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Abstract—This paper addresses the pressing need for enhanced
tools in the diagnosis and management of Multiple Sclerosis (MS),
particularly in the accurate detection and segmentation of MS
lesions. Leveraging recent advances in deep learning, we evaluate
the performance of three state-of-the-art algorithms, focusing on
their potential to improve both precision and efficiency in MS
lesion segmentation from medical images. Our study provides
critical insights into the strengths and limitations of each model,
offering valuable guidance for future applications of AI in MS
diagnosis and treatment.
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I. INTRODUCTION

A. Multiple Sclerosis

Multiple Sclerosis (MS) is a chronic autoimmune disorder
that affects the central nervous system (CNS), leading to a
broad spectrum of neurological symptoms. The disease is
characterized by the immune system attacking the myelin
sheath, the protective covering of nerve fibers, causing inflam-
mation, scarring (sclerosis), and eventually impairing nerve
signal transmission. The progression and symptoms of MS
are highly variable, manifesting in a range of physical, cogni-
tive, and psychological impairments. This unpredictability and
heterogeneity make both diagnosis and monitoring particularly
challenging.

Magnetic Resonance Imaging (MRI) serves as the gold
standard for diagnosing and monitoring MS. Among the vari-
ous MRI modalities, 3D Fluid-Attenuated Inversion Recovery
(FLAIR) images are particularly effective at highlighting MS
lesions, as they suppress the cerebrospinal fluid signal, en-
hancing the visibility of white matter lesions. However, the
manual interpretation of these images is labor-intensive and
subject to inter-observer variability, leading to inconsistencies
in both diagnosis and treatment planning.

In response to these challenges, there is a growing need for
fully automated methods that can provide accurate and rapid
segmentation of MS lesions from MRI scans. While numerous
automatic segmentation methods have been proposed, recent
advancements in deep learning have led to significant improve-
ments in segmentation accuracy. However, despite these ad-

vances, current state-of-the-art methods still do not fully match
the precision of expert manual segmentation, highlighting the
need for further progress in developing reliable automated
solutions for MS diagnosis and management.

B. Deep Learning-Based Lesion Segmentation Methods

Yang Ma et al. conducted a comprehensive study in 2022
on deep learning methods for MS lesion segmentation. They
observed that traditional machine learning models often strug-
gle with the Dice similarity coefficient (DSC), a standard
metric for lesion segmentation. The DSC can be skewed
by large lesions, potentially masking poor performance on
cases with smaller lesions. Additionally, the heterogeneous
spatial distribution and appearance of MS lesions, coupled
with their small proportion relative to the total brain volume,
create highly imbalanced datasets, further complicating model
training.

To address these issues, more efficient inference techniques
have emerged. Fully convolutional networks (FCNs) bypass
fully connected layers, relying solely on convolutional lay-
ers for pixel-wise predictions. Architectures such as U-Net
[1], which incorporate an encoder-decoder structure, balance
network complexity with performance. Building on U-Net,
Isensee et al. developed nnU-Net [2], a framework that auto-
matically adjusts hyperparameters, preprocessing, and training
schemes to suit different datasets, requiring no manual inter-
vention. Another notable approach is Aslani et al.’s [3] fully
convolutional CNN framework, which processes features from
different 2D modalities independently and uses multi-modal
fusion and multi-scale upsampling to generate precise lesion
segmentations.

C. MS Dataset

This study leverages a publicly available dataset from the
MICCAI 2016 MS lesion segmentation challenge. The dataset
consists of high-quality scans from 53 MS patients, adhering to
the OFSEP protocol, which is used in France for the national
MS cohort. The MRI scans were acquired from three different
French clinical sites, using four MRI scanners from Siemens,



Philips, and GE, with magnetic field strengths of 3T and 1.5T.
For each patient, seven manual lesion segmentations were
performed by trained experts across the three sites, and a
consensus ”ground truth” segmentation was generated using
the LOP STAPLE algorithm. The dataset was divided into a
training set of 15 patients and a testing set of 38 patients.
The average age of the patients was 45.3 years, with a male-
to-female ratio of 0.4. While there were minor demographic
differences between the training and testing sets, the training
set had an average age approximately 5 years younger than
the testing set [4].

II. CUTTING-EDGE DEEP LEARNING METHODS

In recent years, deep learning models have revolutionized
medical image analysis, particularly in segmentation tasks.
Convolutional neural networks (CNNs), such as U-Net [1],
have become the gold standard in biomedical image segmen-
tation due to their ability to capture spatial hierarchies and
preserve fine details through symmetric convolutional layers
and skip connections.

While transformer-based networks have shown promise by
capturing global dependencies across images [5], [6], [7], [8],
their high computational demands and prolonged inference
times make them less practical for real-world applications
where resources are limited. These models often require high-
performance hardware, such as GPUs, to offset their complex-
ity, which can limit their scalability in clinical settings.

In contrast, MLP-based networks have emerged as a com-
pelling alternative. Models like MLP-Mixer offer compara-
ble performance to transformers but with significantly lower
computational overhead. Inspired by these advancements, UN-
eXt—a hybrid model combining convolutional layers and
MLP blocks—strikes an effective balance between parame-
ter efficiency and strong segmentation accuracy, making it
well-suited for practical medical applications with limited
resources.

Additionally, the YOLO (You Only Look Once) family
of models, originally designed for real-time object detection,
offers high speed and efficiency, making it appealing for time-
sensitive tasks such as real-time medical imaging.

This study evaluates three cutting-edge models—nnU-Net
[2], UNeXt [9], and YOLOv9 [10] —for the segmentation of
Multiple Sclerosis (MS) lesions from 3D FLAIR MRI images.
By assessing the capabilities of these advanced models, we
aim to push the boundaries of MS lesion segmentation and
offer valuable insights into their practical applicability in
clinical environments, where both accuracy and computational
efficiency are paramount.

A. nnU-Net

nnU-Net (no-new-Net ) [2] is a robust and flexible frame-
work for medical image segmentation. It is known for its
automatic adaptation to different segmentation tasks without
the need for manual hyperparameter tuning. The framework
dynamically configures itself based on the dataset’s character-
istics, making it a strong baseline for a wide range of medical

imaging tasks. The original implementation and methodology
of nnU-Net can be found in the paper by Isensee et al. (2021)

B. UNeXt

UNeXt [9] is an architecture designed specifically for
medical image segmentation, building on the foundational
principles of U-Net with additional innovations tailored to
enhance performance in specific tasks. Instead of incorporating
transformer layers, UNeXt introduces elements of convolu-
tional neural networks (CNNs) and MLP-based tokenization,
enabling it to efficiently handle complex segmentation chal-
lenges. The detailed implementation and theoretical founda-
tions of UNeXt are discussed extensively in the work by Jeya
Maria Jose et al. (2022).

C. YOLO

YOLO (You Only Look Once [11] ) is primarily known
as an object detection framework, but it has been adapted for
segmentation tasks in various research studies. YOLO’s speed
and accuracy make it a popular choice for real-time applica-
tions, including medical image segmentation. The segmenta-
tion capabilities of YOLO, particularly in the context of small
object detection and segmentation, are covered extensively in
research by Redmon et al. (2016) and subsequent studies that
expanded its use in medical imaging.

III. IMPLEMENTATION

In this section, we detail the implementation of the three ad-
vanced deep learning models: nnU-Net, UNeXt, and YOLOv9.
Each model was chosen for its unique architectural advantages
and tailored to address the specific challenges of MS lesion
segmentation in 3D FLAIR MRI images. The implementation
process began with thorough preprocessing of the MRI data
to ensure consistency and enhance model performance. We
provide an overview of the specific versions of each model
used in our study and describe how each was adapted to meet
the demands of our segmentation task.

A. Pre-processing

The preprocessing of medical images is a critical step
to ensure that the data is in the optimal form for further
analysis and model training. In this study, we performed sev-
eral preprocessing steps to standardize and enhance the MRI
images before feeding them into our segmentation models. The
following steps were applied:
1) Image Cropping : the original MRI images had a shape

of 261 x 336 x 336. To standardize the input size and
reduce computational load, we cropped the images to a
size of 256 x 256 x 336. This step ensures that all images
have consistent dimensions, which is essential for batch
processing and model training.

2) Skull Stripping : to focus the analysis on brain tissues, we
applied skull stripping using the HD-BET (Brain Extraction
Tool [12]). Skull stripping removes non-brain tissues such
as the skull, scalp, and other extraneous structures from the
MRI images. This step is crucial for reducing noise and



improving the accuracy of subsequent image processing
and analysis.

3) N4 Bias Field Correction : MRI images often suffer from
intensity inhomogeneities, which can affect the accuracy of
segmentation algorithms. To correct this, we applied the N4
ITK algorithm for bias field correction.

4) Normalization and Slicing: for methods using 2D seg-
mentation such as UNeXt and YOLO, additional prepro-
cessing steps were performed:
• Outlier removal : The top 5% of the highest intensity

values were removed to minimize the impact of outliers
and artifacts.

• Normalization : after bias correction, the intensity values
of the MRI images were normalized to ensure that the
pixel values are within a consistent range across all
images.

• Slicing : the 3D NIFTI files were sliced into 2D PNG
images, adapting the volumetric data into a format that
can be processed by 2D convolutional neural networks.

It is important to note that the nnU-Net model, being a 3D
segmentation method, only utilized the first three preprocess-
ing steps: image cropping, skull stripping, and N4 bias field
correction.

B. nnU-Net 3D

For our study, we used the nnU-Net 3D variant due to
the volumetric nature of MRI data. The MRI images were
preprocessed and standardized as described earlier, and then
fed into the nnU-Net model. The model was configured to han-
dle 3D input data with an initial resolution of 128x128x128,
and it automatically adjusted the network architecture and
training parameters to fit this specific dataset. The preprocess-
ing steps included resizing the input volumes to fit within
the 128x128x128 voxel space, followed by applying intensity
normalization and data augmentation techniques tailored to the
dataset. The training process was carried out using nnU-Net’s
automated configuration for hyperparameters, which includes
determining the appropriate learning rate, batch size, and data
augmentation parameters . We implemented nnU-Net using the
resources available from the official GitHub repository, which
provided the necessary tools and code for our experiments
[13].

C. UNeXt

UNeXt builds upon the well-established encoder-decoder
structure of U-Net, integrating innovative features to enhance
segmentation performance. It retains the familiar architecture
but introduces a novel Tokenized MLP (Tok-MLP) block in the
bottleneck. This Tok-MLP block tokenizes convolutional fea-
tures and employs multilayer perceptrons (MLPs) to efficiently
model and extract meaningful segmentation information. By
incorporating a channel-shifting operation within the MLP
layers, UNeXt enhances its ability to capture local depen-
dencies, effectively reducing both the number of parameters
and computational complexity. Additionally, skip connections
between different levels of the encoder and decoder further

bolster the network’s performance. Our implementation of
UNeXt utilized the code and tools available from the UNeXt
GitHub repository [14], which supported the development and
execution of our experiments [9].

D. YOLO

YOLO (You Only Look Once) is a highly efficient object
real-time object detection system. It applies a single neural
network to the full image, dividing the image into regions and
predicting bounding boxes and probabilities for each region.
YOLO’s architecture is highly efficient, allowing it to achieve
high speed and accuracy. For medical image segmentation,
we adapted YOLO to handle the specific requirements of le-
sion segmentation. This involved converting the segmentation
masks into the format required by YOLO, where each object
in the image is described by a set of coordinates that outline
its contour. The most recent version, YOLOv10, represents the
cutting-edge in this technology, but it has not yet been released
for segmentation tasks. Therefore, we utilized YOLOv9 for our
lesion segmentation purposes [10].

YOLOv9 has different versions tailored for specific tasks,
such as YOLOv9e and YOLOv9c. The main differences be-
tween these versions lie in their design and application focus
[15] :
• YOLOv9e: This version emphasizes enhanced accuracy

and robust performance in complex detection scenarios.
It integrates advanced techniques such as Programmable
Gradient Information (PGI) and the Generalized Efficient
Layer Aggregation Network (GELAN) to handle challeng-
ing environments with high precision.

• YOLOv9c: This version is optimized for computational
efficiency, making it suitable for applications requiring real-
time performance with limited computational resources.
YOLOv9c balances accuracy and speed by employing a
streamlined architecture.

We utilized the YOLOv9 variant from the ultralytics GitHub
repository for our segmentation tasks [16].

IV. RESULTS AND DISCUSSION

Our evaluation of deep learning methods is based on the
dataset described in I-C. We used only the training set of 15
patients, as the testing set of 38 patients was not available
for download, to evaluate the performance of the algorithms.
To optimize the use of the dataset, we employed cross-
validation techniques. We implemented 5-fold cross-validation
to ensure the robustness of our results. The dataset was split
into five subsets, and in each fold, four subsets were used for
training while one was reserved for validation. This process
was repeated five times, ensuring that each subset served as
the validation set once. This dataset, adhering to the OFSEP
protocol, was used to train and test the algorithms in a manner
that is representative of current medical imaging standards.

A. Performance comparison

The performance of the nnU-Net, UNeXt, YOLOv9e, and
YOLOv9c models was evaluated using Dice scores for each



patient, as detailed in Table I. The results show that nnU-
Net and UNeXt show superior performance, especially in
more challenging segmentation scenarios, demonstrating its
robustness in handling complex medical image segmentation
tasks. In contrast, the YOLOv9e and YOLOv9c models exhibit
similar performance, with comparable Dice scores. This sug-
gests that while the YOLOv9 models differ in specific design
features, their segmentation accuracy is notably consistent.

TABLE I: Dice comparison for each patient using different
models, including average and standard deviation.

Patient ID YOLOv9e YOLOv9c UNeXt nnU-Net
01042GULE 0.75 0.76 0.84 0.84
07003SATH 0.57 0.48 0.67 0.78
08031SEVE 0.62 0.60 0.85 0.87
01016SACH 0.79 0.79 0.78 0.90
08002CHJE 0.51 0.51 0.77 0.71
08037ROGU 0.63 0.63 0.79 0.75
07010NABO 0.36 0.47 0.84 0.71
07040DORE 0.42 0.47 0.75 0.76
08027SYBR 0.32 0.35 0.75 0.70
01038PAGU 0.61 0.61 0.76 0.66
01039VITE 0.73 0.73 0.80 0.89
01040VANE 0.41 0.42 0.90 0.74
07001MOEL 0.24 0.24 0.79 0.64
07043SEME 0.65 0.64 0.83 0.76
08029IVDI 0.69 0.62 0.76 0.84
Average Dice 0.57 0.57 0.79 0.76
Standard Deviation 0.17 0.17 0.06 0.08

The following images illustrate the segmentation results for
a sample patient, showcasing the differences in performance
between nnU-Net, UNeXt, and YOLOv9e models. As seen
in the images, nnU-Net captures the lesion boundaries with
high precision (Fig.1a and Fig 1d), while UNeXt provides
slightly more conservative estimates (Fig.1b and Fig.1e), and
YOLOv9e tends to expand the lesion area (Fig.1c and Fig.1f).

(a) nnU-Net. (b) UNeXt. (c) YOLOv9e.

(d) nnU-Net. (e) UNeXt. (f) YOLOv9e.

Fig. 1: Segmentation results in comparison by using nnU-Net,
UNeXt, and YOLOv9e.

The comparison of segmentation performance across the
nnU-Net, UNeXt, and YOLOv9 models reveals significant
insights into the capabilities and limitations of each approach,
particularly in the context of medical image analysis for
multiple sclerosis (MS) lesion segmentation.

1) YOLOv9e’s real-time capabilities with trade-offs:
• While the YOLOv9e model shows lower overall accuracy

compared to nnU-Net and UNeXt, with an average Dice
score of 0.57, its performance is notable given the model’s
design focus on real-time processing. YOLOv9e’s architec-
ture, optimized for speed, tends to expand the segmented
area, leading to overestimation of lesion sizes. This behavior,
while potentially useful in scenarios requiring rapid screen-
ing, may not be ideal for precise diagnostic applications.

• The higher standard deviation (0.17) observed in
YOLOv9e’s performance indicates less consistency, which
can be a drawback in medical contexts where reliability is
crucial. However, YOLOv9e’s strengths lie in its potential
application in environments where computational resources
are limited, or where quick, approximate segmentations are
acceptable as a first pass before more detailed analysis.

• The less favorable performance of YOLOv9e can partly
be attributed to challenges in the preprocessing stage, par-
ticularly in handling complex lesion structures such as
those with holes or perforations. Improving preprocessing
methods to better address these complex structures could
enhance the model’s overall accuracy and reliability.
2) UNeXt’s innovation and competitiveness:

• UNeXt, with an average Dice score of 0.79, marginally
outperforms nnU-Net overall, demonstrating the efficacy of
its novel architecture that combines convolutional layers
with tokenized MLPs. This design enables UNeXt to capture
both local and global features within the medical images,
which is essential for detecting and accurately segmenting
MS lesions that vary in size, shape, and intensity.

• The model’s low standard deviation (0.06) across pa-
tient cases further emphasizes its consistency, making it a
strong candidate for clinical applications where reliability is
paramount. UNeXt’s performance also underscores the po-
tential of integrating MLP-based architectures into medical
imaging, paving the way for future research into even more
sophisticated hybrid models.

• UNeXt’s performance suggests that it is particularly adept
at handling datasets with a high degree of variability, such
as those encountered in multi-center studies where imaging
protocols and patient demographics differ. This adaptability
makes it a promising tool for wide-scale deployment in
diverse clinical settings.
3) nnU-Net’s superior performance:

• The nnU-Net model consistently achieves the highest Dice
scores across most patient cases, with an average Dice score
of 0.76. This performance highlights the model’s ability
to adapt effectively to the complex and variable nature of
medical images, particularly in cases where the anatomical
structures are intricate or the lesions are small and dispersed.



• The architecture of nnU-Net, which includes extensive use
of skip connections and a well-tuned 3D convolutional
framework, allows for the preservation of spatial information
across different scales. This ability is crucial in medical
imaging, where accurate delineation of lesion boundaries
can significantly impact diagnosis and treatment planning.

• The relatively low standard deviation (0.08) in nnU-Net’s
performance across different patients indicates its robustness
and reliability, suggesting that it can be effectively gener-
alized to a broader range of cases, potentially improving
clinical workflows and outcomes.

B. Comparison with Previous Results

To provide a comprehensive benchmark for our current
study, we compared the performance of our models with
the results from the 2016 MS lesion segmentation challenge
dataset. This challenge involved various teams and experts who
attempted to segment MS lesions, offering a valuable reference
point for evaluating the effectiveness of our models. It is
important to note that our results are not directly comparable
to those from the MICCAI 2016 challenge teams because we
had access only to the training set of 15 patients, whereas the
challenge results are based on the testing set of 38 patients,
which we do not have access to. Despite this limitation, our
comparison provides valuable insights into the performance of
our models relative to established benchmarks.

Fig. 2: Performance comparison of various teams and experts
on the 2016 MS lesion segmentation challenge dataset, along
with our models’ results.

The table below summarizes the average Dice scores for
different groups, offering a clear benchmark for comparison.

Group Average Dice
Teams Average 0.47

Best Team 0.64
Experts Average 0.71

Best Expert 0.78
nnU-Net 0.76
UNeXt 0.79

YOLOv9e 0.57

TABLE II: Average Dice scores for different groups in the
2016 MS lesion segmentation challenge, along with our mod-
els’ performance.

From the table, it is evident that both nnU-Net and UNeXt
models significantly outperform the average scores of the
teams and experts from the 2016 challenge. Specifically,
UNeXt achieves the highest average Dice score of 0.79, which
not only surpasses the best expert’s score from the challenge
but also highlights its capability to handle the complex task
of MS lesion segmentation with high accuracy. nnU-Net also
demonstrates strong performance, with an average Dice score
of 0.76, closely trailing UNeXt and outmatching the average
expert performance.

The YOLOv9e model, while not surpassing the expert
average, still demonstrates competitive performance with a
score of 0.57. This result is particularly noteworthy given that
YOLOv9e is designed for real-time processing, indicating its
potential for fast segmentation tasks where speed is crucial,
albeit at the cost of some accuracy.

Notably, two teams from the 2016 challenge [4] [17],
Team 6 and Team 12, both employed models similar to U-
Net and achieved average Dice scores of 0.57 and 0.54,
respectively. These scores are comparable to the performance
of our YOLOv9e model but fall short of the results achieved
by UNeXt and nnU-Net. This comparison underscores the
advancement in segmentation techniques and the effectiveness
of our models in handling complex segmentation tasks.

C. Future work

In future work, we plan to extend our evaluation by applying
our algorithms to the test set of the MICCAI 2026 challenge.
Currently, our analysis is based on the training set of 15
patients, as the test set of 38 patients was not available for
download. To ensure the robustness of our findings, we em-
ployed 5-fold cross-validation, where the dataset was divided
into five subsets. In each fold, four subsets were used for
training and one for validation, ensuring that every subset was
used as the validation set once. Engaging with the dataset
providers to gain access to additional data will be crucial
for further validating and refining our approaches. It is also
essential to compare our performance metrics with those of
other teams.

Future advancements will focus on enhancing the 3D seg-
mentation capabilities of our models. Although nnU-Net has
demonstrated strong performance in 3D segmentation, we aim
to develop specialized 3D Transformer models or improve
existing architectures to better capture the volumetric context
of MRI data. This enhancement could significantly advance



the segmentation of small and dispersed lesions, which current
models often struggle with.

Additionally, we will explore self-supervised learning tech-
niques to tackle the challenge of limited labeled data. By pre-
training models on large amounts of unlabeled data and subse-
quently fine-tuning them on smaller labeled datasets, we aim
to improve the robustness and accuracy of our segmentation
models. This approach will enhance our models’ adaptability
to diverse datasets and clinical scenarios, further advancing
the field of automated MS lesion segmentation.

V. CONCLUSION

This study has provided valuable insights into the perfor-
mance of different deep learning models for MS lesion seg-
mentation, highlighting both the strengths and limitations of
each approach. nnU-Net and UNeXt demonstrate high poten-
tial for accurate and reliable segmentation, making them strong
candidates for integration into clinical practice. YOLOv9e,
while less accurate, shows promise for real-time applications
where speed is essential. The findings underscore the impor-
tance of selecting the appropriate model based on the specific
clinical requirements and computational resources available.
Moving forward, future research should focus on improving
the generalizability of these models, reducing computational
demands, and incorporating more comprehensive evaluation
metrics to better align with clinical needs. By addressing
these limitations, the integration of deep learning into medical
imaging can be further optimized, ultimately enhancing patient
care and outcomes.

REFERENCES

[1] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Horneg-
ger, W. M. Wells, and A. F. Frangi, Eds. Cham: Springer International
Publishing, 2015, pp. 234–241.

[2] F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein,
“nnu-net: a self-configuring method for deep learning-based biomedical
image segmentation,” Nature methods, vol. 18, no. 2, pp. 203–211, 2021.

[3] S. Aslani, M. Dayan, L. Storelli, M. Filippi, V. Murino, M. A. Rocca,
and D. Sona, “Multi-branch convolutional neural network for multiple
sclerosis lesion segmentation,” NeuroImage, vol. 196, pp. 1–15, 2019.

[4] O. Commowick, A. Istace, M. Kain et al., “Objective evaluation of
multiple sclerosis lesion segmentation using a data management and
processing infrastructure,” Scientific Reports, vol. 8, p. 13650, 2018.
[Online]. Available: https://doi.org/10.1038/s41598-018-31911-7

[5] A. Dosovitskiy, “An image is worth 16x16 words: Transformers for
image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[6] A. Hatamizadeh, Y. Tang, V. Nath, D. Yang, A. Myronenko, B. Land-
man, H. R. Roth, and D. Xu, “Unetr: Transformers for 3d medical image
segmentation,” in Proceedings of the IEEE/CVF winter conference on
applications of computer vision, 2022, pp. 574–584.

[7] J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. L. Yuille, and
Y. Zhou, “Transunet: Transformers make strong encoders for medical
image segmentation,” arXiv preprint arXiv:2102.04306, 2021.

[8] H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, and M. Wang,
“Swin-unet: Unet-like pure transformer for medical image segmenta-
tion,” in European conference on computer vision. Springer, 2022, pp.
205–218.

[9] J. M. J. Valanarasu and V. M. Patel, “Unext: Mlp-based rapid medical
image segmentation network,” in International conference on medical
image computing and computer-assisted intervention. Springer, 2022,
pp. 23–33.

[10] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, “Yolov9: Learning what you
want to learn using programmable gradient information,” arXiv preprint
arXiv:2402.13616, 2024.

[11] R. J., D. S., G. R., and F. A., “You only look once: unified, real-time
object detection,” in proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 779–788.

[12] https://github.com/MIC-DKFZ/HD-BET.
[13] https://github.com/MIC-DKFZ/nnUNet.
[14] https://github.com/jeya-maria-jose/UNeXt-pytorch.
[15] Ultralytics, “The latest version of yolo for real-time object detection

and segmentation,” https://docs.ultralytics.com/models/yolov9/, 2023,
accessed: Août 27, 2024.
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