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Main text 
 

The measurement of mitochondrial aerobic metabolism from blood cells has gained in 

popularity over the past decade due to its low invasiveness 1,2. In non-mammalian vertebrates, 

red blood cells are nucleated and possess functional mitochondria3, which enables the 

assessment of mitochondrial respiration from small blood samples (as low as 20 µL of whole-

blood4). Recently, we have showed that human mature sickle red blood cells retain some 

functional mitochondria, which was associated with increased sickling tendency, hemolysis 

and oxidative stress5. Willis et al.6 recently questioned the methodology used to demonstrate 
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the functionality of the mitochondria retained in sickle red blood cells, since hemoglobin-O2 

dissociation could influence the oxygen consumption rate (JO2) measured with high-resolution 

respirometry. 

As rightly noted by Willis et al.6, the PO2 within the in-vitro chamber declines over time 

due to oxygen consumption by the cells. Such a decline in PO2 leads to the potential release 

of O2 by hemoglobin, to an extent depending mostly on: 1. the change in PO2, 2. the HbO2 

binding parameters, and 3. the amount of hemoglobin in the chamber. Willis et al.6 state that 

because the PO2 is progressively falling, the errors will confound not only the absolute rates but 

also the relative differences between respiratory states (i.e. the proof of mitochondrial 

functionality we used in5). Such statement assumes that O2 dissociation from hemoglobin will be 

higher at lower PO2. However, using the same protocol as in previous study on avian red blood 

cells7 Fig. 1 shows that it would not be the case since non-mitochondrial JO2 (after antimycin A 

addition) does not vary over a broad range of PO2 (see also electronic supplementary material 

(ESM) S1 for raw data). At low PO2, O2 release from hemoglobin could have been anticipated as 

assumed by Willis et al.6, which would have led to decreased or even negative (i.e. O2 release > O2 

consumed) JO2. 
 
 Actually, the release of O2 from hemoglobin will not directly depend on the PO2, but 

on the instantaneous rate of change in PO2 linked to oxygen consumption (i.e. JO2 in a given 

state), and on the position in terms of absolute PO2 on the hemoglobin-O2 dissociation curve. 

As supposed by Willis et al.6 based on Stier et al.1 and Esperti et al.5, our measurements on 

both avian species and human were conducted at high PO2 (Fig 2A, see raw data in ESM S2), 

enabling to remain within the linear and almost flat portion of the hemoglobin-O2 dissociation 

curve (Fig. 2B). Extracting the data from Abdu et al. (2008)8 and Powell (2015)9 for human and 

birds (Fig. 2B, ESM S3), respectively, enabled to calculate the change in hemoglobin saturation 

(%) linked to JO2-induced changes in PO2, and the associated release of O2 for each respiratory 

state (see ESM S4 and S5 for calculations). Based on these calculations, we can note that the 

release of O2 is relatively minor (difference between JO2 and JO2 corrected in Fig. 2C and 2D). 

While absolute respiration rates are affected to a minor extent (Fig. 2C & 2D), the relative 

differences between respiratory states are not, as demonstrated for instance by the similarity 

between OXPHOS coupling efficiencies calculated from raw vs. corrected JO2 values (i.e. for 

Japanese quail: raw = 0.731 ± 0.013 vs. corrected = 0.730 ± 0.013; for human sickle red blood cells: 

raw = 0.437 ± 0.065 vs. corrected = 0.424 ± 0.061). Since O2 release is proportional to JO2 and 



influenced by hemoglobin content (that does not vary between the different respiratory states), 

it is not surprising from our perspective that the relative differences between respiratory states 

are not influenced by O2 release from hemoglobin, as long as the assay is conducted within the 

linear and almost flat part of the Hb-O2 dissociation curve (Fig. 2B). 

As rightly pointed out by Willis et al.6, issues can arise when two groups have different 

Hb contents and/or O2 binding kinetics. This is however unlikely to confound the results 

presented in Esperti et al.5 because O2 binding kinetics does not vary between healthy and 

sickle red blood cells in normoxic conditions8 (> 92.5% saturation, PO2 > 65 mm Hg), and Hb 

content (and thus potential O2 release) is lower in sickle cell patients than healthy 

individuals10. 

Willis et al.6 also rightly questioned the choice of Mir05 as a respiratory medium and 

the lack of exogenous substrate (i.e. glucose) when assessing mitochondrial respiration of 

‘intact’ red blood cells. Respiration of intact blood cells can for instance be conducted in PBS 

or plasma11, but our own experience with avian blood cells shows that mitochondria loose 

functionality along the assay with PBS, as evidenced by a FCCP-induced respiration being 

lower than the endogenous respiration, which does not happen when using Mir05. Mir05 also 

enables to first measure the endogenous respiration and then to permeabilize the red blood 

cells for more detailed investigation12. From our perspective, refraining from using exogenous 

substrates enables the measurement of mitochondrial respiration rates being more closely 

related to the in-vivo physiology, where substrates are usually not at saturating levels. Using 

the subject’s own plasma11, whenever possible, is likely the best way to obtain the more 

meaningful information about in-vivo mitochondrial metabolism. Regarding the amount of 

red blood cells used in respirometry assays, Willis et al.6 also question the precision of 

pipetting packed red blood cells, which we have questioned before (see1). Counting red blood 

cells is likely the best approach possible (as done in4,12). 

Around 75% of the patients included in our study5 were under hydroxyurea therapy, 

and all patients from the mitochondrial respiration experiments received this treatment. 

Hydroxyurea has recently been shown to promote erythroid differentiation by accelerating 

maturation processes13, which may impact the degree of mitochondrial retention into mature 

red blood cells. To answer this question, a study would be needed to test the degree of 

mitochondrial retention into mature red blood cells and their functionality before and after 

hydroxyurea therapy. 



 In light of the excellent comment by Willis et al.6, here are some recommendations 

that should be useful to ensure the best accuracy when measuring mitochondrial respiration 

from red blood cells: 1. provide the range of PO2 at which JO2 measurements are conducted; 

2. ensure that measurements are conducted at a PO2 being within a linear and almost flat part 

of the Hb-O2 dissociation curve; 3. check for potential bias between experimental groups in 

terms of Hb content or O2 binding kinetics; 4. measure Hb in individual samples to correct JO2 

if deemed necessary based on theoretical expectations (e.g. if Hb content is high and variable 

between samples) or if a difference exists between groups in terms of Hb content. 
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Figure legends 

 
Fig. 1: Relationship between non-mitochondrial JO2 and PO2 in Japanese quail (Coturnix japonica) red blood 
cells measured in-vitro with high-resolution respirometry (N = 2 biological replicates per PO2; mean ± SD). 
Measurements were conducted according to the methodology described in Stier et al.7, and the various PO2 at 
which non-mitochondrial JO2 was measured were achieved by letting intact red blood cells consume more or less 
O2 within the chamber before adding antimycin A. 
 
Fig. 2: Relationship between PO2 and JO2 in red blood cells of Japanese quail (blue) and human with sickle cell 
disease (red): A. Raw JO2 measurements and the associated PO2 during measurement; B. Hemoglobin-oxygen 
dissociation curves, redrawn from Powell9 and Abdu et al.8; C. Comparison of raw JO2 and JO2 corrected for O2 
release by hemoglobin for Japanese quails; D. Comparison of raw JO2 and JO2 corrected for O2 release by 
hemoglobin for human sickle red blood cells.  N = 8 biological replicates for each species, data from Stier et al.7 
and Esperti et al.5 re-analyzed (mean ± SE).  


