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Résumé
Modern high-performance general purpose processors rely on an instruction window from
which instructions are executed in a dataflow manner. Instruction window scaling is notably
tied to register renaming. Indeed, on a pipeline flush some designs repair the Rename Map
Table (RMT, maps architectural to physical registers) by iteratively undoing flushed mappings.
This incurs a latency penalty that grows linearly with the instruction window size. To address
this, modern designs use RMT checkpoints, which makes the latency of restoring the RMT
state constant. However, RMT checkpoints increase the delay and power consumption of the
renaming process, and can cause correct path instructions to be thrown away. In this paper, we
revisit the algorithms used to restore the RMT state and propose an alternative to full-fledged
checkpointing that provides comparable performance using a single checkpoint.

Mots-clés : out-of-order, pipeline flush, general-purpose, microarchitecture

1. Introduction

Technology advances have allowed major structures to keep growing across processor gene-
rations. For instance, over the past 25 years, the Reorder Buffer (ROB) of Intel processors has
grown from 40 entries in P6 to 512 entries in Golden Cove. A larger ROB can impact the time re-
quired to recover the microarchitectural state when a mispeculation takes place. Indeed, after a
branch misprediction, new instructions cannot be renamed until the Rename Map Table (RMT),
which contains the most recent (i.e., speculative) mappings of architectural registers to physi-
cal registers, 1 has been restored to a consistent state. Simpler designs use the ROB to repair the
RMT, by walking it from the tail to the flush point (Figure 1 (a)). Variations of this algorithm
exist, e.g., walking from the commit RMT to the flush point, or even dynamically walking from
the FIFO end that is closest to the flush point [1]. However, those variations still perform reco-
very iteratively and suffer from the same inherent scaling limit that a small, fixed number of
mappings can be restored each cycle. To accelerate recovery, modern microarchitectures leve-
rage checkpointing [1]. Checkpointing can be complementary to the ROB (Figure 1 (b)) [24, 19],
in which case instruction commit is still driven by the ROB, or a complete replacement of the
ROB [1], in which case all instructions within the oldest checkpoint have to be ready to commit
for the checkpoint to commit. Moreover, checkpointing is more hardware-intensive and a lar-
ger number of RMT checkpoints can significantly impact its energy consumption and latency,

1. A Commit RMT may also be implemented. It contains the mappings corresponding to the current architectu-
ral state.
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reducing performance gained from faster RMT repair [21]. As a result, this is not necessarily
the best tradeoff.
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FIGURE 1 – (a) Recovering the RMT through logging mappings in the ROB (iterative). (b) Re-
covering the RMT through whole RMT checkpoints attached to conditionnal branches.

2. Motivation

We first introduce the following definitions. A dynamic instruction is i) Unsafe if it can still
cause a pipeline flush (e.g., unresolved branch), ii) Safe if it is not unsafe iii) A checkpoint ow-
ner if an RMT checkpoint corresponds to the state of the RMT immediately prior the instruction
is renamed and iv) A checkpoint renter if it is not a checkpoint owner.

2.1. RMT Repair Scalability
The RMT recovery mechanism should satisfy two requirements : i) Constant recovery latency
while the window scales and ii) Require as little hardware as possible. Iterative schemes that
walk the ROB do not provide i) although they provide ii) [21]. Conversely, checkpoint-based
schemes generally provide i) since recovering the RMT requires a single bulk copy. However,
they do not provide ii) as in-RMT checkpoints do incur a latency penalty and can be detrimental
to performance [21]. In this work, we consider the following algorithms :

— Shortest Walk (Iterative) : The ROB is walked either from the head or the tail at the pace
of 8 instructions per cycle, whichever is shorter.

— Checkpoint Processing & Recovery (CPR) [1] (Immediate) : All indirect and condi-
tionnal branches take a checkpoint of the RMT at Rename. If a non-branch instruction
flushes the pipeline, the youngest older checkpoint is restored. 48 checkpoints are imple-
mented (Intel Sunny Cove). An alternative scheme, CPR LoConfBr, allocates checkpoints
only to non-confident branches (non saturated branch prediction counter [23]). In CPR,
checkpoints completely replace the ROB.

— CPR + ROB (Immediate + Iterative) : Same as CPR, except if a non-branch instruction
flushes the pipeline, the youngest older checkpoint is restored and the ROB is walked
from the youngest older checkpoint to the flush point (8 insts. per cycle.)

— Idealistic : All instructions are associated with an RMT checkpoint.

2.2. Limitations of Checkpoint-based Schemes
2.2.1. CPR
Depending on branch density, if all branches obtain a checkpoint, a fixed number of check-
points might provide a more or less large instruction window. That is, if branch density is too
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high, performance may degrade compared to a simple ROB. As a result, CPR schemes often
propose to allocate checkpoints selectively, leveraging branch confidence estimators [15, 10, 23].
Moreover, if a renter triggers a flush (e.g., load that suffers a hard page fault), useful work has to
be thrown away because the pipeline restarts from the youngest older checkpoint. In addition,
in highly predictable workloads or workloads with few branches, checkpoints can grow very
large. The need for all instructions in a checkpoint to be safe before retiring the checkpoint
can stall resource reclamation. For instance if large quantities of Store Queue (SQ) entries are
associated with the oldest checkpoint, a long time may pass until a single new instruction is
allowed to Dispatch, because no SQ entry is available.
For both these reasons, CPR can benefit from enforcing a finite span for each checkpoint [9],
so as to bound the number of instructions that are thrown away if a renter triggers a flush, and
to limit the pipeline resources held by each checpoint. Unfortunately, this limits the size of the
instruction window to the number of checkpoints times the maximum size of a checkpoint.

2.2.2. CPR + ROB
As in CPR, letting checkpoints grow arbitrarily can be detrimental for CPR + ROB as a flush
by a renter instruction can still require several cycles to repair the RMT iteratively. Limiting the
span of each checkpoint is a solution to mitigate this issue.
Another limitation compared to CPR is that since a ROB is still present, the window size is
limited by the ROB wisze, whereas CPR can implement a very large window with only a few
checkpoints, unless checkpoint instruction span is capped to a small number.

3. Speculatively Retiring from the ROB to Improve Scaling
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FIGURE 2 – Allowing older instructions to speculatively retire from the ROB

“Post-ROB” RMT checkpoints have previously been proposed in several other contexts [5, 18].
The overall idea is to track instruction state coarsely, which allows costly “per-instruction” re-
sources to be reallocated to newer instructions. The high-level idea is depicted in Figure 2, in
which older unsafe instructions are allowed to make space in the ROB for newer instructions
and “pile-up” in a single RMT checkpoint, increasing the instruction window size. Previous
work is conservative in what instructions are allowed to leave the realm of precise state tra-
cking and enter the “post-commit” checkpoint [18]. Indeed, although many instructions at the
head of the ROB are not yet safe, they are very likely to become safe in the future (e.g., confi-
dent branches). By allowing those instructions to take a checkpoint, we can retire them from
the ROB, as well as any subsequent instructions that are already safe or likely to become safe.
Practically, we implement a single commit RMT checkpoint, for a total of three versions of the
RMT : The rename RMT, the commit RMT (CRMT), and the checkpoint. When an unsafe ins-
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truction is at the head of the ROB and the number of free ROB entries is below a threshold, it
takes a checkpoint of the CRMT and is removed from the ROB, although it retains any other
resource it may need to become safe (e.g., SQ entry). We refer to this instruction as the gambler.

3.1. Who can Gamble? Who can Rent?
Intuitively, the gambler should be likely to become safe, hence be an unresolved but confi-
dent branch, or a memory instructions since hard page faults are rare. However, and perhaps
counter-intuitively, an unresolved non-confident branch is also a good candidate to be the gam-
bler. Indeed, if the gambler turns out to cause a flush, then there is no additional cost to restoring
the checkpoint rather than the CRMT, which would have been restored if the gambler had re-
mained stuck at the head of the ROB. Conversely, if the gambler completes without issue, which
is the case most of the time even for non-confident branches, then we have succesfully increased
the window size. In other words, all branches can gamble. After the checkpoint has been crea-
ted, instructions can continue to retire from the ROB into the checkpoint. Both safe and unsafe
but likely to become safe instructions retire from the ROB and become renters of the gambler’s
checkpoint. In our proposal, this includes unresolved confident branches and unresolved me-
mory operations that are still subject to potential memory ordering hazards. However, this is
implementation dependent and the designer could for instance choose to not retire loads that
are still subject to read-after-write hazards, as in Cherry [18].

3.2. Checkpoint Size
Like in CPR, the checkpoint cannot retire until there are still unsafe instructions covered by it.
By not capping its size, it would therefore be possible that the checkpoint never retires as more
unsafe instructions keep becoming renters. As a result, in this work, we explicitly limit the size
of the checkpoint to 512 instructions, to allow a big enough instruction window while limiting
the amount of work thrown away if a renter flushes. An alternative would be to implement
multiple “post-ROB” checkpoints, which, although it would defeat the purpose of having a
single checkpoint to limit hardware cost, would not be as costly as multiple RMT checkpoints
as we take CRMT checkpoints and the CRMT is less timing critical than the RMT as it does not
participate in source renaming.

4. Experimental Framework

We evaluate our proposal in a cycle-level, full-system simulator, gem5 [4]. We implement dif-
ferent RMT repair algorithms, including CPR and CPR + ROB. Table 1 summarizes the proces-
sor modelled in this study, which is on par with Intel Sunny Cove and Apple M1. 2 We scale the
pipeline structures (Instuction Queue, Load/Store Queue, ROB and physical registers) of the
baseline configuration by 1x, 2x and 4x to study the scalability of our proposal. In our propo-
sed microarchitecture, referred to as SPCOM in this Section, the retire logic starts speculatively
retiring from the ROB when the ROB is close to being full (24 entries left in our case), regardless
of ROB size. To distinguish between confident and non-confident branches, we use the counter
value from the TAGE branch predictor [23] and have implemented 2-bit confidence counters
in the indirect branch predictor. We set the saturating probability of counters to 1

256 . We run
SPEC2k17 [6] speed workloads (reference inputs) using the Simpoints sampling methodology
[11]. A total of 215 100M instructions simpoints are obtained from running the first 1000B ins-
tructions in 28 workloads. Workloads were compiled for Aarch64 using gcc 8.3 -O3. Prior to

2. The L1I latency is set to one cycle to allow 0-cycle taken branch penalty. The TLBs are sized optimistically as
we do not model a second level TLB and the impact of TLB hitrate on performance is not the concern of this work.
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TABLE 1 – Gem5 processor configuration (13-stage pipeline, 3GHz)

Branch
Prediction

64KB, 1+15-table TAGE predictor [22] Min/Max Hist. length : 5/640, 8192-entry BTB, 1k-entry Indirect Branch
Target Cache, 32-entry Return Address Stack

Fetch
16-wide fetch from 64B Line Buffer 1 taken branch/cycle 32-instruction fetch queue,
1-cycle taken branch penalty, 3-cycle Fetch to Decode

Decode 8-wide, Mistarget detection (BTB miss), 1-cycle Decode to Rename
Rename 8-wide, 3-cycle Rename to Dispatch, 48 checkpoints (CPR and CPR + ROB)

Dispatch/
Commit

8-wide, 352-entry Reorder Buffer, 160-entry Instruction Queue, 148-entry Load Queue, 106-entry Store Queue,
280 INT Regs, 280 FP/SIMD Regs

Issue

Up to 15 instructions per cycle into : 4 simple ALU, 2 (simple ALU or IntMul(3c)), 1 IntDiv(20c, not pipelined),
3 (simple FP/SIMD(3c) or FP/SIMD Mul(4c mul/5c mac)) 1 (simple FP/SIMD(3c) or
FP/SIMD Mul(4c mul/5c mac) or FP/SIMD Div (12c, not pipelined)), 2 Loads, 2 Stores
Store Sets [7] mem. dep. pred. (2k-entry LFST, 2k-entry SSIT)

Caches

128KB 8-way L1D, 64B line size, 4c load-to-use, 56 MSHRs, LRU
128KB 8-way L1I, 64B line size, 1c load-to-use, 8 MSHRs, LRU
2MB 8-way L2, 64B line size, 12c load-to-use, 64 MSHRs, LRU
8MB 16-way L3, 64B line size, 37c load-to-use, 64 MSHRs, LRU

Memory 4-channel 16GB DDR3_1600 (Micron MT41J512M8 datasheet)
TLBs 256-entry 1-way L1I (0c) + 1k-entry 1-way L1D (0c) TLBs

Prefetchers L1D : Stride Prefetcher, degree 4 [8], L2 : AMPM Prefetcher [14]

running simpoint regions, we warm up the processor structures for 50M instructions.

5. Experimental Results

We generally consider three different SPCOM configuration for our proposal : SPCOM 0.5x
ROB, SPCOM 0.75x ROB and SPCOM 1x ROB. Those configurations share the same parameters
regarding what and how to speculatively retire from the ROB, and differ only in the actual
number of ROB entries they implement, relative to the baseline. For instance, when using the
unscaled baseline (1x), the ROB has 352 entries, and so SPCOM 0.5x ROB only implements 176.
Figure 3 reports performance normalized to Idealistic for the unscaled pipeline (1x). For both
SPCOM and CPR (+ ROB), we can observe that some workloads show performance gain, while
some show performance loss. The former typically stem from the larger instruction window
provided by both SPCOM and CPR, e.g., perlbench_3, mcf, omnetpp, wrf, deepsjeng and imagick.
Interestingly, in deepsjeng, only CPR shines as although a larger window is beneficial, uncon-
fident branches prevent the SPCOM checkpoint from growing large in SPCOM 1x ROB (35
instruction on average). In imagick, only SPCOM 1x ROB outperforms Idealistic as it icreases
the window size without holding onto SQ entries for too long because checkpoints are very
large. Conversely, performance loss arises for multiple reasons. For CPR, losses come from i)
Wasted work caused by renter-caused pipeline flushes (cactuBSSN, pop2) and ii) Staggered re-
source recycling (SQ in exchange_2, lbm). For SPCOM configurations, the loss arises from i) A
smaller window (smaller ROB) and the inability to speculatively retire due to the presence of
an unresolved non-confident branches near the head of the ROB and ii) Wasted work being
thrown away when a renter flushes the checkpoint. Yet, focusing on SPCOM 0.75x ROB, we
observe that although performance is occasionally lost, there are no “dip” such as those of
CPR in cactuBSSN and pop2 and performance is thus more “even”. Overall, SPCOM 0.75x ROB
achieves performance on par with Idealistic, with 9 workloads out of 28 losing between 1 and
2% performance, and 6 workloads out of 28 gaining more than 1% performance (max. around
6% in imagick). Further tuning of the SPCOM parameters (e.g., checkpoint size, ROB occupancy
threshold, branch confidence, etc.) is left for future work.
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FIGURE 3 – Performance of various speculative commit configurations along checkpoint-based
configurations, normalized to Idealistic using the 1x pipeline configuration.

By lack of space, we do not show performance results for the 2x and 4x configurations as the the
trend is generally similar, with a handful notable differences. In 4x, the ROB has become much
larger (1452 entries). As a result, the iterative repair penalty starts limiting and even taking
over performance in some workloads. For instance, in x264_2, the performance degrades as the
ROB size of SPCOM is increased from 0.5x to 1x. Nonetheless, average performance of SPCOM
0.75x ROB remains on par with CPR LoConfBr, although both provide a slowdown of around
1% compared to Idealistic in 4x, when they matched its performance in 1x and 2x configurations.

6. Related Work

The MIPS R10K featured a 32-entry Active List to undo mappings iteratively in case of excep-
tions [24], from the youngest instruction to the oldest one. An alternative is to implement a
commit RMT and to immediately copy it to the rename RMT on a pipeline flush. The map-
pings are then reapplied to the rename RMT from the head of the ROB to the flush point [1].
Several other schemes rely on the observation that repairing all the RMT entries does not re-
quire performing an entire ROB walk. The idea is that only the most recent mapping older
than the flush point have to be restored [17, 3, 25]. Our proposal is orthogonal of the iterative
algorithm, although poorly scaling algorithms require SPCOM to be more aggressive.
Hwu and Patt first formalize the notion of using checkpoints to recover from branch mispre-
dictions and exceptions and provide circuit level implementations [13]. Safi et al. [21, 20] point
out that implementing RMT checkpoints directly in the RMT array does not scale and can lead
to performance degradation simply because the RMT is on the critical path. Moshovos pro-
poses two improvements that improve the efficiency of checkpointing [19]. Akkary et al. first
introduced CPR as a way to both increase the window size and hasten RMT repair [1]. CPROB
improves on CPR by allowing precise recovery even if a renter triggers a misprediction [12] fol-
lowing the same observation as [17, 25, 3]. Both Golander and Weiss [9] and Akl and Moshovos
[2] provide improvements on checkpoint allocation heuristics.

7. Conclusion

In this work, we introduced an alternative way to limit the RMT repair latency, which relies on
scaling the ROB down and backing it with a single “post ROB” checkpoint. This design achieves
average performance on par with both an idealistic RMT repair scheme as well as a machine
without a ROB but only checkpoints, and scales reasonably well to larger machines despite
fixed per-cycle ROB walk rate.
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