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Stability analysis of stochastic optimal control: the linear discounted quadratic case
Mathieu Granzotto, Romain Postoyan, Dragan Nešić, and Andrew R. Teel

Abstract— We analyze the stability properties of stochastic lin-
ear systems in closed-loop with an optimal policy that minimizes
a discounted quadratic cost in expectation. In particular, the linear
system is perturbed by both additive and multiplicative stochastic
disturbances. We provide conditions under which mean-square
boundedness, mean-square stability and recurrence properties
hold for the closed-loop system. We distinguish two cases, when
these properties are verified for any value of the discount factor
sufficiently close to 1, or when they hold for a fixed value of the
discount factor in which case tighter conditions are derived as
illustrated in an example. The analysis exploits properties of the
optimal value function, as well as a detectability property of the
system with respect to the stage cost, to construct a Lyapunov
function for the stochastic linear quadratic regulator problem.

I. INTRODUCTION

The linear quadratic regulator provides an analytical, systematic
way to produce an optimal controller that minimizes a quadratic
cost for a linear control system. Its theory, which culminated in
the famous work of [16] in the 1960’s, is now well established
in the control literature [3]. In this work, we concentrate on linear
discrete-time systems and quadratic costs that are discounted, i.e.,
the quadratic costs are weighted by an exponentially decreasing term
γk, where γ ∈ (0, 1) is the discount factor and k is the time step.
Such costs are ubiquitous in the dynamic programming literature
[4], and play a major role in reinforcement learning, see, e.g.,
[5,22,25,27,30]. In these settings, the systems are typically modeled
as stochastic processes [4,27]. Our objective is to unravel the link
between optimality and stability in this context, namely for stochastic
linear discrete-time systems whose inputs minimize a discounted
quadratic cost in expectation. The case of deterministic systems with
discounted costs is addressed in, e.g., [24], and the related results
for stochastic systems concentrate on undiscounted costs, see, e.g.,
[8–10,15,20,23,31]. The discounted stochastic linear quadratic case is
an open problem as far as we are aware, which we will now address.

There exist various definitions of stability for stochastic processes
[11], and we propose conditions to guarantee mean-square bound-
edness, e.g., [18], and recurrence, e.g., [12,19,26,28]. Mean-square
boundedness implies that the expected value of the norm of the
state squared along the stochastic solutions decreases exponentially
down to a constant; when the constant is zero we recover the well-
known mean-square stability, e.g., [11]. A strongly globally recurrent
set, on the other hand, is a set where any stochastic solution of
the system is guaranteed to enter an infinite number of times with
probability one. This notion guarantees that the closed-loop system
always drives its state back into the recurrent set despite potentially
large perturbations. Other stochastic counterparts of the deterministic
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notions of attractivity or forward invariance as found in [17,29]
require that we stay in given sets almost surely, which is too strong of
a requirement in the presence of additive noise, hence the motivation
in using the weaker notion of recurrence.

To guarantee these stability properties, we assume: (i) mild condi-
tions on the random inputs; (ii) that the discounted optimal control
problem is feasible and is given by a quadratic-like function; (iii) that
the stochastic system satisfies a detectability property with respect to
the quadratic stage cost. These assumptions are consistent with the
deterministic case as seen in [1,16,24]. We first establish mean-square
properties and determine strongly globally recurrent sets for the linear
system in closed-loop with the optimal policy for any value of the
discount factor sufficiently close to 1. Afterwards, we also establish
these desired stability properties for a given value of the discount
factor, which allows us to relax the required conditions. These results
supplement each other, as the former provide us with a range of
discount factors such that stability hold, while the latter refines these
properties when a discount factor has been fixed. Estimates of the
exponential decay and ultimate bound for mean-square properties,
and estimates of the recurrent set are provided. These highlight
that the discount factor has to be suitably selected to allow for
stability to hold. The analysis involves a construction of a Lyapunov
function that combines the optimal value function with a Lyapunov-
like detectability function.

The rest of the paper is organized as follows. We formalize the
optimal control problem in Section II. The problem statement is
given in Section III, and the main assumptions are provided in
Section IV. In Sections V and VI, we present stability results,
for any values of γ sufficiently close to one and then for a
given γ ∈ (0, 1), respectively. An illustrative example is given in
Section VII. Section VIII concludes the paper and provides future
work perspectives. Finally, the proofs and some auxiliary data of the
illustrative example are given in the appendices to avoid breaking
the flow of exposition.

Notation: Let R be the set of real numbers, R≥0 := [0,∞),
R := [−∞,∞], R≥0 := [0,∞], Z be the set of integers,
Z>0 := {1, 2, . . .}, Z≥0 := {0, 1, 2, . . .}, Z>0 := Z>0 ∪ {∞},
Z≥0 := Z≥0 ∪ {∞}. We denote the Euclidean norm by | · |. The
notation (x, y) stands for [x⊤, y⊤]⊤, where x ∈ Rn, y ∈ Rm and
n,m ∈ Z>0. The identity matrix is denoted by In with n ∈ Z>0.
The identity map from R≥0 to R≥0 is denoted by I≥0, and the zero
map from R≥0 to {0} by 0. We write A ⪰ 0 when real matrix
A is symmetric and positive semi-definite, and A ≻ 0 when it is
symmetric and positive definite. We write A ⪰ B when A−B ⪰ 0,
and A ≻ B when A − B ≻ 0, for any symmetric matrices A,B.
The Kronecker product is denoted by ⊗. The smallest and the biggest
eigenvalue of a real, symmetric matrix A is denoted λ(A) and λ(A),
respectively. The Borel algebra on topological space A is denoted
B(A). Letting (Ω,F) be a measurable space, like (Rn,B(Rn))
with n ∈ Z>0, a mapping M : Ω ⇒ Rn is F-measurable (simply
measurable when F is clear from the context) if, for each open
set O ⊂ Rn, M−1(O) := {ω ∈ Ω : M(ω) ∩ O ≠ ∅} ∈ F .
Letting (Ω,F ,P) be a probability space and n ∈ Z>0, we say υ
is a random variable when υ is a measurable function from Ω to
Rn, that is, υ−1(F ) := {ω ∈ Ω : υ(ω) ∈ F} ∈ F for each
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F ∈ B(Rn). The expected value of a random variable υ over the
entire sample space Ω is denoted by E[υ]. Moreover, a ∼ Nna(0,Σ)
denotes a random variable a with a multivariate normal distribution
of dimension na ∈ Z>0 with zero mean and covariance matrix
Σ ∈ Rna×na , while m ∼ B(p) denotes a random variable m with a
Bernoulli distribution, i.e., P(m = 0) = (1− p) and P(m = 1) = p.
Given sets A ⊆ X , the characteristic function of A is 1A(x) := 1
when x ∈ A and 1A(x) := 0 for x ∈ X \ A. For a sequence
u = (u(0), u(1), . . . , ) of d elements, with d ∈ Z≥0 and u(i) ∈ Rn

for i ∈ {1, . . . , d}, n ∈ Z>0, we use u|k to denote the first k
elements of u where k ∈ Z≥0, i.e., u|k = (u(0), . . . , u(k − 1))
and u|0 = ∅ by convention.

II. OPTIMAL CONTROL PROBLEM

We consider discrete-time linear systems given by

x+ = (A+M(m))x+ (B +N(m))u+ La (1)

where the state is x ∈ Rnx , the control input is u ∈ Rnu , and
the stochastic disturbances are a ∈ Rna and m ∈ Rnm , with
nx, nu, na, nm ∈ Z>0. Matrices A ∈ Rnx×nx , B ∈ Rnx×nu ,
L ∈ Rnx×na and continuous matrix-valued maps1 M : Rnm →
Rnx×nx , N : Rnm → Rnx×nu are assumed to be known.

System (1) encompasses three notable classes of stochastic linear
systems: (i) systems with multiplicative noise when N(m) ̸= 0 or
M(m) ̸= 0 for some m ∈ Rnm [20, Section 2]; (ii) systems with
additive noise when L ̸= 0 [8, Chapter 6.2]; (iii) systems with the so-
called random system matrices when A = 0 and B = 0 [4, Chapter
4.1].

In the following, we concentrate on inputs to system (1) that are
generated by policies, i.e., u = h(x) with h : Rnx → Rnu . This is
justified by the fact that, in the considered stochastic setting, minimiz-
ing a cost in expectation over policies may produce smaller costs than
minimizing over any inputs, see [4, p. 4]. Given x ∈ Rnx , we denote
for brevity f(x, h, υ) := (A+M(m))x+ (B +N(m))h(x) + La
with υ := (a,m) ∈ Rnυ , nυ := na + nm, and h : Rnx → Rnu .
Moreover, for a given policy h and a fixed sequence of perturbations
υ∞ := (υ(0), υ(1), . . .), we define ϕh(k + 1, x,υ∞|k+1) :=

f(ϕh(k, x,υ∞|k), h, υ(k)) and ϕh(0, x, ·) := x.
We investigate the scenario where the policy produces control

inputs that minimize a discounted quadratic cost along solutions to
(1). We consider for this purpose the cost function defined by, for
any initial state x, policy h and sequence υ∞,

Jγ(x, h,υ∞) (2)

:=

∞∑
k=0

γk
∣∣∣Cϕh(k, x,υ∞|k) +Dh(ϕh(k, x,υ∞|k))

∣∣∣2
where γ ∈ (0, 1) is a discount factor, and C ∈ Rnℓ×nx and D ∈
Rnℓ×nu are known weighting matrices with nℓ ∈ Z>0. Function Jγ
is the cost incurred by system (1), policy h and perturbance υ∞. We
denote, for the sake of convenience, ℓ(x, u) := |Cx+Du|2 for any
x ∈ Rnx and u ∈ Rnu . We emphasize that cost (2) is equivalent to
the classical quadratic cost with cross-terms as ℓ(x, u) = x⊤Qx +
u⊤Ru+2x⊤Zu with Q = C⊤C, R = D⊤D and Z = C⊤D, and
verifies by construction the well-known condition [1, Chapter 3.4]
Q − ZR−1Z⊤ ⪰ 0 when R ≻ 0. We are now ready to formalize
the stochastic optimal control problem.

Given x ∈ Rnx , let υ∞ =: (υ0,υ1, . . . ) be a sequence of
independent, identically distributed (i.i.d.) random variables defined
on the probability space (Ω,F ,P). That is, υ∞ maps from out-
comes ω ∈ Ω to infinite sequences of perturbations in Rnυ , hence

1In the sense that each element of M(m) and N(m) are functions of m.

ϕh(k, x,υ∞|k) for k ∈ Z≥0 is also a sequence of random variables
on (Ω,F ,P) when h is a continuous function. We focus on the case
where the policy applied to system (1) minimizes cost Jγ in (2) in
expectation with perturbance inputs given by the sequence of random
variables υ∞. In particular, we consider continuous optimal policies,
which lead to the stochastic optimal value function

V ⋆
γ (x) := inf

h∈H
E[Jγ(x, h,v∞)], (3)

where we minimize across all continuous policies h : Rnx →
Rnu , denoted in (3) by H := C0(Rnx ,Rnu). We will formally
assume in Section IV that there exists one and only one function
h⋆γ ∈ H such that V ⋆

γ (x) = E[Jγ(x, h⋆γ ,v∞)], so that V ⋆
γ (x) =

minh∈H E[Jγ(x, h,v∞)].

III. PROBLEM STATEMENT

In this section, we introduce the different stability notions we
analyze and we summarize our objectives.

A. Stochastic stability notions
Our aim is to analyse the stability properties of the system given

by, for any x ∈ Rnx ,

x+ = (A+M(m))x+ (B +N(m))h⋆γ(x) + La, (4)

where h⋆γ is defined after (3).
We formalize the desired stochastic stability notions for system (4)

in the following. To reduce notational burden, from now on we will
denote the random solution of system (1) in closed loop with h⋆γ
initialized at x ∈ Rnx by ϕ⋆, i.e., given time step i ∈ Z≥0, ϕ⋆

i :

Ω → Rnx with ϕ⋆
i (ω) := ϕh

⋆
γ (i, x,υ∞(ω)|i) for any time step

i ∈ Z>0 and outcome ω ∈ Ω and ϕ⋆
0(·) := x. We are ready to

present our stochastic stability notions. First, we define mean-square
boundedness/stability properties as in [7,20].

Definition 1: System (4) is mean-square bounded when there exist
gγ ∈ [1,∞), λγ ∈ [0, 1) and Gγ ∈ R≥0, such that, for any x ∈ Rnx

and i ∈ Z≥0,
E[ϕ⋆

i
⊤
ϕ⋆
i ] ≤ gγλ

i
γ |x|2 +Gγ . (5)

Moreover, when Gγ = 0, system (4) is mean-square stable. □
The next stability notion we define is recurrence, which is slightly
adapted from [26] to our setting.

Definition 2: An open bounded set O ⊂ Rnx is said to
be strongly globally recurrent for system (4) if for every
x ∈ Rnx , E

[∏
i∈Z≥0

1Rnx\O(ϕ⋆
i )
]

= 0 or, equivalently, that

P
( ⋃

i∈Z≥0

{ϕ⋆
i } ∩ O ≠ ∅

)
= 1. □

According to Definition 2, strong global recurrence is the property
that, for any x ∈ Rnx , ϕ⋆ has an element in set O with probability 1.
Note that the above indeed ensures that ϕ⋆ enters O infinitely many
times with probability one, as for any realization ϕ⋆

i (ω) = x̄ ̸∈ O
for a given time step i ∈ Z≥0 and outcome ω ∈ Ω, Definition 2
implies that the stochastic solution of system (4) with initial state x̄
will also enter O in the future with probability one.

Both of Definitions 1 and 2 are important in their own right, as they
provide valuable information in spite of the presence of stochastic
perturbations: Definition 1 informs us on the decay of the second
moment of the state norm (up to a constant); Definition 2 provides us
with a stochastic but weaker counterpart of the notions of attractivity
and forward invariance for deterministic systems. We illustrate the
difference between these stability notions in an example.

Example 1: Consider the following scalar system

x+ = mx+ a, (6)
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where x, a,m ∈ R. We assume that the random variables a
and m are independent and such that E[a] = 0, E[a2] = σa,
E[m] = m, E[m2] = σm with m ∈ R and σm ∈ R≥0. We
also assume that P(mx + a = 0|x ̸= 0) = p with p > 0 for
all x ∈ R, which for instance occurs when P(a = 0) = p1 and
P(m = 0) = p2 where p1p2 = p and P(m = r) = 0 for each
r ̸= 0, e.g., a ∼ B(1 − p1)N1 (0, σa/1−p1) and m ∼ B(1 −
p2)N1

(
m/1−p2,

√
σ2
m−m2/1−p2

)
with σm > m. We verify that

E[(mx+ a)2] = E[m2]x2 + E[a2] + 2E[m]E[a]x = σmx
2 + σa

for any x ∈ R. This implies by the law of iterated expectation that, for

any i ∈ Z>0, E[ϕ⋆
i
2
] = σimx

2+σa
∑i−1

k=0 σ
k
m = σimx

2+σa
1−σk

m
1−σm

.
Furthermore, we calculate, for any x ̸= 0, and i ∈ Z≥0, that
P(ϕ⋆

i+1 = 0|ϕ⋆
k ̸= 0, k ∈ {0, . . . , i}) = P(mx+a = 0|x ̸= 0) = p

and moreover P(ϕ⋆
k ̸= 0, k ∈ {0, . . . , i}) = (1 − p)i, hence,

P
( ⋃

i∈Z≥0

{ϕ⋆
i } ∩ {0} ̸= ∅

)
=

∑∞
i=0 P(ϕ

⋆
i+1 = 0|ϕ⋆

k ̸= 0, k ∈

{0, . . . , i})P(ϕ⋆
k ̸= 0, k ∈ {0, . . . , i}) =

∑∞
i=0 p(1 − p)i = 1. We

thus conclude that system (6) is
• mean-square stable if and only if σm ∈ [0, 1) and σa = 0;
• mean-square bounded if and only if σm ∈ [0, 1);
• strongly globally recurrent relative to any open set containing

the origin for any m ∈ R and σm ∈ R≥0. □
This scalar example illustrates the differences between Definitions

1 and 2. Nevertheless the conditions we provide in the sequel allow
to conclude recurrence and mean-square properties simultaneously.

B. Objectives
Our objective is to provide conditions under which system (4)

is mean-square bounded, mean-square stable and strongly globally
recurrent for some set, respectively. Like in the deterministic case,
the discount factor γ in (2) plays a key role for the satisfaction of
these properties as illustrated by the next example.

Example 2: Consider the scalar system x+ = 2x+u+a with a ∼
1− 2B(1/2) and the discounted quadratic cost (2) with C = ( 1 0 )⊤

and D = ( 0 1 )⊤. The optimal solution is given by the feedback
law h⋆γ(x) = K⋆

γx with K⋆
γ = −2/(1+2/(5γ−1+

√
(5γ−1)2+4γ)), see

[8, Chapter 6.2]. The closed-loop system is mean-square bounded
if and only if 2 + K⋆

γ ∈ (−1, 1), which is equivalent to γ ∈
(1/3, 1). Moreover, there exists a strongly recurrent bounded open
set containing the origin if and only if γ ∈ (1/3, 1). Hence, in both
cases γ needs to be sufficiently close to 1 for this example to exhibit
the desired stability properties. □

We first establish mean-square and recurrence properties for any
γ sufficiently close to 1, see Section V. For this purpose, we rely on
assumptions that do not involve γ. Afterwards, we establish mean-
square bounded, mean-square stable and strong global recurrence
properties for a given value of γ ∈ (0, 1) only, see Section VI. In this
case, less conservative conditions are required to obtain the desired
results.

To derive our desired properties, we require the next set of
assumptions on system (1) and cost (2).

IV. STANDING ASSUMPTIONS

A. Stochastic disturbances
We make the next assumption on the stochastic disturbance υ =

(a,m).
Standing Assumption 1 (SA1): The following holds for any i ∈

Z≥0.
(i) υi =: (ai,mi) : Ω → Rna ×Rnm is such that ai and mi are

mutually independent.
(ii) E[ai], E[M(mi)], E[N(mi)] are zero.

(iii) E[ai⊗ai],E[M(mi)⊗M(mi)],E[N(mi)⊗N(mi)] and
E[N(mi)⊗M(mi)] are finite element-wise. □

Item (i) of SA1 states that the multiplicative and the additive noises
at every time step are also mutually independent. In view of the i.i.d.
property of υ∞, we can omit the subscript of υi = (ai,mi) and
write υ = (a,m) in the following for the sake of convenience.
The property that E[a] = 0 in item (ii) of SA1 is usual in the
literature [8] for linear systems affected by additive noise. On the
other hand, the assumption that M and N have zero mean is without
loss of generality when E[M(m)] and E[N(m)] are non-zero and
known, as we can always rewrite system (1) as x+ = ((A +
E[M(m)])+(M(m)−E[M(m)]))x+((B+E[N(m)])+(N(m)−
E[N(m)]))u+La, as done in an example in Section VII. Items (i)-
(ii) of SA1 imply that, E[a⊤TM(m)] = E[a⊤]T E[M(m)] = 0
and E[a⊤TN(m)] = E[a⊤]T ′ E[N(m)] = 0 for any matri-
ces T ∈ Rna×nx , T ′ ∈ Rna×nx , which will be important in
the sequel. Finally, item (iii) of SA1 is made to guarantee that
E[M(m)⊤PM(m)] and E[N(m)⊤P ′N(m)] are finite for any
matrices P ∈ Rnx×nx , P ′ ∈ Rnx×nu .

B. Optimal value function and policy
Next, we assume the existence of a unique solution to (3).
Standing Assumption 2 (SA2): For any γ ∈ (0, 1), V ⋆

γ (x) in (3)
is finite for all x ∈ Rnx and is given by

V ⋆
γ (x) = x⊤Pγx+

γ

1− γ
E[a⊤L⊤PγLa]

= E[J(x, h⋆γ ,υ∞)] (7)

with h⋆γ(x) = −K⋆
γx, where Pγ ⪰ 0 satisfies

Pγ = C⊤C + γ(A⊤PγA+ E[M(m)⊤PγM(m)])

− (D⊤C + γ(B⊤PγA+ E[N(m)⊤PγM(m)]))⊤K⋆
γ

(8)

and K⋆
γ := (D⊤D + γ(B⊤PγB + E[N(m)⊤PγN(m)]))−1

(D⊤C + γ(B⊤PγA+ E[N(m)⊤PγM(m)])). □
SA2 implies that the stochastic optimal control problem is feasible,

and its solution is related to the generalized algebraic Riccati equation
(8). Equation (8) also corresponds to the Riccati equation for the
deterministic case when no stochastic component is present, i.e.,
when L, M(m), N(m) are zero for all m ∈ Rnm . Conditions
for the feasibility of (8) in SA2 can be found for several spe-
cial cases of (1), in, e.g., [8,20], by considering the time-varying
change of coordinates z(k) =

√
γkx(k). That is, applying the cited

results to system z+ =
√
γ
(
(A + M(m))z + (B + N(m))u

)
and ϕ̃h :=

√
γkϕh given policy h to cost J1(x, h,υ∞) :=∑∞

k=0 ℓ(ϕ̃
h(k, x,υ∞|k), h(ϕ̃h(k, x,υ∞|k))).

Under SA2, the closed-loop system (4) is equivalent to, for any
x ∈ Rnx ,

x+ = A⋆
γ(m)x+ La, (9)

where A⋆
γ(m) := A+M(m)− (B+N(m))K⋆

γ for all m ∈ Rnm .
Moreover, the so-called Bellman equation [6, Proposition 9.8] implies

V ⋆
γ (x) = E[ℓ(x,−K⋆

γx) + γV ⋆
γ (A⋆

γ(m)x+ La)]. (10)

This equation plays a key role in the analysis presented in Sections
V and VI.

Remark 1: It is important to note that Pγ verifying (8) in SA2
may not exist for certain choices of matrices and multiplicative noise
that is sufficiently large. This is known as the uncertainty threshold
principle in the random matrices literature, see, e.g., [2,32] and [4,
Volume 1]. □

Remark 2: Unless we note otherwise, we assume in the following
that both Pγ and Kγ are known. In general, we may resort to
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dynamic programming methods like value iteration [4] to obtain
approximations of Pγ and Kγ . This is how we proceed for the
example in Section VII. □

C. Detectability

We make the next assumption on the open-loop system and the
incurred stage cost, which is related to the Lyapunov characterization
of detectability employed for optimal control in the deterministic
setting, see, e.g., [13,14,24].

Standing Assumption 3 (SA3): There exist S ⪰ 0 and S̃ ≻ 0 such
that, for all x ∈ Rnx and u ∈ Rnu ,

E[(x̂+)⊤Sx̂+] ≤ x⊤Sx− x⊤S̃x+ ℓ(x, u), (11)

where x̂+ := (A+M(m))x+(B+N(m))u is a random variable
that depends on the multiplicative noise m and ℓ is the stage cost
defined after (2). □

SA3 is a detectability property of system (1) with respect to
stage cost ℓ in presence of multiplicative noise and in spite of
the additive noise. SA3 requires that the Lyapunov-like function
W (x) := x⊤Sx decreases in expectation along the solution of the
stochastic system (1) for L = 0 when the stage cost is sufficiently
small. SA3 has a trivial solution S = 0 when C⊤C ≻ 0 and
D⊤D ≻ 0. When no multiplicative noise is present, C = (

√
Q 0 )⊤

and D = ( 0
√
R )⊤, where

√
Q denotes a positive semi-definite

matrix such that
√
Q
√
Q = Q for any Q ⪰ 0, pair (A,

√
Q)

detectable implies SA3 holds. In particular cases, SA3 can be verified
by LMI methods as seen in Section VII. Note that verifying (11)
without the expectation for some values of m is not enough to verify
SA3 and one has to take into consideration all values of m in the
support of m when solving (11) for S and S̃.

We are ready to present the main stability results.

V. RESULTS FOR ANY γ SUFFICIENTLY CLOSE TO 1

In this section, we show the existence of a γ⋆ ∈ [0, 1) such that
the stochastic stability properties defined in Section III hold for any
γ ∈ (γ⋆, 1). The proofs of this section are given in Appendix I to
avoid breaking the flow of exposition.

A. Stabilizability assumption

Because we are aiming at stability guarantees that hold for any
γ ∈ (γ⋆, 1) we need the next assumption.

Assumption 1: There exists P1 ⪰ 0 that verifies the generalized
Riccati equation related to the stochastic optimal control problem for
undiscounted costs, i.e., γ = 1, without additive noise, L = 0, i.e.,

P1 = C⊤C +A⊤P1A+ E[M(m)⊤P1M(m)]

− (D⊤C +B⊤P1A+ E[N(m)⊤P1M(m)])⊤K⋆
1

(12)

with K⋆
1 := (D⊤D+B⊤P1B+E[N(m)⊤P1N(m)])−1(D⊤C+

B⊤P1A+ E[N(m)⊤P1M(m)]). □
Assumption 1 is related to the stabilizability of the linear system
in presence of multiplicative disturbances, as seen in, e.g., [8,20].
Note that γ = 1 is not covered by SA2 when L is different from
0, as SA2 implies that V ⋆

γ tends to infinity when γ → 1 due the
constant term γ

1−γ E[a⊤L⊤PγLa] that comes from the additive
noise. Assumption 1 will no longer be required in Section VI when
considering a given value of γ ∈ (0, 1). The next proposition states
that Pγ ⪯ P1; its proof is given in Appendix I.

Proposition 1: When Assumption 1 holds, Pγ ⪯ P1. □

B. Mean-square properties

We show next the mean-square boundedness and stability guaran-
tees for system (4).

Theorem 1: Suppose Assumption 1 holds and let γ⋆ ∈ (0, 1) be
such that S̃ ⪰ (1−γ⋆)P1. For any γ ∈ (γ⋆, 1), system (4) is mean-
square bounded. In particular, (5) holds with gγ = λ(P1+

S
γ⋆

)/λ(S̃),
λγ = αγ and Gγ = E[a⊤L⊤(Pγ + S

γ )La]/(1 − αγ), where

αγ = 1 − γ−γ⋆

γ(1−γ⋆)
aY with sufficiently small2 aY ∈ (0, 1) such

that aY (P1 +
S
γ⋆ ) ⪯ S̃. Hence, when E[a⊤L⊤La] = 0, system (4)

is mean-square stable. □
Theorem 1 shows that mean-square boundedness properties hold

provided that the discount factor is sufficiently close to 1. When
no additive noise is present, E[a⊤L⊤La] = 0 and mean-square
stability is guaranteed. It is always possible to find γ⋆ sufficiently
close to one such that S̃ ⪰ (1 − γ⋆)P1 given S̃ ≻ 0, which holds
by SA3. Interestingly, the condition S̃ ⪰ (1 − γ⋆)P1 allows to
derive stability properties in presence of the discount factor without
explicitly calculating Pγ . Moreover, this condition and the bounds on
λγ and Gγ show the interplay between the optimal value function,
the detectability properties in SA3 and the discount factor.

We now concentrate on strong global recurrence properties.

C. Strong global recurrence

We provide a strongly globally recurrence property of a given set
for system (4), provided that γ is sufficiently close to 1.

Theorem 2: Suppose Assumption 1 holds and let γ⋆ ∈ (0, 1) be
such that S̃ ⪰ (1−γ⋆)P1 as in Theorem 1. Moreover, let γ ∈ (γ⋆, 1)
and

Kγ :=
{
x ∈ Rnx |x⊤S̃x≤ 1−γ⋆

γ−γ⋆ E
[
a⊤L⊤(

γP1 + S
)
La

]}
,

(13)
with P1, S and S̃ from Assumption 1 and SA3. Then, any bounded
open set Oγ such that Oγ ⊃ Kγ is strongly globally recurrent for
system (4). □

Theorem 2 establishes a recurrence property for set Oγ for
system (4), provided that the discount factor γ is larger than γ⋆ and
smaller than one. The recurrent set contains an ellipsoid centered
at the origin, whose axes are the eigenvectors of S̃. We note that
Kγ′ ⊂ Kγ for any γ′ > γ, hence the strongly globally recurrent set
“shrinks” as γ increases to 1.

Theorem 2 also allows for the next observation.
Corollary 1: Suppose Assumption 1 holds and E[a⊤L⊤La] = 0.

For any γ ∈ (γ⋆, 1) with γ⋆ selected as in Theorem 1, any bounded
open set containing the origin is strongly globally recurrent for
system (4). □

Corollary 1 is a stronger result than Theorem 2 when no additive
noise is present, e.g., when L = 0, and is similar to the second part
of Theorem 1. While in Theorem 2 the recurrent set depends on the
interplay of the multiplicative and additive noise, Corollary 1 shows
that, ultimately, Oγ is arbitrarily small when no additive noise is
present and γ is sufficiently close to 1.

The conditions above allow us to derive the desired stability
properties for stochastic linear quadratic regulator in great generality,
yet the approach taken leads to some conservatism in the choice of
γ⋆ (in particular due to SA3) as we will see in Section VII. In the
next section, we provide tailored conditions for the desired stability
properties to hold for a given value of γ ∈ (0, 1).

2We can always take aY = λ(S̃)/λ(P1+
S
γ⋆ ), however larger values for aY

may exists and are desirable.
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VI. RESULTS FOR GIVEN γ ∈ (0, 1)

We now provide conditions such that the stochastic stability
properties in Definitions 1 and 2 hold for system (4) for a given
value of γ ∈ (0, 1). The proofs of this section are omitted to avoid
repetition, as the following results are shown by following the steps
of the proofs of Section V presented in Appendix I by replacing S,
S̃ with Sγ and S̃γ , respectively.

A. Detectability assumption

We make the next assumption on the closed-loop system and the
incurred stage cost, which relaxes SA3 as explained below.

Assumption 2: Given γ ∈ (0, 1), there exist Sγ ⪰ 0 and S̃γ ≻ 0
such that

E[x⊤A⋆
γ(m)

⊤
SγA⋆

γ(m)x] ≤ x⊤Sγx− x⊤S̃γx

+ ℓ(x,−K⋆
γx),

(14)

where A⋆
γ(m) comes from (9). □

While SA3 states a detectability of system (1) with respect to
ℓ(x, u) for any input u ∈ Rnu , Assumption 2 requires this property
to hold only for u = −K⋆

γx and allows S and S̃ in SA3 to depend
on γ thereby relaxing SA3.

B. Mean-square properties

We assert next the mean-square stability guarantee given Assump-
tion 2.

Theorem 3: Suppose Assumption 2 holds for a given γ ∈ (0, 1)
and let ϖγ ∈ (0, 1) be such that S̃γ ⪰ (1 − ϖγ)Pγ . If ϖγ < γ,
system (4) is mean-square bounded. In particular, (5) holds with gγ =
λ(Pγ+

Sγ
γ )/λ(S̃γ) , λγ = αγ and Gγ = E[a⊤L⊤(Pγ+

Sγ
γ )La]/(1−

αγ), where αγ = 1 − γ−ϖγ

γ(1−ϖγ)
aγ with sufficiently small3 aγ ∈

(0, 1) such that aγ(Pγ+
Sγ
γ ) ⪯ S̃γ . Hence, when E[a⊤L⊤La] = 0,

system (4) is mean-square stable. □
Theorem 3 relaxes Theorem 1 to a fixed γ ∈ (0, 1), therefore

showing that mean-square properties hold provided that we find S̃γ
and ϖγ < γ such that S̃γ ⪰ (1−ϖγ)Pγ . These conditions are the
main difference with Theorem 3, where ϖγ plays the role of γ⋆ but
the inequality it must satisfy, namely S̃γ ⪰ (1 − ϖγ)Pγ , involves
γ-dependent matrices contrary to γ⋆ in Theorem 1, which may help
to consider smaller values of γ. In addition, because the proof of
Theorem 3 relies on a Lyapunov-like function with γ-dependent
matrices, less conservative estimates of gγ , λγ and Gγ in (5) are
given by Theorem 3 compared to Theorem 1. These differences are
illustrated in the example given in Section VII.

We now move to strong global recurrence properties.

C. Strong global recurrence

We show next the existence of a strongly globally recurrent set for
system (4).

Theorem 4: Suppose Assumption 2 holds for a given γ ∈ (0, 1)
and let ϖγ ∈ (0, 1) be such that S̃γ ⪰ (1−ϖγ)Pγ as in Theorem 3.
Moreover, let

Kϖγ :=

{
x ∈ Rnx |x⊤S̃γx≤

1 − ϖγ

γ − ϖγ
E
[
a
⊤
L
⊤(

γPγ + Sγ
)
La

]}
(15)

with Pγ , Sγ and S̃γ coming from SA2 and Assumption 2. If ϖγ <
γ, then any bounded open set Oγ such that Oγ ⊃ Kϖγ is strongly
globally recurrent for system (4). □

We can make similar observations on how Theorem 4 relaxes the
conditions of Theorem 2 as above. We also derive the next corollary.

3Similar to Theorem 1, we can always take aγ = λ(S̃γ)/λ(Pγ+
Sγ
γ

).

Corollary 2: Suppose Assumption 2 holds for a given γ ∈ (0, 1)
and let ϖγ ∈ (0, 1) such that S̃γ ⪰ (1 −ϖγ)Pγ as in Theorem 3.
When ϖγ < γ and E[a⊤L⊤La] = 0, any bounded open set
containing the origin is strongly globally recurrent for system (4).

□
We now illustrate the presented stochastic stability tools in an

illustrative example.

VII. ILLUSTRATIVE EXAMPLE

A. System, cost and assumptions
We consider the model of a linearized cart pole system [21], which

we (exactly) discretize by employing a zero-order hold with sampling
period T = 0.1. The state is x = (s, ṡ, ψ, ψ̇) ∈ R4, where s is
the position of the cart and ψ is the angle of the pole. Moreover,
we consider the presence of additive noise and that actuation fails
intermittently with probability p ∈ [0, 1]. The system is thus given
by

x+ = Ax+ (B̃ + Ñ(m))u+ a (16)

where a ∼ N4(0,Σ), m ∼ B(p), Ñ(0) = 0 and Ñ(1) = −B̃.
The numerical values including the system matrices are given in
Appendix II to avoid breaking the flow of exposition. By the Bernoulli
distribution of m, P(Ñ(m) = −B̃) = p and P(Ñ(m) = 0) = 1−p.
As E[Ñ(m)] ̸= 0, we consider instead B := B̃ + E[Ñ(m)] =
B̃−pB̃ = (1−p)B̃ and N(m) = Ñ(m)−E[Ñ(m)]. In particular,
N(0) = 0−(−pB̃) = pB̃ and N(1) = −B̃−(−pB̃) = −(1−p)B̃.
In this way, and considering that a and m are mutually independent
random variables with finite (co)variance, SA1 holds for x+ =
Ax+ (B +N(m))u+ a.

For the cost, we choose C and D such that C⊤C = I4, D⊤D = 1
and C⊤D = 0. We have derived both Pγ and P1 from SA2 and
Assumption 1 using a value iteration procedure. We observed that
finite Pγ does not exists with p > 0.32, which we attribute to the
uncertainty threshold principle [32]. Therefore, we fix p = 0.10, and
numerically conclude that Pγ verifies (8) from SA2 and (12) from
Assumption 1, for γ ∈ (0, 1) and γ = 1, respectively.

To verify SA3, we calculate S and S̃ by employing an LMI
procedure given by Lemma 1 in Appendix III with A0 := A1 := A,
B0 := B̃, B1 := 0, p0 := (1− p) and p1 := p.

We are ready to apply the results of Sections V and VI.

B. Stability guarantees
Given the obtained S̃ and P1, we find γ⋆ = 0.993 such that S̃ ⪰

(1−γ⋆)P1. Hence, Theorems 1 and 2 hold. For the following, we fix
the discount factor to γ = 0.9965 and the covariance matrix of the
additive noise as Σ = 10−2I4. The quantitative estimates of mean-
square boundedness from Theorem 1 are given in Table I. Similarly,
we estimate the strongly globally recurrent set from Theorem 2 as
any open bounded set Oγ ⊂ R4 such that

R :=
{
x ∈ Rnx |x⊤S̃x≤62

}
⊂ Oγ . (17)

To study the conservatism of the above estimates, we apply the
results of Section VI for γ = 0.9965. We verify Assumption 2 again
by an LMI procedure, based on (27) in Appendix III. We find that
ϖγ = 0 is such that S̃γ ⪰ (1 − ϖγ)Pγ , thus Theorems 3 and 4
hold as γ = 0.9965 > 0. The estimated constants related to mean-
square boundedness are also given in Table I. Compared to ones given
by Theorem 1, by means of Theorem 3 we have obtained a smaller
guaranteed overshoot gγ , a faster decay rate λγ and a smaller ultimate
bound Gγ . Similarly, we estimate the strongly globally recurrent set
from Theorem 4 as any open bounded set Oγ ⊂ R4 such that

Rγ :=
{
x ∈ Rnx |x⊤S̃γx≤284

}
⊂ Oγ , (18)
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gγ λγ Gγ

Theorem 1 3 · 105 0.9998 1.5 · 108

Theorem 3 3 · 103 0.9858 1 · 103

TABLE I
CONSTANTS IN (5)

0 100 200 300 400 500
10

-5

10
0

10
5

10
10

Sample average

(5) by Theorem 1

(5) by Theorem 3

Fig. 1. The evolution of the mean of the state norm squared of
(16) in closed-loop with K⋆

γ for γ = 0.9965, given by 106 arbitrary
realizations, and its theoretical upper-bound (5) given by Theorems 1
and 3.

which is strictly included in R, as we have S̃γ/284 ≻ S̃/62. We further
illustrate the results by means of simulations.

In Figure 1, we simulate 500 time steps over 106 realizations and
we present the arithmetic mean of the sample. The initial state of each
realization (which a subset is plotted in faded colors in Figure 1) were
arbitrarily chosen to verify x⊤x = 2002. We also plot the upper-
bounds in (5) guaranteed by Theorems 1 and 3. As expected, we
observe tighter bounds when employing Theorem 3, with the decay
rate given by Theorem 3 relatively close to the decay rate of the
estimated mean of the sample.

In Figure 2 we show the evolution over 200 time steps of the
position and angle of the cart pole system against the ellipsoid
projection of the recurrent set for these state variables. We observe
that the two given realizations with distinct initial states always
(re-)enter these projected sets given in (17) and (18), despite the
presence of stochastic perturbations consistently with Theorems 2
and 4.

In Figures 3 and 4, we illustrate the stronger guarantees when no
additive noise is present. We do so by repeating the above experiments
while setting L = 0 and increasing the number of time steps. We
see that the (mean-square) state approaches the origin exponentially
in the presence of multiplicative noise. This is consistent with mean-
square stability and recurrence properties predicted by Theorems 1
and 3 and Corollaries 1 and 2.

Finally, we apply the results of Section VI and investigate whether
stability properties can be ensured for some γ ∈ (0, 0.993). For the
given example, the sufficient condition for stability properties, namely
γ > ϖγ with ϖγ such that S̃γ ⪰ (1−ϖγ)Pγ in Theorems 3 and 4,
is verified for all tested values of γ larger than 0.586. Therefore, we
see that the results of Section VI indeed allows to certify stability
properties for γ < 0.993. Interestingly, simulation results suggest
that mean-square stability of the cart-pole system does not hold when
γ ∈ (0, 0.586).

Fig. 2. Two arbitrary realizations of (16) in closed-loop with K⋆
γ for

γ = 0.9965 projected in the s× ψ plane (re-)entering R and Rγ .

Fig. 3. The evolution of the mean of the state norm squared of (16)
without additive noise (L = 0) in closed-loop withK⋆

γ for γ = 0.9965,
and its theoretical upper-bound converging to zero.

0 1 2 3 4 5 6 7

-1

-0.5

0

0.5

1

1.5

Fig. 4. Two arbitrary realizations of (16) without additive noise (L = 0)
in closed-loop with K⋆

γ for γ = 0.9965 projected in the s × ψ plane
approaching the origin.



7

VIII. CONCLUSIONS

We have provided general conditions to ensure stability properties
for the stochastic linear quadratic regulator problem with discounted
costs.

In particular and under our assumptions, we have derived that it
is desirable to select the discount factor sufficiently close to one
for stability purposes. Several questions could be investigated in
future work based on the presented results. For example, it would
be interesting to formally study if such property holds when only
an approximation of the controller u = −K⋆

γx is available (by,
e.g., dynamic programming methods as done in the example) or for
general nonlinear systems and stage costs.
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APPENDIX I
PROOFS OF SECTION V

A. Sketch of proof of Proposition 1

It suffices to consider the optimal value function in expectation
like in (3) for system x̂+ = (A+M(m))x̂+ (B+N(m))u, which
is system (1) with L = 0, and cost (2). We have Vγ = x⊤Pγx for
γ ∈ (0, 1]. It then follows Pγ ⪯ P1 from V ⋆

γ (x) ≤ V ⋆
γ′(x) for any

γ ≤ γ′.

B. Preliminaries of the proofs of Theorems 1 and 2

Let x ∈ Rnx and γ ∈ (γ⋆, 1) with γ⋆ selected as in Theorem 2.
The main steps of the proof are to show, first, that Pγ+

S
γ is positive

definite, second, that E[Yγ(x+)] ≤ (1− λ)Yγ(x) +E[a⊤L⊤(Pγ +
Sγ)La] for some λ ∈ (0, 1) with Yγ(x) := x⊤(Pγ + S

γ )x. By the
law of iterated expectations, these two properties allows to derive
the conclusions of Theorem 1, and by invoking [26, Theorem 1],
conclude that Oγ given in Theorem 2 is strongly globally recurrent
for (4).

We now show Pγ + S
γ is positive definite. In view of (8), (11)

with u = −K⋆
γx, Pγ ,

S
γ ⪰ 0 and γ ∈ (0, 1), we calculate Yγ(x) =

x⊤
(
Pγ + S

γ

)
x ≥ ℓ(x,−K⋆

γx)+x
⊤Sx ≥ ℓ(x,−K⋆

γx)+x
⊤S̃x−

ℓ(x,−K⋆
γx), thus

Yγ(x) ≥ x⊤S̃x. (19)

Hence Pγ +
S
γ ≻ 0. Moreover, there exists aY ∈ (0, 1), independent

of γ, such that aY (Pγ + S
γ ) ⪯ S̃. Indeed, consider aY :=

λ(S̃)/λ(P1+
S
γ⋆

). It follows that λ(S̃)Inx ⪯ S̃ ⪯ Pγ + S
γ ⪯

λ(P1+
S
γ⋆ )Inx ⪯

λ(P1+
S
γ⋆

)

λ(S̃)
S̃, hence S̃ ⪰ λ(S̃)

λ(P1+
S
γ⋆

)

(
Pγ + S

γ

)
=

aY

(
Pγ + S

γ

)
.

We now evaluate, for any x ∈ Rnx , E[Yγ(x+)] =

E[(x+)⊤Pγx
+] + E

[
(x+)⊤ S

γ x
+
]

On the one hand, from (10),

γ E[V ⋆
γ (x+)] = −ℓ(x,−K⋆

γx) + (1− γ)V ⋆
γ (x) + γV ⋆

γ (x), and by
recalling V ⋆

γ (x) = x⊤Pγx + cγ with c := γ
1−γ E[a⊤L⊤PγLa]



8

in view of (7), γ E[(x+)⊤Pγx
+] + γcγ = −ℓ(x,−K⋆

γx) + (1 −
γ)x⊤Pγx+ (1− γ)cγ + γx⊤Pγx+ γcγ . Therefore,

E[x+⊤
Pγx

+] =
1

γ

(
− ℓ(x,−K⋆

γx) + (1− γ)x⊤Pγx

+ γ E[a⊤L⊤PγLa]
)
+ x⊤Pγx.

(20)

On the other hand, from SA3, we have

E[x+⊤
Sx+] = E[A⋆

γ(m)
⊤
SA⋆

γ(m)] + E[a⊤L⊤SLa]

+ E[2A⋆
γ(m)

⊤
SLa],

(21)

where A⋆
γ comes from (9). Note that E[2A⋆

γ(m)
⊤
SLa] =

2E[A⋆
γ(m)

⊤
]SLE[a] = 0 in view of items (i) and (ii) of SA1.

Again in view of (20), (21), we derive E[Yγ(x+)] ≤ 1
γ

(
−

ℓ(x,−K⋆
γx) + (1 − γ)x⊤Pγx + γ E[a⊤L⊤PγLa]

)
+ x⊤Pγx +

1
γ

(
ℓ(x,−K⋆

γ) + x⊤Sx − x⊤S̃x + E[a⊤L⊤SLa]
)

= x⊤Pγx +

x⊤ S
γ x+

1
γ

(
−x⊤S̃x+(1−γ)x⊤Pγx+γ E[a⊤L⊤(γPγ+S)La]

)
,

and thus

E[Yγ(x+)]

= Yγ(x) +
1

γ

(
− x⊤S̃x+ (1− γ)x⊤Pγx

+ γ E[a⊤L⊤(γPγ + S)La]
)
.

(22)

By Proposition 1 and as (1−γ⋆)P1 ⪯ S̃, we obtain (1−γ)Pγ ⪯
1−γ
1−γ⋆ S̃. Hence (1− γ)Pγ − S̃ ⪯ −γ−γ⋆

1−γ⋆ S̃, and, in view of (22),

E[Yγ(x+)] ≤ Yγ(x)−
γ − γ⋆

γ(1− γ⋆)
x⊤S̃x

+ E
[
a⊤L⊤(

P1 +
S

γ

)
La

]
.

(23)

Given the above and aY such that aY
(
Pγ + S

γ

)
⪯ S̃ holds,

E[Yγ(x+)] ≤ αγYγ(x) + E[a⊤L⊤(Pγ +
S

γ
)La]

)
(24)

where αγ := 1− γ−γ⋆

γ(1−γ⋆)
aY . Note that αγ necessarily is between

0 and 1, since γ−γ⋆

γ(1−γ⋆)
aY < 1 for all γ ∈ (γ⋆, 1).

We are ready to prove the statements of Section V.

C. Proof of Theorem 1
By the law of iterated expectations, we obtain from (24) that, for

i ∈ Z>0,

E[Yγ(ϕ⋆
i )]

≤ αγ E[Yγ(ϕ⋆
i−1)] + E

[
a⊤L⊤(Pγ +

S

γ
)La

]
≤ αi

γYγ(x) +

i−1∑
k=0

αk
γ E

[
a⊤L⊤(Pγ +

S

γ
)La

]
.

(25)

We are allowed to do so as Yγ(ϕ
⋆
i ) is Fi-measurable for each

i ∈ Z≥0 and Fi ⊂ Fi+1 where Fi is the natural filtration associated
to the sequence of random variables v∞, hence the law of iterated ex-
pectations applies. Note that Yγ(ϕ⋆

i ) is indeed Fi-measurable as Yγ
is continuous by construction and ϕ⋆

i is Fi measurable for the same
reasons. Therefore, in view of (19) and (25), we conclude the first
part of Theorem 1 holds. Indeed, we obtain gγ ∈ [1, λ(P1+

S
γ⋆

)/λ(S̃)],
λγ ∈ [0, αγ ] and Gγ ∈ [0, E[a⊤L⊤(Pγ+

S
γ )La]/1−αγ ], as 1

1−αγ
≥∑k−1

i=0 α
i
γ for any i ∈ Z≥0. Moreover, for the second part of

Theorem 1, it simply follows from E[a⊤L⊤(Pγ+
S
γ )La] ≤ λ(P1+

S
γ⋆ )E[a⊤L⊤La] = 0, hence Gγ = 0.

D. Proof of Theorem 2
Given Oγ as in Theorem 2, it follows in view of (23) that

E[Yγ(x+)] ≤ Yγ(x)− ϱγ(x) (26)

for ϱγ(x) := γ−γ⋆

γ(1−γ⋆)
x⊤S̃x−E

[
a⊤L⊤(

P1 + S
γ

)
La

]
, with ϱγ(x)

strictly positive for x ∈ Rnx \ Oγ . Hence, Yγ is a sufficient
recurrence-Lyapunov function relative to Oγ for (4), see [26, Eq.
(4)]. The proof of Theorem 4 is concluded by invoking [26, Theorem
1].

E. Proof of Corollary 1
From (23), it is clear that, when E[a⊤L⊤La] = 0, ϱγ(x) given

in (26) is strictly positive for any x ̸= 0. Hence, for any open Oγ

containing the origin, Yγ is a sufficient recurrence-Lyapunov function
relative to Oγ for (4) and recurrence is established by invoking [26,
Theorem 1].

APPENDIX II
NUMERICAL VALUES FOR SECTION VII

A :=

1 0.0283 −0.0047 −0.0002
0 0.0244 −0.0670 −0.0047
0 0.2453 1.1821 0.1061
0 3.5334 3.6549 1.1821


B̃ :=

[
0.0114 0.1553 −0.0391 −0.5625

]⊤
Pγ =

75.32 29.06 54.86 9.53
29.06 261.99 540.28 92.47
54.86 540.28 1140.03 191.95
9.53 92.47 191.95 33.78



P1 =

87.66 33.90 63.98 11.11
33.90 265.06 546.29 93.51
63.98 546.29 1151.98 193.99
11.11 93.51 193.99 34.13



S =

 39.72 −19.09 41.02 −7.33
−19.09 215.28 −457.60 78.65
41.02 −457.60 1261.09 −215.57
−7.33 78.65 −215.57 36.85



S̃ =

0.62 0.19 0.65 0.04
0.19 2.37 1.64 1.05
0.65 1.64 17.86 −0.38
0.04 1.05 −0.38 0.55



Sγ =

6574.11 2494.90 4633.39 832.60
2494.90 4808.83 5857.55 1709.10
4633.39 5857.55 14794.83 2075.15
832.60 1709.10 2075.15 659.54



S̃γ =

98.70 38.62 68.35 21.78
38.62 696.16 593.61 292.47
68.35 593.61 2133.07 220.15
21.78 292.47 220.15 144.61


APPENDIX III

DETECTABILITY FOR DISCRETE MULTIPLICATIVE NOISE

Given system (1) where m is a random variable with countable
support, i.e., A+M(i) =: Ai, B+N(i) =: Bi and P(m = i) = pi
for all i ∈ {0, . . . ,mmax}, for some mmax ≥ 0 and pi ≥ 0 such
that

∑mmax
k=0 pi = 1, the following lemma holds.

Lemma 1: Consider system (1) with discrete multiplicative noise
as above. If there exist S ⪰ 0 and S̃ ≻ 0 such that

mmax∑
k=0

pi

[
A⊤

i SAi A⊤
i SBi

B⊤
i SAi B⊤

i SBi

]
⪯

[
S − S̃ 0

0 0

]
+

[
C⊤C C⊤D

D⊤C D⊤D

]
(27)

then SA3 holds. □
Proof: For any x ∈ Rnx and u ∈ Rnu , E[(x+)⊤Sx+], where x+ =
(A + M(m))x + (B + N(m))u, is equal to [x⊤u⊤]Z[x⊤u⊤]⊤

where Z := E
[[

(A+M(m))⊤

(B + N(m))⊤

]
S
[
(A + M(m)) (B + N(m))

]]
=

∑mmax
k=0

pi

[
A⊤

i
B⊤

i

]
S
[
Ai Bi

]
=

∑mmax
k=0

pi

[
A⊤

i SAi A⊤
i SBi

B⊤
i SAi B⊤

i SBi

]
. In view

of (27), [x⊤u⊤]Z[x⊤u⊤]⊤ ≤ x⊤(S− S̃)x+ℓ(x, u), therefore SA3
holds. ■


