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Abstract. Breaking down the parallel time into work, idleness, and
overheads is crucial for assessing the performance of HPC applications,
but difficult to measure in asynchronous dependent tasking runtime
systems. No existing tools allow its measurement portably and accurately.
This paper introduces POT: a tool-suite for dependent task-based ap-
plications performance measurement. We focus on its low-disturbance
methodology consisting of task modeling, discrete-event tracing, and
post-mortem simulation-based analysis. It supports the OMPT standard
OpenMP specifications. The paper evaluates the precision of POT’s par-
allel time breakdown analysis on LLVM and MPC implementations and
shows that measurement bias may be neglected above 16µs workload per
task, portably across two architectures and OpenMP runtime systems

Keywords: Performances · Tasks · Time Breakdown · OpenMP

1 Introduction

The desire for an exaflopian machine consuming no more than 20MW has led
modern supercomputers to adopt massively parallel and heterogeneous architec-
tures [30]. Each processing unit is capable of asynchronous execution: some logic
may run on CPUs while computation is running on GPUs, and data are transiting
on the network. Mixing programming models to exploit the underlying asyn-
chronous hardware entirely became a necessity. The mixed-use through dependent
tasks is a promising solution, allowing fine control of workload synchronizations.
Since 2013, the OpenMP standard specifications define a dependent task-based
programming model, but its use remains niche with few applications using it:
one of the main issue is the lack of tool for comprehensive performance analysis
of task-based execution.

work

total

non-work

idleness overhead

Fig. 1: Breakdown

An approach for initiating performance profiling con-
sists in breaking down the time into the useful work pro-
vided by programmers with the non-work. Without fine
comprehension of the executing environment - including
the operating system, compilers, runtimes, and libraries
- it can be challenging to explain non-work. It is usually
separated into overheads and idleness as shown in Fig. 1.
N.R. Tallent et al. [28] defines overheads as the additional
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inherent work of the parallel system for orchestrating tasks over processing units,
and idleness as a lack of work to feed each one of them. Breaking down non-work
time is fundamental: authors proposed the Table 1 to determine whether an
execution is effectively parallel, confronting idleness and overheads to work time.

Idleness Overheads Interpretation
LL low low effectively parallel; focus on serial performance
LH low high coarsen concurrency granularity
HL high low refine concurrency granularity
HH high high switch parallelization strategies

Table 1: N.R. Tallent et al. methodology on parallel execution effectiveness

N.R. Talent et al. (2008) focused on independent tasks with Cilk [13]. S.L.
Olivier et al. [23] (2013) used such an approach with HPCToolkit [3] to measure
work-time inflation induced by Non-Uniform Memory Accesses (data) latencies
for independent OpenMP tasks. Breaking down non-work time into idleness and
overheads was the starting point for identifying the task dependence graph discov-
ery as a performance-limiting factor [24] (2023). No tools existed for quantifying
parallel idleness and overheads of HPC programs using dependent tasks, which
lead us to implement our own measuring within the Multi-Processing Computing
(MPC) OpenMP runtime. One source of difficulties were measurements bias [22]
that can lead the analyst to draw wrong conclusions. This paper introduces
a low-disturbance measuring methodology for attributing parallel idleness and
overheads in dependent task-based programming models. Our contributions are:

– a formal definition of parallel idleness and overhead metrics for dependent
task-based programs,

– the modeling of OpenMP 5.2 task specifications to a transition system, to
fallback onto formal definitions and measure metrics,

– the introduction of POT: a tool-suite for task-based programming model anal-
ysis relying on discrete event tracing and post-mortem simulation to reduce
disturbance, with OMPT support for standard OpenMP measurements.

The tool should contribute to improving performance evaluations of applications
using dependent tasks. This paper is organized as follows. Section 2 defines parallel
overhead and idleness for dependent task-based program and the modeling of
OpenMP tasks. Section 3 presents POT and Section 4 evaluates its measurement
accuracy. Section 5 review related works before concluding in Section 6.

2 Definitions for Idleness and Overheads

In practice, parallel idleness and overheads metrics are whether not quantified
explicitly [2, 21], not considering dependences [16, 23, 26], or measured on a
specific runtime system [24]. It causes issue with performance interpretation and
comparison between programming models and implementations. This section
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formalize metrics definition to any task-based models including dependences
with a case of study on OpenMP. Next sections introduces a measurement
implementation, discuss its portability, and evaluate its accuracy.

2.1 Formal Definitions

Let P = {1, 2, ..., n} with n ∈ N∗ a set of processing units, and (V,E) an
application represented as directed acyclic graph with V representing tasks as
nodes, and E precedence constraints as edges: (u, v) ∈ E means that task u
precedes v, for instance, due to dependency. An observation is a triplet (σ, a, d)

– σ : V ↦→ R+ mapping tasks to their starting time,
– a : V ↦→ P mapping tasks to processors,
– d : V ↦→ R mapping nodes to their work time,

A correct observation verifies the precedence (1) and the processor (2) constraints:

∀e = (u, v) ∈ E, σ(u) + d(u) ≤ σ(v) (1)

∀(u, v) ∈ V 2, a(u) = a(v) ⇒

{︄
σ(u) + d(u) ≤ σ(v)

or σ(v) + d(v) ≤ σ(u)
(2)

A task v ∈ V is ready at time t if t < σ(v) and ∀e = (u, v) ∈ E, σ(u) + d(u) ≤ t.
Let δr : R+ ↦→ {0, 1}

δr(t) =

{︄
1 if any task is ready at time t

0 otherwise

A processing unit p is working at time t if ∃v ∈ V so that a(v) = p and
σ(v) ≤ t < σ(v) + d(v). Let δw : P × R+ ↦→ {0, 1} be

δw(p, t) =

{︄
1 if p is working at time t

0 otherwise

Note that δr is an information global to all processing units while δw is local. Given
a processing unit p ∈ P and a time interval I = [t0, tf ], we define overheads (3)
as the non-working time while there are tasks ready. Symmetrically, we define
idleness (4) as the non-working time with no ready-tasks.

overheads(p, I) =

∫︂ tf

t0

δr(t) (1− δw(p, t)) dt (3)

idleness(p, I) =

∫︂ tf

t0

(1− δr(t)) (1− δw(p, t)) dt (4)

Note that δr, δw and their product are piecewise constant functions. Therefore
overheads/idleness can be computed as a discrete sum over constant intervals.
Hence, measurement difficulties stand in defining δr and δw for a given execution
using a task-based programming model.
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Task Transition System
1 - initialized
2 - ready
3 - suspended
4 - cancelled
5 - running

6 - executed
7 - detached
8 - completed
9 - deleted

3

1 2 5 6 8 9

74

Transition Occurs Related OpenMP callbacks

1 → 2
- during a task or a target nowait construct
- or after a predecessor task completed

- task_create, implicit_task
- dependences, task_schedule

2 → 4 - on a cancel taskgroup construct - cancel

2 → 5 - on a scheduling point - task_schedule

3 → 2
- after a taskwait completion
- or after an undeferred child task executed

- sync_region
- task_schedule

4 → 7 - the discarded task has a detach clause with an
unfulfilled event

- none

4 → 8 - the discarded task has a detach clause with a
fulfilled event, or no detach clause

- none

5 → 2 - on any task scheduling point - task_schedule

5 → 3
- on a taskwait construct
- or on an undeferred child task construct

- sync_region
- task_create

5 → 4 - on a task cancellation point - cancel

5 → 6 - after the task structured block executed - task_schedule

6 → 7 - after executing a detachable task with an unful-
filled event

- task_schedule

6 → 8 - after executing an undetachable task, or a detach-
able task with a fulfilled event

- task_schedule

7 → 8 - after a detached task event is fulfilled - task_schedule

8 → 9 - whenever the task is deleted - none

Fig. 2: Modeling OpenMP Specifications 5.2 Tasks as a Transition System

2.2 Task-based Programming Model: case of study of OpenMP

In order to define δr and δw for a task based program, we propose to model tasks
as a transition system [18]. We illustrate on OpenMP. Since the introduction of
explicit tasks [4], the OpenMP standard kept evolving towards a general purpose
task-based programming model. Our reading of the standard specification and
experience as implementers lead us to the modeling depicted Fig. 2.

The table links OMPT callbacks to task transitions. For instance, 1 → 2
may occur whether (a) on a task construct if the task has no dependence or if its
predecessors had already completed; or (b) after its last predecessor’s completion.
Using the transition system, δr and δw can be trivially defined for OpenMP :
Computing δr and δw constant intervals is therefore deferred to a problem of
bookkeeping task states over an execution: this is the purpose of POT.

δr(t) =

{︄
1 if there is any task in state 2 at time t

0 otherwise

δw(p, t) =

{︄
1 if there is any task in state 5 on p at time t

0 otherwise
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It must be noted that the formal model Section 2.1 allows only a single schedule
per task, while OpenMP tasks can have multiple schedules via the cycle 2 → 5
→ 3 . However, falling back to the formal model is straightforward subdividing
OpenMP tasks into logically-sequential segments interpreting a task suspension
as a task completion and a new continuation task creation as per H. S. Matar [20].

3 POT - A Tool-suite For Dependent Task-based
Programming Model Performance Analysis

(1) Run

(2) Run

Call

Application
Binary

POT
OMPT Plugin

POT
Kernel

Loads
Forwards
Events

POT
Trace Files

POT
Simulator

Reads

Write

Output
metrics

POT
Simulator

POT
Simulator
POT
Analysis

Fig. 3: POT Workflow

The primary motivation of POT tool-suite is the computation of δr and δw
functions with low distortion of the execution; else-way, measurements bias [22]
could lead the analyst to draw wrong conclusions. For that purpose, POT workflow
consists of a two-step measurement method as shown in Fig. 3. First, the analyst
must execute an instrumented version of its program to record and timestamp
events when δr and δw may vary. Then, a post-mortem simulation of the execution
replays events to construct δr and δw tracking task states changes. The following
sections present our implementation that is publicly available 3 .

3.1 Instrumentation using OMPT

The POT instrumentation is composed of two modules : (1) the OMPT plugin
converts and forwards OpenMP callbacks as events to the POT-Kernel, which
is responsible for recording. The OMPT plugin currently includes the 8 events
depicted on Fig. 2 out of the 37 available in the standard specifications.

– thread_{begin|end} records available CPUs assuming no over-subscription.
– task_create and implicit_task records task initialization 1 .
– task_schedule is used for several transitions and needed to track transition

to state 5 and compute δw.
– dependences controls whether a task became ready after a predecessor

completion: a key transition 1 → 2 for computing of δr
– sync_region_wait reports the start and completion of a taskwait construct,

hence controls task suspension and readiness on the cycle: 3 → 2 → 5 :
transitions needed to compute δr.

3 https://gitlab.inria.fr/ropereir/pot

https://gitlab.inria.fr/ropereir/pot
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– sync_region and cancel can be used to detect a taskgroup, its cancellation,
and discarded tasks for transitioning 2 , 5 → 4 .

OpenMP task_dependence callback reports dependency edges between tasks
generated by the runtime system. However, it may not report all edges as the
runtime itself may skip some, for instance, when predecessors are completed
before the successor creation. This callback is insufficient to reconstruct the task
dependency graph entirely, and using the dependence callback is required. To
limit distortion on the execution, the OMPT plugin follows two principles:

– (1) Limit events callback to recording only
– (2) Perform only thread-local operations

On (1), POT-Kernel pre-allocates memory buffers to record events at run-time
and flushes to disk on program termination. Recording an event includes time-
stamping and writing from 8 to 64 bytes of data to the memory buffer, depending
on the traced event. Using the OSJitter4 micro-benchmark, we measured 16ns
overheads for time-stamping with clock_gettime on Intel(R) Xeon(R) Gold
6130 CPU. It corresponds to the cost of the function call reading the Time Stamp
Counter (TSC). On (2), memory buffers are pre-allocated per-thread, and the
tool identifies tasks with a primary key (thread-id, task-id) so each thread can
generate them independently from one another. Evaluations Section 4.1 quantify
distortions on a set of benchmarks.

3.2 Simulating Dependent Tasks

Algorithm 1 Simulator - In-order discrete event simulation
In: E a set of events
1: Initialize simulator S
2: E := {}
3: while E ̸= E do
4: e := min E \ E ▷ with e1 < e2 ⇔ e1.time < e2.time
5: dt := e.time − max {x.time | x ∈ E} ▷ time distance to last event
6: Analysis(S, e, dt)
7: Update(S, e) ▷ Update the simulator accordingly to the event e
8: E := E ∪ {e}
9: end while

The second step of POT measurements is a post-mortem simulation of the
execution presented on Algorithm 1. The simulator reconstructs task states along
the recorded execution so analysis can compute and integrate (δr, δw). It reads
recorded events sequentially and in-order, to maintain coherent tasks states over
time through the Update routine. It is illustrated on Algorithm 2 on a few OMPT
events. For instance, on a task_create event, the simulator allocates a new task
to state 1, and may transition it to 2 if its dependences are fulfilled. Users can
enable analysis passes alongside the simulation. Our time-breakdown analysis
is presented in Algorithm 3. It integrates δr and δw provided by the simulator
computing overheads and idleness as a discrete sum.
4 https://github.com/gsauthof/osjitter

https://github.com/gsauthof/osjitter
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Algorithm 2 Simulator - Update
In: e an OpenMP event record
1: switch e do
2: case task_create with task

3: Transition task to 1
4: if task has no dependences or task’ predecessors completed then
5: Transition task to 2
6: end if
7: case task_schedule with (prior_task, prio_task_status, next_task)
8: Transition next_task to 5
9: if prev_status is executed then

10: Transition prior_task to 6
11: end if
12: ...
13: case dependences with (task, dependences)
14: Insert in TDG with respect to dependences ▷ in, out, ...
15: if task’ predecessors completed then ▷ i.e. they are in state 8

16: Transition task to 2
17: end if
18: case ...

Algorithm 3 Simulator - Analysis - Computing the Parallel Time Breakdown
In: e current event; dt time until last event
Inout: a parallel time breakdown (work, overheads, idleness)
1: for each Processing unit p ∈ P do
2: if there is a task running on p then ▷ ⇔ δw(p, t) = 1
3: work := work + dt

4: else
5: if there is any task ready then ▷ ⇔ δr(t) = 1
6: overheads := overheads + dt
7: else
8: idleness := idleness + dt

9: end if
10: end if
11: end for

3.3 Discussion: Portability of POT

This paper primarily focused on bridging POT with OpenMP through OMPT. As
shown by the transition system Fig. 2, the OpenMP standard task programming
model had become very generic with many task states and transitions. Shared-
memory task-based programming models such as Cilk [13], Kaapi [15], Kokkos [12],
OmpSs-2 [2] or StarPU [1] could most likely be mapped to the presented transition
system. Hence, for a given programming model, a straightforward bridging to
POT is through the support of the OMPT event callbacks listed on Fig. 2.
Nevertheless, because all the above cited runtimes have their own tracing tools,
it could be most straightforward to rewrite the Update Algorithm 2 that reads
the recorded trace and generates the corresponding transitions.

However, any task-based programming model may not be mapped to the
presented transition system. It is the case for distributed task-based programming
models [6,8,16,19] where tasks migrate between distributed processes. The POT-
Kernel and Simulator would need extensions to support new events and their
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interpretation into states and transitions. In addition, time-stamping distributed
using different hardware clock references (i.e. TSC registers) introduces a new
measurement bias. D. Becker et al. mention that "the analysis of such traces
may yield wrong quantitative results and confuse the user" [5]. Solutions exist,
including post-mortem corrections which POT could take advantage of.

4 Evaluation

We conduct several experiments to assess the precision of POT measurements.
In our evaluations, we are using the following environment:

– Debian 11 installed via Kadeploy on Grid5000 [9],
– Intel(R) Xeon(R) Gold 6130 16-Core processor,
– Compute nodes with two Intel processors,
– LLVM 19.x compiler and runtime (commit c40146c),
– Compactly binding threads to cores.

4.1 Slowdown induced by tracing tools

Our first experiment evaluates the slowdown induced by several tools, all based
on OMPTS, compared to the non-instrumented execution. We use two comple-
mentary suites of benchmarks: the BOTS (b) [11] for independent tasking, and
the KaStORS (k) [29] for dependent tasking. We measure the slowdown over
non-instrumented executions of several tools:

– no-op is an OMPT tool with empty callbacks for every event,
– TiKKi [10], OMPTrace 5, OmpTracing [25], HPCToolkit [3] are OMPT tools.

Results are presented on Table 2 as the slowdown of the 10-runs average on
each configuration. Note that a few measurements did not complete due to too
important slowdown (>50) or error during the execution. The penultimate and
last line, respectively shows the average slowdown excluding and including them.

The no-op results show that enabling OMPT introduces less than 3% of
slowdown over non-instrumented execution (fib.manual and uts). HPCToolkit
has the least slowdown on three microbenchmarks (fft, health, sort), which is
mostly explained because it only records the task_create and implicit_task
tasking events: the post-mortem analysis lacks information to compute the time
breakdown metric in such a case6. As shown on the average slowdown, POT-
OMPT yields the least slowdown.

4.2 Measurements Precision

The slowdown over the non-instrumented execution metric is not sufficient to
determine whether the execution had been distorted. This second experiment
compares POT breakdown measurement over theoretical ideal values.
5 https://github.com/passlab/omptrace
6 Removing the task_schedule event recording from POT-OMPT on (fft, health, sort)

leads to a (1.05, 1.00, 1.01) slowdown, similar to HPCToolkit.

https://github.com/passlab/omptrace
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Benchmark Parameter no-op POT TiKKi OMPTrace OmpTracing HPCToolkit
(b) alignment prot.100.aa 1.00 1.00 1.00 1.00 1.03 1.01
(b) fft(226) n = 226 1.01 1.22 1.90 3.18 45.1 1.04
(b) fib.manual n = 36 1.02 1.06 1.23 1.06 3.37 2.08
(b) health medium 1.00 1.03 1.09 1.08 7.67 1.02
(b) nqueens n = 12 1.00 1.02 1.03 1.00 1.17 1.25
(b) sort n = 226 1.00 1.04 1.31 1.22 11.3 1.03
(b) sparselu (n,m) = (25, 28) 1.00 1.00 1.00 1.00 1.01 1.01
(b) strassen n = 212 1.00 0.99 1.03 1.00 0.98 1.00
(b) uts tiny 1.03 1.93 2.64 err err err
(k) jacobi (n, b) = (215, 28) 1.00 1.00 1.01 err err 1.00
(k) sparselu (n,m) = (27, 26) 1.00 0.99 1.00 1.00 44.3 1.02
(k) strassen n = 213 1.00 1.00 1.00 0.99 1.10 1.01
average of all w/o uts, jacobi 1.00 1.04 1.16 1.25 11.7 1.15
average of all with uts, jacobi 1.01 1.11 1.27 err err err

Table 2: Slowdown using OMPT against Non-instrumented Execution

Work measured

Idleness measured

Overhead measured

Work ideal

Idleness ideal

= 16ns

Work

Idleness

+24%+23%

= 2us= 128ns

Gantt chart for g=2us

Schedule event pairs

60 us

Create events

[...]

0 us 20 us 40 us

[...] [...][...][...]

Barrier delay
idleness

Fig. 4: POT accuracy on LLVM 19.x OpenMP and Intel Cores

Load Imbalance Given a g granularity parameter, each thread t ∈ [1, n] of the
load-imbalance micro-benchmark repetitively (I times) creates one task running
for t.g µs with g ∈ R+ and waits for their completion. On an ideal execution of
a single-iteration with no overheads (events recording, task creation, scheduling,
threads synchronizations...) we expect :

(work, idleness, overhead) =
(︃
g
n.(n+ 1)

2
, g

(n− 1).n

2
, 0

)︃
Results Fig. 4 presents measurements for I = 10, 000 iterations. X-axes represent
the g parameter, which is the finest task grain. The left-side figure y-axis reports
measured and ideal time accumulated on threads (in s.) for the entire execution.
The right-side figure y-axis reports the divergence (in %), that is, the relative
distance between measurement to ideal values for both work and idle times.
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Refining g bellow 2µs for idle time and 128ns for work time, both lead to more
than 20% inflated measurement reported by POT.

For g > 16µs, measurements are accurate with less than 3% divergence on
work and idleness reported. At finer grain, we find several explanations for the
observed divergence inflation. First, each task actively polls its execution time
using clock_gettime to stop after g.t seconds. Hence, each task may run a few
more nanoseconds than ideal (reminder: clock_gettime takes 16ns). A second
part stems in the POT-OMPT instrumentation. OpenMP runtime raises event
callbacks, which are recorded by POT-OMPT adding a few function calls and
from 16 to 64 bytes of memory written. For instance, a task_schedule event is
recorded after the execution of the task structured block, therefore, the event
recording is counted as part of the task work, leading to slight work inflation.

On idleness, the ideal value neglects that thread may idle a bit until tasks
get created. Using the EPCC microbenchmark [7] PARALLEL_TASK, we measured
250 ± 56ns for a MPC-OMP task creation. Additionally, the barrier delay on
each iteration introduces idleness time that can be observed on the Gantt chart.

Intel(R) Xeon(R) Gold 6130 16-Core
Runtime Work Div(<20%) Idleness Div(<20%) Overhead average
LLVM g ≥ 128ns. g ≥ 2µs 0.36s
MPC-OMP g ≥ 128ns. g ≥ 4µs 2.64s

AMD EPYC 7352 24-Core
Runtime Work Div(<20%) Idleness Div(<20%) Overhead average
LLVM g ≥ 128ns. g ≥ 2µs 1.80s
MPC-OMP g ≥ 128ns. g ≥ 4µs 6.69s

Table 3: Load Imbalance benchmark results portability

Portability We reproduced the experiment on the same machine using the Multi-
Processor Computing OpenMP (MPC-OMP) runtime with the LLVM compiler;
and on AMD EPYC 7352 24-Core Processor with both LLVM and MPC-OMP
runtimes. Table 3 reports results on Intel and AMD CPUs. The first column
is the runtime, the second and third columns are grain parameters g for which
measurements diverge by more than 20%, and the last column is the average
overhead reported for all grains. Both processors have similar grain thresholds
for work and idleness divergence. Runtimes have similar results on the minimal
grain, although MPC-OMP introduces more overheads than LLVM on average.

4.3 Case of Study : LULESH

Fig. 5 depicts metrics obtained with POT on a dependent task-based version of the
Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH 7)
proxy-applications. In this experiment, we fixed parameters (size, iterations) to
(80, 128) varying the number of threads from 1 to 32 (x-axis) and the number of
tasks per loop from 1 to 256 with a step of 8. Heatmap cell values report metrics
measured for a given instance of execution. The uppermost figures report the
7 https://github.com/rpereira-dev/LULESH

https://github.com/rpereira-dev/LULESH
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Fig. 5: LULESH time breakdown varying threads and tasks on LLVM 19.x

parallel time accumulated over threads (left) with its time breakdown (right).
Note that this experiment exhaustively tests a wide range of threads and task
grains. In practice, POT users would compute these metrics on a single point of
interest to assess the application performances.

We observe the three LL, HL, and LH configurations respecting Table 1
interpretation. The best performances are reached for 21 threads and 88 tasks per
loop in a LL configuration. We observed a similar time-breakdown using MPC-
OMP. Refining tasks grain further-more produces HH case-scenario, that had
been previously attributed to the task dependency graph discovery on LULESH
and optimized with persistent tasks to reduce both idleness and overheads [24].
Regarding distortion, we measured an average of 1.3% and 0.8% slowdown
with LLVM and MPC-OMP over non-instrumented execution. However, we also
observed up to 49% slowdown and 42% speed-up in LH configurations where the
average task grain varies from 25 to 45µs.

5 Related Works

The HPX [16] runtime system embs counters for performance metrics. In particu-
lar, it provides HPX-Task Overheads as non-work time

n° of tasks and HPX Thread Idle-rate
as non-work time

total time . While their name suggests to be related to the time breakdown
understudy, these metrics only consider non-work time with no distinction on
idleness/overheads as per POT (see Fig. 1). It significantly impacts performance
interpretation: users would observe high HPX - Task Overheads in both LH and
HL setup, while they suggest opposite optimizations directions.

M. Roth et al [26] proposed a breakdown of parallel performance factors that
can be seen as a refinement of N.R. Tallent [28] breakdown of parallel time. As
opposed to POT, their measurement requires a reference sequential execution
and instrumentation of each entry point of the parallel runtime. In addition, it
may produce negative values when scaling super-linearly; it corresponds to work
time deflation between two execution instances with POT.

TAU [27] and HPCToolkit [3] are tool-suites for HPC applications performance
analysis. None of them performs a bookkeeping of ready-tasks with respect of
their dependences to compute a time breakdown. Extending them with POT-
alike simulator could be achieved to take advantage of their existing performance
profiling infrastructure.
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V. Garcia et al. introduced a performance analysis framework for distributed
task-based programs [14] illustrated on StarPU. Their analysis also relies on
discrete-event tracing through runtime system instrumentation. However, they do
not breakdown non-work time and idleness/overheads interpretation are mainly
visual making it subjective to the analyst: POT-like simulation-based metrics
could enlight interpretations, in particular with the presence of visual artifacts.

Cilkview [17] is a scalability analyzer for Cilk++ programs via Intel Pin
instrumentation. Authors report an average slowdown of 2x to 10x. Integrating
Cilkview algorithm in POT simulator as a new analysis would be straightforward,
similarly allowing the detection of scalability issues for OpenMP programs.

6 Conclusion

HPC applications are evolving towards more asynchrony with the mixed-use of
programming models through dependent tasks. Performance profiler must take
into consideration the presence of task dependences.

This paper provides a formal definition of parallel time breakdown with
support for dependent tasks. We illustrate on OpenMP with quantification
through POT: a tool-suite for dependent task-based applications performance
profiling. POT aims at low impact on the execution for accurate and meaningful
measurement, by modeling parallel objects as transition systems, discrete-event
tracing and post-mortem simulation. While experiments suggests low distortion
above 16µs per tasks on two different CPUs and runtime systems, analyst should
always compare their measurement with non-instrumented execution to avoid
misinterpreting due to the presented measurement bias. POT-alike analysis had
already been used in LULESH detecting HH configuration.

Measuring in presence of GPUs is kept as future work; a straightforward
approach could be offering the possibility to choose processing units hierarchically
on the hardware (GPU, SM, warps, or threads). We would also like to extend POT
to mixed-programming model simulation: knowledge of pending MPI requests or
Cuda streams alongside the simulation could enlighten time breakdown reports.
Hardware-counters could also enlighten reports, for instance to detect limiting
performances factor of critical tasks or to attribute energy costs.
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