mass of mobile robots. Optimizing energy consumption involves
finding an optimal control strategy modeled by the motor force.

Several techniques have been employed to tackle the optimization problem in mo-
bile robots.

The authors [29] propose a genetic algorithm to reduce the energy consumption of
a mobile robot. The cost function is the sum of the linear velocity squared and angular
velocity squared. This algorithm relies on an optimal fuzzy logic controller, which enables
the robot to track different paths (e.g., zigzags and sharp turns).

The fuzzy logic Mamdani method is employed in [30] to determine three outputs:
curve speed, energy consumption, and time information. Through the use of optional
curved path data (radius, center angle, load, and ground friction), three fuzzy rules are
defined to identify these outputs. The total energy consumed is the sum of the power sensor,
control, and motion. A trapezoidal speed profile is utilized to create an optimal profile
based on fixed times or distances for straight paths, involving three segments: acceleration,
constant speed, and deceleration. Alternatively, a triangular speed profile can be used,
requiring only acceleration and deceleration phases. Minimum energy consumption is
achieved from these speed profiles for straight paths. For curved paths, the speed profile
is derived from fuzzy logic, incorporating the maximum and minimum values of the
trapezoidal speed profile. The integration of these methods highlights the importance of
optimizing speed and motor force to minimize energy consumption in mobile robots.

In the railway field, the most commonly used technique is based on braking distance
to calculate a speed profile that respects the maximum speed across the path. In the paper
by Tan et al. [31], the problem of train speed trajectory optimization is treated as an optimal
control problem. The cost function represents the net electrical energy, which depends
on the maximum electrical traction and braking forces, as well as the efficiency of electric
motors during traction and braking operations. The authors propose a numerical algorithm
based on PMP to find the optimal speed trajectory. An in-depth study using this principle
identified conditions for the traction and braking phases. Based on the initial and final
train speeds on a segment, and through the use of a numerical algorithm based on distance,
the traction and braking values at each stage converge towards cruising speed. Various
comparisons with other numerical optimization methods demonstrate the effectiveness of
this approach.

To address an optimal control problem for a mobile robot operating in an airport
environment, the goal is to solve an energy optimization problem specific to this setting.
The cost function is given by the integral of the power delivered via the robot’s motor, which
provides the absolute work. This refinement of the cost function offers a more accurate
reflection of the energy consumption during the AIV mission. Additionally, it enables the
AIV to perform three types of movements simultaneously: acceleration, deceleration, and
constant speed.

The different contributions of this article related to energy control and optimization
models are as follows:

• Define an energy model for each AIV using an optimal control problem.
• Create a database for the optimal speed of an AIV between two nodes by solving the

optimal control problem.
• Propose an offline/online algorithm for energy consumption that calculates the speed

profile and energy consumed for each AIV mission.
• Present three strategies for speed profiles based on two parameters: waiting baggage

and traffic circulation.
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• Develop a fuzzy logic model to select the appropriate strategy for each AIV during
its mission.

3. Fuzzy Agent-Based Model

An agent-based system is fuzzy if its agents have fuzzy behaviors or if the knowledge
they use is fuzzy [23]. This means that agents can have the following:

1. Fuzzy knowledge (fuzzy decision rules, fuzzy linguistic variables, and fuzzy linguis-
tic values);

2. Fuzzy behaviors (the behaviors adopted by agents because of fuzzy inferences);
3. Fuzzy interactions, organizations, or roles.

The different elements of the fuzzy agent model are as follows [10]:

• The agent-based fuzzy system (Section 3.1);
• The behavior of a fuzzy agent, inspired by perceive–decide–act feedback loops [32]

(Section 3.2);
• The behavioral functions of a fuzzy agent (Section 3.3);
• The fuzzy interactions between two fuzzy agents (Section 3.4).

3.1. Agent-Based Fuzzy System

M̃α = ⟨Ã, Ĩ, P̃, Õ⟩ (1)

In Equation (1), the following applies: A is a set of agents, A= {α1, . . . , αn}; Ã is a set of
fuzzy agents, Ã = {ã1, . . . , α̃m} with Ã ⊆ A; Ĩ is a set of fuzzy interactions between fuzzy
agents; P̃ is a set of fuzzy roles filled by fuzzy agents; and Õ is a set of fuzzy organizations
defined for fuzzy agents (subsets of strongly related fuzzy agents).

3.2. Behavior of a Fuzzy Agent

α̃i =
〈

ΦΠ(ᾱi)
, Φ∆(ᾱi)

, ΦΓ(ᾱi)
, Kᾱi

〉
(2)

In Equation (2), for a fuzzy agent α̃i, ΦΠ(ᾱi)
is its observation function, Φ∆(ᾱi)

is its
decision-making function, ΦΓ(ᾱi)

is its action function, and Kᾱi is its knowledge base.

3.3. Behavioral Functions of a Fuzzy Agent

Φ(Iα̃i)
:(Eᾱi ∪ Iᾱi )× Σᾱi → Πᾱi (3)

Φ(∆ᾱi)
:Πα̃i × Σᾱi → ∆ᾱi (4)

ΦΓ(ᾱi)
:∆ᾱi × Σ → Γᾱi (5)

Equations (3)–(5) define key functions for a fuzzy agent α̃i within a fuzzy multi-agent
system M̃α, specifically as follows:

• Equation (3) represents the observation function, which maps the set of observed
fuzzy events Eᾱi and interactions Iᾱi, along with the agent’s state Σᾱi, to its fuzzy
perceptions Πα̃i .

• Equation (4) defines the decision-making function, mapping fuzzy perceptions Πα̃i
and agent state Σᾱi to fuzzy decisions ∆ᾱi.

• Equation (5) describes the action function, which maps fuzzy decisions ∆ᾱi and the
overall system state Σ to the agent’s fuzzy actions Γᾱi .

Here, Eᾱi denotes the set of fuzzy events observed by the agent, Iᾱi represents its fuzzy
interactions, Σᾱi is the agent’s fuzzy state space, Πα̃i represents the set of fuzzy perceptions,
∆ᾱi denotes the fuzzy decisions made by the agent, Γᾱi represents the agent’s fuzzy actions,
and Σ refers to the overall state of the fuzzy multi-agent system.
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3.4. Fuzzy Interactions Between Two Fuzzy Agents

l̃l =< α̃s, α̃r, γ̃c > (6)

In Equation (6): for fuzzy interaction l̃l, α̃s is the fuzzy source agent, α̃r is the destination
fuzzy agent, and γ̃c is a fuzzy communication act (for instance, inform, diffuse, ask, or reply).

4. Fuzzy Decision Model for Battery Recharging

We propose a system in [33], designed from the literature, in particular [26], which
aims to manage decisions regarding energy levels and tasks for a robot or autonomous
agent. The primary goal is to decide whether the agent should recharge its energy or
continue with its current task, based on its energy level and distances to the target and
energy source.

The description of the model uses fuzzy logic as described in [10]. This approach
relies on a formal knowledge representation using fuzzy sets, built on fuzzy elementary
propositions of the form “V is A”. These propositions are defined from a set, L (V, X, D_V),
consisting of the linguistic variable, V, the universe of possible values, X, and a set of
descriptions, D_V for V, which are represented by fuzzy subsets of X.

Then, our proposed system uses three input variables and one output variable:

• Energy Level—input linguistic variable: EnergyLevel.
• Distance to Target—input linguistic variable: DistanceToTarget.
• Distance to energy source—input linguistic variable: DistanceToEnergySource.
• Decision (recharging or finishing the task)—output linguistic variable: Decision.

Each variable is defined over a specific range and described using linguistic terms,
represented as fuzzy sets. We will describe each linguistic variable in the subsections below.

4.1. Input Linguistic Variables of the Fuzzy Decision Model

The fuzzy decision model relies on three primary input variables to make intelligent
decisions regarding energy management and task execution. These input variables are
defined as follows:

• EnergyLevel—this variable represents the energy level of the system, measured as a
percentage from 0 to 100. Figure 1 illustrates the chosen membership functions for the
input variable EnergyLevel. It is categorized into four linguistic terms:

– Critical: [0, 20].
– Caution: [10, 30].
– Operational: [20, 75].
– Full: [65, 100].

• DistanceToTarget—this variable measures the distance to the target in meters, ranging
from 0 to 100. Figure 2 depicts the chosen membership functions for the input variable
DistanceToTarget. It is described using three linguistic terms:

– Close: [0, 25].
– Medium: [10, 40].
– Far: [25, 100].

• DistanceToEnergySource—this variable indicates the distance to the energy source
in meters, also ranging from 0 to 100. Figure 3 shows the chosen membership func-
tions for the input variable DistanceToEnergySource. It is classified into three linguis-
tic terms:

– Close: [0, 25].
– Medium: [10, 40].
– Far: [25, 100].

These variables form the foundation of the fuzzy decision-making process, allowing
the system to interpret and respond to different scenarios based on the defined fuzzy rules.
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Figure 1. Energy level.

Figure 2. Distance to target.

Figure 3. Distance to energy source.

4.2. Output Linguistic Variable of the Fuzzy Decision Model

The fuzzy decision model produces one output variable that guides the system’s
actions regarding energy management. This output variable is defined as follows:

• Decision—this variable ranges from 0 to 1 and determines whether the system should
recharge or finish its current task. Figure 4 shows the chosen membership functions
for the output variable Decision. It is described using two linguistic terms:

– Recharge: [0, 0.65].
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– FinishTask: [0.325, 1].

This output variable enables the system to make informed decisions based on the
input variables and the fuzzy rules, ensuring optimal performance and energy efficiency.

Figure 4. Decision.

4.3. Fuzzy Rules

The fuzzy rules establish the decision-making framework of the system. Each rule
outlines conditions based on the input variables and determines the corresponding output
decision. Our system adheres to the following rules:

1. If EnergyLevel is Critical, then Decision is Recharge.
2. If EnergyLevel is Caution, and DistanceToTarget is Close, and DistanceToEnergySource

is Far, then Decision is Recharge.
3. If EnergyLevel is Caution, and DistanceToTarget is Close, and Distance to EnergySource

is Medium, then Decision is FinishTask.
4. If EnergyLevel is Caution, and DistanceToTarget is Close, and DistanceToEnergySource

is Close, then Decision is FinishTask.
5. If EnergyLevel is Caution, and DistanceToTarget is Medium, then Decision is Recharge.
6. If EnergyLevel is Caution, and DistanceToTarget is Far, then Decision is Recharge.
7. If EnergyLevel is Operational, then Decision is FinishTask.
8. If EnergyLevel is Full, then Decision is FinishTask.

To find the final decision, the first step in the fuzzy inference process is fuzzifica-
tion, where the system evaluates each elementary condition in the rule premises. This
involves taking the precise input values and mapping them to fuzzy values based on their
membership in predefined fuzzy sets.

Once the input values are fuzzified, the system calculates the premises of each rule (“IF
V is A”). The result of this calculation is known as the activation value of the rule, which
indicates how strongly the rule is triggered by the current inputs. Then, the implication
function is applied to the conclusion of each rule, producing a fuzzy subset that represents
the distribution of possible output values based on the activated rule.

These fuzzy subsets, corresponding to the same output across different rules, are then
combined using an aggregation method—often the maximum function. This step merges
the outputs of all relevant rules into a single fuzzy subset.

Finally, the aggregated fuzzy subset is converted into a precise output value through a
process called defuzzification. Among various defuzzification methods, one of the most
common is the centroid or barycenter method, which calculates the center of gravity of
the area under the curve representing the fuzzy subset. We used this method in our
simulations because it produces a single, clear output value that the system can use to
make a final decision.
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5. Case Study: Autonomous Management of Battery Recharging

We present an adaptable, fuzzy, multi-agent model in Figure 5 that addresses the
challenges of energy management for AIVs [33]. The efficient management of AIVs requires
a holistic approach that takes into account several factors, including operational availability,
energy consumption [34], collaboration between AIVs and the dynamic infrastructure, and
their adaptation to changing conditions. We aim to optimize recharging based on energy
costs, as a low workload combined with frequent recharging can increase the overall energy
consumption of the system. In addition, poor anticipation can limit system availability.

AIV missions do not follow a uniform distribution in terms of frequency, creating peri-
ods of intense activity and others that are quieter. It is, therefore, essential to link the energy
consumption of AIVs to the amount of work carried out and their operational availability.

To avoid an overload of recharging requests due to too many simultaneous requests,
the AIVs need to work together by communicating with each other or via the infrastructure.
As for automatic recharging, although it solves the problem of the number of charges, it
requires space and consumes energy. Even a 2 to 3% reduction in energy consumption
is significant for certain warehouses and airports. For the introduction of fleets of au-
tonomous vehicles in the industry of the future, it, therefore, seems necessary to fine-tune
the number of recharging stations. This sizing can be improved by taking into account the
possibilities for communication between the AIVs, which can collectively avoid critical
(urgent) recharging.

Figure 5. Simulator agent architecture: dynamic elements in red, static in green, and not related to
the environment in purple.

Description of the Simulation Framework

The interface of our “Airport Baggage Handling Simulation” application, in Figure 6,
is designed to provide a comprehensive overview of the autonomous management and
operation of AIVs for baggage handling. This intuitive and structured interface allows us
to monitor and analyze the performance of AIVs. The variables used in our case study
simulation, such as the number of baggage, AIV speed, circuit size, and the number of
operational nodes, are summarized in Table 1. The circulation scenario is detailed with a
distance-oriented graph presented in Figure 7. The interface is divided into several sections,
each displaying critical information about the simulation status and AIV performance.

The different sections of the interface are as follows:

• Energy-level display: Each AIV’s energy level is represented by a horizontal bar,
which visually indicates the remaining battery life. For instance, AIV3’s bar is red,
signifying a critical battery level, while the other AIVs have yellow bars, indicating
varying levels of charge.

• Charge-level information: Below the energy-level display, this section provides
detailed statistics on the recharging activities:
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– Recharge time: The total time spent on recharging.
– Waiting time: The total waiting time before recharging.
– Recharges per AIV: The number of recharge cycles completed by each AIV.

• Simulation area: The central area of the interface depicts the simulation environment.
It visually represents the positions and movements of the AIVs as they handle baggage
within the airport layout. Different black points represent the location of each node
corresponding to the oriented graph (Figure 7).

• Baggage-level information: This section displays baggage handling metrics:

– Total baggage: The total number of bags that must be dealt with from the start of
the scenario.

– Waiting baggage: The maximum number of bags waiting to be processed at
a moment.

– Baggage per AIV: The number of bags handled by each AIV.

• Time-level information: Below the baggage-level section, this displays time-related data:

– Simulation time: The total elapsed time of the simulation.
– Missions per AIV: The average duration of missions completed by each AIV.

Figure 6. Airport baggage handling simulation HMI.

Table 1. Variables of the case study simulation.

Variable of Simulations Values

Number of bags 1000

Speed of AIV (m/s) [0, 7.5]

Circuit size (m × m) 275 × 275

Number of nodes 33

Number of recharging stations 2

Number of waiting nodes 2

Number of baggage drop nodes 6

Number of baggage loading nodes 3
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Figure 7. Oriented graph: distance in the environment in meters.

6. Comparisons Between Thresholds and Fuzzy Logic Models

To test different autonomous management strategies for solving the problem of AIVs
recharging batteries, we defined an initial circulation environment (Figure 6). We proposed
different scenarios and compared them with the following four parameters:

• nbMissions: number of missions carried out.
• timeMission: the average time taken to complete a mission in seconds.
• nbRecharges: the number of recharges performed.
• wtRecharging.: waiting times for recharging in seconds

We also varied the charge threshold at which an AIV must recharge its battery. We
then introduced a fuzzy inference system to determine the recharge time. We also varied
the values of the fuzzy model (fuzzy linguistic values).

In this section, we delve into a comparative analysis between different thresholds and
fuzzy logic models. We propose three different scenarios:

• Scenario 1 (sc1): all AIVs have a uniform recharge threshold of 30%.
• Scenario 2 (sc2): each AIV has a different recharge threshold, maintaining the same

context as sc1.
• Scenario 3 (sc3): AIVs use a fuzzy logic model for recharge.

We simulated these three scenarios for 1000 bags (a discussion regarding the scenario
results is provided in the following three sections). The temporal results are shown in
Table 2. We aim to discern the optimal threshold configurations that maximize mission
throughput, minimize recharging frequency, and optimize resource utilization, thereby
improving the overall efficiency of autonomous management strategies for recharging the
AIV battery.

Table 2. Time results for 1000 bags for Sc1, Sc2, and Sc3.

Scenarios Sc1 Sc2 Sc3

Number of bags 1000 1000 1000

Total recharge time (s) 4800 4619 4345

Total simulation time 03:42:54 03:42:42 03:38:34

6.1. Basic Scenario

In the basic scenario, AIVs have a single threshold model set to 30% for recharging.
This scenario makes it possible to compare performance in terms of the mission processing
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time (overall and individual time), number of recharges, and waiting time for recharges
(access to a free station). The AIVs results for sc1 are shown in Table 3.

Table 3. AIV results for Scenario 1.

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global

Thresholds 30 30 30 30 30

nbMissions 201 199 200 200 200 1000

timeMission 64 64 64 64 64 64

nbRecharges 80 80 80 80 80 400

wtRecharging 0 93 42 68 93 244

6.2. Different Threshold Values

sc2 enables us to compare different threshold values for AIVs recharge. The results are
depicted in Table 4. When we compare with thresholds varying between 15% and 30%, the
overall mission processing time is slightly lower, and the number of recharges and overall
recharge time are also lower (374 and 400, respectively). The performance of AIV1 with
the lowest threshold (15%) is obviously the best for the average time taken to complete a
mission time. However, there is a greater risk of not being able to reach a station due to a
lack of charge in the event of an incident!

Table 4. AIV results for Scenario 2.

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global

Thresholds 15 20 25 30 35

nbMissions 202 201 199 199 202 1000

timeMission 63 64 64 64 64 63.8

nbRecharges 67 67 80 80 80 374

wtRecharging 180 140 49 77 51 497

6.3. Fuzzy Logic Model

In comparison with sc1, where AIVs have a threshold of 30%, in sc3, AIVs use a
fuzzy basic model. The results are presented in Table 5 demonstrate an improvement in
overall and individual AIV times (63 s on average instead of 64 s) and fewer recharges
(335 recharges instead of 400).

Table 5. AIV results for Scenario 3.

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global

FL model FL FL FL FL FL

nbMissions 201 200 200 200 199 1000

timeMission 63 63 63 63 63 63

nbRecharges 67 67 67 67 67 335

wtRecharging 0 58 19 49 71 197

7. Increases in Fuzzy Logic Criteria

To improve the results of the previous simulations, we applied three types of adapta-
tion (heuristics), taking into account more realistic constraints and the possibility of AIVs
communicating with each other and with infrastructure elements such as charging stations:
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1. Adaptation of recharging according to the needs of the AIVs and the availability of
the charging points (centralized scenario with supervision and decentralized scenario
with communication between the AIVs and the charging points);

2. Adaptation of recharging according to the rate of baggage arrival and the resulting
variation in activity (the number of missions to be performed by the AIVs in a unit of
time is no longer constant);

3. Adapting the speed of the AIVs according to the rate of baggage arrival (centralized
scenario with supervision and decentralized scenario with communication between
the AIVs and the charging points).

The objective of this section is to show that specific heuristics allow certain situations
to be dealt with fairly finely and increase the collective/overall performance of AIVs. We
simulated these three improved scenarios for 1000 baggages. The temporal results are
shown in Table 6.

Table 6. Time results and configuration for 1000 bags for Sc4, Sc5, and Sc6.

Scenarios Sc4 Sc5 Sc6

Number of bags 1000 1000 1000

Total recharge time (s) 4606 4285 935

Total simulation time 03:39:08 03:37:03 01:32:15

Maximum number of waiting bags 468 659 159

Average baggage waiting 234 327 99.62

7.1. Adapting Recharging to Demand and the Availability of Charging Points

The first heuristic, referred to as sc4, simulates the adaptation of charging behavior
to both demand and the availability of charging points. The AIV results are presented in
Table 7. The effectiveness of this heuristic is obvious, particularly for AIV1, which required
14 fewer recharges compared to AIV5 and 12 fewer recharges than AIV4. Additionally,
the total recharging time for sc4 is shorter than for both sc1 and sc2: 4606 s compared to
4800 s and 4619 s, respectively (Table 6 for sc4 and Table 2 for sc1 and sc2).

The input linguistic variables are as follows: EnergyLevel, DistanceStation1, and
DistanceStation2. The output linguistic variable is Decision. The fuzzy rules for the dis-
tances between stations 1 and 2 are as follows:

1. If EnergyLevel is Critical, and DistanceStation2 is Far, then Decision is Station1.
2. If EnergyLevel is Critical, and DistanceStation1 is Far, then Decision is Station2.
3. If EnergyLevel is Caution, and DistanceStation1 is Medium, then DistanceStation2 is

Far, and then Decision is Station1.
4. If EnergyLevel is Caution, and DistanceStation1 is Far, then DistanceStation2 is Medium,

and then Decision is Station2.

Table 7. AIV results for Scenario 4.

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global

Thresholds 15/15 20/15 25/20 30/20 35/25

nbMissions 203 201 199 198 199 1000

timeMission 62 62 63 63 63 62.6

nbRecharges 68 67 78 76 80 369

wtRecharging 143 178 5 10 70 406

7.2. Adaptation of Recharging According to the Baggage Arrival Rate

Heuristic 2, referred to as sc5, simulates recharging adaptations based on the baggage
arrival rate and the corresponding variation in induced activity (the number of tasks to be
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performed by the AIVs). As shown in Table 8, this heuristic enables the AIVs to complete
their missions more quickly compared to sc4. Specifically, AIVs complete one mission in an
average of 58 s under sc5, whereas it takes them 62.6 s under sc4 (see Table 7).

The input linguistic variables are EnergyLevel, DistanceStation1, DistanceStation2,
AvailabilityStation1, and AvailabilityStation2. The output linguistic variable is Decision.
The fuzzy rules for the distance and availability criteria for stations 1 and 2 are as follows:

1. If EnergyLevel is Critical, and DistanceStation1 is Near, and DistanceStation2 is Far,
then Decision is Station1.

2. If EnergyLevel is Critical, and DistanceStation1 is Far, and DistanceStation2 is Near,
then Decision is Station2.

3. If EnergyLevel is Caution, and DistanceStation1 is Medium, and DistanceStation2 is
Far, and AvailabilityStation1 is High, then Decision is Station1.

4. If EnergyLevel is Caution, and DistanceStation1 is Medium, and DistanceStation2 is
Far, and AvailabilityStation1 is Weak, and AvailabilityStation2 is High, then Decision
is Station2.

5. If EnergyLevel is Caution, and DistanceStation1 is Far, and DistanceStation2 is Medium,
and AvailabilityStation2 is High, then Decision is Station2.

6. If EnergyLevel is Caution, and DistanceStation1 is Far, and DistanceStation2 is Medium,
and AvailabilityStation1 is High, and AvailabilityStation2 is Weak, then Decision
is Station1.

Table 8. AIV results for Scenario 5.

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global

Thresholds 20 20 20 20 20

nbMissions 200 199 201 200 200 1000

timeMission 58 58 58 58 58 58

nbRecharges 15 15 15 15 15 75

wtRecharging 66 0 25 57 94 242

7.3. Adapting the Speed of the AIVs to the Flow of Baggage Arrivals

The final heuristic, referred to as sc6, adapts the speed of the AIVs to the flow of baggage
arrivals. Compared to sc5, the 30% speed threshold was adjusted, as the 20% threshold led to
too many load faults due to increased energy consumption at higher speeds. This adjustment
results in a significantly shorter overall simulation time, as shown in Table 6. Additionally,
Table 9 demonstrates improved throughput control, with baggage waiting times reduced to
99.6 s in this scenario, compared to 327 s for sc5 (see Table 8).

The input linguistic variables are EnergyLevel, Urgency, and ProximityAIV. The
output linguistic variable is Speed. The fuzzy rules for the speed criteria are as follows:

1. If Urgency is Weak, then Speed is Normal.
2. If EnergyLevel is Critical, and Urgency is Weak, then Speed is Weak.
3. If EnergyLevel is Critical, and Urgency is Medium, and ProximityAIV is High, then

Speed is Weak.
4. If EnergyLevel is Caution, and Urgency is Medium, and ProximityAIV is Medium,

then Speed is Normal.
5. If EnergyLevel is Operational, and Urgency is Medium, and ProximityAIV is Weak,

then Speed is High.
6. If EnergyLevel is Caution, and Urgency is High, and ProximityAIV is Medium, then

Speed is Normal.
7. If Urgency is High, then Speed is High.
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Table 9. AIV results for Scenario 6.

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global

Thresholds 30 30 30 30 30

nbMissions 201 199 200 199 201 1000

timeMission 25 25 25 25 25 25

nbRecharges 17 17 17 17 17 85

wtRecharging 0 19 76 20 54 169

8. Methodology Proposed for Energy Management with a Realistic Point of View

The variation in energy consumption is influenced by the acceleration and deceleration
operations when using a stepping motor drive. As a general rule, the switching times for
acceleration and deceleration have an impact on energy consumption. The choice of the
cost function is crucial for optimizing problems in mobile robots. In some studies, the cost
function is defined as the minimization of the energy supplied by the motor, represented
by the integral of the squared motor force or the sum of the squared linear and angular
velocities of the mobile robot. However, this function is optimal only for very small values,
as it is more than a simple squared function. There are alternative cost functions for
energy optimization, but they often include additional parameters, such as those related to
the battery.

In this paper, we are interested in a cost function that accommodates three types of
motion simultaneously: acceleration, deceleration, and constant speed. The variation in the
system’s energy is defined by a force that represents these three motions. The change in
force during the target phase also affects the work done. Work, in this context, refers to
the means by which forces transfer energy. Therefore, the cost function is defined as the
absolute work performed by the motor force.

This cost function enables us to tackle an optimization problem with a basic dynamic
system. Despite the simplification of the mathematical model, a numerical method based
on time discretization is not well suited to the local environment of the application.

This section proposes a methodology to address this problem, operation by varying
the maximum speed values under each node, using an optimal control problem. The
biggest advantage of this methodology is that the numerical optimization methods are
implemented to create the optimal maximum speed values. This technique reduces the
execution time of this method in real time.

The proposed methodology calculates the motor force, which serves as the command
for the optimization problem. It also involves determining the moments of acceleration
and deceleration. To define these moments, an algorithm is implemented to compute the
acceleration and deceleration distances. This algorithm operates based on distance, rather
than time, making it suitable for implementation in the application.

Three strategies are generated by this methodology. With the help of two inputs:
waiting baggage and traffic, a fuzzy logic model can select the most appropriate strategy
for the AIV during its mission.

8.1. Optimal Control Problem

This part addresses an Optimal Control Problem (OCP) for the optimization model,
focusing on a mobile robot. The problem (OCP) combines a dynamic system, which is
given by a mobile robot model, where the mobile robot is moving in a straight line and a
cost function that are described according to the absolute work of the motor force, which
represents the amount of energy consumed by the AIV during his mission.
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Dynamic Model of Robot

The mobile robot model is derived from Newton’s second law:

∑ F = M a

where F is the sum of all forces acting on an AIV, a is the linear acceleration of the AIV, and
M is the total mass (AIV + baggage).

Based on the specific route of the AIVs, the system operates under the following
simplifying assumptions:

• Assumption 1: an AIV moves in a straight line and does not consider curvilinear
motion or slopes.

• Assumption 2: air resistance is negligible.
• Assumption 3: the energy consumed by the motor is included in the cost function,

without constraints on the dynamic system.

Based on these assumptions, an AIV dynamic system is described as a double integrator:{
ẋ = v
v̇ = FT

M
(7)

where, x, v, and ẍ are the longitudinal position, the linear velocity, and the linear accelera-
tion of the AIV, respectively. The ratio between force and mass, FT

M , represents the linear
acceleration, a. Then, the maximum force can be deduced from the high acceleration and
the mass.

In the following, we assume that the forces acting on an AIV is composed of two forces:

FT = Fm − Fr

where Fm is propelled by the motor force, and Fr is the resistance force.

8.2. Cost Function

To account for the varying cost function due to the changes in the robot’s movement
(acceleration, deceleration, and stopping) from the starting position to the final position
over a period from To to the final time, T, we need to refine our model. Specifically, we
incorporate the power delivered via the robot’s motor, which depends on the force.

The power, P, delivered via each AIV motor at any time, t, is given by the following:

P = Fmv (8)

The absolute work, W, is performed via the propulsion force over the period from T0
to T:

W =

T∫
To

|P(t)| dt =
T∫

To

|Fmv| dt (9)

The optimization problem (OCP) admits an optimal solution, and the linear speed, v,
is always non-negative (v ≥ 0) during the mission of the robot, as stated in [35].

Then, the cost function is given by the following:

T∫
To

|Fm| v dt (10)
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8.3. Optimal Control Problems (OCP)

The formulated problem is defined by the cost function and the AIV model presented above:

Minimize W =
T∫

To

|Fm| v dt

Subject to
ẋ = v
v̇ = Fm−Fr

M
x(To) = x0, v(To) = v0, v(T) = v f , x(T) = x f > 0
To and T : f ixed > 0
Fmin ≤ Fm ≤ Fmax

(11)

where x0 and v0 are initial values of states, x f and v f are final values of states, and Fmin and
Fmax are the lower and upper bounds of the motor force Fm.

8.4. Methods for Solving the Problem (OCP): Pontryagin’s Maximum Principle

This subsection is dedicated to showing the approach used. The primary tool used is
PMP [7], which ensures a necessary optimality condition for the optimal control problem.
This is achieved by introducing the adjoint vector P = (p1, p2) to the state vector X = (x, v),
and the Hamiltonian function H(X, P, Fm) is then defined as follows:

H(X, P, Fm) = −|Fm|v + p1v + p2
Fm − Fr

M
(12)

The pair (X, Fm) is called an admissible solution if X is the state trajectory correspond-
ing to Fm and the conditions of the optimal control problem (11) are satisfied. An admissible
pair that minimizes the cost function is called an optimal solution, denoted by (X∗, F∗

m).
The adjoint vector P = (p1, p2) verifies these equations:{

ṗ1 = − ∂H(X,P,Fm)
∂x = 0

ṗ2 = − ∂H(X,P,Fm)
∂v = |Fm| − p1

(13)

The optimal control problem (11) is autonomous; then, H(X, P, Fm) is constant. The
optimal control F∗

m maximizes the Hamiltonian almost everywhere:

H = max
Fm

H(X, P, Fp)

= p1v − p2

M
Fr + max

Fm

{
−|Fm|v +

p2

M
Fm

} (14)

According to [35], the optimal strategy for the minimum time problem is given by
the following:

F∗
m =

{
Fmax for 0 ≤ t ≤ ∆to
Fmin for ∆to < t ≤ Tmin

(15)

The expression of the minimum travel time, Tmin, with ∆to =
Tmin

2 :

Tmin = −
M(Fminv0 − Fmaxv f ) +

√
M(Fmax − Fmin)

(
2FmaxFmin(x f − x0)− M(Fminv2

0 − Fmaxv2
f )

)
FmaxFmin

(16)

This strategy is reflected in the accelerator being at full travel until it reaches the
maximum speed (high acceleration). Then, very high braking is applied until the motor
stops, as there is not enough time.
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For Tmin < T < Tlim, Tlim is the time limit when the optimal strategy of the problem
(11) is generated via the following:

F∗
m =


Fmax for 0 ≤ t ≤ ∆t
0 for ∆t < t ≤ T − ∆t
Fmin T − ∆t < t ≤ T

(17)

The terminal condition x f , allows the explicit computation of ∆t:

∆t =
FmaxT −

√
F2

maxT2 + 2M(Fmax − Fmin)(x0 − x f + v0T)

Fmax − Fmin
(18)

The optimal strategy is illustrated in Figure 8 with its optimal speed profile, which
was determined through the dynamic system. A solution is the bang type, if the control is
equal to its maximum, or its minimum, which corresponds to the maximum acceleration or
deceleration phase. An inactivation is defined when the control variable is null over a time
interval, which corresponds to maintaining a constant speed.
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Figure 8. Example: optimal command for T > Tmin with Tmin = 9.79 and speed over a distance of
30 m.

8.5. Discrete Time Problem

Let us introduce a discrete time version of the problem (11). Given N and h = T−To
N

defined for i = 0, . . . , N,

Minimize W =
N
∑

i=0
|Fm(i)| v(i)

Subject to
x(i + 1) = x(i) + hv(i), i = 0, . . . , N
v(i + 1) = v(i) + h Fm(i)−Fr(i)

M , i = 0, . . . , N
x(0) = x0, v(0) = v0, v(N − 1) = v f , x(N − 1) = x f > 0
Fmin ≤ Fm(i) ≤ Fmax, i = 0, . . . , N

(19)

To solve this discrete time problem numerically, we can discretize the time horizon
[0, T] into N intervals with a time step, h = T−To

N , for i = 0, . . . , N. Then, we can apply an
optimization algorithm, such as a direct method (e.g., direct collocation).

9. Energy Control Strategies

We developed an energy control strategies algorithm based on an optimal speed
profile that is defined from the optimal control problem. This algorithm is based on the
distance traveled, using basic principles of acceleration and deceleration, and applying
these principles to small segments of the path. This method is practical for short distances
between nodes, and it provides a systematic way to control the robot’s movement efficiently.
A more practical and simple approach can be applied to determine the optimal control
strategy for minimizing energy consumption.
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By implementing three strategies based on the speed profile as a function of the robot’s
actual position, these speed profiles are generated via an algorithm capable of operating in
real time.

Proposed Algorithm

We propose Algorithm 1, which connects two maximum speed values assigned to
each node. This algorithm identifies two key distances—acceleration and deceleration
distances—in order to link the two maximum speed values. The maximum speed val-
ues can be obtained using solutions generated via the PMP. However, these maximum
speed values are optimal under certain constraints, and they need to be adapted to fit our
specific application.

Detailed steps of the algorithm:
These instructions outline the steps for comparing speeds, calculating distances, mak-

ing decisions, and setting commands based on those decisions. Adjustments can be made
according to specific requirements or additional constraints.

• Input:

– Path nodes with associated maximum speed values.
– AIV initial position and speed.

• Output:

– Real-time energy consumed and speed profile for the AIV.

1. Initialization:

• Identify the starting and ending nodes of the path.
• Assign maximum speed values to each node using the PMP.

2. Calculate acceleration and deceleration distances:

• For each pair of nodes, calculate the distance required for the robot to accelerate
from the current speed to the maximum speed of the next node.

• Similarly, calculate the distance required for deceleration.

3. Generate speed profile:

• For each segment between nodes, generate a speed profile that smoothly transi-
tions between the two maximum speed values.

• Ensure the profile adheres to the calculated acceleration and deceleration distances.

4. Real-time adjustment:

• Continuously monitor the AIV position and adjust the speed profile in real time
to account for any deviations or changes in the path.

In the application, step 1 “Offline Method: Table of Maximum Speed”, represents the
three strategies, which are included as a table or database of the maximum speed for each
node. The second step, “Online Method: Current Speed, Energy”, will be called up in real
time under the fuzzy rule, which decides what type of strategy can be adapted to meet
the constraints of waiting baggage and traffic flow. The energy constraint will be more
advantageous for waiting baggage and traffic, which are defined as model inputs, with
the three strategies as outputs of the fuzzy decision model in the next section. Finally, we
define three strategies, strategy1, strategy2, and strategy3, which represent LowE f f iciency,
MediumE f f iciency, and StrongE f f iciency, respectively.
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Algorithm 1: Energy and current speed

Step1→ Offline Method: Table of Speed Max
Input: M, amax , Fr x0, x f , v0, v f
Output: TableSpeedMax

1 Function [TableSpeedMax]=Optimal-SpeedMax(M, amax , x0, x f , v0, v f )
2 Fmax = M ∗ amax
3 Fmin = −M ∗ amax
4 Tmin = f (M, Fmax , Fmin, x0, x f , v0, v f ) –cf. Equation (16)
5 Fixed T > Tmin
6 ∆t = g(T, M, Fmax , Fmin, x0, x f , v0, v f ) –cf. Equation (18)
7 SpeedMax = Fmax−Fr

M ∆t + v0

Step 2 → Online Method: Current Speed, Energy
Input: M, h, amax , NextNode, CurrentDistance, TableSpeedMax
Output: Energy, Current Speed

8 Function Energy=MotorEnergy(Speed, FinalCommand)
9 Energy = Energy + abs(FinalCommand) ∗ Speed

10 Function Speed=CurrentSpeed(Speed, FinalCommand,h, M, Fr)
11 Speed = Speed + h ∗ FinalCommand−Fr

M

12 Function FinalCommand = Command(CurrentPosition, NextNode, Commandsup, Commandin f , Distance1, Distance2)
13

14 if (CurrentPosition − Distance1) ≤ 0 then
15 FinalCommand = Commandsup

16 else if (NextNode − CurrentPosition − Distance2) ≤ 0 then
17 FinalCommand = Commandin f

18 else
19 FinalCommand = 0

20 Function [Commandsup, Commandin f , Distance1, Distance2] =
Acceleration − Deceleration(PreviousSpeedMax, NextSpeedMax, NextNextSpeedMax, M, amax , h)

21

22 Fmax = M ∗ amax
23 Fmin = −M ∗ amax

1. Compare the PreviousSpeedMax and NextSpeedMax values, as well as the NextSpeedMax and NextNextSpeedMax
values, to then establish an acceleration or deceleration decision at the exit of each of the node.

2. Two distances are calculated based on the speed comparisons:
Distance1 = |PreviousSpeedMax − NextSpeedMax| ∗ N1
Distance2 = |NextSpeedMax| ∗ h
where N1 represents the number of points between PreviousSpeedMax and NextSpeedMax, depending
on the step of discretization, h.

3. Between each node, two decisions are defined. Commands are determined based on whether the
decision is to accelerate, decelerate, or maintain a constant speed:

if Decision == Acceleration then
Commandsup = Fmax ;

else if Decision == Deceleration then
Commandsup = Fmax ;

else
Commandsup = 0
Commandin f = 0

24 Function [PreviousSpeedMax, NextSpeedMax, NextNextSpeedMax]= NodeSpeed (TableSpeedMax, PreviousNode,
NextNode, NextNextNode)

25

26 PreviousNode → PreviousSpeedMax
27 NextNode → NextSpeedMax
28 NextNextNode → NextNextSpeedMax

9.1. Fuzzy Model for Energy Control

We propose a fuzzy logic model that allows us to determine which strategy to imple-
ment. The system uses two input variables and one output variable:



Algorithms 2024, 17, 484 21 of 29

1. Input linguistic variable: WaitingBaggage—Wb.
2. Input linguistic variable: traffic—Tra f f ic.
3. Output linguistic variable: strategy—Strategy.

9.1.1. Input Linguistic Variables of the Fuzzy Decision Model to Determine the Strategy

The fuzzy decision model relies on two primary input variables to make intelligent
decisions regarding the strategy to use. These input variables are defined as follows:

• Waiting baggage—this variable represents the waiting baggage level of the system, mea-
sured as a number of bags from 0 to 1000. It is categorized into three linguistic terms:

– Low: [0, 5].
– Medium: [2, 5, 8].
– Strong: [5, 1000].

• Traffic—this variable represents the traffic level of the system, measured as a number
of AIVs from 0 to 5 (in our case study simulation), Tra f f ic. It is categorized into three
linguistic terms:

– Low: [0, 2].
– Medium: [1, 2, 3].
– Strong: [2, 5].

9.1.2. Output Linguistic Variable of the Fuzzy Decision Model to Determine the Strategy

The fuzzy decision model produces one output variable that guides the system’s
actions regarding energy management. This output variable is defined as follows:

• Strategy—this variable ranges from 0 to 100 percent of energy used, and it determines
which strategy to follow. It is described using three linguistic terms:

– LowE f f iciency: [0, 20].
– MediumE f f iciency: [0, 30, 50].
– StrongE f f iciency: [40, 100].

This output variable enables the system to make informed decisions based on the
input variables and the fuzzy rules, ensuring optimal performance and energy efficiency.

9.1.3. Fuzzy Rules

The fuzzy rules establish the decision-making framework of the system. Each rule
outlines conditions based on the input variables and determines the corresponding output
decision. Our system adheres to the following rules:

1. If Wb is Low, and Tra f f ic is Low, then strategy is LowE f f iciency.
2. If Wb is Low, and Tra f f ic is Strong, then Strategy is MediumE f f iciency.
3. If Wb is Medium, and Tra f f ic is Medium, then Strategy is MediumE f f iciency.
4. If Wb is Medium, and Tra f f ic is Strong, then Strategy is StrongE f f iciency.
5. If Wb is Strong, and Tra f f ic is Low, then Strategy is MediumE f f iciency.
6. If Wb is Strong, and Tra f f ic is Strong, then Strategy is StrongE f f iciency.

10. Numerical Simulation in Matlab

The simulation data are adapted from the application environment, from which a step
of discretization is h = 2 as a minimum movement of the 5 m. In addition, it is suitable
for an airport environment using data provided by Alstef Group for Bagxone; for example
the mass max is 100 kg, the maximum speed is 7.5 m/s, the average speed is 5 m/s, the
maximum acceleration is 1.5 m/s2, and the maximum deceleration is =2 m/s2. In simulation
for the three strategies, we defined the same values, except that the maximum acceleration
and maximum deceleration was fixed to =1.25 m/s2 for the application environment to
include the concept of a minimum speed that is equal to 2.5 m/s.

Based on this knowledge, three strategies were generated, thanks to these three speed
values: minimum, average, and maximum. Three strategies were developed to fit the
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different input linguistic variables of the fuzzy decision model, as noted in the previous
section. Strategy1 represents the first input, “Waiting Baggages”, when the level is low.
When the level is strong and the second input, “traffic”, is low, it is Strategy2 that satisfies
these conditions. Strategy3 describes strong traffic. Figure 9 shows the path traveled for
each of the strategies.

Figure 9. Map of strategies in red color: oriented graph nodes.

10.1. Strategy 1

Let the set NodeDistance represent the distance between two successive nodes. From this
distance, the maximum speed values are defined for Strategy1. Figure 8 shows how we can
obtain the value of the maximum speed, which is 2.5 m/s, for the path from Node0 to Node1
with distance of 30 m (cf.—Figure 10). Strategy1 is defined according to these speed values:{

5 m/s if NodeDistance ≥ 100 m
2.5 m/s Otherwise

Figure 10. Map Strategy 1: oriented graph nodes.
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10.2. Strategy 2

Unlike Strategy1, where speed values are fixed in relation to the distance between
two nodes, Strategy2 is arbitrarily defined with its maximum speed achieved. In Strategy2,
high speed is the main speed used throughout the entire circuit (cf.—Figure 11). On the
other hand, in Strategy1, the speed is limited to the average speed.

Figure 11. Map Strategy 2: oriented graph nodes.

10.3. Strategy 3

The Strategy3 is approximately a mix of Strategy1 and Strategy2 (cf.—Figure 12).

Figure 12. Map Strategy 3: oriented graph nodes.

10.4. Discussion

The path taken for the three strategies is indicated in red color, as shown in Figures 10–12
with the maximum speed value for each node.

A position–speed phase diagram is used to visualize the relationship between speed
and position (distance traveled) for each strategy, as shown in Figures 13–15. Three dots
with different colors (red, orange, green, and blue) are depicted in each phase diagram.
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These dots will help illustrate a specific situation or task along the path. The red and orange
dots indicate the nodes where the direction changes (i.e., when the movement changes
from horizontal “Node-Axis-X” to vertical ”Node-Axis-Y” or vice versa). Three green dots
normally correspond to a node stop, first to load baggage, second to the dropping of the
baggage, and the last to node “0” in parking. Two waiting nodes, noted as blue points,
represent the two points waiting to enter battery charging. However, the energy consumed
for each strategy is illustrated in Figures 16–18.

Figure 13. Position–speed phase diagram: Strategy1.

Figure 14. Position–speed phase diagram: Strategy2.
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Figure 15. Position–speed phase diagram: Strategy3.

Figure 16. Energy consumed in Strategy1.
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Figure 17. Energy consumed in Strategy2.

Figure 18. Energy consumed in Strategy3.

When the AIVs moves with a limited speed to the average and when the energy con-
sumed is low, as Strategy1 (cf.—Figures 13 and 16), despite making two stops at this level wait-
ing node. An abrupt variation in speed between the maximum and average involves high lev-
els of energy consumption; this situation is represented by Strategy3 (cf.—Figures 15 and 18).
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The average energy consumption is determined by maintaining the maximum speed along
almost the entire length of the circuit, as shown in Strategy2 (cf.—Figures 14 and 17).

During an AIV mission, two constraints are imposed, waiting baggage and traffic,
which are considered inputs into our fuzzy logic model for strategy selection.

Three strategies generated via our methodology effectively reflect these constraints.
The goal is to find an optimal compromise between energy consumption, baggage waiting
times, and traffic conditions.

As shown using numerical simulations, Strategy1 focuses on optimal energy consump-
tion. Strategy2 allows for a slight increase in energy usage to address waiting baggage.
Strategy3 prioritizes alleviating energy constraints related to traffic while addressing wait-
ing baggage.

11. Conclusions

In this paper, we have proposed a multi-agent simulation, including fuzzy logic, to
test various scenarios of battery recharging management. This approach offers a flexible
adaptation to the various aspects of AIV management, and it facilitates any adjustments
required for deployment at an industrial site. The use of a distributed system provides
temporary autonomy in the event of a failure in central infrastructure, taking into account
the individual differences in the battery capacity of the AIVs.

The simulation results demonstrate that incorporating adaptive fuzzy multi-agent
models for AIV energy management can significantly optimize recharging strategies, im-
prove operational efficiency, and mitigate energy consumption, particularly by considering
dynamic factors such as workload variation, the communication between AIVs, and infras-
tructure elements. In fact, an infrastructure capable of optimizing recharging according
to energy tariffs is advantageous, particularly with the ability to cut consumption over an
hour. These findings will underscore the importance of flexible, collaborative approaches
in enhancing the performance of autonomous systems in dynamic environments.

An optimal control problem was defined to introduce an accurate energy consumption
model. PMP was used to calculate the maximum speed values for each node. Subsequently,
an algorithm was implemented to plot a speed profile based on the distance traveled
and the corresponding energy profile, which considers two distances: acceleration and
deceleration. Using this algorithm, three strategies were generated. The strategy selected
for each AIV was determined using a fuzzy logic model.

The first perspective for this part was to integrate the stopping phase into the algorithm
for loading or unloading baggage. We can also consider stops for the AIV for other reasons,
such as parking or during its journey. Then, we implemented the energy control in the
“Airport baggage handling simulation”.

In this study, a constant resistance force was considered. From a second perspective,
we will examine a force that depends on linear speed or another parameter adapted to the
application’s environment. Additionally, we will develop strategies that better respond to
other constraints, such as prioritizing fully loaded AIVs over empty ones and considering
the battery level of an AIV. The final perspective is to refine the mathematical model,
particularly the cost function, by considering more detailed models, for example, including
motor efficiency to better reflect the AIV performance.

Finally, another important future work could involve conducting field trials in actual
airport settings, which will be essential to validate the performance of the adaptive fuzzy
multi-agent models. These trials will provide insights into how well the algorithms handle
real-time operational challenges and battery management. Moreover, simulating a variety
of real-world scenarios, such as peak travel periods, maintenance disruptions, and emer-
gency situations, to test the robustness of the energy management strategies. This will help
in understanding how the models perform under different operational stresses.
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