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Abstract

RNAs composed of Triplet Repeats (TR) have recently attracted much attention
in the field of synthetic biology. We study the mimimum free energy (MFE)
secondary structures of such RNAs and give improved algorithms to compute
the MFE and the partition function. Furthermore, we study the interaction of
multiple RNAs and design a new algorithm for computing MFE and partition
function for RNA-RNA interactions, improving the previously known factorial
running time to exponential. In the case of TR, we show computational hardness
but still obtain a parameterized algorithm. Finally, we propose a polynomial-time
algorithm for computing interactions from a base set of RNA strands and conduct
experiments on the interaction of TR based on this algorithm. For instance, we
study the probability that a base pair is formed between two strands with the
same triplet pattern, allowing an assessment of a notion of orthogonality between
TR.

Keywords: RNA folding, RNA interactions, triplet repeats, dynamic programming,
NP-hardness
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1 Introduction

RNAs composed of Triplet Repeats (TR) have attracted much attention, and har-
bour promises in the field of synthetic biology, due to their demonstrated capacity
to self-assemble into droplets [1, 2]. Those can in turn be used to compartmentalize
cellular processes, thereby creating a “clean room”, free of the natural cellular clut-
ter, where synthetic circuits can be executed without interference. The exact process
underlying this phenomena is still the object of ongoing investigations, but it is hypoth-
esized that repetitive RNAs may induce Liquid-Liquid Phase separation mediated by
unstable/transient structures. Repetitive RNAs are also found at the origin of severe
Neurological Triplet Expansion Diseases (TED), including Friedreich attaxia [3] and
Triplet Repeat Diseases (TRD) such as Huntington disease [4]. For multiple TEDs
and TRDs, overly expanded RNAs have been observed to aggregate into RNA foci,
leading to a sequestration of RNA binding proteins. Local secondary structures and
interactions are impacted by the repeat, and generally believed to contribute to the
pathogenicity and treatment efficiency. To study those phenomena in silico, and in
particular the impact of the repeated motif and number of repeats on aggregates, one
needs to predict the MFE structure of potentially large RNAs, and many-body inter-
actions. Recently, coarse-grained simulations showed a disparity between odd or even
numbers of triplet repeats [5] as well as extensions to quadruplet and non-redundant
tandem repeats [6].

RNA folding by energy minimization is a classic algorithmic problem in Bioinfor-
matics, historically solved in time Ω(n3) using dynamic programming [7, 8]. Despite
recent suggestions for heuristics [9], the best algorithm to date to solve energy min-
imization has runtime O(n2.8603) [10], and both its implementation and extension
beyond a base-pair maximization setting represent considerable challenges. Prior works
have also investigated conditional lower bounds, and found that the existence of a
O(n2−ε) algorithm would refute the Strong Exponential Time Hypothesis (SETH) [10].
Meanwhile, an O(nω−ε) algorithm would disprove the k-clique conjecture, with ω <
2.373 being the matrix multiplication exponent [10, 11].

RNA-RNA interaction prediction represents an equally relevant, yet computation-
ally substantially more involved algorithmic problem. For a fixed number of interacting
strands, polynomial-time algorithms have been proposed. For example, by excluding
so-called zig-zag joint conformations, Alkan et al. [12] proposed a polynomial-time
algorithm for the interaction of two strands, while also showing NP-hardness for the
case where we include these conformations. In the unbounded case, Dirks et al. [13]
gave a factorial-time algorithm for computing the partition function (PF) over multiple
strands. Additionally, it was shown that energy minimization in this setting is APX-
hard (and by that NP-hard) [14], even for a very simple energy model. The problem is
very much the object of ongoing investigations at different level of granularities, with
striking recent results [15].

In this work, we show that the repeated nature of RNA can be exploited to obtain
substantially improved algorithms for several problems. First, we show that the MFE
of a triplet-repeat RNA can be predicted in linear time, both with respect to base
pair maximization and Turner energy model, and is realized by either the open chain
or a single helix. By a change of algebra, the DP scheme can be used to calculate the
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partition function. We then consider the interaction of multiple triplet repeats and
propose improved algorithms for the general (non-triplet) case as well as algorithms
specifically for the interaction of TR. For the latter case, we show NP-hardness in a
reasonable energy model. We then propose a polynomial-time algorithm for the setting
where we are given a “soup” of strands instead of a fixed set, and, using this algorithm,
conduct experiments on the probability that a base pair is folding, interacting with
another identical sequence or interacting with a different sequence.

2 Definitions and Problem Statement

2.1 Definitions

RNA sequence and folding. An RNA sequence (or just sequence) is a word s ∈
{A, C, G, U}+. The length of s is denoted by |s| and the i-th position of s by si. A
position on a sequence is also called a base. We associate to each base si its letter
by l(si). We define P := {{C, G}, {A, U}, {G, U}} as the set of admissible base pairs. A
(pseudoknot-free) secondary structure S is a set of unordered pairs of bases, hereunder
called base pairs, such that:

• each base pair is a Watson-Crick or Wobble pair, i.e. for all {si, sj} ∈ S,
{l(si), l(sj)} ∈ P ;

• each base is involved in at most one base pair, i.e. for all bases si, |{p ∈ S | si ∈
p}| ≤ 1;

• S is pseudoknot-free, i.e. there are no {si, sj}, {sk, sℓ} ∈ S with i < k < j < ℓ;
• each base pair encloses at least θ bases, i.e. if {si, sj} ∈ S, then j − i > θ. The
minimal base pair span is usually denoted by θ, and we use θ := 3 unless explicitly
specified.

We denote by Ω(s), or in short Ω whenever clear from the context, the set of all
pseudoknot-free secondary structures over sequence s.

We associate each secondary structure S ∈ Ω to a free energy, according to an
energy model E : {A, C, G, U}+ × Ω → R. For example, in the base pair model Ebp,
we simply count the number of base pairs in S, hence set Ebp(s, S) = −|S|. More
advanced energy models reason about the free energy introduced by motifs occurring in
the secondary structure, such as the loops considered by the Turner nearest-neighbor
model [16].

Interactions. A strand is an RNA sequence which is identified as a unique object in
a set. In other words, in a set of strands R, we can have two strands s ̸= r that consist
of the same sequences, that is l(si) = l(ri) for all i ∈ {1, ..., |s| = |r|}, but still are
different objects. To describe the interaction of multiple strands, we are given a set R
of strands, where m := |R|.

A circular permutation π : R → {0, ...,m − 1} of a strand set R is a permutation
of all elements in R except for one fixed strand s∗, which is fixed to position 0.
Then, the bases are naturally ordered by si <π rj ≡ s < r ∨ (s = r ∧ i < j). We
define Oπ as the set of all tuples of bases (s1i1 , ..., s

k
ik

) such that there is a j with

sjij <π sj+1
ij+1

<π ... <π skik <π s1i1 <π ... <π sj−1
ij−1

.
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Fig. 1 The same secondary structure on a strand set with three strands drawn in two different
circular permutations. The strands are depicted by the green, red and orange lines while blue lines
indicate base pairs. Gray lines connect subsequent strands and depend on the strand permutation.

A secondary structure S of a strand set R is a set of base pairs {si, rj} from strands
in s, r ∈ R such that {l(si), l(rj)} ∈ P , each base appears in at most one base pair
and each intra-strand base pair encloses at least θ bases, i.e. {si, sj} ∈ S → j − i > θ.

The polymer graph of a secondary structure S and a circular permutation π on R
is a graph G = (V,E) with V := {si | s ∈ R, 1 ≤ i ≤ |s|} and E := S ∪ {{si, si+1} |
s ∈ R, 1 ≤ i < |s|} ∪ C := {{s|s|, r1} | (π(s) + 1) mod |R| = π(r)}. The edges E − S
are drawn in a cycle (naturally induced by the circular permutation), while the edges
in S are drawn as straight lines between the bases. Examples for the polymer graphs
of a single secondary structure under two different circular permutations can be found
in fig. 1.

Two strands s, r are connected if there is a path from s1 to r1 that does not use
edges from C. A secondary structure is connected if all of its strands are connected.
Note that connectedness is independent of the circular permutation π.

A secondary structure S of a strand set R is called pseudoknot-free if there is a
circular permutation π such that there are no crossing lines in the polymer graph, or
formally, there are no two base pairs {si, tk}, {uℓ, rj} ∈ S with (si, uℓ, tk, rj) ∈ Oπ.
The set of all pseudoknot-free secondary structures over a strand set R is denoted by
Ω(R).

As for the folding, we associate to each S ∈ Ω(R) a free energy E : 2{A,C,G,U}
∗×Ω→

R. In the base pair model, apart from the number of base pairs p of base pairs, we also
add a strand association penalty Kassoc for each of the (m − ℓ) strand associations,
where ℓ is the number of connected components (also called complexes) of S. Thus,
the free energy of S ∈ Ω in this model is defined as E(R,S) = −p + (m− ℓ)Kassoc.

2.2 Computational problems

For a single strand, two of the most classical problems in RNA bioinformatics are:

Minimum Free Energy (MFE) under Energy model E
Input: RNA sequence s
Output: Minimum free-energy minS∈Ω(s) E(s, S)
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Fig. 2 The periodicity of triplet repeats RNAs (TR) induces multiple symmetries. leading to drastic
simplifications of certain algorithmic problems.Here, the blue and red regions of the TR sequence are
identical.

Partition Function under Energy model E
Input: RNA sequence s + positive temperature T in Kelvin (K)

Output: Partition function Zs :=
∑

S∈Ω(s) exp
{

−E(s,S)
kT

}
where k = 1.987 · 10−3kcal.mol−1.K−1 is the Boltzmann constant.

In the multi-strand setting, we focus on energy minimization. In Dirks et al. [13],
the authors adopt a thermodynamic perspective on the free energy of a secondary
structure over multiple strands, such that potential rotational symmetries require an
adjustment of the computed value. For the MFE, we focus on a more algorithmic
perspective, where all rotationally symmetric structures are elements of a search space,
and a simple base pair energy model. In our main algorithmic problem of interest, we
are given a set of strands and are looking for the minimum free energy of the secondary
structure over these strands:

MFE Strand Interaction
Input: Set of strands R0

Output: minS∈Ω(R0) E(R0, S)

In a more applied setting in the field of synthetic biology, we consider a set of RNA
strands composed out of triplet repeats to be present such that a sufficient subset
thereof will self-assemble into droplets. Hence, we assume having a ’soup’ of RNA
strands in question as a basis for the formation of RNA droplets that will serve as
point of departure.

Therefore, we consider here a slightly different setting, where the number of occur-
rences of each triplet/strand is unconstrained beyond the total number m of interacting
strands. This allows to study situations where the strands concentrations are in excess,
so that sequences can be locally seen as infinitely available often within a set (or
“soup”) R of strands. We then look for the best structure over m strands that all
appear in R. Each sequence in the soup can appear zero or multiple times in a
secondary structure. More formally:

MFE Strand Soup Interaction
Input: Set of sequences R = {r1, ..., rp}, m ∈ N encoded in unary
Output: mint1∈R,...,tm∈R minS∈Ω({t1,...,tm}) E({t1, ..., tm}, S)

2.3 Triplet repeats RNAs and their properties

Triplet repeat RNAs (TR). Of special interest to us are RNA sequences that
are composed of triplet repeats (TR), that is, they have the form (X · Y · Z)k for

5



X,Y, Z ∈ {A, C, G, U} and k ∈ N+. We will describe how we can improve the general
algorithms for the above computational problems in the case of TR.

An algorithmically consequential property of any region [si, sj ] in a TR sequence
is the following.

Observation 1. For a triplet repeat sequence s and 1 ≤ i ≤ j ≤ |s|, one has

[si, sj ] = [si mod 3, sj−(i−i mod 3)].

In other words, we can shift any region three positions to the left or right, and
in particular we can shift it to the beginning of the sequence, as visualized in fig. 2.
That way, the index that usually denotes the beginning of the considered sequence in
a dynamic programming (DP) algorithm can be restricted to values 1, 2 and 3. Hence,
the length of the value range is constant and not linear anymore, which gives an easy
linear improvement of running time and storage for MFE as well as PF computation.

We also note that TR sequences can be encoded exponentially more compact
than general sequences. Each TR sequence is uniquely identified by its pattern
XY Z ∈ {A, C, G, U}3 and its number of repeats k. In other words, 6 + ⌈log2 k⌉ bits are
enough to encode a TR sequence with k repeats. We will refer to this encoding as
the compact encoding, while the explicit encoding consists of the complete sequence
s ∈ {A, C, G, U}3k. The latter can also be seen, equivalently in terms of asymptotic
complexity, as a compact encoding where k is encoded in unary.

Looking into more structural properties of triplet repeats, we can observe that,
since each base repeats after two other bases, there cannot be a base pair that encloses
exactly 2 bases. Thus, requiring two (θ = 2) or three (θ = 3) enclosed bases between
any base pair is equivalent:

Observation 2. A secondary structure S for (XY Z)k fulfills minimum base pair span
θ with θ ≡3 2 if and only if it fulfills minimum base pair span θ + 1.

Finally, if we consider the graph G = ({A, C, G, U}, P ), where P is the set of allowed
base pairs, we can see that it does not contain any triangles. From this we can observe:

Observation 3. For any triplet sequence (XY Z)k, there is a letter V ∈ {X,Y, Z},
that we call the covering letter, that is contained in all base pairs, i.e. V ∈ p for all
p ∈ S and S ∈ Ω.

3 Single-Stranded Triplet Repeats

Our goal is to specify the exact MFE, and the corresponding secondary structure,
when given a triplet pattern XY Z and length k of our TR sequence s, as well as the
minimum base pair span θ. This will give us a very efficient way of computing the
MFE in this simple setting.

3.1 Linear time solution for base pair maximization

We first consider the properties of the MFE structure for TR RNAs in a base pair
maximization model, where the free energy Ebp of a secondary structure S ∈ Ω is such
that Ebp(s, S) = −|S|.
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We can first prove an upper bound on the number of base pairs in a TR sequence:

Lemma 1. Consider a TR sequence s := (XY Z)k and a minimum number of enclosed
bases θ ≥ 0, such that ⌊ θ+1

3 ⌋ ≤ k. We have Ebp(s, S) ≤ k − ⌊ θ+1
3 ⌋ for any S ∈ Ω(s).

Proof. Without loss of generality, let Z be the covering letter of s. Any non-empty
secondary structure has an innermost base pair which must respect the minimum base
pair span θ. For θ = 2, which is equivalent to θ = 3 by observation 2, as well as for
θ = 4, at least one Z base must remain unpaired, and increasing θ by 3 will result into
one new unpairable Z base. Thus we know that at least ⌊ θ+1

3 ⌋ Z bases will remain

unpaired and at most k − ⌊ θ+1
3 ⌋ Z-bases are pairable. Since every base pair must

involve a Z base, we can conclude.

We now show that this upper bound is almost always tight. To this end, first notice
that for all triplet patterns XY Z such that {{X,Y }, {X,Z}, {Y, Z}}∩P = ∅, no base
pair can be built and thus the maximum value is trivially 0. We call TR sequences of
such patterns non-folding, and all other TR sequences folding.

Lemma 2. For θ ∈ {0, 1} and k > 1, we always have E(s, S) = k for any secondary
structure S over a folding sequence s = (XY Z)k.

Proof. If {X,Z} ∈ P , connect X and Z in each triplet. Else, connect the outermost
pair (say without loss of generality {X,Y }). We obtain the inner sequence (Y ZX)k−1

(with k − 1 > 0) and we can proceed as above since {Y,X} ∈ P .

For the more natural case θ > 1, the upper bound from lemma 1 is not always
tight. The next lemma exactly specifies the MFE and its structure:

Lemma 3. Let θ > 1. The minimum MFE structure of a folding sequence (XY Z)k

has value

• k− 1− θ−1
3 , if ({X,Z} ̸∈ P ∧ (θ + 3k) ≡6 4)∨ ({X,Y }, {Y,Z} ̸∈ P ∧ (θ + 3k) ≡6 1)

• k − ⌊ θ+1
3 ⌋, otherwise

Furthermore, a minimum MFE structure is obtained by a single helix of base pairs
of one letter pair p. If both {X,Z} ∈ P and one of {X,Y } and {Y, Z} ∈ P , we set
p := {X,Z} if (θ + 3k) ≡6 4 and p := {X,Y } (or p := {Y, Z}) if (θ + 3k) ≡6 1;
otherwise, we set p to the letters of an arbitrary pairable base pair.

Proof. We start by showing that the corresponding secondary structures achieve the
claimed score. By observation 2, we only need to consider θ ≡3 0 and θ ≡3 1.

First assume {X,Z} ∈ P and {X,Y }, {Y,Z} ̸∈ P . We will derive the other cases
from this one. Consider a large stacking of X−Z bases. If θ = 3, we only cannot match
the X −Z pair of the innermost repeat in the case k ≡2 1 and we only cannot match
the Z−X pair between the two innermost repeats in the case k ≡2 0. For all other pairs
of repeats we obtain exactly two base pairs and hence we get k − 1 = k − ⌊ θ+1

3 ⌋ base

pairs. Inductively, let us show that we can obtain k−⌊ θ
′+1
3 ⌋ base pairs for θ′ := θ+ 3.

In other words, we only need to show that by increasing θ by 3, we get one base pair
less. If the innermost base pair is X −Z, its enclosed region starts and ends with a Y
and there are currently at least θ + 1 free enclosed bases (because the region is of the
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form Y (ZXY )θ/3), and by deleting the X − Z base pair, we obtain XY (ZXY )θ/3Z,
that is θ + 3 enclosed bases. Else, for a Z − X base pair, the region has the form
(XY Z)θ/3. After deleting the innermost base pair Z − X, the new enclosed region
starts and ends with a Y (the region is of the form Y Z(XY Z)θ/3XY ), so there are
at least θ + 4 enclosed bases. Thus we can achieve k − ⌊ θ+1

3 ⌋ base pairs.
If θ ≡3 1, we distinguish two equivalence classes: In the first, k is even and θ ≡6 1

or k is uneven and θ ≡6 4, and in the second equivalence class, we have the other two
cases.

For θ = 4, for k ≡2 1, our lemma only claims k−2 base pairs. We can indeed leave
the innermost repeat as well as the next Z − X pair unpaired, and greedily create
stackings outside of this region, obtaining k−2 base pairs. For k ≡2 0, We can proceed
as for the even case in θ = 3.

Consider θ + 3 now. We add an unpaired triplet in the middle of the sequence.
Now, the number of base pairs is equal to the case k − 1 (of opposite parity) with θ
enclosed bases.

We thus established the lower bound for the {X,Z} ∈ P case. For the “otherwise”-
case, lemma 1 already gives us the required upper bound. Therefore, we only need to
argue about the upper bound k − 1 − θ−1

3 in the case that {X,Y }, {Y, Z} ̸∈ P and
(θ + 3k) ≡6 1. Assume a secondary structure that achieves more base pairs. Firstly,
we cannot have any multiloops or exterior loops since that would imply two regions
of unpaired enclosed bases, which then only allows k − 2⌊ θ+1

3 ⌋ ≤ k − 1 − θ−1
3 base

pairs. Additionally, for each secondary structure S with i < j′ and k > 0 such that
{i, j′} ∈ S and the interval [j′ + 1, j′ + 3k] only consists of unpaired bases, we can
delete the base pair {i, j′} and instead add base pair {i, j′ + 3k} without reducing the
number of base pairs. In other words, for any interval, it is always better to pair the
leftmost base to the rightmost possible base than to any other interior base. We thus
only need to consider the canonical structures of X − Z/Z −X-stackings.

Consider an odd k with all base pairs in the canonical way (for θ = 4). The
innermost triplet repeat bases X and Z have to stay unpaired, as well as the Z and X
which are adjacent to that repeat. The innermost base pair X −Z now has 7 = θ + 3
enclosed bases. We thus have k − 2 base pairs. Inductively, for θ′ := θ + 6, the next
two innermost base pairs will have θ + 3 < θ′ and θ + 3 + 2 < θ′ enclosed bases, thus
are both not available.

Consider an even k with all base pairs in the canonical way (for θ = 7). The two
innermost triplet repeats have to stay unpaired, as well as the Z and X which are
adjacent to that repeat. The innermost base pair X − Z now has 10 = θ + 3 enclosed
bases. The rest of the argument is exactly as above.

If {X,Z} ̸∈ P , we can assume without loss of generality that {X,Y } ∈ P (the
arguments are symmetrical for {Y,Z} ∈ P , and we assumed to have a folding strand).
We can reduce any such instance (XY Z)k to (Y ZX)k−1 (by letting out the leftmost X
and the rightmost Y and Z, and implicitly pairing these outermost X and Y , which is
always optimal). Thus, all results can be directly obtained from the case {X,Z} ∈ P ,
by changing odd and even. The upper bound can also be derived by that.

Setting θ = 3, we get the following corollary:
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Fig. 3 Two distinct optimal secondary structures for GCU5, for θ = 3.

Corollary 1. In the base pair maximization model, if θ = 3, the MFE structure of
any TR sequence (XY Z)k has k − 1 base pairs.

Determining the MFE is thus a simple calculation taking logarithmic time in the
(explicit) size of the triplet repeat sequence. From this we can derive:

Theorem 1. MFE prediction for compactly encoded TR in the base pair maximization
model can be solved in linear time.

The structure itself can then be computed by the following algorithm:
The algorithm clearly runs in linear time, when the input is an explicit (unary)

encoding of the triplet repeats. Its correctness directly follows from lemma 3.

Remark 1. The optimal secondary structure does not need to be unique. In particu-
lar, for a simple energy model, the number of optimal secondary structures for triplet
repeats can even be exponential. For example, consider the sequence (GCU)k as illus-
trated in fig. 3. When constructing the base pairs from outside to inside, in every step,
we can choose between adding the base pairs G-U, U-G, or the base pairs G-C, C-G. This
decision can be repeated ⌊k2 ⌋ − 1 times (assuming θ = 3), giving Ω(2k/2) different
optimal secondary structures.

3.2 Minimum Free-energy in the Turner model

For the Turner model, we will argue that the optimal structures obtained for BP
maximization remains optimal for the Turner nearest neighbor model under reasonable
assumptions, satisfied by current versions of the model [16]. We first show a helpful
lemma:

Lemma 4. Assume that a TR region of s where the covering letter appears k times
has B branches. Then the number of base pairs is at most k −B.

Proof. Let V be the covering letter of s. By observation 3, for each base pair {si, sj},
either l(si) = V or l(sj) = V . Furthermore, each of the B branches contains one
unpairable V -base (since θ = 3). Thus, there are only k −B pairable V -bases and we
conclude.

We show the absence of multiloops, i.e. structural motifs consisting of B ≥ 2
branches, in the Turner MFE, with some simplifications. Their free energy contribution
is composed of an initiation penalty α, a value β for each branch, and an asymmetry
penalty γ. The overall contribution of a multiloop S is given by E(s, S) = α + βB +
γC + Ein, where Ein is the MFE of the interior secondary structure of the branches.
We will assume N := minV,W∈{X,Y,Z}:{V,W}∈P EV,W to be the best contribution of a
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Input: String r := (XY Z)k, minimum number of enclosed bases θ
Output: Secondary structure S ∈ Ω with E(S) ≤ E(S′) for all S′ ∈ Ω
i← 1, j ← 3k, S ← ∅;
if No possible base pair patterns then

return S
end
p← arbitrary {a, b} ∈ P such that a, b ∈ {X,Y, Z};
if {X,Z} ∈ P and k mod 2 = 1 then

p← {X,Z};
end
if {Y,Z} ∈ P and k mod 2 = 0 then

p← {Y,Z};
end
if {X,Y } ∈ P and k mod 2 = 0 then

p← {X,Y };
end
while j − i > θ do

if {r[i], r[j]} = p then
S ← S ∪ {{i, j}};
i← i + 1;
j ← j − 1;

end
if r[i] ̸∈ p then

i← i + 1;
end
if r[j] ̸∈ p then

j ← j − 1;
end

end
return S

Algorithm 1: Computing the MFE of Triplet Repeat RNAs

single base pair appearing in a stacking in our triplet pattern, and we will not consider
dangling ends etc.

Lemma 5. Any Turner-MFE secondary structure S∗ over a TR sequence does not
contain any multiloop, assuming β ≥ N,α > −β, γ ≥ 0.

Proof. Let S be a multiloop structure on region s with k appearances of the covering
letter and let S∗ be a stacking on the same region. Their free energy values are related
as follows:

E(s, S) ≥ α + βB + γC + (k −B)N (1)

> −β + βB + (k −B)N (2)

= (k − 1)N + (β −N)(B − 1) (3)

≥ (k − 1)N (4)
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≥ E(s, S∗) (5)

where (1) comes from our above observation and lemma 4, (2) from α > −β and γ ≥ 0,
(4) from β ≥ N and B ≥ 2 (by definition of a multiloop). For inequality (5), first
notice that S∗ contains k−1 base pairs by corollary 1. As noticed in remark 1, we can
choose which base pair is used in S∗ without affecting the optimality. In particular,
we can always choose the base pair consisting of the letters V,W that optimize their
contribution, such that EV,W = N . We get E(s, S∗) ≤ (k − 1)N .

Remark 2. The above assumptions are satisfied by the Turner 2004 energy model
(α = 9.25, β = −0.63, γ = 0.91 and N ≤ −0.93), as seen in the NNDB [16].

lemma 4 also excludes secondary structures with multiple exterior faces. Thus, by
the above two lemmata, we can conclude that the MFE in the Turner model is also of
the canonical form described in the BP maximization setting.

3.3 Linear-time computation of the partition function

In the context of computing the partition function, one can write a weighted context-
free grammar which, for any given pattern XY Z, simultaneously generates all TR
sequences along with their associated set of secondary structures Ω.

As an example, a context-free grammar associated with the pattern CAG would be:

SG
C → ( ·A SC

G ·A ) | ( ·A SC
G ·A ) SG

C | ·C ·A SG
G | ·C ·A ·G

SC
G → ( SG

C ) | ( SG
C ) ·A SC

G | ·G SC
C | ·G ·C

SG
G → ( SG

C ) ·A ·G | ( SG
C ) ·A SG

G | ·G SG
C

SC
C → ( ·A SC

G ·A ) ·A | ( ·A SC
G ·A ) SC

C | ·C ·A SC
G

Here, the terminal SG
C generates all secondary structures for the RNA sequence

(CAG)k for all k > 0; SC
G the structures of (GCA)kGC for k ≥ 0; SG

G the structure of
G(CAG)k for k > 0; and SC

C corresponds to the pattern (CAG)kC for some k > 0.
Following standard methodologies in enumerative/analytic combinatorics [17], such

a grammar can be generically translated into a system of functional equations involving
weighted generated functions for each non-terminal:

SG
C (z) = β z4 SC

G(z) + β z4 SC
G(z)SG

C (z) + z2 SG
G(z) + z3

SC
G(z) = β z2 SG

C (z) + β z3 SG
C (z)SC

G(z) + z SC
C (z) + z2

SG
G(z) = β z4 SG

C (z) + β z3 SG
C (z)SG

G(z) + z SG
C (z)

SC
C (z) = β z3 SC

G(z) + β z2 SC
G(z)SC

C (z) + z2 SC
G(z)

where β := e1/kT is the Boltzmann weight associated to base pairs and, in particular:

SG
C (z) =

∑
s∈L(SG

C )

β#BP(s) z|s| =
∑
k≥0

∑
s∈L(SG

C )
such that |s|=3 k

e
#BP(s)

kT z3k =
∑
k≥0

Z(CAG)k z
3k

11



The partition function of Z(CAG)k can then be obtained as [z3k]SG
C (z), the coeffi-

cient of degree 3k in SG
C (z). Since the system of functional equations is algebraic, the

coefficients of each generating function obey a linear recurrence with polynomial coef-
ficients [18], which can be efficiently [19] and effectively computed [20]. We obtain an
equation of the form:

Z(CAG)k = P1(k)Z(CAG)k−1 + P2(k)Z(CAG)k−2 + · · ·+ Pd(k)Z(CAG)k−d

where each Pi is a polynomial in k, and d is a constant . Z(CAG)k can then be computed
using a linear number of arithmetic operations. This property holds for other triplets
and thus:

Theorem 2. The partition function of a TR can be computed in Θ(k) arithmetic
operations.

4 Interaction of Triplet Repeats

We now consider a set R0 of triplet repeat strands. Our goal is to find the minimum
free energy secondary structure for R0. We defined the computational problem MFE
Strand Interaction in section 2.2. In the base pair maximization model, this gives
exactly the same definition as in [14], where the authors show that the problem is
APX-hard (and by that NP-hard) for the general (non-triplet) case. On the other
hand, Dirks et al [13] gave a factorial-time algorithm for computing the partition
function over multiple strands. In this section, we improve both results: we show that
the problem is NP-hard in a reasonable energy model even if restricted to triplet
repeats of one pattern; we give an exponential-time, instead of factorial, algorithm for
the problem.

However, our exponential-time algorithm is designed for solving the MFE from
an algorithmic perspective, as discussed in section 2.2, and does not account for the
rotational symmetries to the free energy described by Dirks et al. [13]. Consequently,
the DP scheme will not necessarily compute the MFE value in this model, although
on a practical level it is likely that the symmetry-corrected structure can be found
by investigating a small number of suboptimal structures. Moreover, for the partition
function, we can account for the algorithmic overcounting and additionally, if desired,
for penalties associated with rotational symmetries.

4.1 General RNA-RNA interactions

The main difficulty of the problem lies in the fact that we need to consider all possible
circular permutations of strands. Instead of trying all of these circular permutations
one by one and applying a classical single-stranded folding algorithm, we build up the
values for all possible circular permutations while exploring all possible joint secondary
structures. More specifically, we will consider structures consisting of a leftmost strand
and its position, a rightmost strand and its position, as well as a set of strands which
have to appear in between the leftmost and rightmost strand (without specifying the
ordering of these strands).

12
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Fig. 4 Visualization of the structures used to compute the MFE in the (a) general setting, (b) TR
setting and (c) strand soup setting.

We can formulate DP recurrences as follows: Let Esi,rj be the minimum free energy
induced by the base pair between the i-th base of strand s and the j-th base of strand
r. In our DP equations, R ⊆ R0 denotes the subset of still available strands, s ∈ R
the leftmost strand, r ∈ R the rightmost strand, 1 ≤ i ≤ |s| the current position in
s, 1 ≤ j ≤ |r| the current position in r, and c ∈ {0, 1, 2} indicates whether s and r
will be connected by a base pair (0: no base pair allowed, 1: at least one base pair
required, 2: a base pair is not required; if the left and right strand are equal, then
c = 2). The structures with which our algorithm works are visualized in fig. 4 (a). The
main recurrences are as follows:

MR,si,rj ,c = min




MR,si+1,rj ,c if i + 1 ≤ |s|
mint∈R,c′∈{0,1} MR−{s},t1,rj ,c′ − 1c′=0Kassoc if i + 1 > |s| and c ̸= 1

+∞ else{
Esi,rj + M̄R,si,rj ,2 if c ̸= 0

+∞ if c = 0

minR′,t,k Esi,tk + M̄R′,si,tk,2 + M̄(R−R′)∪{s},tk,rj+1,c

where

M̄R,si,rj ,c =


MR,si+1,rj−1,c if i + 1 ≤ |s| and j − 1 ≥ 1

mint∈R−{s,r},c′∈{0,1} MR−{s,r},t1,rj−1,c′ − 1c′=0Kassoc if i + 1 > |s| and j − 1 ≥ 1

minu∈R−{s,r},c′∈{0,1} MR−{s,r},si+1,u|u|,c′ − 1c′=0Kassoc if i + 1 ≤ |s| and j − 1 < 1

mint,u∈R−{s,r},c′∈{0,1} MR−{s,r},t1,u|u|,c′ − 1c′=0Kassoc else

and −Kassoc is a reward for an additional complex. We give this reward each time
we “choose” a new strand from R and decide that it should not be connected to the
other extremity of the interval (c′ = 0). The M̄R,si,rj ,c equation gives the MFE for
the region ]si, rj [ (i.e. [si+1, rj−1] if i + 1 ≤ |s| and j − 1 ≥ 1, and introducing new
strands in the other cases).
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Choosing an arbitrary strand s, the minimum free energy can be finally computed
by

E∗(R) = (m− 1) ·Kassoc + min
r∈R−{s},c∈{0,1}

MR,s1,r|r|,c

and the optimal secondary structure can be obtained through backtracking.
For the initialization, we can set M{s},si,sj = 0 for valid indices j − i ≤ θ for any

s ∈ R. We now prove that MR,si,rj is computed correctly. By slight abuse of notation,
we write si ∈ S for si ∈

⋃
P∈S P .

Definition 1. An interval for this DP is denoted by [R, si, rj , c] where s, r ∈ R,
1 ≤ i ≤ |s|, 1 ≤ j ≤ |r| and c ∈ {0, 1, 2}. An interval [R′, tk, uℓ, c

′] is included in
interval [R, si, rj , c], written [R′, tk, uℓ, c

′] ≼ [R, si, rj , c], if one of the following holds:

• R′ ⊂ R and |R′| < |R| − 1
• R′ ⊂ R, |R′| = |R| − 1 and s = t ∨ r = u
• R′ = R, s = t, r = u, i ≤ k and ℓ ≤ j.

If we replace both inequalities by strict inequalities in the last point, the interval is
strictly included and we write [R′, tk, uℓ, c] ≺ [R, si, rj , c].

Each such interval is associated to a minimum free energy as follows:

Definition 2. Let I := [R, si, rj , c]. Ω(I) is the set of all secondary structures that
are valid for this interval, or more formally, a secondary structure S must fulfill:

• S ∈ Ω(R)
• sk, rℓ ̸∈ S for any k < i and ℓ > j
• c = 1 implies the existance of a base pair between s and r (that is, {sk, rℓ} ∈ S for

some i ≤ k ≤ |s|, 1 ≤ ℓ ≤ j) and c = 0 implies that there is no such base pair.

The minimum free energy of I is defined as MFE(I) := minS∈Ω(I) E(R,S).
The minimum free energy of an open interval MFE(]R, si, rj , c[) is the minimum

free energy over all secondary structures and all intervals I ′ ≺ I where c specifies the
connectedness of s and r.

We also observe that an optimal structure is optimal for any substructure that
includes all its base pairs:

Observation 4. If E(R,S) = MFE([R, si, rj , c]) and S only contains base pairs in
some interval [R′, tk, uℓ, c] ≼ [R, si, rj , c], then S = MFE([R′, tk, uℓ, c]).

We first show that our helper equation M̄ is computed correctly:

Lemma 6. Assuming that MR′,tk,uℓ,c′ = MFE(I ′ := [R′, tk, uℓ, c
′]) for all I ′ ≼ I :=

[R, si, rj , c], we have M̄R,si,rj ,c = MFE(]R, si, rj , c[).

Proof. We distinguish four cases:

• Case 1: i + 1 ≤ |s| and j − 1 ≥ 1. In that case, for any I ′ ≺ I, we have
I ′ ≼ [R, si+1, rj−1, c] and thus MFE(I ′) ≥ MFE([R, si+1, rj−1, c]) = M̄R,si,rj ,c by
assumption. Thus MFE(]R, si, rj , c[) = M̄R,si,rj ,c.
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• Case 2: i + 1 > |s| and j − 1 ≥ 1. For any I ′ ≺ I, there is a t ∈ R − {s} and
a c′ ∈ {0, 1} with I ′ ≼ [R − {s}, t1, rj−1, c

′]. It thus suffices to minimize over the
strands R−{s, r} while taking into account a possible strand disconnection reward.
We have mint∈R−{s,r},c′∈{0,1} MR−{s},t1,rj−1,c′ − 1c′=0Kassoc = MFE(]R, si, rj , c[).

• Case 3: i + 1 ≤ |s| and j − 1 < 1. This case is completely symmetrical to Case 2.
• Case 4: i + 1 > |s| and j − 1 < 1. For any I ′ ≺ I, there are t, u ∈ R − {s, r}

with I ′ ≼ [R − {s, r}, t1, u|u|, 2]. It thus suffices to minimize twice over the strands
R − {s, r} while taking into account a possible strand disconnection reward. We
have mint,u∈R−{s,r},c′∈{0,1} MR−{s,r},t1,u|u|,c′ − 1c′=0Kassoc = MFE(]R, si, rj , c[).

Lemma 7. The algorithm computes the table entries correctly, i.e. MR,si,rj ,c =
MFE([R, si, rj , c]) for all R ⊆ R0, si, rj ∈ R and c ∈ {0, 1, 2}.

Proof. We proceed by induction over the well-founded relation ≼. Regarding the ini-
tialization, clearly no base pair can exist over an empty strand set, as well as over
one strand where the number of enclosed base pairs between i and j is less than θ.
Therefore, these table entries are correctly initialized by 0.

Let us assume that all MR′,tk,uℓ,c with [R′, tk, uℓ, c] ≼ [R, si, rj , c] except MR,si,rj ,c

itself have been computed correctly.

• Case 1: si ̸∈ S. If i+1 ≤ |s|, we have E(R,S) = MFE([R, si+1, rj , c]) = MR,si+1,rj ,c

by observation 4 and our induction hypothesis.
Else, we first assume c ̸= 1. Consider the strand t that follows s in the polymer graph
of S and consider the value c′ that specifies connectivity between t and r in S. Since
i is unpaired, we again have E(R,S) = MFE([R − {s}, t1, rj , c′]) − 1c′=0Kassoc =
MR−{s},t1,rj ,c − 1c′=0Kassoc as above.
Finally, if c = 1, we look for the MFE of a structure in [R, si, rj , c] where s and r
are connected by a base pair. Since there is only one base in s remaining and we
leave it unpaired, there is no such structure and thus MFE([R, si, rj , 1]) = +∞.

• Case 2: S = {{si, rj}} ∪ S′, where S′ is the best structure for any I ′ ≺ [R, si, rj , c]
with s and r arbitrarily connected (that is, ]R, si, rj , 2[). First assume c ̸= 0. In this
case, we have E(R,S) = Esi,rj + MFE(]R, si, rj , 2[) = Esi,rj + M̄R,si,rj ,2, where we
could apply lemma 6 because of the induction hypothesis.
Now assume c = 0. We minimize over all structures such that s and r are not
connected, but require {si, rj} ∈ S. Thus MFE([R, si, rj , 0]) = +∞.

• Case 3: S = {si, tk} ∪ S′ ∪ S′′ for some tk ̸= rj , where S′ (resp. S′′) is the best
structure for any I ′ ≺ [R′, si, tk, c] (resp. I ′ ≺ [R′′, tk, rj , c]), with R′ being all
strands between s and t in the polymer graph of S, and R′′ being all strands between
t and r.
Note that s and t are connected, thus in S′ the connectivity bit will be set to 2. On
the other hand, the connectedness of t and r (for structure S′′) is by transitivity of
connectivity determined by the connectedness between s and r, that is, c. We then
have MFE([R, si, rj , c]) = Esi,tk + MFE(]R′, si, tk, 2[) + MFE(]R′′, tk, rj , c[).
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We now briefly discuss the running time. The number of table entries is bounded
by 2m ·n2, where n :=

∑
r∈R |r| is the size of the concatenated sequence. The last case

of the DP equation dominates the running time for computing one entry. In the worst
case, we iterate over 2|R| subsets and n entries, which gives O(2|R| ·n). Partitioned by
subset size, we get

m∑
t=0

(
m

t

)
n2 · 2tn = n3 ·

m∑
t=0

(
m

t

)
2t = n3 ·

m∑
t=0

(
m

t

)
1m−t2t = n3 · (1 + 2)m = 3m · n3

which bounds the total running time. Together with lemma 7, we conclude.

Detailed conditions and edge cases. When we minimize over all subsets, the
following conditions must be respected:

{s, t} ⊆ R′ ⊆ R ∧ 1 ≤ k ≤ |t| ∧ (k = |t| → c ̸= 1)

∧(s = t→ (k > i + θ ∧R′ = {s}))
∧(r ∈ R′ → (t = r ∧ k < j ∧R′ = R ∧ c ̸= 0))

We minimize over all possible triples (R′, t, k). A set R′ must clearly include s and t
to form a valid interval and k must be a valid position of t. If si is paired to t|t|, s and
j are disconnected (c ̸= 1). If s = t, we must respect θ and there is only one strand in
R′. Finally, r ∈ R′ implies that si forms a base pair with some base of r (thus t = r
and R′ = R), connectivity has to be allowed (c ̸= 0) and tk must be in the interval
(k < j). These conditions are sufficient and match our algorithm.

When we minimize over two new inner strands (in the last case of M̄), we clearly
cannot choose the same strand for t and u, except if |R| = 3. Furthermore, we can
clearly only minimize over new inner strands if such strands are still available. If
|R| ≤ 3, there may only be one available strand, or none at all, in which case the
energy contribution is 0. We omit these edge cases in the presentation of the algorithm
to maintain readability.

Theorem 3. MFE Strand Interaction can be solved in time O(3m · n3).

4.2 Translation to Partition Function

For computing the partition function, we must take account of the arising rotational
symmetries to avoid an “undercounting” of symmetrical secondary structures, before
the canonical overcounting correction. We present an approach that allows to do that
without iterating over all circular permutations, and can even incorporate an entropic
symmetry correction as considered by [13].

We will always assume that secondary structures are connected and pseudoknot-
free, and thus they have a unique pseudoknot-free permutation. In this context, we
denote by {a, b} ≤ {c, d} that base pair {a, b} includes base pair {c, d}, that is, c and
d are not outside of the interval [a, b].

Problem of over- and undercounting of symmetries. We introduce the notion
of indistinguishability and will use the symbol ∼ to denote it. Two strands s, t are
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indistinguishable if their sequences are identical. Two sets R,R′ of strands are indis-
tinguishable if there is a bijection f : R → R′ such that s ∼ f(s) for all s ∈ R.
Two pairs ((sk)k∈[m], S), ((s′k)k∈[m], S

′) of a family of strands and a secondary struc-

ture are called indistinguishable if sk and s′k are indistinguishable for all k ∈ [m] and
S′ = {{s′ki , s′ℓj } | {ski , sℓj} ∈ S}. An r-symmetric secondary structure is a secondary

structure S with pseudoknot-free permutation s1, ..., sm such that for all i ∈ [r],

((sk)k∈[m], S) ∼ ((s(k+i·m/r) mod m)k∈[m], S)

In other words, there are r cyclic shifts that the DP algorithm will not be able to dis-
tinguish. For a secondary structure which is not r-symmetric for any r > 1, our DP
algorithm would count that structure m times (once for each “entry point” between
two strands), because all cyclic shifts are distinguishable for the DP algorithm. How-
ever, in an r-symmetric structure, there are only m/r distinguishable entry points,
and thus the secondary structure will only be counted m/r times. This danger of
“undercounting” poses serious algorithmic challenges. We say that a secondary struc-
ture has rotational symmetry r if it is r-symmetric and that it has maximum rotational
symmetry r if it has rotational symmetry r and for all r′ > r, it is not r′-symmetric.

Let Ω be the set of all secondary structures, Ωr be the set of all secondary structures
with rotational symmetry r, and Ωmax=r be the set of all secondary structures with
maximum rotational symmetry r. We can first show a simple lemma which states that
r-symmetric secondary structures have a multiple of r as their maximal rotational
symmetry.

Lemma 8. If S ∈ Ωr, then S ∈ Ωmax=t with t mod r = 0.

Proof. Any secondary structure has a maximum rotational symmetry. Assume for
contradiction that for this maximum rotational symmetry t for S, t mod r ̸= 0. We
claim that S has rotational symmetry s := lcm(t, r) > t.

First of all, we know that m mod r = 0 and m mod t = 0, since otherwise there
could not be an r- (resp. t-) symmetry. Together with m > max(r, t), it follows that
m > s and that m mod s = 0. We will assume that m = s, and if m is a multiple of
s, we can just consider m

s strands to be one strand.
The repeat lengths s/r and s/t are coprime and s/r has a multiplicative inverse

modulo s/t, i.e. there is some y such that ys/r mod s/t = 1. In particular, iys/r mod
s/t = i. Consider two arbitrary strands a1, ad in the pseudoknot-free permutation
a1, ..., as. Take y such that ys/r ≡ d mod s/t. The structures of a1 and ays/r have to
be identical by r-symmetry, and by t-symmetry, ays/r has to be identical to ad. Thus
the structures of all strands are identical and we have an s-symmetry.

Another simple observation is that a higher symmetry implies a symmetry of its
divisor:

Observation 5. For i, r ∈ N+, if S ∈ Ωi·r, then S ∈ Ωr.

We now define some partition function values that we want to compute:

Zmax=r =
∑

S∈Ωmax=r

exp{−E(S)/kT}
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Zr =

⌊m
r ⌋∑

i=1

m

i · r
·

∑
S∈Ωmax=i·r

exp{−E(S)/kT}

Assume there is a set R/r of strands where each sequence appears exactly r times
less than in R. There is at most one such distinguishable set, and it has size m/r. It
suffices to compute a variant of the partition function over R/r. Namely, an extended
secondary structure is a pair of a secondary structure S′ and a marked base pair
p ∈ S′. Any pair of a secondary structure and a base pair is now part of the structure
space Ω̄(R/r). As for the standard secondary structure, we can restrict the space to
structures of particular symmetries, e.g. Ω̄max=i(R/r). The free energy of an extended
secondary structure is defined as Ē((S′, p)) = r · E(S′).

Intuitively, all predecessors of the marked base pair p (including itself), namely
all q ≤ p, will be flipped such that the first base of the pair is moved to the next
symmetrical occurrence of this base. Therefore, we will sometimes refer to marked
base pairs as all q ≤ p, and not only p itself.

Cyclic shift operations on extended secondary structures. It will be convenient
to talk about cyclic shifts of extended secondary structures. Each strand is moved
one position to the right, and the last strand is moved to the front. Additionally, if
the order of the bases of a base pair changes due to the cyclic shift, we change the
markedness property (including parents) of the base pair. Two examples can be found
in fig. 5.

An extended secondary structure (S′, p) is connected if and only if:

• S′ is connected and
• p is interior or S′ − {q ∈ S′ | q ≤ p} is connected.

The partition function over this space is defined as follows:

Z̄(R/r) =

⌊m
r ⌋∑

i=1

m

i

∑
S∈Ω̄max=i(R/r)

exp{−Ē(S)/kT}

An i-rotational secondary structure is overcounted by a factor of m
i , which we account

for in the above definition. Additionally, due to lemma 8, we only need to consider
rotational symmetries which are multiples of the considered symmetry.

It is easy to extend the DP to capture this space: We add a marked bit b which is
1 if the marked base pair is in the region, and 0 else. An unpaired position does not
change the marked bit. If b = 1 and we are in the case of a single stack, we add the
two values for the case when the stack base pair is marked (in that case, the inner
region has b = 0) or not. For b = 0, we do not change anything. If b = 1 and we are in
the case of a multiloop, we add the value for the case where the first multiloop base
pair is marked and the rest of the multiloop as well as the inner region has b = 0,
to the value where the marked base pair is in the inner region and the value for the
case where the rest of the multiloop has b = 1. In the end, we query the complete
region with b = 1. These extensions do not increase the asymptotic complexity of our
standard DP algorithm. We can thus derive:
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Fig. 5 Two extended secondary structures, where marked base pairs are colored orange. On the
left side (red box), the innermost marked base pair is inter-strand (top), and therefore after the
cyclic shift (middle), no base pair is marked, which results in an unconnected 2-symmetric structure
(bottom). On the right side (blue box), the innermost marked base pair is intra-strand (top), and
therefore after the cyclic shift (middle), it is still marked. This base pair ensures the connectedness
of the 2-symmetric structure (bottom).

Lemma 9. Z̄(R/r) can be computed in time O(3m · n3).

We now describe a bijection between Ωr(R) and Ω̄(R/r). Fix an arbitrary strand
a ∈ R. Consider S ∈ Ωr(R). Relabel the strands to s0, ..., sm−1, where s0 = a and the
other strands follow in the ordering of the unique pseudoknot-free permutation. Let
pS be the innermost base pair in S such that one base is on a strand between s0 and
sm/r−1, and one is not. Our function f : Ωr(R)→ Ω̄(R/r) is defined as

f(S) = ({{sbi , t
c mod m

r
j } | {sbi , tcj} ∈ S ∧ 0 ≤ b <

m

r
}, pS)

Lemma 10. S ∈ Ωr(R) is connected if and only if f(S) is connected.

Proof. Assume S is connected. Consider f(S) = (S′, p) and assume that S′ is not
connected. Consider one connected component of strands in S′ and call it C ′. In S, by
its r-symmetry, these strands repeat in components C0, ..., Cr−1. The union of these
components does not contain any outgoing base pairs, which gives a contradiction to
the connectedness of S. Thus, S′ is connected.

Now assume that S′ −{q ∈ S′ | q ≤ p} is not connected. Consider a new extended
secondary structure S′′ that is obtained by cyclic shifts of S′ until the strand of the
second base of the innermost marked base pair is in front. Now, every marked inter-
strand base pair is flipped in S′′, and thus not marked anymore. Marked intra-strand
base pairs however remain marked. If the innermost marked base pair is inter-strand,
then in S′′, no marked base pair exists, which corresponds to r separate connected
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components, a contradiction to the connectedness of S. Thus, the original innermost
marked base pair must be intra-strand. We conclude that f(S) is connected.

For the other direction, assume f(S) = (S′, p) is connected. If S′ − {q ∈ S′ | q ≤
p} is connected, each of the r symmetric repeats consist of at most one connected
component. The marked base pair p then connects these connected structures with
each other. Thus, S is connected.

If S′ − {q ∈ S′ | q ≤ p} is not connected, there is a marked interior base pair.
By connectedness of S′, there is a circular shift of the pe rmutation, where marked
exterior base pairs are unmarked, such that the structure without the marked base
pair is connected. We can then proceed as above.

Lemma 11. S ∈ Ωr·i(R) if and only if f(S) ∈ Ωi(R/r).

Proof. Assume S ∈ Ωr·i. By observation 5, there are r symmetrical substructures and
each of them is i-symmetric, and we thus get f(S) ∈ Ωi(R/r). For the other way,
f−1 replicates the (by assumption i-symmetric) structure r times, thus the resulting
structure is r · i-symmetric.

Lemma 12. The function f : Ωr(R) → Ω̄(R/r) is a bijection, preserves free energy
and connectedness, and decreases the rotational symmetry by a factor of 1

r .

Proof. Connectedness follows from lemma 10, the decreasing of the rotational symme-
try follows from lemma 11, and the preservation of the free energy is immediately clear
since each base pair in f(S) is weighted with a factor of r, and in S, it is replicated r
times. It thus remains to show that f is a bijection.

We first show injectivity. Consider two different r-symmetric secondary structures
S, T ∈ Ωr(R). Consider f(S) = (S′, pS) and f(T ) = (T ′, pT ). We order the strands
with respect to the correct permutation of S, with r0 = a. First we notice that if the
unique pseudoknot-free permutations of S and T differ, so do the unique pseudoknot-
free permutations of S′ and T ′, which would imply S′ ̸= T ′.

So we can assume that their pseudoknot-free permutation is the same. Because S
and T are r-symmetric and different, there is a position spi for 0 ≤ p < m

r which is
differently paired in S and T . Assume without loss of generality that spi ∈ S. If spi ̸∈ T ,
we have spi ∈ S′ but spi ̸∈ T ′ and we are done. Else, if spi is matched differently in S′

and T ′, we are done again. We can thus assume that spi is matched to the same sqj for
0 ≤ q < m

r in S′ and T ′. Since spi is differently matched in S and T , we must have

{spi , s
q
j} ∈ S and {sp+

m
r

i , sqj} ∈ T , or the other way around. Thus, pT has to be in the
region enclosed by base pair {spi , s

q
j}, but pS cannot be in this region, because both

endpoints of the base pair are between strands s0 and s
m
r . Thus f(S) ̸= f(T ).

We now show surjectivity. Consider an arbitrary E ∈ Ω̄r, that is, a pair E = (S′, P ).
Now build a secondary structure S as follows: For easch base pair {spi , s

q
j}, if it does

not enclose P , add itself and its r − 1 symmetrical copies to S. For the case that it

encloses P , assume wlog p < q. We add the base pair {sqj , s
p+m

r
i } and its r symmetrical

copies to S. It is easy to see that f(S) = (S′, P ).
Finally notice that the function is total, i.e. it is defined for every S ∈ Ωr(R).
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By lemma 12, we can now rewrite Zr as follows:

Zr =

⌊m
r ⌋∑

i=1

m

i · r
·

∑
S∈Ωmax=i·r(R)

exp{−E(S)/kT}

=

⌊m
r ⌋∑

i=1

m

i · r
·

∑
S∈Ω̄max=i(R/r)

exp{−Ē(S)/kT}

= Z̄(R/r)

This quantity can be computed in timeO(3m·n3) by lemma 9. We can finally conclude:

Lemma 13. Zr can be computed in time O(3m · n3).

Using this result, we will proceed by showing that Zmax=r can also be computed
efficiently.

Lemma 14. Zmax=r can be computed in time O(3m · n3 ·m), for any r.

Proof. We can compute Zmax=r(R) as follows. We create the following DP:

Z[t] =
t

m
·

Zt −
⌊m

t ⌋∑
i=2

m

i · t
· Z[i · t]


Indeed, we can inductively verify the correctness of the equation, namely we can proof
Z[t] = Zmax=t, with respect to the energy contribution E′, for all t ∈ {1, ...,m}. For
the base case t = m, notice that

Z[m] =
m

m
· (Zm − 0) = Zm =

∑
S∈Ωmax=m

exp{−E′(S)/kT} = Zmax=m

Inductively, assume that Z[t′] is correctly computed for all m ≥ t′ > t. We have

Z[t] =
t

m
·

Zt −
⌊m

t ⌋∑
i=2

m

i · t
· Z[i · t]


=

t

m
·

⌊m
t ⌋∑

i=1

m

i · t
·

∑
S∈Ωmax=i·t

exp{−E′(S)/kT} −
⌊m

t ⌋∑
i=2

m

i · t
· Zmax=i·t



=
t

m
·


⌊m

t ⌋∑
i=1

m

i · t
·

∑
S∈Ωmax=i·t

exp{−E′(S)/kT}

−
⌊m

t ⌋∑
i=2

m

i · t
·

∑
S∈Ωmax=i·t

exp{−E′(S)/kT}


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=
t

m

m

t

∑
S∈Ωmax=t

exp{−E′(S)/kT}

=
∑

S∈Ωmax=t

exp{−E′(S)/kT}

= Zmax=t

By lemma 13, each Zt can be computed in time O(3m · n3). This dominates the
running time to compute one entry. Since we compute at most m entries, an overall
running time in O(3m · n3 ·m) follows.

Now that we have the values for Zmax=r, we can compute the value of the partition
function Z:

Z =
∑
S∈Ω

exp{−E(S)/kT} =

m∑
r=1

∑
S∈Ωmax=r

exp{−E(S)/kT} =

m∑
r=1

Zmax=r

By lemma 14, we can compute each Zmax=r in time O(3m ·n3 ·m). Since we sum over
m such entries, we finally obtain the following result:

Theorem 4. The partition function Z over m strands can be computed in time O(3m ·
n3 ·m2).

Remark 3. It is easy to see that for each rotational symmetry r, we can add the
symmetry correction kT log r as described by Dirks et al [13] to the DP equations, if
desired. Thus, the above result also holds for this variant of the partition function.

Remark 4. The described technique directly translates to the other algorithms that
we will present in the following sections. It can be applied to obtain the exact parti-
tion function for the triplet repeat setting (section 4.3) and the strand soup setting
(section 4.5).

4.3 Strand interactions for triplet repeats

We now consider the special case where all strands in our pool are triplet repeats. We
call this restricted problem MFE Triplet Repeat Strand Interaction. Assume
first that all strands have the same pattern and that we have a bounded number of
different strand-lengths p := |{i | ∃r ∈ R : |r| = i}|. Regardless of the ordering of
the strands, the resulting sequence of the concatenated strands is identical. We can
therefore focus on the length of the strands and disregard their actual sequence.

We do not iterate over all subsets of R, since we only need to distinguish the
number of strands of a certain length in the subset, in a count-sort-like manner. Thus
we can represent a subset R′ ⊆ R by (a1, ..., ap) where ai := |{r ∈ R′ | |r| = ni}| is
the number of strands of size ni in R. An example is given in fig. 4 (b). As argued in
the following, the exponent only depends on p:

We need table entries for each possible configuration of remaining number of occur-
rences and for specifying the remaining number of bases on the leftmost and rightmost
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strand. Using n := maxr∈R |r|, we bound the number of table entries by

n2 · max
s1,...,sp:s1+...+sp=m

p∏
i=1

sp ≤ n2 ·
(
m

p

)p

The running time for computing one table entry is dominated, as for the previous
section, by the last case. We need to iterate over O((m

p )p) configurations to split our
region into two strand sets, p lengths to determine the length of the strand on which
we split and n positions for the index of the split. We finally obtain a running time of
O((m

p )2p · n3 · p), which is an XP algorithm parametrized by p.

Theorem 5. There is an XP algorithm for MFE Triplet Repeat Strand Inter-
action parametrized by the number of different lengths p, running in O((m

p )2p ·n3 ·p)
time.

Notice that this algorithm can be extended to the case where we have different
triplet patterns; the parameter then becomes the number of non-identical strands.

4.4 Computational hardness

In this subsection, we show that the parametrized approach seen before is, in a sense
and under standards assumptions, the best we can hope for. Moreover, even for triplet
repeats, the problem of deciding whether there is a secondary structure for R0 with
a free energy below a certain threshold t remains NP-complete, for a reasonably-
intricate energy model. Note that for the general (non-triplet) case, this has already
been shown in [14]. Our result is surprising in the sense that the concatenation of TR
strands always yields the same sequence, and the only additional difficulty compared
to the single-stranded case arises from the fact that we do not know the indices of the
strand borders.

Our reduction requires more than the naive base pair maximization model, but
to keep the reduction simple, we will not use the full Turner energy model. Instead,
we posit that each base pair gives a free energy reward of Ebp = −m

3 , where m > 0
is the number of interacting strands, while subdividing an interval into two intervals
that are not strand-disjoint gives a multiloop penalty of Kmulti = +1. Furthermore,
each connected component reduces the strand association penalty by −Kassoc := −1.
Finally, every hairpin loop must enclose at least three unpaired bases (θ = 3). This
model can be extended into the Turner model by setting equal energy values for interior
and hairpin loops, and accounting for the multiloop penalty in the corresponding
energy values.

Let us define our main decision problem:

Triplet Repeat Multi-Strand MFE
Input: A set R of explicitly encoded triplet repeat strands of the same pattern
and a target free energy value t.
Output: Is there a secondary structure S ∈ Ω(R) with E(R,S) ≤ t?
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C A G C A G C A G C A G C A G C A G

Fig. 6 Optimal secondary structure corresponding to a valid summing triple (1, 2, 3). The 1 ·3+2 ·3
bases on the left perfectly match to the 3 · 3 bases on the right.

Even if the following reduction does not work in the base pair maximization model, a
DP algorithm for base pair maximization in this setting seems unlikely, as, under the
assumption that P ̸= NP, one would not be able to generalize the algorithm to more
complex energy models.

We will show NP-hardness by reduction from the following problem:

Summing Triples
Input: List L of distinct positive integers s1, ..., s3n, encoded in unary
Output: Is there a partition of L into triples (ai, bi, ci) such that ai + bi = ci?

The problem was shown to be strongly NP-hard [21]. We define v :=
∑3n

i=1 si.
The reduction is as follows: We create a strand ri := (CAG)si for each integer si.

Hence, we have n = m
3 = −Ebp. We denote by R the set of strands. We set the target

minimum free energy to t := −(3v + 1)n.
Assume that there is a partition into summing triples. Our secondary structure is

built such that for each triple a + b = c, we add the base pairs

(a1, c|c|), (a3, c|c|−2), (a4, c|c|−3), (a6, c|c|−5), ..., (a|a|−2, c|c|−|a|+3), (a|a|, c|c|−|a|+1),

(b1, c|c|−|a|), (b3, c|c|−|a|−2), ..., (b|b|−2, c3), (b|b|, c1)

Note that all base pairs are labeled with C−G or G−C. fig. 6 visualizes the secondary
structure for the exemplary triple 1 + 2 = 3. We claim that S is unpseudoknotted for
the circular permutation a1 · b1 · c1 . . . an · bn · cn and that E(R,S) = t.

Since any two triples of strands are not connected, we have exactly n connected
components. Each connected component consists of one large stacked loop with inner-
most base pair (b|b|, c1) (i.e. we do not violate the constraint that every innermost base
pair must include three unpaired bases, because the base pair is inter-strand). Since
a+ b = c, the outermost base pair is (a1, c|c|). There is no multiloop involved in S, so

each triple (ai, bi, ci) contributes a free energy of 2|c| ·Ebp−Kassoc = −6n|c|−1. Since
all triples are correctly summing, we have

∑n
i=1 ci = 1

2v. Thus indeed the minimum
free energy is at most

n∑
i=1

−6n|ci| − 1 = −6n

n∑
i=1

|ci| − n = −6n · 1

2
v − n = −3nv − n = t
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Before showing the opposite direction, we introduce the following simple lemmata:

Lemma 15. If some C or G base remains unpaired in a secondary structure S,
E(R,S) > t.

Proof. First notice that in every valid secondary structure, all A bases remain unpaired
(since there are no U bases). There are 2v bases of C/G in total. Since we assumed
that one of them is unpaired, there can be at most v − 1 base pairs. We can have at
most 3n complexes, so the strand association penalty is reduced by at most 3n. Thus
we have E(R,S) ≥ −3n(v − 1)− 3n = −3vn > −(3v + 1)n = t.

Lemma 16. If S contains a hairpin loop, E(R,S) > t.

Proof. A hairpin loop must enclose at least three bases. Since in the CAG triplet pattern
any two consecutive bases involve at least one C or G, we can apply lemma 15 and
conclude.

Now assume for an arbitrary S ∈ Ω that E(R,S) ≤ t. We first show that there
must be exactly n connected components, each with three strands. Assume that there
is a connected component with less than three strands. If it has only one strand, it
must contain a hairpin loop, and by lemma 16, E(R,S) > t. If the complex contains
two strands, first of all the two strands have a different number of triplet repeats,
since all si are distinct. This implies that if the innermost loop is inter-strand (if it is
intra-strand we again apply lemma 16) and has no multiloop, some G or C base must
be unpaired (since base pairs can then only be between the two strands, but one of
the strands contains at least one G and one C base more than the other). Then, by
lemma 15, E(R,S) > t. If it has a multiloop, there have to be two innermost base
pairs, one of which must be intra-strand, and we can apply lemma 16.

Since we ruled out complexes of one or two strands and the total number of strand
is divisible by 3, we know that if there is a complex with four strands, our secondary
structure will have < n connected components. Thus the best achievable score will be
−n + 1 − 3nv > t. Hence, any S ∈ Ω with E(R,S) ≤ t consists of n complexes, each
consisting of three strands ai, bi, ci with |ai| < |bi| < |ci|. We claim that for all i ∈ [n],
|ai|+ |bi| = |ci|.

By contradiction, assume |ai|+ |bi| ≠ |ci| and first consider the case that there are
no multiloops. This implies that there is only one innermost base pair. If it is intra-
strand, we obtain a contradiction to E(R,S) ≤ t by lemma 16. If it is inter-strand, all
remaining base pairs must be between one of two strands d, e on the one side and the
third strand f on the other side. Since |d|+ |e| ≠ |f | for any such partition, one of the
two sides will be left with at least one unpaired G and one unpaired C, and we apply
lemma 15.

Now we consider the case of multiloops. Any multiloop where the cutpoint between
the two recursive structures is on a strand border (and thus is not penalized) implies
an innermost base pair in both recursive structures, and since by pigeonhole principle
one of the two recursive structures is single-stranded, we have a hairpin loop and
E(R,S) > t by lemma 16. In the other case, we have a multiloop penalty of +1. Thus
we can lower bound E(R,S) ≥ −n− 3nv + 1 > t.
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Fig. 7 Schematic illustration of the dynamic programming scheme for the Strand Soup Interaction
model (base pair-based energy model). The main case/matrix (Left) minimizes free-energy over all
secondary structures for a sequence over m strands, beginning with a [i, |s|] suffix of the strand s, and
ending with a prefix [1, j] of a strand r. Akin to the Nussinov recursions, the decomposition partitions
the space of secondary structure based on the base-pairing status (paired/unpaired) and partner (if
relevant) of the first nucleotide si, creating further base pairs through recursive calls. An auxiliary
matrix (Right) uniformly handles cases where r or s may be fully depleted and one or several new
strand(s) need to be inserted. For both matrices, m strands remain to be inserted. This number is
updated and distributed over recursive calls to reflect the addition of a strand. A connectivity bit c,
if set to true, forces the connection of r and s (either directly or transitively), ultimately ensuring
that the strands end up forming a connected graph. Not shown here is the classic Θ(n3) PD scheme
to obtain the MFE of single-strands, visually indicated by mountains above.

This finishes the proof that |ai| + |bi| = |ci|, and we get |ai|
3 + |bi|

3 = |ci|
3 . By the

construction, each strand r corresponds to one integer |r|
3 in the set of integers of our

original instance. Thus, ( |ai|
3 , |bi|

3 , |ci|
3 ) for all complexes {ai, bi, ci} for 1 ≤ i ≤ n is a

valid set of summing triples.
The reduction is polynomial-time, since in the Summing Triples problem, the

integers are encoded in unary. Membership in NP follows by the fact that we can
evaluate the energy given a secondary structure and its unpseudoknotted circular
permutation.

Theorem 6. Unary Triplet Repeat Multi-Strand MFE is NP-complete.

4.5 Predicting strand soup interactions

We now consider the computational problem MFE Strand Soup Interaction as
defined in section 2.2. In comparison to above, we no longer need to keep track of
the (exponentially many) subsets, or consider any strand association penalty since we
require one single complex, but must enforce global connectivity of the strands set.
Towards that goal, we introduce a connectivity bit c such as c = 1 indicate that the
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two outer strands have to be (transitively) connected in the corresponding interval,
and c = 0 if they do not need to be connected (but can still be).

Let Esi,rj be the energy contribution of pairing the i-th base of strand s to the
j-th base of strand j, and let Ms[i, j] be the classical single-stranded minimum free
energy in the interval from i to j in strand s. Then the minimum free-energy (BP
energy model) of a secondary structure over m strands subject to c, flanked by a suffix
[i, |s|] of a strand s and a prefix [1, j] of j, obeys:

Msi,rj ,m,c = min



Msi+1,rj ,m,c

mink Esi,sk + Ms[i + 1, k − 1] + Msk+1,rj ,m,c

min t∈R
1≤k≤|t|

m′+m′′=m−1

Esi,tk + Msi+1,tk−1,m′,0 + M tk+1,rj ,m′′,c

mink Esi,rk + Msi+1,rk−1,m,c + Mr[k + 1, j]

(6)

with the following auxiliary table, responsible for the introduction of new strands
whenever those identified by s and r have been entirely consumed :

Msi,rj ,m,c =




mint∈R M t1,rj ,m−1,1 if c = 0 and m > 0

Mr[1, j] if c = 0 and m = 0

∞ if c = 1

∣∣∣∣∣∣∣ if i > |s|


mint∈R Msi,t|t|,m−1,1 if c = 0 and m > 0

Ms[i, |s|] if c = 0 and m = 0

∞ if c = 1

∣∣∣∣∣∣∣ else if j < 1

Msi,rj ,m,c otherwise

(7)

The minimum free energy can be finally computed by

E∗(R,m) = min
s,r∈R

Mm−2,s1,r|r|,1 (8)

and the optimal secondary structure can be obtained through backtracking. We
initialize M1,si,sj ,2 = 0 for all j − i ≤ θ.

4.5.1 Proof of correctness

Let us first establish the correctness of the DP scheme which, despite similarities with
that of section 4.1, implements a different decomposition strategy.

Theorem 7. For any strand set R and number m of strands, the value found in
E∗(R,m), following its computation through Equations (6), (7) and (8), is the MFE
of a connected secondary structure over m strands.

Proof. We proceed by induction. We consider tuples of the form (m, s,−i, r, j, c), and
introduce an increasing lexicographic relation ≺ over tuples, defining a total order
over such tuples. We then hypothesize that, for any tuple (m′, s′,−i′, r′, j′, c′) such
that (m′, s′,−i′, r′, j′, c′) ≺ (m, s,−i, r, j, c), the following properties holds:
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• Mm′,s′i′ ,r
′
j′ ,c

′ contains the MFE of m − 1i>|s| − 1j<1 connected strands, starting
and ending with si and rj respectively, both of which may be empty. Additionally,
if c = 1, the MFE is restricted to structures (transitively) connecting si to rj ;

• Mm′,s′i′ ,r
′
j′ ,c

′ contains the MFE of m connected strands, starting and ending with
non-empty si and rj respectively. Additionally, if c = 1, the MFE is restricted to
structures (transitively) connecting si to rj .

In both of the above cases, a +∞ value is expected whenever constraints are overall
unsatisfiable.

First, let us observe that base cases only concern M , and let us discuss the
correction of the equation in this context:

• If i > |s| (si is actually empty), and c = 1 (s needs to be connected to r, but no
such base pair has been formed at this stage), then M represents the MFE over
an empty set of secondary structure, and should be set to ∞ as seen in the DP
equation. The same reasoning holds when j < 1 (rj empty), and c = 1;

• If i > |s| (si empty), m = 0 (no strand left to insert) and c = 0 (no obligation to
pair si to rj), then the only energy of a structure stems from the MFE over rj (if
non-empty), found in Mr[1, j] as correctly returned by the equation;

• If j < 1 (rj empty), m = 0 (no strand left to insert) and c = 0 (no obligation to
pair si to rj), then the only energy of a structure stems from the MFE over si (if
non-empty), found in Ms[i, |s|] as correctly returned by the equation.

Next, we use the two induction hypotheses to show the correctness of the value
found in Mm,si,rj ,c and, following that, the correctness of Mm,si,rj ,c. To show that
Mm,si,rj ,c is correct, let us observe that, within any secondary structure, the first
position (i in strand s) is either unpaired, or paired to some position k within a strand:

• If i is left unpaired, the MFE is that of the (possibly empty) [i + 1, |s|] suffix of
s. From the induction hypothesis, such an energy can be found in Mm,si+1,rj ,c,
correctly computed since (m, s,−(i + 1), r, j, c) ≺ (m, s, i, r, j, c);

• If i is paired to some k in the interval [i + θ + 1, |s|] of s, then the MFE of any
such structure includes the contribution Esi,sk of the base pair (i, k) in s, the MFE
of the structure enclosed by the base pair (→ Ms[i + 1, k − 1]) and the MFE over
m strands beginning with the remainder of s (→ Mm,sk+1,rj ,c, correctly computed
since i < k + 1);

• If i is paired to some k in a non-flanking strand t, then the MFE is obtained as the
sum of the BP energy Esi,tk , and the MFE contributions of two structures, being
assigned m′ and m′′ strands such that m′ + m′′ + 1 = m, respectively enclosed
(→ Mm′,si+1,tk−1,0; c = 0 since a BP (i, k) already connects s and t) and preceded

(→Mm′′,tk+1,rj ,c; c is propagated since t may already be connected to r through s)
by (si, tk);

• If i is paired to some k in r, then the MFE consists in the energy Esi,rk of the
BP (si, rk), augmented by the MFE over the remainder of r and s under (si, rk)
(→Msi+1,rk−1,m,c) and the independent folding of the portion [k+1, j] of r following
rk (→Mr[k + 1, j]).
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These 5 cases can be verified to match the contributions in Equation (6). Moreover,
the decomposition is complete, as it covers all possible outcomes for si. We conclude
that minimizing over those yields the correct value, i.e. the Mm,si,rj ,c, and that the

correctness of M and M for each (m′, s′,−i′, r′, j′, c′) ≺ (m, s,−i, r, j, c) implies the
correctness of M for (m, s,−i, r, j, c).

We are then only left to establish the correctness of Mm,si,rj ,c, noting that its only
difference in comparison with Mm,si,rj ,c is its support for empty flanking regions. We
focus on cases where one or several additional strands needs to be inserted and can
be (m > 0):

• If s is fully depleted (i > |s|), then a strand t needs to be introduced to replace the
leftmost flanking s. Since t is new it needs to be connected to r and, transitively, to
each of the m− 1 other strands that will be inserted by subsequent calls (→ c = 1).
The MFE of such a structure can therefore be found in M t1,rj ,m−1,1, correctly
computed by the equation since (m− 1, t,−1, r, j, c) ≺ (m, s,−i, r, j, c);

• Similarly, if r is fully depleted (j < 1), then a strand t needs to be introduced as
the new rightmost flanking strand r. Since t is new it needs to be connected to s
and the other m − 1 other strands inserted by subsequent calls (→ c = 1). The
MFE of such a structure is found in Msi,t|t|,m−1,1, which correctly computed by the
equation since (m− 1, s,−i, t, |t|, c) ≺ (m, s,−i, r, j, c);

• If neither s nor r is depleted, then we are left to consider the structures over m
connected strands, flanked by si and rj , with connectivity bit c. The MFE of such
a structure is found in Mm,si,rj ,c, correctly computed as established above.

Having already discussed base/terminal cases, we establish the completeness of the
case decomposition and, in turn, on the correctness of the value found in Mm,si,rj ,c.
The induction step follows, and we finally conclude that the content of both Mm,si,rj ,c

and Mm,si,rj ,c match their specification.
The correctness of the MFE found in E∗(R,m) follows from the choice of two

globally-flanking strands s and r, left fully available (s1 and r|r|) while ensuring their
connectivity (c = 1). For each (s, r) pair, the MFE of such structures can be found in
Mm−2,s1,r|r|,1, so the minimization computed in Equation (8), concluding our proof.

4.5.2 Complexity

Regarding the running time the number of entries, needed to compute the DP tables
in Equations (6) and (7), is bounded by O(m · p2 · n2) entries, with n := maxs∈R |s|.
The running time to compute one table entry is dominated by the repeated evaluation
of the third line in Equation (6), where we minimize over O(m · p · n) different ways
to introduce a new strand t, figure out a base pairing partner k ∈ [1, |t|] for si, and
split m into (m′,m′′) such that m′ + m′′ = m − 1. In total, we obtain an algorithm
with running time O(n3 ·m2 · p3). We can then conclude:

Theorem 8. MFE Strand Soup Interaction over m strands, taken from a
collection of p sequences, can be solved in time O(n3 ·m2 · p3).
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Fig. 8 Partial illustration of our extended DP scheme, capturing a simple Turner-style energy model
in the strand soup paradigm. The decomposition for filling the MS matrix postulates the existence
of an enclosing base pair (i − 1, j + 1), and investigates the first paired position i′ ≥ i in the [i, |s|]
region of s: Such a position may not exist (s[i, |s|] fully unpaired), or be paired to j′′ located in s, in
a new strand t, or in r. In the latter case, the existence of two consecutive nested base pairs between
s and r represents an interaction loop (stacked pairs, bulges or interior loop), usually associated with
an energy bonus.

Remark 5. In addition to restricting the number of interacting strands, one can
extend the above algorithm to restrict the size of the concatenated sequence. This is
possible by keeping track of the current size of the sub-interval in the DP tables, and
updating these values whenever a new strand is introduced. This might be useful if the
sequences in the base set have different length, as the basic algorithm would otherwise
favor larger sequences because they usually allow for more base pairs.

Remark 6. The case of triplet repeats induces a slight improvement of the running
time. Since all strands look the same except for their length, we can use a table with
entries of the form Mm,i,j,c, where i and j denote the remaining number of bases in
the leftmost and rightmost strand. This reduces the space complexity to O(m ·n2), but
the computation of one table entry still requires the same time, giving an overall time
complexity of O(n3 ·m2 · p).

4.5.3 Incorporating a simple nearest-neighbor energy model

The DP scheme underlying Equations (6), (7) and (8) can be modified to capture a
simplified nearest neighbor model, where the energy of a secondary structure S over m
strands. It crucially requires the definition of an interaction loop between two strands
s and r delimited by two base pairs (si, rj) and (si′ , rj′) such that 1 ≤ i < i′ ≤ |s|
and 1 ≤ j′ < j ≤ |r|. We denote by ∆G(si, s

′
i, r

′
j , rj) the energy of an interaction

loop (si, s
′
i, r

′
j , rj), accessible via table lookup in popular libraries such as the Vienna

package [22]. We can then define the simplified Turner energy of a secondary structure
S as:

E(S; s1, . . . , sm) =
∑

strand si

ET (S|si ; si) +
∑

Interaction loop (si,s
′
i,r

′
j ,rj)

(stack, bulge, or interior loop)

∆G(si, s
′
i, r

′
j , rj)

where S|si represents the restriction of the (multi-strand) secondary structure S to
closed substructures occurring within the strand s.
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The MFE in such a model can be obtained through a minor update of the dynamic
programming scheme described in the previous section, where:

• Individual base pairs no longer contribute to the free-energy individually, yet still
contribute as constitutive of loops;

• Since interaction loops are characterized by a pair of directly nested base pairs, each
involving two strands, we duplicate both matrices M and M to indicate the presence

(MS and M
S
) or absence (M∅ and M

∅
) of an enclosing base pair (si−1, rj+1);

• The rules of MS need to be adapted to explicitly make the first base pair (i′, j′)
such that i ≤ i′ and j′ ≤ j, available for scoring. If no such base pair exist, then s
needs to be entirely consumed, and a new strand be allocated by subsequent calls;

• M
S

and M
∅

essentially act as above, but also respectively propagate the pres-
ence/absence of an enclosing base pair;

• The MFE contribution of a substructure formed within a region of a strand s is
now denoted as MS

s [i, j] if enclosed by a base pair (si, sj), or M∅
s [i, j] otherwise. In

the Turner energy model, those values are classically computed in time O(|s|4), e.g.
using the Zuker/Stiegler DP scheme [8].

M∅
si,rj ,m,c = min



M
∅
si+1,rj ,m,c

mink M
S
s [i, k] + M

∅
sk+1,rj ,m,c

min t∈R
1≤k≤|t|

m′+m′′=m−1

M
S
si+1,tk−1,m′,0 + M

∅
tk+1,rj ,m′′,c

mink M
S
si+1,rk−1,m,c + M∅

r [k, j]

(9)

MS
si,rj ,m,c = min



M
∅
s|s|+1,rj ,m,c

mini≤i′<j′≤|s| M
S
s [i′, j′] + Msj′+1,rj ,m,c

min t∈R
i≤i′≤|s|,1≤j′≤|t|
m′+m′′=m−1

M
S
si′+1,tj′−1,m

′,0 + M
∅
tj′+1,rj ,m

′′,c

mini≤i′≤|s|
1≤j′≤j

∆G(si−1, si′ , rj′ , rj+1) + M
S
si′+1,rj′−1,m,c + M∅

r [j′ + 1, j]

(10)

M
ξ∈{∅,S}
si,rj ,m,c =




mint∈R M

ξ

t1,rj ,m−1,1 if c = 0 and m > 0

Mξ
r [1, j] if c = 0 and m = 0

∞ if c = 1

∣∣∣∣∣∣∣ if i > |s|


mint∈R M

ξ

si,t|t|,m−1,1 if c = 0 and m > 0

Mξ
s [i, |s|] if c = 0 and m = 0

∞ if c = 1

∣∣∣∣∣∣∣ else if j < 1

Mξ
si,rj ,m,c otherwise

(11)

E∗(R,m) = min
s,r∈R

M∅
m−2,s1,r|r|,1

(12)

The complexity of this algorithm is increased to O(n4 ·m2 · p3) with n := maxs∈R |s|.
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5 Empirical studies

The goal of this section is to show how the algorithms described in the previous section
can be used to answer biologically relevant questions regarding triplet repeats. We
implemented the algorithm described in section 4.5, which hereunder we call SoupFold,
as well as its partition function equivalent, together with a (stochastic) backtracking
procedure. The source code to reproduce our analyses is available at:

https://github.com/kimonboehmer/soupfold/
Since we only limit the number of interacting strands but not their size, with-

out further restrictions, the program would prefer large strands since they usually
give more base pairs. To counteract this effect, we introduce a penalty on the length
of a strand. Note that one could also set a maximum length of the concatenated
sequence, as described in remark 5. The empirically observed running time matches
the theoretical running time well, as can be seen in fig. 9.

Regarding the stochastic backtracking, we must account for the overcounting of
rotationally asymmetric secondary structures as well as for the overcounting because
of the positioning of different connected components. We address these two issues by
rejection sampling.

In theory, it would also be necessary to adjust the overcounting correction for
rotationally symmetric structures (because they are overcounted less often) but our
experiments showed that the observed probability of encountering such rotational
symmetries is 0 for triplets with 15 repeats or more. Thus, for efficiency reasons, we
do not include this case in our rejection sampling, arguing that the changes to the
probability would be too small to observe.

5.1 Homogeneous triplet soup

We first consider the case where all strands are of the same pattern. The MFE of a
soup of homogenous triplets behaves canonically, in the sense that all folding patterns

32

https://github.com/kimonboehmer/soupfold/


1 2 3 4 5 6 7 8 9 10
0

0.25

0.5

0.75

1

m

p
Interior base pairs

Exterior homogeneous base pairs

Exterior heterogeneous base pairs

Exterior base pairs for CAG alone

Fig. 11 Probability p that a certain type of base
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in a soup {CAU20, GGG20}, or for CAG20.

Fig. 12 Exemplary MFE structure for strand
pool {(GUU)9, (CAG)9, (ACG)9} computed by Soup-
Fold with m = 3 (RiboSketch [23]).

have almost identical MFE structures (as can be expected, considering our results on
single-strand TR in section 3). Furthermore, we observed that the number of base pairs
increases canonically with the sequence length and with the number of interacting
strands (except for the case of only one strand, where we loose one base pair due to a
hairpin loop).

5.2 Heterogeneous triplet soup

More interesting observations can be made in a heterogeneous pool. We can observe
that different TR pattern strands can achieve more base pairs than the theoretical
upper bound for a homogeneous strand pool (see fig. 12).

In order to assess the capability of different strand soups to form droplets, we want
to determine the probability of a base pair in the Boltzmann ensemble being between
two strands (exterior) as opposed to folding (interior). If the strand soup consists
only of triplets of one pattern, all exterior base pairs will be homogeneous, as opposed
to heterogeneous for an interaction of two strands of different patterns. In the homo-
geneous case, we can observe an increase of exterior base pairs for increasing number
of interacting strands m, as presented by the red line in fig. 11. The probabilities in
a setting with strands of different patterns are much richer and less canonical, as can
be seen at the example of the interaction of CAU and GGG, presented by the other lines
in fig. 11. These probabilities highly depend on the number of strands, and only start
to “converge” with quite high values of m.

To obtain a broader picture, we performed stochastic backtracking on all possible
46 pairs of triplet repeat patterns {TVW,XY Z} as strand sets, with m between 2 and
5, and computed the probability of a base pair being interior, exterior-homogeneous or
exterior-heterogeneous. fig. 13 shows the probability of interior, exterior-homogeneous
and exterior-heterogeneous base pairs for all pairs of TR, from m = 2 to 4. We
can observe that the probabilities vary a lot and highly depend on the interacting
triplets. Some pairs of triplets do not form base pairs at all, in which case all three
corresponding tables have a blank entry. Usually, internal and exterior-homogeneous
base pairs behave similarly. One can also see that the probability of heterogeneous
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Fig. 13 Interaction profiles for pairs of triplets in the heterogeneous soup model.

base pairs slightly increases with increasing m. On the other hand, the probability of
observing interior base pairs is slightly decreasing.

From a synthetic biology perspective, some triplet repeats aggregate and form a
Liquid-Liquid Phase Separation, which can be used to isolate subprocesses, thereby
implementing a notion of orthogonality. In order to maximize the number of indepen-
dent tasks being performed by a modified bacteria, it would then be desirable to find
a large number of triplet repeat patterns such that the probability of heterogeneous
base pairs is low.
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For that, we can model the patterns as vertices of a graph and draw an edge if
the heterogeneous base pair probability between two patterns for m = 5 is high (we
set the threshold to 0.175). We then want to determine a maximum independent set
(MIS), i.e. the largest set of triplets that do not have a high probability of interacting
pairwise with each other. We used an exact solver [24] to obtain a MIS of size 4,
namely CAG, CCG, GAU, UAG.

We then executed our algorithm on these triplet patterns as strand soup, and could
indeed observe that the probability of exterior heterogeneous base pairs is clearly below
0.2 for values of m between 1 and 10. In fig. 10, we depict the number of base pairs that
are between two types of strands, for m = 5 and our four independent TR patterns
as strand soup. We added a bonus to the appearance of strands, to ensure that all
strands of the soup appear equally often in the constructed structures. We observe
that for three of the four triplets, for exterior base pairs, the most likely interacting
strand is of the same type.

6 Conclusion and discussion

In this work, we investigated the algorithmic aspects of folding and interactions of
triplet repeat RNA sequences, while also revisiting the general (non-triplet) setting
in the interaction setting. For the folding of individual triplets, we found that their
repetitive structure allows us to immediately characterize the MFE and partition
function value, without the need of a more time-consuming DP approach. For inter-
actions of RNA sequences, we exhibited a new algorithm with improved running time
that avoids the factorial-time iteration over all permutations and acts as a foundation
for the design of specialized algorithms, as the XP algorithm for triplet repeats. For
the “strand soup” setting, we derived a polynomial-time algorithm and demonstrated
possible uses for experiments regarding triplet repeats.

For future work, it is desirable to describe in detail how to extend the MFE
Strand Interaction algorithm to the full thermodynamic setting considered in [13].
While the extension to the Turner model does not pose any algorithmic challenges, it
would be interesting to implement a variant of the inside/outside algorithm to compute
exactly base-pairing probabilities and other expected values of additive properties.
Finally, the joint conformation space explored in this work is heavily restricted by
the existence of a non-crossing strand ordering. More complex conformational spaces
could be captured by using DP approaches akin to those used to include pseudoknots
in RNA structure prediction.
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