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∗∗ Instituto de Ingenieŕıa, Universidad Nacional Autónoma de México (UNAM),
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Abstract: We present a new high-gain feedback control design ensuring finite-time input-to-
state stabilization of chains of integrators of dimension n subject to additive disturbances. The
proposed high-gain homogeneous controller involves only control gains of power limited to 2
regardless of the dimension of the chains of integrators in contrast to the classical high-gain
controllers involving gains with powers up to n + 1 which grows with the growth of the chain
of integrators. The stability analysis of the closed-loop system is achieved by means of classical
Lyapunov-based tools and homogeneity-based concepts. This result can be seen as the dual
design of low-power high-gain observers recently extended to the homogeneous context.
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1. INTRODUCTION

In this article, we study the stabilization problem for class
of chain of integrators with external disturbances, i.e.:

ẋi(t) = xi+1(t) + ωi(t), ∀ i ∈ {0, . . . , n− 2},
ẋn−1(t) = u(t) + ωn−1(t),

(1)

where t≥0 is the time variable, x(t)=[x0(t), . . . , xn91(t)]
⊤

∈ Rn is the state, u(t) ∈ R is a nonlinear control input,
and ω(t) = [ω0(t), . . . , ωn−1(t)]

⊤∈ Rn is a vector of extra
inputs.

Among the different techniques adopted for robust sta-
bilization and observation of nonlinear systems in chain
of integrators form, high-gain methods have been shown
to be advantageous in many control/estimation scenarios
in the literature due to their simplicity and good perfor-
mance in noise-free settings (see, e.g., [Isidori, 1995, Teel
and Praly, 1995, Lin, 2009, Praly and Khalil, 2014] and
references therein). In fact, by increasing the high-gain
parameter, one can increase the convergence rate of the
controlled/observer system’s states towards the equilib-
rium. However, increasing the high-gain parameter means
also increasing the transient state peaking phenomenon
(refereed to in short as the peaking phenomenon) espe-
cially since the high-gain parameter is usually powered
up to the system’s dimension. Due to this phenomenon,
the high-gain observers/controllers are less desirable in
numerical implementation whenever the dimension of the
plant is large. For this reason, a different high-gain de-
sign methodology, referred to as “low-power high-gain”,
has been proposed in [Astolfi and Marconi, 2015] for

1 This work has been founded by the ANR project Alligator (ANR-
22-CE48-0009-01) and by UNAM-PAPIIT, project IN106323.

nonlinear systems in the chain of integrator form. The
proposed “low-power high-gain” observer design does not
only preserve all the main positive features of classical
high-gain observers, but also elevates the issues related
to the transient state peaking by having the power of
the high-gain parameter raised just up to the order 2,
regardless of the dimension of the observed system, with
the (mild) drawback of doubling the dimension of the
observer. The peculiarity of such a paradigm consists in
a construction of interconnected 2nd-order high-gain ob-
servers. Notably, a similar step-by-step procedure have
been also proposed in the context of sliding-mode ob-
servers in [Barbot and Floquet, 2010]. Recently, in order
to cope with non-Lipschitz nonlinearities and guarantee
finite-time convergence, two direct extensions have been
proposed: [Andrieu et al., 2021] directly extending the so-
called super-twisting methodology [Barbot and Floquet,
2010, Moreno and Osorio, 2012] to chain of integrator of
any order, and [Moreno, 2021] combining the low-power
high-gain design techniques with homogeneity techniques
in the framework of Levant’s differentiator (see, e.g., [An-
drieu et al., 2008, Levant, 2005]).

Notably, it has been remarked in [Astolfi et al., 2017] that
the same procedure followed in the context of high-gain
observers [Astolfi and Marconi, 2015] can be also employed
in the context of high-gain feedback stabilization. As a
consequence, one can extend the classical high-gain state-
feedback methodology [Isidori, 1995, Teel and Praly, 1995]
developed for the stabilization of chain of integrators of
order n, in order to build a high-gain dynamic-feedback
controller containing a high-gain parameter which is raised
up to the power of 2 regardless of the dimension of n.
We highlight that standard high-gain feedback has been



developed also in the homogeneous context for finite-time
stabilization, see, e.g. [Levant, 2003, 2005, Andrieu et al.,
2008].

The main objective of this article is to combine the series
of works [Astolfi and Marconi, 2015, Astolfi et al., 2017,
Moreno, 2021, Levant, 2003] in order to develop a new
low-power high-gain methodology for finite-time stabiliza-
tion of the disturbance-free system (1) and input-to-state
stabilization in the presence of external disturbances. In
contrast to the existing results, the proposed (dynam-
ical) control feedback features high-gain parameters of
quadratic form at most and ensures that the closed-loop
system is homogeneous of negative degree.

The rest of the article is organized as follows. In Section 2,
we briefly revisit the concept of weighted homogeneity and
its role in classical homogeneous high-gain feedback con-
trol design for (1). Then, we present our novel low-power
version of the classical high-gain homogeneous feedback
controller along with our main stability-related result. In
section 3, we provide a detailed proof of our main results.
In Section 4, we present a numerical example to illustrate
these results. Finally, conclusions and perspectives are
given in Section 5.

Notation. The function x 7→ ⌈x⌋p = |x|p sign (x) is the
signed power p ≥ 0 of x ∈ R.

2. MAIN RESULT

2.1 Highlights on Homogeneous High-Gain State Feedback

Before we delve into our low-power high-gain strategy,
let us recall first the well-known concept of weighted
homogeneity and its application to classical high-gain state
feedback stabilization of systems of the form (1). For
this, define a vector of positive weights r = [r0, . . . , rn−1]
(ri > 0, ∀i ∈ {0, . . . , n − 1}), and denote by the dilation
matrix the following matrix:

Λr(λ) = diag [λr0 , . . . , λrn−1 ] , ∀λ > 0.

and by the homogeneous norm ∥ · ∥r the following map:

z 7→ ∥z∥r :=

(
n∑

i=0

|zi|ρ/ri
)1/ρ

, ρ ≥ max
1≤j≤n

rj .

Using these two notations, a function ϕ : Rn → R is said to
be homogeneous of degree d ∈ R iff ϕ (Λr(λ)x) = λdϕ (x)
is satisfied for every λ > 0. Moreover, a vector field
f : Rn → Rn is homogeneous of degree d iff f (Λr(λ)x) =
λdΛr(λ)f (x) is satisfied for every λ > 0.

Notice that ∥ · ∥r is homogeneous of degree d = 1 and
satisfies, ∀x ∈ Rn, the following inequality:(

min
{z:∥z∥=1}

∥z∥r
)
∥x∥ ≤ ∥x∥r ≤

(
max

{z:∥z∥=1}
∥z∥r

)
∥x∥. (2)

For system (1) subject to a control law of the form:

u(t) := 9ϕ (x(t);κ) = 9κn+1kn

⌈
n−1∑
i=0

ki⌈κ−(i+1)xi(t)⌋
α
ri

⌋ rn
α

,

(3)
the closed loop system (equivalently its vector field), with
ω = 0, can be rendered homogeneous of any degree
δ ∈ (−1, 0) with weights r0, . . . , rn−1 given by:

ri = 1− (n− 1− i) δ, ∀i ∈ {0, · · · , n}, (4)

and with appropriately selected positive real gains ki > 0,
∀i ∈ {0, · · · , n}. The parameter α ≥ r0 is a tuning
parameter used to select a different member of the family
of controllers, and the gain κ > 0 is a scalar high-gain used
to accelerate the convergence of the closed-loop system.

Consequently, by adopting the arguments in Huang et al.
[2005], it can be proved that:

Proposition 1. For any homogeneity degree δ ∈ (−1, 0),
there exist gains k0 > 0, . . . , kn > 0, such that for every
κ > 0 the origin of (1)-(3) is globally finite-time stable
(FTS) when ω = 0 and input-to-state stable (ISS) w.r.t
to ω when ω ̸= 0.
Remark 1. Note that the (linear) change of coordinates
zi = κ−(i+1)xi, ∀i ∈ {0, · · · , n − 1}, transforms (1) with
controller (3) into:

żi(t) = κzi+1(t) +
1

κi+1
ωi(t), ∀i ∈ {0, · · · , n− 2},

żn−1(t) = −κϕ (z(t);κ = 1) +
1

κn
ωn−1(t).

From this, it is clear that the scaled gains lead to an
acceleration (for κ >> 1) of the convergence, assuming
that the plant (1) with the control law (3) (with κ = 1) is
asymptotically stable (AS).

2.2 Homogeneous High-Gain State Feedback with Limited
Gain Power

Similarly to [Astolfi et al., 2017, Moreno, 2021], it is
possible to stabilize system (1) by means of a homogeneous
dynamic control law of dimension n−2, in which the power
of κi, ∀i ∈ {1, . . . , n− 1} is limited to 2, in contrast to the
classical control law (3), that has a power n+ 1.

To this end, select any homogeneity degree δ ∈ (−1, 0)
and let {k̄i, ki}i∈{0,...,n−1} be a family of sufficiently large
positive gains. We define next the homogeneous dynamic
controller as follows:

η0(t) = x0(t),

η̇i(t) = xi+1(t) + vi(t), ∀i ∈ {1, . . . , n− 2},
ηn−1(t) = 0,

u(t) = −vn−1(t),

(5)

with inputs vi(t), ∀i ∈ {1, . . . , n− 1}, selected as:

vi(t) := ϕi (x(t);κi) ,

= κ2
i ki

⌈
⌈ηi−1(t)⌋

αi
ri + k̄i⌈κ−1

i (xi(t)− ηi(t))⌋
αi
r̄i

⌋ rvi
αi

,

(6)

where, ∀i ∈ {1, · · · , n − 1}, the vector of homogeneity
weights [ri, r̄i, rvi ] and the gains κi are selected respec-
tively as:

ri = 1− (n− i) δ, r̄i = ri + δ, rvi = r̄i + δ, (7)

and
κi := κ0κ̄i > 0, (8)

where κ0 is any positive gain and κ̄i is a family of
sufficiently large positive gains. The parameters αi ≥ ri,
∀i ∈ {1, · · · , n − 1}, are tuning parameters. Finally, we
have the following result.

Theorem 1. Consider the feedback law (5)-(6) and let the
parameters selected as in (7), (8). Then, system (1) in



closed loop with the homogeneous dynamic control law (5)-
(6) is homogeneous of degree δ, the origin is Globally FTS
for any κ0 > 0 when ω = 0 and ISS w.r.t to ω when
ω ̸= 0. In particular, increasing the gain κ0 increases the
convergence rate.

Remark 2. Note that when δ = 0 we recover the linear
case, already considered in [Astolfi et al., 2017]. However,
conditions of Theorem 1 are more restrictive for the
linear case than those in [Astolfi et al., 2017] due to the
technical proof which relies on homogeneous Lyapunov
functions of order 2. Moreover, when δ = −1, it is still
possible to recover the same results of Theorem 1 when
we have particularly |ωn−1| ≤ D. However, since in this
case the controller is discontinuous we need to adapt the
proof rigorously using Filippov techniques for differential
inclusions. For this short conference version, we prefer
excluding this case.

3. PROOF OF THE MAIN RESULT

The proof of Theorem 1 is divided into three parts: First,
we study the stability of the decoupled undisturbed ho-
mogeneous closed-loop system with high-gain coefficients
set to 1. In this situation, the closed-loop systems is
composed of n decoupled homogeneous double chain of
integrators that can be proven to be stable using a ho-
mogeneous Lyapunov function. Next, we include the effect
of the high-gain coefficients and the coupling terms and
prove that the closed-loop system keeps the stability and
homogeneity properties. Finally, using the homogeneity
properties of the closed-loop system, we prove that when
external disturbances are considered, we recover input-to-
state stabilization.

Let us start by rearranging the closed-loop system (1) with
(5), we recover the following cascade system:

ẋ0(t) = x1(t) + ω0(t),

ẋi(t) = xi+1(t) + ωi(t), ∀i ∈ {1, . . . , n− 2},
η̇i(t) = xi+1(t) + vi(t), ∀i ∈ {1, . . . , n− 2},

ẋn−1(t) = −vn−1(t) + ωn−1(t),

(9)

on which we use the following change of coordinates
[x, η] 7→ ξ:

ξi(t) = [ξi,1(t), ξi,2(t)]
T
:= [ηi−1(t), xi(t)− ηi(t)]

T
, (10)

∀i ∈ {1, . . . , n − 1}, ∀t ≥ 0. This results in the following
system:

ξ̇1,1(t) = ξ1,2(t) + ξ2,1(t) + ω0(t),

ξ̇1,2(t) = −v1(t) + ω1(t),

ξ̇i,1(t) = ξi,2(t) + ξi+1,1(t) + vi−1(t),

ξ̇i,2(t) = −vi(t) + ωi(t), ∀i ∈ {2, . . . , n− 1},

(11)

with ξn,1 = ηn−1 = 0 due to (5). Note that the control
laws vi (t) given in (6) can be also expressed in the ξi-
coordinates as follows:

vi(t) := ϕi (ξi(t);κi) ,

= κ2
i ki

⌈
⌈ξi,1(t)⌋

αi
ri + k̄i⌈κ−1

i ξi,2(t)⌋
αi
r̄i

⌋ rvi
αi

.
(12)

3.1 Stability analysis of decoupled undisturbed subsystems
with κi = 1:

Let us consider the i-th subsystem of (11) with κi = 1
and in the absence of the vector input ω and the coupling

terms ξi+1,1 and vi−1, i.e.:

ξ̇i,1(t) = ξi,2(t),

ξ̇i,2(t) = −vi(t).
(13)

Let us consider the following Lyapunov function candidate:

Vi (ξi) =
(
γi

ri
m+m−r̄i

m

)
|ξi,1|

m
ri + k̂

r̄i
m−r̄i
i ⌈ξi,1⌋

m−r̄i
ri ξi,2

+ r̄i
m k̂

m
m−r̄i
i |ξi,2|

m
r̄i ,

(14)

where {k̂i}i∈{1,...,n−1} is a family of sufficiently large
positive gains, γi > 0 is a positive tuning parameter and
m is the degree of homogeneity of Vi taken to satisfy
m ≥ ri+r̄i in order to guarantee the differentiablility of Vi.
Notice that Vi is positive-definite. In fact, using Young’s
inequality given in Lemma 1 on the second term of Vi with
p = m

m−r̄i
, leads to:

−⌈ξi,1⌋
m−r̄i

ri

(
k̂

r̄i
m−r̄i
i ξi,2

)
≤ |ξi,1|

m−r̄i
ri

∣∣∣∣k̂ r̄i
m−r̄i
i ξi,2

∣∣∣∣ ,
≤
(
1− r̄i

m

)
|ξi,1|

m
ri

+ r̄i
m k̂

m
m−r̄i
i |ξi,2|

m
r̄i ,

≤
(
γi

ri
m +

(
m−r̄i
m

))
|ξi,1|

m
ri

+ r̄i
m k̂

m
m−r̄i
i |ξi,2|

m
r̄i ,

(15)

This shows that Vi stays always nonnegative. Moreover,

by computing ∂Vi(ξi)
∂ξi,1

and ∂Vi(ξi)
∂ξi,2

the partial derivatives of

Vi with respect to ξi,1 and ξi,2 respectively:

∂Vi(ξi)
∂ξi,1

=
(
γi+

(
m−r̄i
ri

))
⌈ξi,1⌋

m−ri
ri

+
(

m−r̄i
ri

)
k̂

r̄i
m−r̄i
i |ξi,1|

m−ri−r̄i
ri ξi,2,

(16)

and

∂Vi(ξi)
∂ξi,2

= k̂
r̄i

m−r̄i
i

(
⌈ξi,1⌋

m−r̄i
ri + k̂i ⌈ξi,2⌋

m−r̄i
r̄i

)
, (17)

it is easy to check that [ξ̄i,1, ξ̄i,2] = [0, 0] is the only critical
point of Vi. Moreover, since Vi is always nonnegative and
since Vi(0) = 0, the origin is the unique point where Vi

achieves its minimal value that is equal to 0. Consequently,
Vi is positive-definite. Furthermore, computing the time
derivative of Vi along the trajectories of (13) and replacing
by the expression of ϕi(ξ;κi), give us:

V̇i (ξi) =
(
γi +

(
m−r̄i
ri

))
⌈ξi,1⌋

m−ri
ri ξi,2

+
(

m−r̄i
ri

)
k̂

r̄i
m−r̄i
i |ξi,1|

m−ri−r̄i
ri |ξi,2|2

− kik̂
r̄i

m−r̄i
i

(
⌈ξi,1⌋

m−r̄i
ri + k̂i ⌈ξi,2⌋

m−r̄i
r̄i

)
×
⌈
⌈ξi,1⌋

αi
ri + k̄i⌈ξi,2⌋

αi
r̄i

⌋ rvi
αi

. (18)

By taking k̂i = k̄
m−r̄i

αi
i in (18), we can ensure that the last

term of (18) is negative for any m ≥ ri+ r̄i. To prove this,
it suffices to study the following cases:

(1) both of ξi,1 and ξi,2 are either positive or negative,

(2) they have different signs, and |ξi,1|
1
ri ≥ k̄

1
αi
i |ξi,2|

1
r̄i ,



(3) they have different signs, and |ξi,1|
1
ri ≤ k̄

1
αi
i |ξi,2|

1
r̄i .

Now seeing that the last term of (18) vanishes on the set:

Si =
{
⌈ξi,1⌋

m−r̄i
ri + k̂i ⌈ξi,2⌋

m−r̄i
r̄i = 0

}
, (19)

and using Lemma 2, we can render V̇i negative-definite.
More precisely, evaluating V̇i (ξi) on the set Si as follows:

V̇i (ξi)
∣∣∣
Si

= −k̂
−r̄i

m−r̄i
i γi |ξi,1|

m−ri+r̄i
ri < 0, (20)

can be used to conclude that

V̇i (ξi) = −Wi (ξi) (21)

can be rendered negative-definite by selecting ki suffi-
ciently large.

3.2 Scaling of the system and stability analysis of the
undisturbed system (11):

Using the following change of variables:

zi := [zi,1, zi,2]
T
=
[
ξi,1, κ

−1
i ξi,2

]T
, (22)

on system (11), we obtain:

ż1,1(t) = κ1z1,2(t) + z2,1(t) + ω0(t),

ż1,2(t) = −κ1ṽ1(z1) +
1
κ1
ω1(t),

żi,1(t) = κizi,2(t) + zi+1,1(t) + κ2
i−1ṽi−1(zi−1),

żi,2(t) = −κiṽi(zi) +
1
κi
ωi(t), ∀i ∈ {2, . . . , n− 1},

(23)

where
ṽi(zi) := ϕi (zi(t);κi = 1) ,

= ki

⌈
⌈zi,1(t)⌋

αi
ri + k̄i⌈zi,2(t)⌋

αi
r̄i

⌋ rvi
αi

,
(24)

where k̄i > 0 can be chosen arbitrarily and ki > 0 is largely
chosen to ensure the stability of the decoupled closed-loop
system when ω = 0.

For the whole system (23), consider the following Lya-
punov Function candidate:

V (z) =

n−1∑
i=1

Vi (zi) . (25)

where Vi is given in (14). Its derivative along trajectories
of (23), when ω = 0 is:

V̇ (z) = −
n−1∑
i=1

κiWi (zi) +

n−2∑
i=1

∂Vi(zi)
∂zi,1

zi+1,1

+

n−1∑
i=2

κ2
i−1

∂Vi(zi)
∂zi,1

ṽi−1 (zi−1) ,

(26)

Notice that V̇ can be rearranged as follows:

V̇ (z) := F1 (z1, . . . , zn−1) ,

= −κ1W1 (z1) +
∂V1(z1)
∂z1,1

z2,1

+

n−2∑
i=2

{
−κiWi (zi)− ∂Vi(zi)

∂zi,1
zi+1,1

−κ2
i−1

∂Vi(zi)
∂zi,1

ṽi−1 (zi−1)
}

− κn−1Wn−1 (zn−1)

+ κ2
n−2

∂Vn−1(zn−1)
∂zn−1,1

ṽn−2 (zn−2) .

(27)

Seeing that κn−1 only appears as a factor of Wn−1 (zn−1)
and that the term −κn−1Wn−1 (zn−1) is negative and
vanishes when zn−1 = 0, we evaluate F1 (z1, . . . , zn−1) at
zn−1 = 0 and we obtain:

F2 (z1, . . . , zn−2) := F1 (z1, . . . , zn−1) |{zn−1=0},

= −κ1W1 (z1) +
∂V1(z1)
∂z1,1

z2,1

+

n−3∑
i=2

{
−κiWi (zi)− ∂Vi(zi)

∂zi,1
zi+1,1

−κ2
i−1

∂Vi(zi)
∂zi,1

ṽi−1 (zi−1)
}

− κn−2Wn−2 (zn−2)

+ κ2
n−3

∂Vn−2(zn−2)
∂zn−2,1

ṽn−3 (zn−3) .

(28)

Notice that F2 (z1, · · · , zn−2) has a similar structure to
F1 (z1, . . . , zn−1) but involves only the variables z1, z2, . . .,
and zn−2.
Now, seeing that κn−2 only appears as a factor of the
term Wn−2 (zn−2) and that the term −κn−2Wn−2 (zn−2)
is negative and vanishes when zn−2 = 0, we evaluate
F2 (z1, . . . , zn−2) at zn−2 = 0 to obtain F3 (z1, · · · , zn−3)
which shares a similar structure to F2 (z1, . . . , zn−2) but
only involves the variables z1, z2, . . ., and zn−3. This
process needs to be repeated n − 2 times. In particular,
if it is repeated n− 3 times, we get

Fn−2 (z1, z2) := Fn−3 (z1, z2, z3) |{z3=0},

= −κ1W1 (z1) +
∂V1(z1)
∂z1,1

z2,1

− κ2W2 (z2) + κ2
1
∂V2(z2)
∂z2,1

ṽ1 (z1) .

(29)

Here κ2 only appears as a factor of W2 (z2) and the term
−κ2W2 (z2) is negative and vanishes when z2 = 0. By
evaluating Fn−2 (z1, z2) at z2 = 0, we get

Fn−1 (z1) := Fn−2 (z1, z2) |{z2=0},

= −κ1W1 (z1) < 0,
(30)

which is negative for any κ1 > 0. Then, by increasing κ̄2

given in κ2 := κ0κ̄2 > 0 sufficiently large we can render
Fn−2 (z1, z2) < 0 (from Lemma 2). Similarly, by increasing
κ̄3 given in κ3 := κ0κ̄3 > 0 sufficiently large we can render
Fn−3 (z1, z2, z3) < 0. Repeating this process, we can render

V̇ (z) := −W̄ (z) < 0, (31)

by selecting successively κ̄i > 0, ∀i ∈ {1, . . . , n − 1},
sufficiently large. Moreover, by using Lemma 3, we can
prove the existence of c > 0 such that:

V̇ (z) ≤ −cV (z)
m+δ
m , (32)

from which we deduce that the origin of (23) (equivalently
of (11)) is globally FTS for any κ0 > 0 and the time of
convergence T satisfies:

T (z0) ≤
−m

cδ
V (z0)

−δ
m ,∀z0 ∈ Rn. (33)

3.3 Stability analysis of coupled disturbed subsystems:

Considering the effect of ω, it is easy to see that for the
whole system (23), the time derivative of V given in (25)
along trajectories of (23) is:

V̇ (z) = −W̄ (z) + ∂V1(z1)
∂z1,1

ω0 +

n−1∑
i=1

1
κi

∂Vi(zi)
∂zi,2

ωi. (34)



Due to homogeneity properties of W̄ (z), ∂V1(z1)
∂z1,1

and
∂Vi(zi)
∂zi,2

, ∀i ∈ {1, . . . , n − 1} and using Lemma 3 and

inequality (2), there exist class-K∞ functions σ1, σ2 such
that:

V̇ (z) ≤ −σ1 (∥z∥) + σ2 (∥z∥)−1 ∥ω∥, (35)

from which it is clear that closed-loop system (23) is ISS,
since for any ∥ω∥ ≤ σ3 (∥z∥) := σ2 (∥z∥)σ1 (∥z∥), we have

V̇ (z) ≤ 0. (36)

This concludes the proof. 2

Remark 3. Note that the existence of the control gains
k̄i, ki and κi, ∀i ∈ {1, . . . , n − 1}, shown in Theorem
1’s proof, can also be guaranteed using Lemma 3 instead
of Lemma 2. This alternative approach provides insight
into the construction of these gains and can be utilized
in numerical simulations. For example, to ensure (21), ki
can be constructed from Lemma 3 to satisfy the following
inequality:

ki ≥ min
x∈Ti

{(
γi +

m− r̄i
ri

)
⌈x1⌋

m−ri
ri x2

+
m− r̄i

ri
k̂

r̄i
m−r̄i
i |x1|

m−ri−r̄i
ri |x2|2

}
,

(37)

for any i ∈ {1, . . . , n− 1}, with k̂i = k̄
m−r̄i

αi
i and

Ti =
{
[s1, s2] : k̂

r̄i
m−r̄i
i

(
⌈s1⌋

m−r̄i
ri + k̂i ⌈s2⌋

m−r̄i
r̄i

)
×
⌈
⌈s1⌋

αi
ri + k̄i ⌈s2⌋

αi
r̄i

⌋ rvi
αi

= 0

}
.

(38)

where we recall that for all i ∈ {1, . . . , n − 1}, k̄i can
be chosen arbitrarily. Similarly for all i ∈ {1, . . . , n − 1},
the high-gain coefficients κi can be constructed recursively
using Lemma 3 by following the steps in Subsection 3.3
in backward order. More precisely, we start by taking
κ1 arbitrarily from (30), then construct κ2 in light of
inequality (29), and repeat the process until we construct
κn−1 in light of (27).

4. NUMERICAL SIMULATIONS

In this section, we present some numerical simulations
to demonstrate the effectiveness of the proposed control
design. Let us consider system (1)-(5) with n = 3, i.e.:

ẋ0(t) = x1(t) + ω0(t),

ẋ1(t) = x2(t) + ω1(t),

η̇1(t) = x2(t) + v1(t),

ẋ2(t) = −v2(t) + ω2(t),

(39)

with inputs v1(t) and v2(t) given as in (6). We start first
by taking the extra inputs ω1(t), ω2(t), and ω3(t) all equal
to zero, and choosing the homogeneity parameters and the
control gains to ensure the FTS of (39) in lights of Remark
3. After that, we redo the simulations with ω1(t), ω2(t),
and ω3(t) as follows:

ω0(t) = 1e93 ⌈x0(t)⌋
r1+δ
r1 ,

ω1(t) = 1e93 ⌈x0(t)⌋
r̄1+δ
r1 + 1.5e93 ⌈x1(t)⌋

r̄1+δ
r̄1 ,

(40)

ω2(t) = 1e93 ⌈x0(t)⌋
r̄2+δ
r1 + 1.5e93 ⌈x1(t)⌋

r̄2+δ
r̄1

+ 2e93 ⌈x2(t)⌋
r̄2+δ
rv1 + ε sin(20t).

(41)

which are homogeneous of degree δ (when ε = 0). In
this case, we keep the same homogeneity parameters and
same control gains to show the robustness of the closed-
loop system with respect to ω. We take the homogeneity
parameters in (7) as follows: δ = −0.3, r1 = 1.6, r̄1 = r2 =
1.3, rv1 = r̄2 = 1, rv2 = 0.7. For the control and Lyapunov
function free parameters, we take m = 11.9, α1 = 3.6 ≥ r1
α2 = 1.6 ≥ r2, γ1 = 7, γ2 = 4, k̄1 = 15, k̄2 = 17. The rest
of the parameters are chosen to ensure the FTS property
of the closed-loop by following the steps of the proof and
in light of Remark 3: κ̄1 = 25, κ̄2 = 35, k1 = 15, and
k2 = 16.4. The simulations are achieved using an implicit
Euler scheme with the initial condition x(0) = [3, 5, 2]⊤

and for two different high-gains κ0 = 2 and κ0 = 8.

Figure 1 shows on the left the evolution of the states x0(t),
x1(t), and x2(t) with κ0 = 2 and ω = 0 and on the right
the evolution of the norm ∥x(t)∥ of the closed-loop system
(1)-(5) for both κ0 = 2 and κ0 = 8 and with ω = 0. Figure
2 on the other hand shows the evolution of the norm ∥x(t)∥
of the closed-loop system (1)-(5) subject the extra inputs
ω given in (40)-(41) on the left for ε = 0 and on the right
for ε = 1.5.

5. CONCLUSION

This paper presented a new control design for chain of inte-
grators of any length subject to external disturbances. The
proposed design ensures global finite time stabilization in
the undisturbed case as well as input-to-state stabiliza-
tion in the disturbed case. The proposed control design
generalizes the newly established low-power homogeneous
high-gain estimation approach given in [Moreno, 2021]
into the context of stabilization of linear systems via low-
power high-gain methodologies Astolfi et al. [2017]. Future
work will extend this result to a more general class of
nonlinear systems. Extensions will also aim to combine
the proposed low-power high-gain homogeneous approach
with the bi-limit homogeneity-based tools introduced in
[Andrieu et al., 2008] in attempt to achieve fixed-time
stabilization with a time of convergence featuring the high-
gain parameter as a tuning parameter.

APPENDIX

Let us recall some technical results and well-known prop-
erties of continuous homogeneous functions.

Lemma 1. (Young’s inequality)For any real numbers x, y ∈
R, p ∈ (1,+∞), we have:

|x||y| ≤ |x|p
p + (p−1)|y|

p
p−1

p . (42)

Lemma 2. [Cruz-Zavala and Moreno, 2019, Lemma 4]
Let η : Rn → R and γ : Rn → R+ be two continuous homo-
geneous functions, with vector of weights r = [r1, . . . , rn]
and degree m, satisfying the following holds:

{x ∈ Rn\{0} : γ(x) = 0} ⊆ {x ∈ Rn\{0} : η(x) < 0} .
(43)

Then, there exists λ∗ ∈ R such that, for all λ ≥ λ∗ and for
all x ∈ Rn\{0}, we have:

η(x)− λγ(x) < 0. (44)
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Fig. 1. On the left: the evolution of the states x0(t), x1(t), and x2(t) for the initial condition [3, 5, 2]⊤ and for κ0 = 2.
On the right: The logarithmic scale evolution of the norm ∥x(t)∥ of the closed-loop system (1)-(5) in blues line for
κ0 = 2 and in red line for κ0 = 8, with the initial condition [3, 5, 2]⊤.
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Fig. 2. The logarithmic scale evolution of the norm of the closed-loop system (1)-(5) in blues line for κ0 = 2 and in red
line for κ0 = 8, with the initial condition [3, 5, 2]⊤, ω given in (40)-(41) and ε = 0 (on the left) and ε = 1.5 (on the
right).

Lemma 3. [Cruz-Zavala and Moreno, 2019, Lemma 5]
Let V1 : Rn → R and V2 : Rn → R be two continuous
functions homogeneous of degrees m1 > 0 and m2 > 0,
respectively, with vector of weights r = [r1, . . . , rn]. If V1

is positive-definite, then for every x ∈ Rn, we have:

c1V
m2
m1
1 (x) ≤ V2(x) ≤ c2V

m2
m1
1 (x), (45)

where c1 = min
{z:V1(z)=1}

V2(z) and c2 = max
{z:V1(z)=1}

V2(z).
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