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Abstract  15 

Wind energy is a source of collision fatalities for birds and bats. To evaluate the risk 16 

that wind power development projects might pose to the conservation of protected 17 

species, it is essential to quantify the impact of collisions on the dynamics of wild 18 

populations. To address this challenge, two approaches are primarily employed: 19 

Potential Biological Removal (PBR) and Population Projection Analysis (PPA). PBR 20 

is a decision rule designed to calculate a sustainable fatality limit for a given 21 

population, while PPA relies on simulation-based modelling to forecast a population's 22 

future trajectory under various scenarios. In the context of environmental impact 23 

assessments (EIAs), we argue that PPA offers a more suitable method than PBR for 24 

evaluating population-level impacts resulting from collisions with wind turbines. Unlike 25 

PBR, PPA can be focused on a single source of disturbance, aligning with the 26 

perspective of the EIA process. In contrast, PBR necessarily adopts a population-27 

centered perspective, and is therefore only relevant when considering all sources of 28 

mortality that jointly affect a population. Furthermore, robust utilization of the PBR 29 

approach requires the definition of quantitative conservation objectives and the 30 

implementation of a comprehensive management strategy evaluation, neither of 31 

which is ever undertaken within the context of EIA.  32 
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Introduction  33 

Almost everywhere around the world, the development of wind energy stands as one 34 

of the pillars of the energy transition (Teske et al. 2019). However, this mode of 35 

energy production is also a source of negative impacts on biodiversity, particularly for 36 

birds and bats (Drewitt & Langston 2006; Schuster et al. 2015; Barclay et al. 2017; 37 

Thaxter et al. 2017; Serrano et al. 2020). Wind power plants can have two types of 38 

negative effects on these volant animals. First, birds and bats are susceptible to 39 

direct mortalities caused by collisions with wind turbines or by barotrauma (Barclay et 40 

al. 2017; De Lucas & Perrow 2017). Second, like all large artificial infrastructures, 41 

wind power plants are responsible for indirect impacts, such as habitat loss, 42 

disturbance and barrier effects (Drewitt & Langston 2006; Schuster et al. 2015; Fox & 43 

Petersen 2019). Wind energy is currently developing very rapidly around the world 44 

and this rate is projected to continue accelerating in the near future (Teske et al. 45 

2019). In this context, assessing and mitigating the harmful impacts that this 46 

development will have on wildlife has become a primary concern for biodiversity 47 

conservation (Fox & Petersen 2019; Serrano et al. 2020; Durá-Alemañ et al. 2023).  48 

In many countries around the globe, the construction of wind power plants is 49 

regulated by environmental protection laws, which usually require pre- and post-50 

construction impact studies to assess the extent of negative effects on wildlife, 51 

notably protected species (Saidur et al. 2010). Regarding the risk of direct mortality of 52 

birds and bats, environmental impact assessments (EIAs) have historically focused 53 

on estimating fatality risk at the individual level (May et al. 2019) by simply 54 

addressing the question as to how many individuals of a given species are at risk of 55 

dying from collision. However, for species conservation purposes, it is crucial to 56 

assess the consequences that such mortality risk might have at the population level 57 
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(May et al. 2019). So far, the few EIA studies that have attempted to quantitatively 58 

assess population-level impacts have usually relied on one of two approaches. Some 59 

studies have applied a decision rule called the 'Potential Biological Removal' (PBR) in 60 

an effort to calculate quantitative limits of ’sustainable‘ collision fatalities (e.g. Poot et 61 

al. 2011; Leopold et al. 2014; Busch & Garthe 2016; NIRAS 2016). Other studies 62 

have focused on simulating population trajectories to predict the fate of populations 63 

exposed to collisions with wind turbines (e.g. Carrete et al. 2009; Masden 2010; 64 

García-Ripollés & López-López 2011; Poot et al. 2011; Rydell et al. 2012; Schaub 65 

2012; Sanz-Aguilar et al. 2015; Grünkorn et al. 2016; Korner-Nievergelt et al. 2016). 66 

In this paper, we argue that PBR, as currently used in the context of EIA, is ill-67 

adapted to the task of assessing population-level impacts of wind energy 68 

infrastructures. On the other hand, the use of population projections, in combination 69 

with metrics of relative impact as a decision rule, is much better suited to this task. 70 

The Potential Biological Removal (PBR) 71 

What is the PBR? 72 

The PBR is a ‘harvest’ control rule that was originally developed as a means to define 73 

sustainable limits of cetacean incidental catches by commercial fishing vessels, in 74 

data-poor situations (NMFS 1994; Wade 1998; Moore et al. 2013). The harvest 75 

quota, expressed as a number of individuals removed each year, is based on a 76 

simple formula (Wade 1998): 77 

 𝑃𝐵𝑅 =  𝐹𝑅

𝑅𝑚𝑎𝑥

2
𝑁𝑚𝑖𝑛 (1) 

where Rmax corresponds to the theoretical maximum growth rate of the population, 78 

i.e. when it is at low density and in the absence of anthropogenic mortalities; Nmin is a 79 
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conservative estimate of the population size; and FR is a coefficient between 0.1 and 80 

1, often referred to as the ’recovery facto‘ (Wade 1998; Dillingham & Fletcher 2008). 81 

Rmax and Nmin are biological parameters that must be estimated for the studied 82 

population. Parameter Nmin is usually estimated from field data and, for birds, Rmax is 83 

often approximated using allometric relationships that only require knowing the 84 

species’ average adult survival and its age at first reproduction (Niel & Lebreton 85 

2005). The recovery factor FR is not a biological parameter, but an adjustment 86 

parameter that must be tuned to ensure that the PBR quota fulfills a predetermined 87 

conservation objective even in the presence of uncertainties. The tuning of FR 88 

requires simulating population trajectories under a realistic demographic model, often 89 

called the ’operational model‘ (Moore et al. 2013), and testing the influence of a 90 

range of FR values on the population’s fate (Wade 1998; Dillingham & Fletcher 2008). 91 

Based on these simulation results, a FR value is chosen to ensure that, when the 92 

associated PBR harvest rule is implemented, the population will have a high 93 

probability of stabilizing at a level that is equal or greater than the predefined long-94 

term conservation objective (Figure 1). This tuning and assessment procedure, the 95 

purpose of which is to test the robustness of the PBR decision rule in a specific 96 

context, is called a Management Strategy Evaluation (MSE; Bunnefeld et al. 2011). 97 

Implementing such an MSE not only requires building an operational model for the 98 

species being targeted, but also implies that a quantitative conservation objective has 99 

been clearly defined beforehand (e.g. Haider et al. 2017; Richard & Abraham 2013). 100 

This means setting a population size threshold, often expressed as a fraction of 101 

carrying capacity (NMFS 1994; Wade 1998), above which it is desired to maintain the 102 

population in the long run (Moore et al. 2013). When correctly implemented, the PBR 103 
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approach can be effective in preventing or reversing population collapses (Cooke et 104 

al. 2012; Moore et al. 2013). 105 

Why is the PBR not suited to the context of EIA? 106 

First, there is a fundamental difference of scope between EIA and the PBR. EIA is a 107 

disturbance-centered endeavor, in the sense that it focuses on assessing the impact 108 

of a given infrastructure development project. This means that the entry point of the 109 

impact analysis is necessarily the source of disturbance itself, not the population. On 110 

the other hand, the PBR is a population-centered approach, in which every source of 111 

disturbance affecting a given population must be considered (Dillingham & Fletcher 112 

2011). Indeed, the rationale for the PBR approach is to find the total amount of non-113 

natural mortalities (removals) that a population can sustain (Wade 1998). Using the 114 

PBR decision rule in an EIA context is thus a gross oversimplification because it 115 

considers a single source of anthropic mortality, ignoring all others that populations 116 

suffer (Green et al. 2016; O’Brien et al. 2017). 117 

 Second, because EIA lacks a population-centered perspective, no quantitative 118 

conservation objective is usually defined for the impacted population. This deficiency 119 

has been consistently observed (e.g. Poot et al. 2011; Leopold et al. 2014; Busch & 120 

Garthe 2016; NIRAS 2016) in studies that employed the PBR formula as a decision-121 

making tool within the context of wind energy's impact on bird populations. As 122 

highlighted above, using the PBR as a decision criterion first requires the 123 

establishment of such an objective, because it constitutes a vital component of the 124 

MSE framework, within which the effectiveness of the decision rule can be rigorously 125 

evaluated. 126 
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 Third, in the context of EIA, the PBR decision rule has been used without 127 

implementing an operational model and simulations to assess its robustness to 128 

uncertainties and tune the value of the recovery factor FR (e.g. Poot et al. 2011; 129 

Leopold et al. 2014; Busch & Garthe 2016; NIRAS 2016). Instead, generic values of 130 

FR, which were derived in a completely different context (marine mammal bycatch in 131 

North America; Wade 1998), have been blindly applied. Therefore, there is no 132 

guarantee that the harvest quota computed through this formula would effectively 133 

align with the conservation objective, assuming such an objective would have been 134 

defined for the population under consideration. 135 

 Finally, it is important to keep in mind that the PBR method as formulated by 136 

Wade (1998) implicitly assumes the existence of a compensatory density-137 

dependence relationship, which means that the population growth rate is expected to 138 

increase in response to the removal of individuals, thus partially compensating for 139 

anthropogenic mortalities (Rose et al. 2001; Beverton & Holt 2012). This density-140 

dependent mechanism is what allows a population to stabilize at some new 141 

equilibrium when facing a sustainable level of mortalities (Wade 1998). In the 142 

absence of such a mechanism, a population exposed to additional mortalities will 143 

constantly decline, necessarily reaching extinction at some point. In birds, however, 144 

this type of compensatory mechanism cannot always be evidenced (Horswill et al. 145 

2017). Applying removal quotas based on the PBR approach in such situations could 146 

trigger or reinforce an unstoppable population decline and therefore have 147 

catastrophic consequences (O’Brien et al. 2017; Miller et al. 2019).  148 
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Population Projection Analysis (PPA) 149 

Population Projection Analysis (PPA), also sometimes referred to as 150 

Population Viability Analysis (PVA), is a simulation-based method to predict the 151 

future trajectory of a population under various scenarios (Boyce 1992; Beissinger & 152 

McCullough 2002). PPA relies on a demographic model that bears resemblance to 153 

the operational models utilized within the MSE framework to evaluate decision rules 154 

like the PBR. 155 

In our opinion, the PPA method is well suited for assessing population impacts 156 

in the context of EIA because it can easily be framed as a disturbance-centered 157 

assessment exercise, in complete alignment with the EIA framework (Green et al. 158 

2016). To frame a PPA as a disturbance-centered analysis, the most relevant 159 

approach consists in running population projections under two alternative scenarios: 160 

(1) a baseline scenario without collisions and (2) an impact scenario that includes 161 

additional mortalities due to collisions (Cook & Robinson 2017). The comparison of 162 

population trajectories under each of these two scenarios allows calculation of 163 

various metrics of impact induced specifically by the infrastructure (Figure 2). In the 164 

absence of a clear population conservation objective, which is the common situation 165 

in EIA, we recommend using metrics of relative impact, such as the proportional 166 

difference in population size after a given time (e.g. 25 years) between the two 167 

scenarios (Green et al. 2016). This comparative and relative approach, referred to as 168 

the ‘Counterfactual of Impacted to Unimpacted’ population (CIU), has been shown to 169 

be less sensitive to uncertainties (Cook & Robinson 2017). Indeed, if some model 170 

parameters are inaccurate or some model assumptions happen to be violated, their 171 

influence on the final result will be limited because they apply equally to both 172 

scenarios.  173 
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In the context of EIA, the use of the CIU approach also has the advantage of 174 

not requiring the definition, a priori, of a quantitative population objective, namely a 175 

threshold of critical population size (Green et al. 2016). The lack of a quantitative 176 

conservation objective is not an inherent feature of the PPA method, but rather 177 

reflects the regulatory framework governing the EIA process (Wathern 2013). Indeed, 178 

in this framework, the quantification of impact is separated from the decision of what 179 

level of impact qualifies as ’significant‘ or not (Schrage 2008).  180 

Finally, when using the CIU approach based on PPA, the impact assessment 181 

does not necessarily rely on the assumption of compensatory density-dependence. 182 

The consequences of collision mortalities can thus be explored in situations where 183 

the population would not be expected to stabilize at a new equilibrium. Overall, the 184 

PPA method offers a great deal of flexibility regarding the assumptions and the level 185 

of complexity of the demographic model being used, which allows the right balance to 186 

be found between realism and practicality (Boyce 1992; Morris & Doak 2002).  187 

  188 
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Conclusion 189 

The Potential Biological Removal (PBR) is not simply a formula that can be applied 190 

ex nihilo to any species or situation (Moore et al. 2013; O’Brien et al. 2017). It must 191 

be applied from a population-centered perspective, where all sources of non-natural 192 

mortalities are being considered, and it must be embedded in a Management 193 

Strategy Evaluation framework with a clear and quantitative conservation objective 194 

(Wade 1998; Dillingham & Fletcher 2008; Bunnefeld et al. 2011). Our experience 195 

indicates that within the EIA process for wind energy projects, the PBR decision rule 196 

has often been utilized mechanically, without much consideration for these 197 

constraints (Poot et al. 2011; Leopold et al. 2014; Busch & Garthe 2016; NIRAS 198 

2016). From our perspective, it appears that using Population Projection Analysis 199 

(PPA) to quantify relative metrics of impact is better suited to the EIA process, which 200 

has a disturbance-centered perspective. With the PPA approach, one can readily 201 

keep the impact assessment and decision steps separated, as is usually done in EIA. 202 

However, this approach should not lead to neglect of the definition of clear decision-203 

making rules, as an absence of decision is often detrimental to population 204 

conservation (Cooke et al. 2012). 205 
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Figures legends 365 

Figure 1. Theoretical trajectory of two populations with two different 366 

initial states (red, green), suffering the same rate of annual mortality, 367 

which is equal to the PBR (here, with F = 1). Independently from their 368 

initial state, each population tends toward the same equilibrium, which is 369 

equal to half the carrying capacity (K/2, blue horizontal line). The black 370 

horizontal line represents the full carrying capacity K. 371 

 372 

Figure 2. Example of possible population trajectories according to two 373 

scenarios: (i) without collision mortality (in green) and (ii) with collision 374 

mortality due to the presence of a windfarm (in black). The impact can be 375 

defined as the relative difference in population size between these two 376 

scenarios after some time (e.g., 30 years). 377 
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