
HAL Id: hal-04766732
https://hal.science/hal-04766732v1

Submitted on 6 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Function Placement for In-network Federated Learning
Nour-El-Houda Yellas, Bernardetta Addis, Selma Boumerdassi, Roberto

Riggio, Stefano Secci

To cite this version:
Nour-El-Houda Yellas, Bernardetta Addis, Selma Boumerdassi, Roberto Riggio, Stefano Secci. Func-
tion Placement for In-network Federated Learning. Computer Networks, 2024, 256, pp.110900.
�10.1016/j.comnet.2024.110900�. �hal-04766732�

https://hal.science/hal-04766732v1
https://hal.archives-ouvertes.fr

Function Placement for In-network Federated Learning

Nour-El-Houda Yellasa,b, Bernardetta Addisc, Selma Boumerdassia,
Roberto Riggiod, Stefano Seccia

aCnam, Paris, France, (emails: firstname.lastname@cnam.fr)
bOrange, Châtillon, France, (emails: nourelhouda.yellas@orange.com)

cUniversité de Lorraine, CNRS, LORIA, Nancy, France (email:
bernardetta.addis@loria.fr)

dPolytechnic University of Marche, Ancona, Italy (email: r.riggio@univpm.it)

Abstract

Federated learning (FL), particularly when data is distributed across multiple
clients, helps reducing the learning time by avoiding training on a massive
pile-up of data. Nonetheless, low computation capacities or poor network
conditions can worsen the convergence time, therefore decreasing accuracy
and learning performance. In this paper, we propose a framework to de-
ploy FL clients in a network, while compensating end-to-end time variation
due to heterogeneous network setting. We present a new distributed learn-
ing control scheme, named In-network Federated Learning Control (IFLC),
to support the operations of distributed federated learning functions in ge-
ographically distributed networks, and designed to mitigate the stragglers
with lower deployment costs.

IFLC adapts the allocation of distributed hardware accelerators to modu-
late the importance of local training latency in the end-to-end delay of feder-
ated learning applications, considering both deterministic and stochastic de-
lay scenarios. By extensive simulation on realistic instances of an in-network
anomaly detection application, we show that the absence of hardware ac-
celerators can strongly impair the learning efficiency. Additionally, we show
that providing hardware accelerators at only 50% of the nodes, can reduce
the number of stragglers by at least 50% and up to 100% with respect to a
baseline FIRST-FIT algorithm, while also lowering the deployment cost by
up to 30% with respect to the case without hardware accelerators. Finally,
we explore the effect of topology changes on IFLC across both hierarchical
and flat topologies.

Keywords: Federated learning, Artificial intelligence functions, Placement.

Preprint submitted to Computer Networks November 5, 2024

1. Introduction

Network automation is expected to be one of the applications that could
leverage on distributed AI modules for both learning and inference tasks.
New network functions related to analytic tasks have already appeared in
telecommunication standards, for instance the NetWork Data Analytics Func-
tion (NWDAF): it has been included in 3GPP 5G system since Release 16 [1]
as a function tailored to the analysis of monitoring data from the 5G core
network functions.

Indeed, the 5G core network system is being increasingly integrated in
core networks, with a rapidly increasing level of geographical distribution,
mostly led by the need to offer 1 ms access latency performance to 5G ser-
vices. Such performance targets are therefore pushing for distribution of net-
work functions and related monitoring, learning and inference tasks. For this
re-architecturing, 5G and beyond-5G solutions are leveraging on Multi-access
Edge Computing (MEC) technologies, with so-called traffic local break-out
gateway to steer some traffic requiring such performance to edge application
servers co-located with distributed 5G core functions [2]. On the other hand,
MEC architecture hosts could, besides serving end-application needs, also
allow to deploy computing functions for a set of infrastructure needs.

Few distributed learning frameworks have made their way into commercial
computing systems. Among them, Federated Learning (FL) that introduces
a hierarchical learning approach where edge nodes perform learning based on
local data, and send the result of their local learning to a server. The server
aggregates the learning parameters of multiple edge nodes and then updates
the edge nodes with its global view parameters. Besides being already used
for a number of mobile device usages by companies as Google and Meta [3],
FL is also being considered for in-network AI functions as the NWDAF [1,
4, 5].

In particular, one of the challenges of FL is that the arrival of model
parameters from multiple edge Artificial Intelligence Functions (AIFs) can
suffer from a so strong desynchronization that these parameters can get no
longer valuable, hence they could be discarded by the FL server. These
nodes suffering from such desynchronization are called stragglers. The main
reason behind the appearance of stragglers is the heterogeneity of systems
and data [6, 7]; system heterogeneity is related to computing capacity (i.e.,

2

high computation delays) and network conditions (i.e., high communication
delays). On the other hand, data heterogeneity refers to the case where
data is not independent and not identically distributed (non-iid) among FL
participants. Stragglers slow down the learning process as the aggregation
task at the FL server is only triggered once all the local parameters are re-
ceived, resulting in long convergence time: mitigating stragglers consists of
reducing the overall training time to achieve a desired accuracy in a timely
manner. To do so, different techniques can be adopted; for example, [7] clas-
sified the works in the literature to minimize the convergence time into three
categories: (i) data distribution adjustment, to mitigate the non-iid data, (ii)
model compression, to reduce the local training time and (iii) clients selection
to determine the FL participant with high computation and communication
performance. Another way to minimize the convergence time is by optimizing
the local training time using hardware acceleration. In fact, the integration
of AI modules in network components has been underway since less than a
decade. Modern network nodes nowadays integrate Neural Processing Units
(NPUs), ranging from mobile devices to core backbone equipment. The com-
munity often speculated that in the beginning of this trend, vendors did not
know for which applications these units would be useful, but gambled on
their future usefulness.

In this work, we present the IFLC (In-network Federated Learning Con-
trol) scheme, an adaptive scheme for the placement of anomaly detection
AIFs in softwarized 5G environments. We consider a set of artificial intel-
ligence functions at the edge of the network, deployed for instance as MEC
applications in a MEC system. IFLC makes use of Hardware Accelerators
(HWAs) in distributed in-network learning systems to compensate for end-
to-end network and learning delays variations leading to stragglers. In a
previous work, we defined a preliminary FL-AIF placement framework [8],
using a mathematical programming approach. The proposed solution deter-
mines the optimal placement of FL server and clients while minimizing the
number of deployed AIFs. Going beyond [8], in this paper we model the
possibility of allocating hardware accelerators to reduce the training time,
showing related different results and analysis. In this article, we go beyond
the existing work, reformulating the model to control stragglers, and defin-
ing a refined end-to-end training latency model. Our contributions can be
summarized as follows:

• We propose an algorithmic scheme, called IFLC, where we formulate a

3

joint optimization problem for FL server and clients placement, and
straggler minimization as a MILP (Mixed-Integer Linear Program-
ming). The model aims to optimize the placement of FL clients and
server based w.r.t a target end-to-end time which includes both the
training and propagation time components. The MILP is modeled as
a multi-objective problem where the main goal is to minimize the total
cost expressed as the number of allocated CPU cores as well as the
number of FL-clients stragglers resulting from high computational de-
lays. The proposed model is able to minimize straggler occurrence in
a computationally efficient way exploiting a proposed latency model;

• We present an original end-to-end learning latency model jointly con-
sidering learning and communication delays. We explore a determin-
istic scenario where the estimated end-to-end training time of the se-
lected clients is within the imposed time limit, and stochastic scenarios
where the selected FL clients may generate additional delays resulting
in stragglers;

• We show how we can with IFLC (i) increase the local training time
efficiency, (ii) minimize the occurrences of FL stragglers and (iii) reach
desirable trade-offs between the number of active FL clients and the
CPU utilization. An assessment of topology changes on the proposed
model is also presented;

• Finally, we extend the proposed MILP formulation to accommodate
more dynamic placements while covering single node failures; the ex-
tended formulation is added to the appendix.

The article is structured as follows. Sections 2 and 3 completes the back-
ground on AI integration in networks. Section 4 describes the IFLC scheme.
We present the mathematical model in Section 5. Section 6 presents a
polynomial-time resolution of the IFLC. Section 7 defines the numerical eval-
uation setting. The results analysis is in Section 8. Section 9 concludes the
article.

2. Background

In this paper, we rely on the concept of AI Functions from the AI@EDGE
H2020 European Project [9] to refer to end-to-end AI functions sub-components.

4

Let us describe the reference AIF functional system, depicted in Figure 1
where a set of interfaces are defined:

Figure 1: AIF reference representation [8].

• if1: used by the orchestration platform for the communication with the
AIF, including its configuration (e.g. for dynamic update of federated
learning hyper-parameters) and the retrieval of inference results (e.g.,
inference running at the AIF server and/or edge AIFs);

• if2: control plane interface used for AI model parameter exchange
among AIFs, e.g., the communication between edge AIFs and server
AIF in federated learning;

• if3: data-plane interface used for data exchange among different AIFs,
which may be used for generic distributed learning, in the case of an
AIF forwarding graph;

• if4: hardWare acceleration interface used for I/O operations with HWA
(e.g. GPU) for training and/or inference tasks;

• if5: for data collection and streaming, to interface with a data-pipe-
lining system.

An AIF can run different types of AI applications with heterogeneous
performance targets (e.g., latency requirements). Based on these require-
ments, the application can be centralized where one single AIF is responsible
for training, or distributed where a set of AIFs collaborate to train a model
(e.g., federated learning). We rely on a distributed AIF system making use of
FL as depicted in Figure 2: via if2, edge AIFs send local training results and
obtain global training parameters back from the FL server AIF; if3 is unused

5

in FL AIFs; if5 makes use of a data pipe-lining system for getting data for
AIFs. Finally, the allocation of HWAs as NPU via if4 is meant to accelerate
training and inference tasks, where inference could possibly be taking place
at the edge AIF level besides the server one. Unlike conventional federated
learning where the learning task is carried out by end devices[10], in our
system we deploy the client AIFs at the edge servers (e.g., MEC hosts).

An example of in-network FL application is anomaly detection, used
within network automation algorithmic loops. In this work, we use the appli-
cation outlined in [11] where distributed AIFs make use of Long-Short-Term-
Memory autoencoders against group of metrics related to network, storage,
operating system features, to spot anomalous behavior. The goal in such ap-
plication is to support automatic reconfiguration of the infrastructure stack
(e.g., rescaling, load-balancing, rerouting) based on the detected anomaly
fingerprint.

Figure 2: FL-based AIF system [8].

3. Related Works

Network softwarization technologies have increasingly influenced access
networks, leading to a landscape where network functions are now mostly
deployed as virtualized nodes. Additionally, hardware components for radio
and computing systems have been re-designed to be re-programmable by
external software, enabling dynamic resource allocation and sharing. This

6

evolving environment led itself to the application of artificial intelligence,
as it introduces numerous new decision making points and makes a wealth
of monitoring data accessible to network and service management systems.
In the following, we review recent works in the area of AI integration to
networks, with a particular focus on federated learning applications.

3.1. In-network AI applications

In-network Artificial Intelligence and Machine Learning (AIML) inte-
grates machine learning capabilities into network devices to enhance per-
formance and efficiency [12, 13], ranging from traffic engineering and perfor-
mance optimization such as SLA (Service-Level Agreement) management [14,
15] to network security [16, 17].

In [18], authors investigate how AI and edge computing can interwork.
Often, AIML is used in edge network resource allocation problems that make
surface at different layers and for different resources, such as CPU, radio and
link resources. In [19], the authors conduct a comprehensive survey on the
usage of AIML solutions for edge computing, focusing on deep learning mod-
els. Different degrees of integration between AI and cloud/edge computing
are identified, going from fully cloudified environments where AI training and
inference models run on the remote cloud, to an all-on device setting where
the tasks are carried out on the device.

This coupling between AIML and networking is being facilitated by edge
computing and network virtualization. Standardization bodies are integrat-
ing AIML application requirements in system specifications. Namely, the
Network and Data Analytics Function [20] has been proposed by 3GPP to
support AIML in 5G core networks. However, various challenges are be-
ing discussed regarding different integration of training and inference sub-
functions and the pipe-lining systems to get data to distributed AIFs. An-
other AIML application is anomaly detection and fault management, which
consists in detecting abnormal network states, localizing the root cause and
then proposing a remediation action to comeback to a normal working condi-
tion. In [21], the authors propose a centralized AIML framework making use
of autoencoders to detect anomalies at different infrastructure levels; the ML
model learns the normal state of a given system, then an anomalous state
fingerprinting methodology is proposed for state qualification, and to guide
a tailored remediation action.

Furthermore, [22] and [23] address the challenge of intrusion detection
in network environments using federated learning while classifying incom-

7

ing packet to the edge. [22] focuses on privacy preserving in-network traffic
analysis and timely intrusion detection in IoT edge networks. In [23], au-
thors consider programmable data plane switches to achieve high speed and
scalable anomaly detection. Apart from focusing exclusively on the train-
ing task, our work differs from [22, 23] by considering anomaly detection on
infrastructure telemetry data, where monitoring data is split across selected
FL clients.

3.2. Federated Learning Applications

A largely adopted strategy for geographically distributing AIFs down to
network edges is Federated Learning [10]: it aims to prevent data collection
aggregation at a central cloud, either for privacy issues, or for latency con-
straints, or even both, by collaboratively training ML models at edge nodes.
Two main steps are to be considered: (i) the local training of the ML model
at the FL clients and (ii) the global aggregation of the updated parameters
at the FL server. The FL process, if adequately configured and designed,
can grant higher efficiency in terms of network bandwidth consumption and
latency, besides increasing privacy thanks to data locality. The FL process
itself can be repeated with several learning rounds until the model achieves
a target accuracy.

Mostly used for hand-held devices, FL is also being considered for in-
network systems as well. In [4, 5], the authors propose NWDAF services
based on FL; each 5G core NF can have its own NWDAF instance (NWDAF
leaf) collecting data from its corresponding NF, training the ML model lo-
cally and aggregate parameters at the FL-server (root) NWDAF.

In [11], the authors present how to use FL to distribute a centralized
anomaly detection framework from [21]. The main goal is to cope with a set
of challenges, mainly to scale with the increasing amounts of collected data
and to reduce the training time to allow a near-real time re-orchestration
decision.

3.3. Stragglers control

Several approaches are proposed to handle stragglers in distributed ML
including careful client selection, enhancing training time efficiency and adap-
tive learning model update. For instance, [24] presents a scalable solution
FlexRR to mitigate stragglers in distributed ML. It relies on peer-to-peer
communications among workers to detect stragglers and re-assign the work
of the slowest worker to the most efficient one. Furthermore, several works

8

consider straggler mitigation in in-network ML. For example, [25] uses Trio,
a Juniper Network’s programmable chipset, to mitigate stragglers in in-
network distributed ML aggregation. Trio allows to process the incoming
packets that contains the ML workers clients update in a non-pipelined man-
ner using parallel threads. Trio timer threads are used to detect stragglers.
Another work in [26] proposes an in-network aggregation solution to miti-
gate stragglers in distributed ML where the aggregation task is offloaded to
programmable network switches. efficient data structures are used to man-
age the synchronization barriers within the constraints of the programmable
switches.

In the following, we present the existing works to mitigate stragglers in
FL.

3.3.1. Client selection/placement

In federated learning, performance degradation of the learning process is
highly related to client selection. Several works from the literature consider
optimizing communication and computation latency. For instance, in [7]
the authors consider both system and data heterogeneity to minimize the
occurrence of stragglers where the client selection is done for each round. The
selected clients should have near-iid data where more bandwidth is allocated
for clients with low computing capacity or poor channel conditions. [27]
and [28] consider dynamic client selection in hierarchical FL where both
resource allocation and incentive mechanism are considered. The first step
consists of an edge association task where each FL server offers rewards to FL
participants to join its cluster. A second step considers choosing the model
owner for each cluster. The authors consider the same processing capacity
at the FL clients and allocate bandwidth resources (i.e. resource blocks) for
a higher uplink bandwidth.

In [29], the authors aim to find a trade-off between energy consumption
and the number of active clients by choosing less clients during the first
rounds. The authors propose an estimation of both computing and propaga-
tion latency while considering the waiting time in the channel before sending
the model parameters for aggregation. In [30], authors show how FL clients
selection can impact the global FL model quality and reduce training time,
in a strategic game-theoretic setting to select FL participants based on the
computing resources they offer: the goal is to achieve a given accuracy in the
global model in an edge environment. A similar work is presented in [31],
where a multidimensional procurement auction for FL clients selection is

9

used to enhance model accuracy using a lower number of rounds.

3.3.2. Training time efficiency

Another technique to minimize stragglers is to increase the local training
efficiency. In [32], the authors propose a FL policy to improve the training
efficiency while considering heterogeneous clients. Clients with similar com-
putational capacities are selected for training during a given round. More-
over, HWAs can also be used to increase the learning time efficiency. More
precisely, edge computing provides AI with a convenient platform for models
training and inferring, with a potential solution on accelerating computations
on hardware [33]; HWA can be made available pervasively in edge networks,
starting from radio access and edge computing nodes. Besides reducing train-
ing and inference time depending on the type of accelerator [34], they can
also decrease the energy footprint of AIML by up to 20 times [35, 36].

Many works in the literature investigated on the possible usage of hard-
ware acceleration with AIML models. For example, in [37], authors motivate
the use of FPGA to accelerate deep neural network models. Indeed, they
have evaluated the reduction in the computation time while comparing it to
a software implementation with different numbers of threads. The authors
only consider the acceleration of inference as for the considered use-case train-
ing is done off-line. Note that in some cases, the training task should also be
accelerated as the model needs to be updated. For instance, if we consider
real-time anomaly detection, the new state of the system should be learned
after a short period of time. Another work is [38] where authors explore
different acceleration designs for a neural network-based model where both
GPU and FPGA were considered. The authors inspected different configu-
rations with the aim of identifying the optimal scenario for each acceleration
approach. Nevertheless, the exploitation of HWAs in distributed/federated
learning client selection seems unexplored. In contrast to [37] and [38], in
our work we examine the usage of HWA in a FL setting where the main goal
is to compensate the variance in the end-to-end delays among FL clients.

3.3.3. Adaptive global model update

Another way to control stragglers is to adapt the global model update.
In [39], the authors propose a live gradient compensation method to avoid

stragglers for distributed learning tasks: only the gradient update for the k
fastest workers is used, while combining the results from the slowest worker
in the next iteration: the main goal is to reduce the overall training time

10

while producing a near convergence error close to fully synchronous gradi-
ent descent. Enlarging the view to network communications, the authors
in [40] consider both communication bottleneck and straggler delays in large
scale distributed learning tasks: they combine a coding approach with a
bandwidth sizing strategy to avoid bottleneck hence reducing stragglers. An
enhancement of the gradient coding is proposed in [41], where the data is
assigned to the edge AIFs in a distributed manner so that a subset of model
updates can be sufficient to compute the full gradient at the server side; then
a dynamic clustering schema is associated to the set of edge AIFs to im-
prove the completion time. A hierarchical FL mechanism that encompasses
both synchronous and asynchronous training schemes is proposed in [42] to
mitigate the straggling effect. [43] addresses the challenges posed by both
stragglers and adversaries in FL systems. It proposes a selective approach
to only aggregate updates that are trustworthy where devices are grouped
based on the arrival delay of their updates. Note that in this work, we do
not consider the global model update algorithm for mitigating the stragglers.

Another technique to mitigate stragglers could be to rely on asynchronous
FL [44] where the updates from all the FL clients are not required to trig-
ger the aggregation task. However, our work considers anomaly detection use
case using time series data, employing models like LSTM, which require train-
ing on the most recent data, and retraining. In this context, asynchronous
FL poses a challenge as the inherent nature of asynchronous updates could
lead to models trained on out-of-date data, which results in biased models
that do not reflect the current state of the system. As there is already a
bias due to non-IID data, using asynchronous federated learning is not ad-
visable. Nevertheless, further work could concentrate on comparison between
synchronous and asynchronous federated learning to numerically assess this
aspect.

3.4. Our contribution

In our work, we aim at going beyond adaptive FL client section, while
including the combined control of both network and training delays. In fact,
we aim at compensating large deviations in parameters arrival from edge
AIFs to the FL server by allocating/releasing HWA to reduce/increase the
edge AIF training delay. We propose an approach to control stragglers in in-
network federated learning that combines both FL-AIF selection/placement
and HWA allocation. We consider adaptive HWA usage to increase the local
training efficiency at the FL clients with the goal to minimize variance in the

11

Work Solution Environment Technique Mitigation

[24] reactive datacenter Peer-to-peer commu-
nication, reassign-
ment

out-of-
network

[43] reactive FL/geo-
distributed

staneless awareness out-of-
network

[25],[26] reactive distributed
ML/geo-
distributed

offloading to pro-
grammable switch,
aggregation efficiency

in-network

This work pro-active FL/geo-
distributed

training time and
client placement effi-
ciency

in-network

Table 1: Research contribution positioning.

end-to-end combined network and training latency, as defined hereafter. We
do not address the combined usage of adaptive global model update, edge
AIF placement and HWAs, left for future work.

In table 1, we present the positioning of our work contribution to existing
works from the literature.

4. In-network Federated Learning Control

We refer to our framework as In-network Federated Learning Control
(IFLC) to express the fact that we aim at controlling the latency phenomena
arising in in-network FL applications subjected to stringent training model
update targets, by placing the FL-AIF clients and server to ensure the dis-
tributed learning tasks within a time threshold1.
In in-network federated learning, we assume that data may both be generated
locally in the machine hosting the FL client, and be generated elsewhere in
the network and delivered to the FL clients by a data pipelining system [45].

The notations used are summarized in Table 2.

1It is worth noting that placing an AIF can mean copying a function image to a physical
node or selecting a pre-fetched AIF already installed in the physical node, so that its actual
instantiation can be a near-real-time operation in a similar time-scale to that of near-real-
time execution algorithms.

12

Sets and parameters

N set of edge physical servers, with n = |N |.

Ns set of physical servers for FL server placement.

ci number of available CPU cores on node i.

pik training time for i ∈ N with k active edge AIFs.

τ target distributed learning time (one FL round).

dij communication latency between node i and node j.

αik ≥ 1, acceleration factor at node i with k active edge AIFs.

hi assumes value 1 if a HWA is available on node i.

H maximum number of available HWAs.

S set of delay scenarios.

qs probability of scenario s.

βs
ik drift of the learning time on scenario s

on node i with k active edge AIFs.

ηsij drift of the propagation delay on scenario s

from node i to node j.

∆ maximum tolerated end-to-end delay.

Table 2: Notations.

13

We consider a FL-based AIF system (Figure 2) composed of a set N of
physical edge servers with heterogeneous CPU resources. These edge servers
are considered as possible locations for running AIFs2. Let ci be the number
of available CPU cores on edge node i. We denote by Ns the set of physical
servers that can be used for the AIF server placement. It is worth mentioning
that Ns ≡ N if the FL server AIF can be installed on the edge servers and
Ns ∩ N = ∅ otherwise. Additionally, we consider a set of FL client AIFs
that can be deployed on top of each physical node to run a given FL-based
application. An AIF receives data streams from external nodes, triggering
the training task. We consider that an AIF consumes all CPU resources that
are made available to it on the physical node3.

We suppose that each physical node can be equipped with hardware ac-
celeration to increase the local training efficiency. We denote by αik the
acceleration factor at node i when k FL client AIFs are active. The total
number of available HWAs is limited by a constant H. In the following, we
present the modeling of the end-to-end learning time.

4.1. End-to-end training time modeling

The global training time needed to update the global AI model at the
AIF server is therefore related to the training time, the propagation delays
and the number of active edge AIFs4. Figure 3 depicts the training time
model components.

Definition 1 (Local Training Time - p). Let pik be the local training time
of an AIF on node i when k AIFs are active.

We rely on the study carried out in [8] showing that the training time in-
creases with the data size. The scenario considered here is the one where
data is evenly split across the FL clients.

This parameter depends on (i) the number of available CPU cores at the
physical layer, (ii) the enabling of HWAs, and (iii) the amount of training
data. More precisely, the training time is directly related to the data size, e.g.,
the training time in neural networks is evaluated by the number of floating

2Note that in this work, only system heterogeneity is considered. We do not consider
additional delays related to non-iid data and the time needed to receive data at the edge
AIFs that is considered negligible as well.

3This corresponds to the default behavior of container-based services.
4FL client AIF and FL edge AIF are used interchangeably.

14

point operations which depends on the data size and the architecture of the
neural network [46]. Consequently, the local training time reduces with the
number of active AIFs as data is distributed amongst them. We define p as
an upper bound for the overall training time during a given round.

Definition 2 (Propagation Delay - d). Let dij be the communication latency
on the link that interconnects nodes i and j.

Transmission delays are negligible due to small volume of data exchanged
(if2, Fig. 2), could also be incorporated in d.

Definition 3 (End-to-End (E2E) Training Time - χ). Let χik be the sum of
the local training time at node i (while k AIFs are active) and the propagation
delay between the nodes deploying this client AIF and the FL server AIF j.

As in real world scenarios stochastic delays may apply on end-to-end training
times, we consider two different behaviors for an AIF: a deterministic behav-
ior where the local training time and the propagation delay are the same as
expected, and a stochastic behavior where additional delays may apply to
the local training time, to the propagation delay or both.

Definition 4 (Training Time Drift - β). Let β be the stochastic delays
applied to the local training time.

This parameter is supposed to be unknown, even if it can be empirically
characterized from real systems. Furthermore, we define a set S of possible
scenarios that define the intensity of the stochastic delays. In such a way,
for each scenario s we have a realization of the training time drift β: βs

ik for
each node i and k deployed AIF.

Definition 5 (Propagation Delay Drift - η). Let η be an additional random
value applied to the propagation delay (e.g., it can be traffic dependant
following a given queuing mode or traffic independent where it is influenced
by the link length).

For each scenario s, a drift is applied to the propagation delay η: ηsij for each
pair of edges i and j.

Definition 6 (Target Time - τ). Let τ be the target learning time after
which aggregation is triggered at the AIF server.

15

Figure 3: E2E training time (χ) model components and threshold.

Definition 7 (Maximum Tolerated Delay - ∆). Let ∆ be the tolerated
elapsed training delay between the last accepted reception of the parame-
ters from edge AIFs, and the effective start of the parameters aggregation at
the FL server.

Definition 8 (AIF Straggler or Straggling AIF). An AIF straggler or strag-
gling AIF i is a client AIF whose end-to-end training time χ is greater than
the threshold but remains within the tolerated additional time ∆ (i.e., τ ≤χ
≤ τ +∆).

Note: parameters sent by an AIF straggler are aggregated by the AIF
server if χ ≤ τ + ∆. The values of τ and ∆ depends on the use case speci-
fication requirements, with ∆ < τ . Additionally, we only consider stragglers
with a delay that does not exceed ∆. The stragglers with a higher delay are
not considered as they can not be chosen by IFLC model (i.e., unfeasible
solution). Also, the proposed model only covers the case where straggling
effect is related to training delays, this justifies the fact that we propose the
allocation of HWA to mitigate the stragglers.

Additionally, we consider two possible settings for the FL AIFs:

• ‘edge-edge’: both server and edge AIFs are running at the edge nodes:
the propagation delays in that case can be expected to be negligible as
compared to the training time, considering the possible duplication of
the FL server instance close to the clients.

• ‘core-edge’: the server is placed at a core location (beyond aggregation
nodes) while edge AIFs are placed at the edges: the propagation delays
for this setting can be expected to be higher than the previous ones
(i.e., edge-edge setting).

16

4.2. Problem statement

Under the delay model, we can define the IFLC problem as follows. Given
a set of physical nodes N and a defined target time for a specific application,
find an optimal placement of the FL server AIF and the FL client AIFs to
ensure that:

• the maximum E2E training time does not exceed the time requirements
imposed by the application,

• hardware acceleration, if available, can be allocated to reduce the local
training time, along with CPU resources,

• the CPU utilization is minimized,

• the average number of AIFs exceeding the target time is minimized,
including the stochastic scenarios (see definitions 4 and 5).

Indirectly, the number of active AIFs is pushed down towards optimality.

5. Mathematical Modeling

In the following, we present the mathematical programming model that
corresponds to the IFLC scheme.

We use binary variables to represent AIF placement and HWA related
decisions. xi represents the activation state of the AIF on node i, hence it
takes value 1 if node i is used to deploy an AIF. yj provides the position of
the FL server AIF, if it is equal to 1 then the FL server is placed on node j.
If an edge AIF is installed on node i and the FL server is placed on node j
then ξij is equal to 1. Note that the FL server can not be installed on the
same node as a client AIF. ζik and zk are used to count the total number of
active AIF. ψik is equal to 1 if the hardware accelerator is present and used
on node i and k AIFs are active.

Real variables are introduced to model the different components of the
training time. ti represents the local training time when an AIF is active on
node i, δik represents the amount of reduction in the local training time due to
hardware acceleration, when k AIFs are active on node i and χi represents
the E2E training time of the client AIF deployed on node i. Finally, we
introduce the real variables t̃i

s
and δ̃ik

s
which correspond to the stochastic

local training time and the reduction in the stochastic local training time,

17

respectively, for scenario s. χ̃i
s is the E2E training time of the client AIF

deployed on node i with scenario s.
The mathematical notations are summarized in Table 3.

Binary variables

xi 1, if a client AIF is active on node i.

yj 1, if the FL server AIF is installed on node j.

wi 1, if the hardware accelerator is allocated on node i.

ζik 1, if an AIF is active on node i with k deployed AIFs.

ξij 1, if a client AIF is installed on node i

and the FL server AIF is installed on node j.

σs
i 1 if a client AIF on node i is a straggler in scenario s.

ψik 1, if a hardware accelerator is present and used on node i

and k AIFs are active.

zk 1, if k AIFs are active.

Continuous variables

ti distributed training time on node i.

χi E2E training time of the client AIF deployed on node i

when k AIFs are active.

δik time reduction at node i when k AIFs are active.

t̃i
s

stochastic distributed training time on node i with scenario s.

χ̃i
s stochastic E2E training time of the client AIF employed

on node i when k AIFs are active with scenario s.

δ̃ik
s

time reduction at node i when k AIFs are active with scenario s.

Table 3: Mathematical notations.

18

5.1. Core model constraints

5.1.1. FL clients and FL server AIFs placement

We need to determine the location of the FL server AIF and the number
and location of the client AIFs in order to guarantee that each AIF can train
and send the model parameters to the FL server on time.

Constraint (1) imposes that the FL server AIF is installed on one and only
one node. (2) impose that the node that hosts the AIF server cannot host an
edge client AIF. We recall that variable ξij is used to represent the fact that a
FL client AIF is installed on node i and the FL server is installed on node j.
Therefore, when ξij = 1 the AIF installed on node i yields a communication
latency of dij. Constraints (3) and (4) are consistency constraints. If the
server is not installed on node j then all the variables ξij must be equal to
zero. For a given node i, one and only one variable ξij can assume value 1 if
a client AIF is installed on node i, otherwise they are all equal to zero.∑

j∈Ns

yj = 1 (1)

yi + xi ≤ 1 ∀i ∈ N (2)

ξij ≤ yj ∀i ∈ N, j ∈ Ns (3)∑
j∈Ns

ξij = xi ∀i ∈ N (4)

5.1.2. Training time characterization

Constraints (5) allow to calculate the deterministic training time of node
i when k AIFs are deployed.

Constraints (6) and (7) are consistency constraints, that is, when variables
zk or xi assume value zero, the corresponding ζik, ti variables for node i
assume value zero.

Constraints (8) together with constraints (9) allow us to count the number
of deployed AIFs.

ti =
n∑

k=2

pikζik ∀i ∈ N (5)

n∑
k=2

ζik = xi ∀i ∈ N (6)∑
i∈N

ζik ≤ |N |zk ∀k ∈ 2..n (7)

19

n∑
k=2

zk = 1 (8)

n∑
k=2

kzk =
∑
i∈N

xi (9)

5.1.3. Hardware acceleration for deterministic training

We allow the use of hardware accelerators to reduce the training time. We
introduce the necessary constraints to evaluate the impact of the hardware
accelerators on the local training time. Constraints (10) impose that the
hardware accelerator can be used only if available. Constraint (11) imposes
that a maximum number H of hardware accelerators can be used.

wi ≤ hi ∀i ∈ N (10)∑
i∈N

wi ≤ H (11)

Constraints (12)-(15) allow to evaluate the gain in the deterministic local
training time obtained using hardware acceleration while associating the two
variables δik and wi to keep consistency. That is, if ζik =1 and ψik = 1, then

δik =
(
1− 1

αik

)
pik. Otherwise, δik = 0.

ψik ≤
ζik + wi

2
∀i ∈ N, k ∈ 2..n (12)

δik ≤ ψik

(
1− 1

αik

)
p ∀i ∈ N, k ∈ 2..n (13)

δik ≤
(
1− 1

αik

)
(pikζik) ∀i ∈ N, k ∈ 2..n (14)

δik ≥
(
1− 1

αik

)
(pikζik)− (1− ψik)p

∀i ∈ N, k ∈ 2..n (15)

Note that p represents the maximum deterministic training time and can be
calculated as follows:

p = max
k=2..n,i∈N

pik (16)

20

5.1.4. Target time

For each node i, constraints (17) compute the E2E training time of an
active AIF on node i. Constraints (18) ensure that the maximum E2E train-
ing time that an active AIF can achieve does not exceed the accepted target
time τ . These constraints are always valid even when no AIF is installed. In
fact, variables ti and δik assume value zero when xi = 0 (see, constraints (4),
(5)-(6), and (14)-(15)).

χi = ti −
∑
k∈2..n

δik +
∑
j∈Ns

dijξij ∀i ∈ N (17)

χi ≤ τ ∀i ∈ N (18)

5.2. Stochastic variant

In the following, we introduce the stochastic variant of the AIF place-
ment model. The goal is to introduce robustness against different realization
scenarios. We add the following constraints to the aforementioned model.

Constraints (19) calculate the stochastic local training time for node i
when k AIFs are active and a delay βs

ik is applied.

t̃i
s
=

n∑
k=2

(pik + βs
ik)ζik ∀i ∈ N, s ∈ S (19)

In the same way as in the deterministic model, constraints (20)-(22) allow
to evaluate the gain in local training time obtained using hardware acceler-
ation while considering the additional delays applied to the training time.

δ̃sik ≤ ψik

(
1− 1

αik

)
p̃ ∀i ∈ N, k ∈ 2..n

∀s ∈ S (20)

δ̃sik ≤
(
1− 1

αik

)
(pik + βs

ik)ζik ∀i ∈ N, k ∈ 2..n

s ∈ S (21)

δ̃sik ≥
(
1− 1

αik

)
(pik + βs

ik)ζik − (1− ψik)p̃

21

∀i ∈ N, k ∈ 2..n

∀s ∈ S (22)

Note that p̃ represents the maximum stochastic training time and can be
calculated as follows:

p̃ = max
k=2..n,i∈N,s∈S

(pik + βs
ik) (23)

Finally, constraints (24) compute the E2E stochastic time of node i and
constraints (25) impose that the E2E training time of an active AIF, including
the additional delays applied to both the training and propagation times,
are below the threshold. It is worth noticing that in this case we accept a
maximal response time τ +∆. Each AIF with a training time exceeding τ is
considered a straggler (see variable σs

i).
These constraints are always valid even when no AIF is installed where t̃i

s

and δ̃sik assume value zero when xi = 0 (see, constraints (4), (5)-(6), and
(21)-(22)).

χ̃i
s = t̃i

s −
n∑

k=2

δ̃sik +
∑
j∈A

(dij + ηsij)ξij ∀i ∈ N, s ∈ S (24)

χ̃i
s ≤ τ +∆σs

i ∀i ∈ N, s ∈ S (25)

Additionally, we introduce the following domain constraints to complete
the model:

ti ≥ 0 ∀i ∈ N (26)

t̃i
s ≥ 0 ∀i ∈ N, s ∈ S (27)

δik ≥ 0 ∀i ∈ N, k ∈ 2..n (28)

δ̃ik
s
≥ 0 ∀i ∈ N, k ∈ 2..n, s ∈ S (29)

xi, wi, yj, ξij ∈ {0, 1} ∀i ∈ N, j ∈ Ns (30)

zk ∈ Z ∀k ∈ 2..n (31)

ζik,∈ {0, 1} ∀i ∈ N, k ∈ 2..n (32)

22

5.3. Objectives

The goal is to minimize the number of AIFs that can be in a straggling
situation in order to guarantee a certain level of performance of the learning
process with minimum costs. To this end, we introduce two objectives. We
first minimize a measure of the stragglers in the system and then, we search
for solutions with the minimal utilization of resources.

5.3.1. Minimizing the number of stragglers

The objective in(33) allow to minimize the expected number of stragglers
where qs is the probability of each scenario s ∈ S.

min
∑
s∈S

qs
∑
i∈N

σs
i (33)

5.3.2. Minimizing the number of computational resources

After determining the optimal solution of the previous problem, we can
further minimize the number of computational resources while limiting the
increase of the expected number of stragglers. We denote by σ⋆ the min-
imum expected number of AIF in a straggling situation obtained by mini-
mizing (33). Thus, the objective of the second phase optimization problem
is:

min
∑
i∈N

cixi (34)

We introduce the additional constraints (35) to limit the increase of the
number of stragglers. ∑

s∈S

qs
∑
i∈N

σs
i ≤ σ⋆ + ϵ (35)

Note that the objective in (33) along with constraints (35) are only used
by the stochastic variant, as we impose the absence of stragglers in the de-
terministic scenario.

6. Polynomial-time resolution algorithm

we propose two polynomial-time resolution algorithms for solving the AIF
placement problem for both the deterministic and stochastic cases, hence
supporting near-real-time orchestration of FL-AIFs. They share a common
structure based on the following observations:

23

• the number of possible locations of the FL server AIF is given by |Ns|
(or |N | for the edge-edge setting),

• the number of installed AIFs is limited by |N | (or |N | − 1 for the
edge-edge setting),

• for each server location and given number of installed AIFs, χ can be
pre-calculated.

The proposed algorithms search for the best solution for each given combi-
nation (j, k) of AIF server location (j) and number of installed edge AIFs
k and keep the best one, see Algorithm 1. In the edge-edge setting, the
server is chosen from the set N and its location is removed from the avail-
able AIFs location. The decision of activating an AIF is done working on
the set of locations ordered by increasing ci (i.e., number of CPU cores),
breaking ties using χ (smallest first). Note that differently from the math-
ematical model presented in the previous section, this model considers that
the end-to-end training time component χ as a parameter, computed for each
combination (j, k) of AIF server location (j) and number of installed edge
AIFs k. The two algorithms differ in the implementation of the function
“best placement()”.

Algorithm 1 General IFLC Scheme

output : S⋆: set of active edge AIFs, j: server AIF position

best cost = ∞
S⋆ = ∅
for j ∈ Ns do

for k ∈ 1..n do

Ñ ← available nodes in decreasing order of ci
(feasible, S, cost) = best placement(k,j,Ñ)
if cost ≤ best cost and feasible then

bestcost = cost
FL server = j
S⋆ = S

return (S⋆, FL server)

24

To allow a compact representation of the two placement procedures, we
report here the calculation of χ for a given couple (j, k). In the deterministic
case, the E2E training time for a given node i without HWA can be calculated
as:

χi = pik + dij (36)

and, when the hardware accelerator is allocated as:

χha
i = pik − δik + dij (37)

Where δik is the time reduction at node i when k edge AIFs are active. When
HWA is used, δik is computed by dividing the local training time by a given
accelerator factor α. The value of α depends on the number of CPU cores
available on the node and the number of active AIFs (i.e., data size).

For the stochastic case, for a given node i and scenario s ∈ S it is,
respectively:

χs
i =

{
(pik + βs

ik) + (dij + ηsij)
}

(38)

χs,ha
i =

{
(pik + βs

ik)− δik + (dij + ηsij)
}

(39)

Further, we can calculate the E2E training times for the worst case sce-
nario (χ), both without and with HWA:

χi = max
s∈S

χs
i (40)

and
χha
i = max

s∈S
χs,ha
i (41)

In the deterministic case, the best placement procedure inspects the
list of ordered nodes Ñ and checks whether is possible to place an edge AIF
without exceeding the threshold. HWAs are allocate (if available) only if nec-
essary to reduce the training time under the threshold τ . best placement
for the deterministic case is presented in Algorithm 2. When no HWA is
available, the parameter H assumes value zero. For ease of presentation, we
do not explicitly add the line that save the location of the HWA (but it is
saved by the implemented procedure).

We can observe that at each step of the function presented in Algorithm 2,
the less expensive AIF location for which the E2E training time is below the
threshold is selected. Thus providing an optimal solution for k, if it exists.
If at the end of the process, the number of selected edge AIFs is lower than

25

Algorithm 2 Best placement - deterministic

input : j: server location, k number of active edge AIFs,
Ñ set of available nodes for locating the AIFs

output : feasible: bool, S: set of active edge AIFs,
cost: solution cost

kcount = 0, cost = 0, hwa = 0, S = ∅
Calculate deterministic E2E training times
/* try to locate k AIFs */

while Ñ ̸= ∅ and kcount < k do

i=pop(Ñ)
if χi ≤ τ then

kcount ++, cost += ci, S = S ∪ {i}

else if χha
i ≤ τ and hwa < H then

kcount ++, cost += ci, hwa ++, S = S ∪ {i}

if kcount == k then
return (True, S, cost)

else
return (False, ∅, ∞)

26

Algorithm 3 Best placement - stochastic

input : j: server location, k number of active edge AIFs,
Ñ set of available nodes for locating the AIFs

output : feasible: bool, S: set of active edge AIFs, cost: solution cost

Calculate stochastic E2E training times
kcount = 0, cost = 0, hwa = 0, S = ∅ Ñbck = Ñ
while Ñ ̸= ∅ and kcount < k do

i=pop(Ñ)
if χi ≤ τ then

kcount ++, cost+=ci, S = S ∪ {i}

else if χha
i ≤ τ and hwa < H then

kcount++, cost+=ci, hwa++, S = S ∪ {i}

if kcount == k then
return (True, S, cost)

else
/* add straggling AIFs */

Ñ = Ñbck \ S, sort by increasing Qi

while Ñ ̸= ∅ and kcount < k do

i=pop(Ñ)
if χi ≤ τ +∆ then

kcount++, cost+=ci, S = S ∪ {i}

/* ‘‘recovery step’’: try moving hwa */

if kcount < k then

L1 =
{
i ∈ Ñbck \ S : χha

i ≤ τ +∆
}

L2 =
{
i ∈ S : χha

i ≤ τ and χi > τ
}

sort L1 by increasing Qha
i , sort L2 by increasing Qi

while L̃1 ̸= ∅ and L̃2 ̸= ∅ and kcount < k do

i=pop(L̃1), l=pop(L̃2)
S = S ∪ {i}

if kcount == k then
repeat similar “recovery step” to try improving cost
exchanges are allowed only between already allocated edge AIFs
return (True, S, cost)

else
return (False, ∅, ∞)

27

k, it means that k AIFs do not allow a viable E2E training time (with the
number of available HWAs).

In the stochastic case, the objective function depends on the probability
of producing stragglers for each given scenario. Let us consider again a given
couple j, k of server AIF location and number of edge AIFs, and analyze the
impact of placing an edge AIF on node i.

When placing an edge AIF on node i where it produces a worst case E2E
time (the longest time among the scenarios) that is below the threshold τ ,
the contribution to the objective function is zero. When the worst E2E time
is in the interval [τ, τ + ∆] the contribution depends on the E2E time of
each scenario. The total contribution of an AIF located on node i can be
calculated as follows:

Qi =
∑

s∈S:τ<χsi≤τ+∆

qsi (42)

where qsi is the probability of the scenario s on node i and χs
i is the E2E time

for scenario s on node i. Similarly, we can calculate the contribution to the
objective function when the node i is equipped with HWA:

Qha
i =

∑
s∈S:τ<χ

s,ha
i ≤τ+∆

qsi (43)

where χs,ha
i is for the scenario s on node i with HWA.

In Algorithm 3, we report the structure of the function ‘best placement()’ in
the case of stochastic scenarios. It is worth to notice that the first part of
the procedure has the same structure of the deterministic case, but the worst
case E2E time is used at the place of the deterministic times. A ‘recovery
step’ is added to re-discuss the HWA positions to improve the solution in
term of average number of stragglers. It is worth to notice that a HWA can
be released on an already selected node i if its E2E time without HWA is
below the rejection threshold τ +∆ paying the price Qi.

Time and space complexity

Both algorithms repeat the procedure “best placement()” for each
couple (j, k) of FL server location and number of instantiated AIFs, i.e.
|N ||Nc| iterations. Both placement procedures (deterministic and stochas-
tic) perform a sorting of the AIF locations and an inspection of the resulting
list. The stochastic version has additional steps where it performs two sort
procedures (of the residual list of nodes) and a linear comparison of two list

28

of at size at most |N |. Thus, the overall time complexity for both algorithms
is of the order of O(|N |2|Nc| log(|N |)), ≈ O(n3 log(n)), where n = |N | and
under the assumption that |Nc| = O(n). In terms of space complexity, IFLC
algorithms store a given number of lists of size at most |N |, thus with a size
≈ O(n log(n)).

6.1. FIRST-FIT algorithm

Algorithm 4 FIRST-FIT algorithm

output : S: set of active edge AIF, j: server AIF position

Ñ ← sort N in decreasing order of CPU resources
S ← 0
E2E time = 0
E2E time final =∞
k = 0, number of AIFs
j = random(Ñ), Ñ = Ñ \ {j}
while Ñ ̸= ∅ do

i=pop(Ñ)
S = S ∪ i, k+ = 1
Update(E2E time, k)
if E2E time final ≤ E2E time then

S = S − {i}, k− = 1
return (S)

Update(E2E time final, k)

return (S, j)

As a lowest-complexity benchmark, we introduce a baseline placement
algorithm to compare with IFLC strategies. It is a first-fit algorithm, of
≈ O(n log(n)) time and space complexity, that prioritizes the nodes with the
highest CPU resources where it increases the number of deployed AIFs until
there is no more decreasing in the E2E training time. We chose the FIRST-
FIT algorithm, a commonly used heuristic for placement problems to assess
the trade-off between efficiency and optimality against the MILP solution.

FIRST-FIT is given in Algorithm 4.

29

7. Simulated instances

In the following, we report how we set-up the numerical evaluation envi-
ronment, including simulated scenarios and the dataset we used.

7.1. AIF application

In order to evaluate the IFLC strategies, we use the FL-based framework
proposed in [11]. We run a set of AIFs as docker containers on a Kubernetes
infrastructure where each AIF is an implementation of an LSTM autoencoder
neural network system to detect anomalies in a 5G stack. The goal of this
framework is to detect anomalies at different system levels, i.e., physical level,
virtual/container level and access level, using thousands of time-series issued
by probes from network functions, physical servers, Eth/IP and radio links.
Probes are collected from a 5G testbed replaying traffic traces of a European
operator, from the ANR COCO5G project (https://coco5g.roc.cnam.fr), in
the Lozere region in France for 3 months in 2019.

The data collected from the probes of the 5G3E dataset from [47] provides
few dozens of feature time-series for each resource group, where groups are
related to CPU, RAM, storage and link states. We use data batches of
4000 samples to train the aforementioned AIML model, assumed to be the
retraining time of the system and could vary in general depending on the
sampling rate. The batch size is set to the data size, hence considering all
the samples. The data is then evenly load-balanced as a function of the
number of edge AIFs employed.

Note that the dataset we used to evaluate the FL framework has non-iid
samples because data points are (i) not independent since the servers may
have potential correlations as they belong to the same Kubernetes infras-
tructure, (ii) non identically distributed where each server may have its own
distribution and (iii) non stationary as this type of data shows seasonality
when server workloads change. Having non-IID data is another motivation to
avoid stragglers as much as possible. To compensate for the non-IID nature
of the data, the reference AIF model groups metrics in different autoencoder
groups.

We use the FL-based anomaly detection in [11] where FedAvg is used as
the aggregation algorithm. The number of epochs (E) is 10 and the model
is trained for one round (R = 1). The rest of the hyper-parameters are set
as explained in [11].

30

(a) 2 AIFs.

(b) 6 AIFs.

Figure 4: Training time distribution as a function of the number of active client AIFs
and available CPU cores. R = 1, E = 10.

7.2. Computation of training and propagation time samples

We generate the training time samples as a function of the number of
client AIFs and the amount of computation resources using the aforemen-
tioned AIF application. Figure 4 depicts the distribution of the maximum
local training time for different numbers of edge AIFs and different numbers
of available CPU cores. We can remark that the training time decreases with
the number of AIFs and the available CPU cores up to a certain threshold.

In contrast to conventional user-device FL-based services, this framework
considers an in-network service where the time scale at which the anomaly

31

detection model is expected to react is on the order of few seconds, or even
sub-second. Nonetheless, it is worth mentioning that our IFLC scheme can
be applied on any FL application.

For the purpose of evaluating IFLC on large instances, we generate a syn-
thetic set of pseudo-random training times that approximate a pre-specified
correlation coefficient between the training time values, the number of active
AIFs and the number of available CPU cores. This correlation coefficient
is retrieved from the original training time samples. We make available the
samples and related scripts for the simulations in [48]. Note that the gener-
ated dataset contains training times for different number of active AIFs and
available CPU cores.

Figure 5 depicts the distribution of the training times of both the original
and synthetic datasets, based on the total number of CPU cores (i.e., number
of CPU cores that are used by all active AIFs).

Figure 5: Training time distribution vs the number of CPU cores.

As a function of the AIF positioning setting, we configure the E2E training
time components as follows:

• ‘edge-edge’ setting: we define the maximum one-way latency between
the furthest edge AIF and the AIF server as the 25% quantile value of
the training time during one epoch divided by 10.

• ‘core-edge’ setting: the highest value of the one-way latency between
the furthest FL client AIF and the FL server is set equal to the mean
value of the training times during 10 epochs.

32

We consider a combination of deterministic and stochastic behaviors for
both propagation and training times as shown in Table 4. Note that ‘S-
D’case is not cited because it generates the same solutions as ‘S-S’. This can
be explained by the fact that both cases apply stochastic delays on the local
training time, and since the latter has the highest impact on the E2E training
time compared to the propagation delay, the placement solution is the same
for both cases as they have similar strictness on time constraints. We set the
stochastic drifts as proportional to the nominal values of the training time
and propagation delays, respectively.

cases training time propagation delay

case D-D deterministic deterministic

case D-S deterministic stochastic

case S-S stochastic stochastic

Table 4: Training time and propagation delays options.

We developed our mathematical model using AMPL (A Mathematical
Modeling Programming Language), utilizing CPLEX as the linear solver
optimizer. We run our algorithm on an Ubuntu server 14.04 LTS virtual
machine with 64 GB of RAM and 8 × 2.5 GHz CPU cores.

7.3. Simulated network instances

First, as network topology we use Mandala, a hierarchical topology from [49]:
it consists of connecting access nodes through three tiers, i.e., aggregation,
core and application (i.e., egress) nodes. For instance, one may consider the
edge servers as MEC hosts in a MEC system in a Metropolitan Area Network
topology or a near edge AIF deployment (see figure 6). The total number
of nodes is equal to 26 including 16 edge nodes. Also, we consider that each
node can be randomly equipped with 1, 2, 4, 8 or 16 CPU cores. Note that
IFLC can be deployed by an scheduler such as the MEC orchestrator in a
MEC system.

We compare four resolution approaches:

• no-HWA: degenerate IFLC with no HWAs employed.

• IFLC-8: 50% of edge nodes (i.e. 8) equipped with HWAs.

33

Figure 6: Mandala network topology. Source: [49].

• IFLC-16: all edge nodes (i.e. 16) equipped with HWAs.

• FIRST-FIT baseline Alg. 4 (not allocating HWA).

The comparison is done looking at the following features:

• the number of straggling AIFs,

• the E2E training time and its variance,

• the computational overhead related to the number of active AIFs and
of CPU cores.

We rely on [37] and [38] to define the acceleration factor of HWAs: ac-
cordingly, we consider that it depends on the number of active AIFs and the
number of available CPU cores [37]. More precisely, since the acceleration
factor decreases with the data size [38] and that the training dataset is evenly
shared among client AIFs, we assume that αik increases with the number of
active AIFs.

Moreover, in order to test different levels of strictness on the training
time target constraints, we use different values for the target time τ (i.e.,
2 and 4 s) and the number of epochs (i.e., from 60 to 105 with a step of 5
epochs). The target time represents the retraining time to ensure that the
model remains effective as new data arrives. As we are considering the use
case of a near real-time anomaly detection system able to capture recent
events as attacks or new vulnerabilities [50], the target time ranges from
hundreds of milliseconds to seconds. In fact, the time to retrain an anomaly
detection model in real-time depends on several factors such as the volume
of data, the complexity of the model and the computational resources. To
define the target time, we rely on the work in [51] where the end-to-end time

34

to train a few hundred of data samples does not exceed a few seconds (i.e.,
ranges from a few seconds to ten seconds).

The stragglers occurrence ranges from a few milliseconds to 1/4 of the
time limit delay. Extending the time limit would incur in a low quality of
the model as it may not reflect the current state of the system anymore.

We consider that the maximum tolerated delay ∆ is 4 times less than the
target time, which roughly corresponds to the maximum lifetime network
connections that are not bulk transfers. Then, we range from loose timing
constraint (e.g., τ = 4 s with 60 epochs) to extremely rigorous ones (e.g., τ
= 2 s with 100 epochs). Also, additional stochastic delays may reach nearly
twice the nominal time.

We run 30 instances for each approach and each different setting where
the propagation time, the stochastic delays and the placement of hardware
accelerators are randomly generated for each instance. The number of avail-
able CPU cores is fixed for all instances.

8. Results Analysis

In this section, we provide a detailed numerical evaluation focused on
stragglers, training times and computation overhead. Overall, Table 5 presents
the proportion of instances that lead to a feasible solution (with respect to
the target delay bound). For the two AIF placement settings, no-HWA could

Approach edge-edge core-edge

no-HWA 15% 10%

IFLC-8 100% 100%

IFLC-16 100% 100%

FIRST-FIT 0% 0%

Table 5: Percentage of feasible instances per approach.

produce a solution only at most for 15% of the instances. This increases to
100% when IFLC is used. On the other side, all the solutions produced by
FIRST-FIT algorithm are unfeasible, as it has no check on the target time.
It is worth noting that if the E2E training time of an AIF exceeds the time
threshold, we consider that the local training parameters cannot be used by
the FL aggregation task.

35

8.1. Number of stragglers

0

1

2

3

4

5

6

7

no-HWA IFLC-8 IFLC-16 FIRST-FIT

n
u
m

b
e
r

o
f

st
ra

g
g
le

rs

(a) D-S: edge-edge

0

1

2

3

4

5

6

7

no-HWA IFLC-8 IFLC-16 FIRST-FIT

n
u
m

b
e
r

o
f

st
ra

g
g
le

rs

(b) S-S: edge-edge

0

1

2

3

4

5

6

7

no-HWA IFLC-8 IFLC-16 FIRST-FIT

n
u
m

b
e
r

o
f

st
ra

g
g
le

rs

(c) D-S: core-edge

0

1

2

3

4

5

6

7

no-HWA IFLC-8 IFLC-16 FIRST-FIT

n
u
m

b
e
r

o
f

st
ra

g
g
le

rs

(d) S-S: core-edge

Figure 7: Distribution of the number of straggling AIFs.

In Figures 7, we present the distribution of the number of AIF stragglers
for both edge-edge and core-edge settings, and excluding the ‘D-D’case since
it does not model the stragglers. We can notice that:

• With IFLC, the likelihood of being in a straggling situation decreases
with the number of available HWAs when the training time is stochas-
tic.

• With FIRST-FIT, the number of stragglers is the worst, and it is higher
in the core-edge setting: the placement at the edge gives more flexibility

36

thanks to lower propagation delays, hence leading to lower E2E training
times. This does not happen with IFLC, showing its robustness against
high propagation delays (core-edge setting).

• For all approaches and settings, the number of straggling AIFs increase
when the training time is stochastic, as it can be seen from Figures 7b
and 7d. Specifically, the median value increases from 4 to 5 for FIRST-
FIT with the edge-edge setting, whereas in core-edge the minimum
number of stragglers increases by 2. On the other side, the highest
number of stragglers generated by IFLC-8 and IFLC-16 increases from
0 to 2 for both placement settings. This number increases from 0 to 4
with no-HWA for both settings.

• In the ‘D-S’ case (see Figures 7a and 7c), our approach significantly
outperforms FIRST-FIT, regardless of the number of HWAs. Under
more stringent targets (S-S), FIRST-FIT yields lower number of strag-
glers than no-HWA with edge-edge, where the minimum number of
stragglers achieved by no-HWA (i.e., 4 stragglers) corresponds to the
first quartile value achieved by FIRST-FIT in the edge-edge setting,
and the minimum value in the core-edge one. Note that the placement
decision made by FIRST-FIT can not be considered as it is exceeding
the threshold.

Overall, thanks to time modulation, IFLC always outperforms FIRST-
FIT in terms of the number of stragglers, for all the cases. Adaptive HWA
allocation helps reducing the local training time which allows slow AIFs to
reach lower E2E training times and consequently respect the imposed target
time. The number of stragglers with IFLC can be divided by more than two,
and often is reduced to zero.

8.2. Training time

Figures 8 represent the distribution of the maximum local training times.
We can notice that:

• In contrast to FIRST-FIT, IFLC approaches have similar distributions
of the training time for each of the placement settings. This can be
explained by the fact that the latter leads to solutions that are robust
against high propagation delays.

37

Figure 8: Distribution of the maximum local training time.

• The distribution of the training time is very similar for IFLC-8 and
IFLC-16 for all cases. This can be due to the fact that both IFLC-8
and IFLC-16 yield different placement solutions that generate similar
end-to-end training time (i.e., same number of AIFs with higher CPU
resources and a lower number of active HWAs or the opposite). This
can also show that a low number of HWAs can be sufficient to respect
the target time even with very strict targets.

• Both ‘D-D’ and ‘D-S’ cases have lower maximum training times com-
pared to S-S for all cases. This happens because S-S has higher local
training times due to additional applied delays.

Overall, IFLC gives lowest training times thanks to HWA, followed by no-
HWA and finally FIRST-FIT which yields the highest training times (which
are higher than the imposed target time, hence discarded by the FL server).

Figures 9 report the distribution of the maximum variance in E2E training

38

times (only for the edge-edge setting, as no major difference appears with
the core-edge one). We can notice that:

• The lowest variance in E2E training time corresponds to IFLC-16 fol-
lowed by no-HWA then IFLC-8. Indeed, IFLC deploys AIFs with close
E2E training time with the aim of reducing the number of stragglers
during each round, attempt favored by HWAs that get allocated to
accelerate training for farthest AIFs from the server. The variance is
further decreased in deterministic cases.

Figure 9: Distribution of the variance in E2E training time.

• IFLC-16 yields lower variance when compared to IFLC-8 for all cases.
This can be explained by the fact that the former has more control in
placing the AIFs on nodes with similar capacities as HWA is present
on all nodes. On the other hand, IFLC-8 has less flexibility where
the node selection depends on the HWA availability. Moreover, the
variance increases with time constraints as can be seen from ‘D-S’ and
‘S-S’ cases when comparing IFLC-8 and IFLC-16. In fact, IFLC-16
allows to allocate HWA on nodes with similar processing capacities
which results in equivalent local training times. On the other hand,
IFLC-8 may not have available HWAs on these nodes and thus nodes
with different processing capacities are used. This results in higher
variance. As previously explained, this can yield similar end-to-end
training times for both IFLC-8 and IFLC-16.

Globally, since (i) the weight of the local training time in the E2E training
time is greater than the propagation delay one, and (ii) given that training
times get higher if HWA unavailability, we can determine that finding viable
solutions gets harder as it turns into finding nodes with higher CPU resources
to respect the target time.

39

8.3. AIF computational overhead

1

2

3

4

5

6

7

no-HWA IFLC-8 IFLC-16 FIRST-FIT

n
u
m

b
e
r

o
f

a
ct

iv
e
 A

IF
s

(a) D-S: edge-edge

1

2

3

4

5

6

7

no-HWA IFLC-8 IFLC-16 FIRST-FIT
n
u
m

b
e
r

o
f

a
ct

iv
e
 A

IF
s

(b) S-S: edge-edge

1

2

3

4

5

6

7

no-HWA IFLC-8 IFLC-16 FIRST-FIT

n
u
m

b
e
r

o
f

a
ct

iv
e
 A

IF
s

(c) D-S: core-edge

1

2

3

4

5

6

7

no-HWA IFLC-8 IFLC-16 FIRST-FIT

n
u
m

b
e
r

o
f

a
ct

iv
e
 A

IF
s

(d) S-S: core-edge

Figure 10: Distribution of the number of active AIFs.

The latter observation can be clarified by Figures 10 and 11 that depict
the distribution of the number of active AIFs and the total number of CPU
cores that are used by the active AIFs. We only report the cases D-S and
S-S in this section as D-D yields the similar distributions as ‘D-S’.

Besides expectable behaviors for FIRST-FIT deriving from the previous
analysis, we can highlight that:

8.3.1. Total number of active AIFs

• The number of active AIFs reduces with the number of HWA. More
precisely, for no-HWA feasible solutions refer to instances with less

40

stringent time constraints. The corresponding number of active AIFs
is equal to 4, that is, 4 AIFs are deployed to respect the target time.
This number decreases by up to 50% thanks to HWA: both IFLC-8
and IFLC-16 yield a lower number of active AIFs (i.e, 2 AIFs) when
the same time constraints apply.

• For FIRST-FIT, the minimum number of active AIFs is higher with
core-edge setting, as it is more flexible than edge-edge in placing edge
AIFs. In that case, if the stopping point is not yet achieved (i.e.,
possibility to decrease the local training time), FIRST-FIT will keep
increasing the number of AIFs. This confirms the previous results
showing that the local training time is lower with core-edge.

• IFLC-8 yields the same number of active AIFs as IFLC-16. This can
be explained by the fact that IFLC may sometimes promote allocating
HWA instead of increasing the number of active AIFs to reduce the
local training time. As HWA may not be available on some physical
nodes with IFLC-8, the latter chooses the same number of active AIFs
as IFLC-16 but with higher CPU resources.

8.3.2. Total number of active CPU cores

• Higher CPU resources are needed to reduce the local training time
and consequently the E2E training time for FIRST-FIT and no-HWA,
which is correlated with the higher number of active AIFs even with less
strict time constraints. Also, FIRST-FIT achieves the same minimum
cost as IFLC for a small number of instances with edge-edge placement.
For theses instances, the stopping point is achieved with a low number
of active AIFs w.r.t the other instances, which results in a lower number
of CPU cores.

• The distribution of CPU cores is slightly different when comparing
IFLC-8 and IFLC-16. As already explained, when stringent time con-
straints apply, IFLC-8 yield the same number of active AIFs as IFLC-
16. However, the former may not have available HWA on nodes with
low CPU resources which leads to solutions with slightly higher pro-
cessing capacities.

Overall, the advantage of an IFLC scheme is the capability of exploiting
HWA, leading to the lowest computational costs, as less CPU resources are
needed.

41

10

20

30

40

50

60

70

80

no-HWA IFLC-8 IFLC-16 FIRST-FIT

n
u
m

b
e
r

o
f

C
P
U

 c
o
re

s

(a) D-S: edge-edge

10

20

30

40

50

60

70

80

no-HWA IFLC-8 IFLC-16 FIRST-FIT

n
u
m

b
e
r

o
f

C
P
U

 c
o
re

s

(b) S-S: edge-edge

10

20

30

40

50

60

70

80

no-HWA IFLC-8 IFLC-16 FIRST-FIT

n
u
m

b
e
r

o
f

C
P
U

 c
o
re

s

(c) D-S: core-edge

10

20

30

40

50

60

70

80

no-HWA IFLC-8 IFLC-16 FIRST-FIT

n
u
m

b
e
r

o
f

C
P
U

 c
o
re

s

(d) S-S: core-edge

Figure 11: Distribution of the total number of CPU cores.

42

8.4. Comparison between hierarchical and flat topology

To assess the impact of topology changes on IFLC, we propose to addi-
tionally evaluate a random flat topology with a total number of nodes and
the average degree of nodes equal to the one of the previous analyzed man-
dala topology. The interconnection of nodes is random and the propagation
delays are bounded by the minimum and maximum values used for mandala
topology and are generated following the same distribution. In contrast to
mandala, the random topology allows to place the AIFs allover the nodes.

In the following, we present the distribution of the number of stragglers,
the local training time, the number of active AIFs and the number of CPU
cores used, for the stochastic case ‘S-S’and using the following approaches:

• Man-8E: 50% of edge nodes (i.e. 8) equipped with HWAs, using man-
dala topology with ‘edge-edge’setting;

• Man-16E: all edge nodes (i.e. 16) equipped with HWAs, using mandala
topology with ‘edge-edge’setting;

• Man-8C: 50% of edge nodes (i.e. 8) equipped with HWAs, using man-
dala topology with ‘core-edge’setting;

• Man-16C: all edge nodes (i.e. 16) equipped with HWAs, using mandala
topology with ‘edge-edge’setting;

• Rand-8: 8 nodes equipped with HWAs, using the random topology;

• Rand-16: 16 nodes equipped with HWAs, using the random topology.

Differently from mandala topology, the cases with random flat topology
produces feasible solutions for 95% (65%, respectively) of the instances when
16 (8, respectively) HWAs are available.

8.4.1. Number of AIF stragglers

In Figure 12, we evaluate the number of stragglers for the three different
deployments (i.e., edge and core settings with mandala, and random flat
topology) for all the instances presented in section 7.3.

• We can notice that IFLC produces the same number of stragglers when
the number of hardware accelerators is equal to 8, for the three deploy-
ments.

43

0

1

2

3

4

5

6

Man-E8 Man-E16 Man-C8 Man-C16 Rand-8 Rand-16

n
u
m

b
e
r

o
f

st
ra

g
g

le
rs

Figure 12: Distribution of the number of straggling AIFs using IFLC: S-S case.

• When increasing the number of HWAs the number of stragglers remains
the same for edge scenario (i.e., Man-E16). It decreases with core
scenario where the median value is reduced to 1 AIF straggler. With
the random flat topology, the number of stragglers decreases w.r.t the
two other scenarios except for few instances with strict time constraints
where the number of stragglers achieved 3.

8.4.2. Local training time

In Figure 13, we present the local training time for the three scenarios
and for different numbers of available HWAs.

• As already mentioned, edge and core scenarios has similar local train-
ing times as for mandala topology the propagation delays are neglected
compared to training time. When the number of HWAs is equal to 8,
the local training time is lower when using the random flat topology for
a high number of instances. The training time increases with instances
having stricter time constraints when compared to edge and core sce-
narios. This can be explained by the fact that in the random topology,
the latency on the links is more important and thus, has more impact

44

1000

10000

Man-E8 Man-E16 Man-C8 Man-C16 Rand-8 Rand-16

lo
ca

l
tr

a
in

in
g
 t

im
e
 (

m
s)

Figure 13: Distribution of the local training time using IFLC: S-S case.

on the end-to-end learning time. When strict time constraints applies,
finding a feasible solution that respects the E2E target time with lower
local training time becomes difficult since achieving the trade off be-
tween choosing nodes with high capacity to deploy AIFs and ensuring
low propagation delays to the AIF server becomes harder.

• When increasing the number of HWAs to 16, the random flat topology
produces lower training times w.r.t core and edge settings. This can
be explained by the fact that in flat topologies we have more freedom
on placing the AIFs and since the number of HWAs is higher, finding
solutions with lower training times becomes easier.

8.4.3. Number of active AIFs

In Figure 14, we present the total number of active AIFs using mandala
and the random flat topology.

• We notice that the number of active clients with random topology is 3
times higher compared to mandala topology with both edge and core

45

1

2

3

4

5

6

7

8

9

10

Man-E8 Man-E16 Man-C8 Man-C16 Rand-8 Rand-16

n
u
m

b
er

 o
f
ac

ti
ve

 A
IF

s

Figure 14: Distribution of the number of active AIFs using IFLC: S-S case.

settings. Unlike Mandala which is a hierarchical topology, the random
topology is a flat one with homogeneous links which results in higher
propagation delays and thus, the contribution of propagation delays to
the en-to-end delays is higher w.r.t to manadala topology. In that case,
IFLC proposes a higher number of active client AIFs to reduce the local
training time which allows to compensate the increased propagation
delays.

8.4.4. Number of active CPU cores

In Figure 15, we present the number of CPU cores produced by IFLC
using manadala and random topology.

• As already explained, a higher number of CPU cores refers to lower
training time. In fact, the random flat topology incurs in higher prop-
agation delays and consequently higher E2E delays. Increasing the
number of CPU cores allows to reduce the local training time and con-
sequently reducing the E2E learning time.

Overall, the mandala topology simulates a mobile network with non het-
erogeneous links. In that case, the E2E latency on the links is lower compared

46

10

20

30

40

50

60

70

80

90

100

Man-E8 Man-E16 Man-C8 Man-C16 Rand-8 Rand-16

n
u
m

b
er

 o
f
C
P
U

 c
o
re

s

Figure 15: Distribution of the number of CPU cores using IFLC: S-S case.

to a flat topology such as the one we used, where the latency on the links are
much more important. This results in totally different placement solutions
produced by IFLC, as in the second case the propagation delays have higher
impact on end-to-end delays. Additionally, IFLC is designed for optimizing
training time efficiency thanks to the possible allocation of hardware acceler-
ation, which explains its effectiveness with topologies where the propagation
delays are of minor importance compared to the training time.

8.5. Link utilization estimation

It is worth noting that the link utilization can be influenced by the feature
size of the training dataset: the higher the size of the features, the higher
is the model size to be transferred. For instance, the dataset from [47] has
hundreds of features, the size of weights is around 60 to 70 Megabytes. If
we consider that the transmission delays are negligible (as per definition 2)
and that therefore the used links are over-provisioned as it is often the case
in provider networks, we can assume that link utilization is not affected by
model exchange. Certainly this assumption may not hold in other use-cases,
such as private networks, which may have scarce link resources.

47

9. Conclusion and Perspectives

In this paper, we proposed a federated learning system control scheme
for dynamic placement of FL nodes for in-network applications taking jointly
into consideration learning and network delays. Our scheme is designed to
decrease the number of learning stragglers, while making efficient use of het-
erogeneous computing resources. A major highlight is that we demonstrated
how adaptive hardware acceleration enabling can halve or even remove the
occurrence of stragglers. We show how the proposed scheme outperforms
static deployments of hardware acceleration, avoid their random or systemic
use; we show that we can so avoid too high variance in the end-to-end train-
ing times on the one hand, and useless computational overhead on the other
hand. Our scheme achieves this performance thanks to an original delay
model we proposed to combine network delays with distributed training de-
lays, when seeking efficient learning solutions. We also show how we can in-
tegrate stochastic variations to both network delays and local training times
in the design of our in-network federated learning control scheme. Finally,
we compared IFLC performance against topologies, a hierarchical one and a
flat one.

Future work could cover a detailed numerical evaluation and integration of
the anticipated IFLC variants to be robust against transient node failures, as
well as the refining of the aggregation functions at the federated learning with
server level, in order to further increase the learning efficiency. Moreover, we
plan to work on scaling the resulting learning systems by means of split
learning to cover multiple heterogeneous learning domains.

Credit authorship contribution statement

Nour-el-houda Yellas: Conceptualization, AIF Model, Methodology,
Software, Validation, Investigation, Writing - Original Draft, Visualization.
Bernardetta Addis: Conceptualization, Methodology, Validation, Writing
- Review & Editing, Supervision. Selma Boumerdassi: Validation, Super-
vision, Writing - Review & Editing. Roberto Riggio: Conceptualization,
AIF Model, Writing - Review & Editing. Stefano Secci: Conceptualiza-
tion, AIF Model, Methodology, Validation, Resources, Writing - Review &
Editing, Supervision, Funding acquisition.

48

Declaration of competing interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the work
reported in this paper.

Acknowledgments

This work was funded by the H2020 AI@EDGE (https://aiatedge.eu;
grant nb. 101015922), the PIA/AMI-5G INFLUENCE and France 203 IE6
(Internet of Edges for 6G; contract nb. DOS0223931) projects.

References

[1] S. Schwarzmann, C. C. Marquezan, R. Trivisonno, S. Nakajima, V. Bar-
riac and T. Zinner, ”ML-Based QoE Estimation in 5G Networks Using
Different Regression Techniques,” in IEEE Transactions on Network and
Service Management, vol. 19, no. 3, 2022.

[2] Y. Mao et al., ”A Survey on Mobile Edge Computing: The Communi-
cation Perspective,” in IEEE Communications Surveys & Tutorials, vol.
19, no. 4, 2017.

[3] Yang, Timothy, et al. ”Applied federated learning: Improving google
keyboard query suggestions”. arXiv:1812.02903, 2018.

[4] Y. Jeon et al., ”A Distributed NWDAF Architecture for Federated
Learning in 5G,” in ICCE, 2022.

[5] P. Rajabzadeh and A. Outtagarts, ”Federated Learning for Distributed
NWDAF Architecture,” in ICIN 2023.

[6] S. Hosseinalipour et al., ”From Federated to Fog Learning: Distributed
Machine Learning over Heterogeneous Wireless Networks,” in IEEE
Communications Magazine, vol. 58, 2020.

[7] H. Ko et al., ”Joint Client Selection and Bandwidth Allocation Algo-
rithm for Federated Learning,” in IEEE Transactions on Mobile Com-
puting, vol. 22, 2023.

49

[8] N-E-H. Yellas, B. Addis, R. Riggio and S. Secci, ”Function Placement
and Acceleration for In-Network Federated Learning Services,” in CNSM
2022.

[9] D2.1: ”Use cases, requirements, and preliminary system architecture”,
AI@EDGE H2020 Project.

[10] B. McMahan et al. ”Communication-efficient learning of deep networks
from decentralized data.”, in Artificial intelligence and statistics. PMLR,
2017.

[11] S. Bin Ruba, N-E-H. Yellas and S. Secci, ”Anomaly Detection for 5G
Softwarized Infrastructures with Federated Learning,” in 6GNet 2022.

[12] Zheng, Changgang, et al. ”In-network machine learning using pro-
grammable network devices: A survey.” IEEE Communications Surveys
& Tutorials (2023).

[13] R. Boutaba et al. ”A comprehensive survey on machine learning for net-
working: evolution, applications and research opportunities” in Journal
of Internet Services and Applications vol. 9, no 1, 2018.

[14] J. Bendriss et al, ”AI for SLAManagement in Programmable Networks,”
DRCN 2017.

[15] V.C. Emeakaroha et al. ”Low level metrics to high level SLAs-LoM2HiS
framework: Bridging the gap between monitored metrics and SLA pa-
rameters in cloud environments,” in International Conference on High
Performance Computing & Simulation, 2010.

[16] L. Boero, M. Marchese and S. Zappatore, ”Support Vector Machine
Meets Software Defined Networking in IDS Domain,” in ITC 2017.

[17] S. T. Miller and C. Busby-Earle, ”Multi-perspective machine learning
a classifier ensemble method for intrusion detection”. In Proceedings of
the international conference on machine learning and soft computing,
2017.

[18] S. Deng et al., ”Edge Intelligence: The Confluence of Edge Computing
and Artificial Intelligence”, in IEEE Internet of Things Journal, vol. 7,
no. 8, 2020.

50

[19] Z. Zhou et al., ”Edge Intelligence: Paving the Last Mile of Artificial
Intelligence With Edge Computing”, in Proceedings of the IEEE, vol.
107, no. 8, 2019.

[20] 3GPP TS 23.288, “Architecture enhancements for 5G System to support
network data analytics services,” v. 17.1.0, Jun. 2021.

[21] A. Diamanti, JM. Vilchez-Sanchez, S. Secci, ”An AI-empowered frame-
work for cross-layer softwarized infrastructure state assessment” in IEEE
Transactions on Network and Service Management, vol. 19, no. 4, 2022.

[22] Zang, Mingyuan, et al. ”Federated learning-based in-network traffic
analysis on IoT edge.” 2023 IFIP Networking Conference (IFIP Net-
working). IEEE, 2023.

[23] Qin, Qiaofeng, et al. ”Line-speed and scalable intrusion detection at the
network edge via federated learning.” 2020 IFIP networking conference
(Networking). IEEE, 2020.

[24] A. Harlap et al., ”Addressing the straggler problem for iterative con-
vergent parallel ML,” Proceedings of the seventh ACM symposium on
cloud computing 2016.

[25] Yang et al. ”Using trio: juniper networks’ programmable chipset for
emerging in-network applications,” Proceedings of the ACM SIGCOMM
2022 Conference.

[26] Cardoso D. et al., ”Serene: Handling the Effects of Stragglers in In-
Network Machine Learning Aggregation,” NOMS 2023.

[27] W. Y. B. Lim et al., ”Decentralized Edge Intelligence: A Dynamic Re-
source Allocation Framework for Hierarchical Federated Learning,” in
IEEE Transactions on Parallel and Distributed Systems, vol. 33, 2022.

[28] W. Y. B. Lim et al., ”Dynamic Edge Association and Resource Alloca-
tion in Self-Organizing Hierarchical Federated Learning Networks,” in
IEEE Journal on Selected Areas in Communications, vol. 39, 2021.

[29] L. Yu et al., ”Jointly Optimizing Client Selection and Resource Manage-
ment in Wireless Federated Learning for Internet of Things,” in IEEE
Internet of Things Journal, vol. 9, 2022.

51

[30] L. U. Khan et al., ”Federated Learning for Edge Networks: Resource
Optimization and Incentive Mechanism”, in IEEE Communication Mag-
azine, vol. 58, no. 10, 2020.

[31] R. Zeng et al., ”FMore: An Incentive Scheme of Multi-dimensional Auc-
tion for Federated Learning in MEC”, in ICDCS 2020.

[32] Y. Cui et al., ”Client Scheduling and Resource Management for Effi-
cient Training in Heterogeneous IoT-Edge Federated Learning,” in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 41, 2022.

[33] J. Lee et al., “Adaptive precision CNN accelerator using radix-X parallel
connected memristor crossbars,” arXiv preprint 2019.

[34] H. Giefers et al., ”Analyzing the energy-efficiency of sparse matrix mul-
tiplication on heterogeneous systems: A comparative study of GPU,
Xeon Phi and FPGA,” IEEE ISPASS 2016.

[35] B. Betkaoui, D. B. Thomas and W. Luk, ”Comparing performance and
energy efficiency of FPGAs and GPUs for high productivity computing,”
in International Conference on Field-Programmable Technology, 2010.

[36] M. Qasaimeh et al., ”Comparing Energy Efficiency of CPU, GPU and
FPGA Implementations for Vision Kernels,” in IEEE ICESS 2019.

[37] Y. Guan et al., ”FPGA-based accelerator for long short-term memory
recurrent neural networks,” in ASP-DAC 2017.

[38] Dimitrios Danopoulos et al., ”LSTM Acceleration with FPGA and GPU
Devices for Edge Computing Applications in B5G MEC” in SAMOS
2022

[39] J. Xu, S. -L. Huang, L. Song and T. Lan, ”Live Gradient Compensation
for Evading Stragglers in Distributed Learning,” in IEEE INFOCOM
2021.

[40] A. Reisizadeh, S. Prakash, R. Pedarsani and A. S. Avestimehr, ”Cod-
edReduce: A Fast and Robust Framework for Gradient Aggregation in
Distributed Learning,” in IEEE/ACM Transactions on Networking, vol.
30, no. 1, 2021.

52

[41] B. Buyukates et al., ”Gradient Coding With Dynamic Clustering for
Straggler-Tolerant Distributed Learning,” in IEEE Transactions on
Communications, vol. 71, no. 6, 2023.

[42] Z. Chai et al., ”FedAT: A High-Performance and Communication-
Efficient Federated Learning System with Asynchronous Tiers,” in SC21:
International Conference for High Performance Computing, Networking,
Storage and Analysis 2021.

[43] J. Park et al., ”Sageflow: Robust federated learning against both strag-
glers and adversaries,” Advances in neural information processing sys-
tems 34 (2021).

[44] Xu, Chenhao, et al. ”Asynchronous federated learning on heterogeneous
devices: A survey.” Computer Science Review 50 (2023): 100595.

[45] E. Zeydan and J. Mangues-Bafalluy, ”Recent Advances in Data Engi-
neering for Networking,” in IEEE Access, vol. 10, 2022,

[46] D. Justus et al., ”Predicting the Computational Cost of Deep Learn-
ing Models,” in 2018 IEEE International Conference on Big Data (Big
Data).

[47] D. Chi Phung et al., ”An Open Dataset for Beyond-5G Data-driven
Network Automation Experiments”, in 6GNet 2022.

[48] IFLC dataset and scripts (url): https://github.com/nehyellas/IFLC.
Accessed date: June 25, 2023.

[49] W. da Silva Coelho et al., ”Function Splitting, Isolation, and Placement
Trade-Offs in Network Slicing,” in IEEE Transactions on Network and
Service Management, vol. 19, no. 2, 2021.

[50] Bifet, Albert, and Ricard Gavalda. ”Learning from time-changing data
with adaptive windowing,” Proceedings of the 2007 SIAM international
conference on data mining. Society for Industrial and Applied Mathe-
matics, 2007.

[51] P. Ntumba, N-E-H. Yellas, S. Bin-Ruba, F. Ben-Abdesslem, S. Secci,
”Data Pipeline System Designs for In-network Learning”, in CNSM
2024: https://hal.science/hal-03883727.

53

Appendix A. Robustness Against Single AIF Software Failure

In the following, we show how versatile the IFLC formulation is, by
proposing its extension (under the stochastic IFLC model) to support tran-
sient single node failures. This extension allows to find a solution that can
satisfy the target distributed learning time even in case one of the selected
AIF nodes (or underlying physical node elements) fails. This makes the
model robust in particular against transient failures for which it is not worth
to rerun the algorithm given the limited duration. We focus on the stochas-
tic version of our model, where the objective is to minimize the expected
number of stragglers. We assume that in case of a single node failure the
load balancer (in the data-pipelining system) is able to dynamically dispatch
training data among the residual k − 1 working AIFs [51].

First of all, we extend the set of scenarios S to introduce the single node
failures scenarios. We do so also to allow us having a probability weight to
different types of impairments: node failures, variability in propagation delay
and training time variations due to AI-algorithm convergence. Let us call
S{ the additional scenarios taking specifically into account node failures. We
need to add the following variables and constraints to the stochastic model
(see section 5) to take into account the training time in case of single-node
failure.

Local training time

We denote π̃i
s the local stochastic training time for a given scenario s on

active node i when k AIFs are active, but one of them is under a transient
failure condition.

π̃i
s =

n∑
k=2

(pi(k−1) + βs
i(k−1))ζik ∀i ∈ N, k ∈ 2..n, s ∈ Sf (A.1)

we recall that the deterministic training time depends on the number of
working AIFs. Therefore, if one node fails, k − 1 AIFs share the workload
and need a training time equal to p(k−1).

Hardware acceleration

Let us denote by π̃ the maximum stochastic time in case of single node
failure among all possible scenarios.

π̃ = max
k=2..n,i∈N,s∈Sf

(pik−1 + βs
ik−1) (A.2)

54

and ωs
ik the reduction in time due to hardware acceleration in the case of

single-node failure. The following constraints allow to set correctly the value
of the time reduction:

ω̃s
ik ≤ ψik

(
1− 1

αik−1

)
τ̃ ∀i ∈ N, k ∈ 2..n

∀s ∈ Sf (A.3)

ω̃s
ik ≤

(
1− 1

αik−1

)
(pik−1 + βs

ik−1)ζik ∀i ∈ N, k ∈ 2..n

s ∈ Sf (A.4)

ω̃s
ik ≥

(
1− 1

αik−1

)
(pik−1 + βs

ik−1)ζik − (1− ψik)τ̃

∀i ∈ N, k ∈ 2..n

∀s ∈ Sf (A.5)

E2E learning time

The E2E learning time when a single node fails, represented by variable
Π̃, is determined by the following constraints:

Π̃i

s
= π̃i

s −
n∑

k=2

ω̃s
ik +

∑
j∈A

(dij + ηsij)ξij ∀i ∈ N, s ∈ Sf (A.6)

and the active stragglers for single-node scenarios Sf can be determined
by:

Π̃i

s
≤ τ +∆σs

i ∀i ∈ N, s ∈ Sf (A.7)

where variables ∆σs
i are extended to set S{.

Objective

The objective in(33) is modified to take into account all failure scenarios
as follows:

min
∑
s∈S

qs
∑
i∈N

σs
i +

∑
s∈Sf

qfs
∑
i∈N

σs
i (A.8)

where qfs is the probability of single-node failure scenario s ∈ Sf .

55

