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CHAPTER 0

Introduction

This text comes from a course taught at the University of Paris 13 from February 1996
to June 1996, then from December 1996 to February 1997. Its objective is to bring some
clarifications on the asymptotics à used classically in wave propagation.

We give a rigorous and precise mathematical framework which allows to prove the validity
of high frequency asymptotics for wave propagation of scalar or or electromagnetic waves
(whether in vacuum or in in dielectric media), for the reflection of a wave by a boundary
(supplemented with a boundary condition), and to calculate the wave around a caustic (or a
diffractive point in the last chapter).

This rigorous mathematical framework is the microlocal analysis, and this book is is an
introduction to some of the techniques used in this branch of branch of analysis. In this
introduction, we present the motivations of high frequency asymptotic studies (Section 1) and
we explain in a few words some of the micro-local analysis tools used.

More generally, plenty of equations in mathematical physics use geometrical objects; the
gradient, the the rotational, the divergence, the laplacian. The equation that shows best the
relation between geometry and qualitative properties of the solutions is the wave equation.
This will be particularly clear in Chapter 11, written in collaboration with Claude Bardos,
devoted to the eigenvalues of the Laplacian associated with a metric characterized by A. The
Fourier integral operators are the natural tools to take into account, in a geometrically intrinsic
way, the notions of propagation in the wave equation. The energy in a tube of rays associated
with the wave equation (introduced in chapter Chapitre 3 ) is the physical transcription of the
notion of half density, which will be introduced in Chapter 11. The concept of half-density
has been used as a basis for the study of Fourier operators by Hörmander.

From the equation of waves, we deduce a certain amount of information about other
equations : the heat equation, the system of equations of elasticity, the Maxwell’s system of
equations. Thus the applications of the Fourier integral operators go beyond the study of the
wave equation.

1. Motivation for asymptotic studies

The calculation of the response of an object to a radar transmission is a problem in the
design of an aircraft or any other object which purpose is to make it as undetectable as
possible. The response is given by the calculation of the solution of Maxwell’s equations and
a relation to the boundary depending of the nature of the object, the initial data being the
value of the incident electromagnetic field (the radar wave wave, of wavelength λ).

To avoid the dispersion of the radar beam in the atmosphere, the wavelength must be quite
small, of the order of a meter or a centimeter. Since the frequency of the wave (propagating
at the speed of light c) is ω = 2πc/λ, this frequency is therefore between 1 and 100 GHz. This
physics justifies the use of high frequency methods.

Let us suppose moreover that we can associate to the object, or to a part of it, a charac-
teristic length L. For an airplane, for example, L is of the order of the ten meters. The usual
numerical methods for calculating the solutions of Maxwell’s equations consider meshes whose
characteristic size is λ/8, that is to say of the order of the millimeter or the ten centimeters.
The number of degrees of freedom used is then N = (8L/λ)3, which is at least of the order
of 105. This number of degrees of freedom then corresponds to 6N unknowns (coordinates of
the electric and magnetic fields). The matrix to be inverted in order to solve the discretized
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8 0. INTRODUCTION

system is then 6N × 6N . These large numbers often do not allow for a comprehensive treat-
ment of the problem when the frequency is too high. It is then necessary to find alternative
methods to the global numerical calculation; it is asymptotic methods.

From Huyghens to Maxwell, the idea was developed that light and therefore the elec-
tromagnetic phenomena propagate as waves on rays. For rays, we can talk about position
and velocity or (thanks to the Legendre transform) of position and impulse. The calculation
(described below) shows the connection between the Fourier variable and the impulse. The
inequality of Heisenberg shows that it is impossible to localize both in position and in velocity,
and we are led to localize asymptotically and at high frequency. This leads on the one hand
to a seemingly endless refinement of formal asymptotic calculations, on on which important
qualitative progress has been made by V. Babich [5] and J. B. Keller [39] in the 1950s, proba-
bly under the impulse of the problems of radar stealth or detection. Almost all the asymptotic
results have been obtained since then. An account of formal asymptotic results in a number of
physical situations is presented by D. Bouche and F. Molinet in the volume 16 of the collection
”Mathématiques et Applications” [15].

The rigorous justification of these calculations has been the essential preoccupation of at
least one generation of mathematicians, and under the influence of Hörmander, the formalism
of microlocal analysis has imposed itself.

It is for the moment impossible to justify mathematically all the results of [15]. On the
other hand, the proof of the validity of some of these asymptotic calculations is possible, and
we present it in this book.

2. Mathematical techniques covered

We focus here on the study of linear partial differential equations and systems of linear
partial differential equations. We work at high frequency for three main reasons :

1) the physics of the radar detection problem is a physics at high frequencies (which can
be expressed by L/λ > 10),

2) by introducing an asymptotic parameter, we can derive analytical calculations (see for
example the chapter 1) hence improving the precision of the solutions,

3) finally, one can justify these formal asymptotics in certain cases (see the chapter 2 for
an example of proof, see also the work of P. Lax [60]).

Microlocal analysis (introduced by Hörmander [47] in the late 60’s) turns out to be the
most universal method of treating these high frequency problems, generalizing and justifying
for example the calculations made on Gaussian rays [85] and boundary layer calculations [15].
Indeed, microlocal analysis is associated to a pseudo-differential calculus which is an explicit
symbolic calculus and to a good asymptotic notion (generated for example by the order of the
symbols). This branch of Analysis studies the regularity of distributions, not only locally, but
also by distinguishing the regularity with to any direction of derivation. To make a physical
analogy, everything happens as if we were to consider the regularity of the distributions in the
space of the position-impulse space.

When u ∈ S(IRd), the Schwartz class of rapidly decaying functions, its Fourier transform
(indifferently denoted by û(ξ) or F(u)(ξ)) is also in the class of Schwartz class:

û(ξ) =

∫
e−ix.ξu(x)dx.

We have the inversion formula of Fourier (written formally in the second part of the following
equality because the integral is not converging in the Lebesgues sense) :

(2.1) u(x) =
1

(2π)d

∫
IRd
û(ξ)eix.ξdξ = 1

(2π)d

∫
IR2d

u(y)ei(x−y).ξdξdy

From the formula F(∂xu)(ξ) = iξû(ξ), we get

(2.2) ∂x1u(x) =
1

(2π)d

∫
IR2d

iξ1u(y)ei(x−y).ξdy.
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In the equality (2.2), we will call the function iξ1 the symbol of the operator ∂x1
. We study

in the chapter 5 the asymptotic calculations on the symbols, which are functions of class
C∞ for (x, ξ) ∈ IRd × IRd. A any differential operator is associated with a symbol, and vice
versa, to any symbol is associated an operator called pseudodifferential operator (which we
will construct here). The calculation of the composition of two pseudo-differential operators
defines a calculus on the symbols, hence an algebra, studied in the chapter 7. The elements of
this algebra play a particular particular role; they are the elliptic symbols. A symbol a(x, ξ)
defines intrinsically a pseudo-differential operator operator; a change of variable in x induces
a change of change of variable in ξ. We will study these changes of variable in the chapter 7.
We show that the notion of geometry preserved in IRd by the change of variable in x in IRd

is the symplectic character of IRd × IRd, which is then identified with the cotangent bundle
T ∗IRd. Thus, a symbol a(x, ξ) is a function C∞ on T ∗Ω. The rays that we talked about above
are then the traces on Ω of geometrically intrinsic in T ∗Ω, called bicharacteristics.

Computations in micro-local analysis, on the other hand, make constant use of of a result,
called the stationary phase theorem. This result is the generalization (at least formally) of a
method known since Legendre, the saddle point method. The phase of the saddle point admits
a maximum. It is said to be stationary at the point where it admits this maximum, hence
the name of ’stationary phase’. The difference between the stationary phase method and the
saddle point method comes from the type of integral studied; for k ∈ [1,+∞[, the integral of
the saddle point method is of the form

∫
e−kφ(x)dx, which is an absolutely convergent integral

when φ has a minimum on the integration interval whereas the integral used in the in the
stationary phase method is

∫
eikφ(x)dx, which is defined in S ′(IRd) (see Chapter 4.)

The stationary phase theorem, studied in chapter 4 is at the center of microlocal analysis,
of pseudodifferential and has applications in other fields. We present one in the chapter 5,
kindly provided by Eric Pilon, resulting from theoretical physics calculations.

However, the formula (2.2) does not always allow to represent correctly a solution of a
partial differential equation. This is the case when the problem has an caustic or a ray which
diffracts, or when one wants to have access to properties involving the global structure of
rays. It turns out that in these cases it is possible and essential to generalize the formula
(2.2) by replacing (x− y).ξ by φ(x, y, ξ), homogeneous of degree 1 by ξ. The operator is then
called Fourier integral operator. The global study of Fourier integral operators is a major
part of this book (Chapter 6); indeed the representation of solutions of partial differential
equations by oscillating integrals is the best adapted to asymptotics which involve phases of
the form eikφ(x), k large parameter. parameter. To Fourier integral operators and phases
of solutions of partial differential equations are associated some intrinsic geometrical objects,
called Lagrangian manifolds. The structure of these manifolds is the subject of the chapter
on caustics. Even if a phase (associated to an oscillating integral solution of a linear partial
differential equation) is singular, the associated Lagrangian manifold (⊂ T ∗Ω) is smooth, and
its projection on Ω is singular. We will thus study some types of singularities. Thanks to the
Fourier integral operators, we state and prove the theorems of propagation of singularities in
Ω for hyperbolic operators (obtained elsewhere, for example in [82]) as well as the theorems of
reflection of hyperbolic singularities on ∂Ω, for example for electromagnetic waves. Moreover,
one can construct a uniform outgoing parametrix for the problem Pu = 0 in Ω, γLu = g on the
boundary of Ω when Ω has a boundary, P and L denoting two differential operators, γ being
the trace on the boundary ∂Ω when possible. Another application of Fourier integral operators
is global and is presented in the chapter 11, written by Claude Bardos (whose contribution
to the other chapters is far from negligible). It is based on a practical problem, which is to
estimate the eigenvalues of an elliptic operator, typically the Laplacian in a bounded open.
The functions we want to access are for example the number of eigenvalues smaller than a
fixed R, the asymptotic behavior of the eigenvalues in ascending order. We also want to study
inverse problems through this; find for example information about the open set Ω in which we
work through these eigenvalues. We highlight the importance of the global aspect of Fourier
integral operators which are the only ones able to take into account closed geodesics. Indeed,
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a pseudo-differential operator is pseudo local (see Hörmander [48]), so it will not be able to
take into account in in particular the application of first return Poincaré map.

3. Details of the chapters in this book

In the chapter 1, we introduce the notion of asymptotic expansion; we that any asymptotic
series is the Taylor expansion expansion at a point of a function of class C∞, a result known
as of Borel’s lemma. This result will be used to construct an approximate solution of the wave
equation.

In chapter 2, we present the method and results of P. D. Lax [60] to compute the asymp-
totic expansion associated to the solution of a strictly hyperbolic Cauchy problem. This is a
direct introduction to asymptotic calculations.

In chapter 3, we use the equivalence between the wave equation and the Helmholtz equa-
tion (∆ + k2)u = 0. We construct, when k tends to +∞, an asymptotic solution of the
Helmholtz equation of the form form a(x, k)eikφ(x), where a(x, k) has an asymptotic expan-
sion in the sense of Chapter 1. More precisely, we compute the amplitude a(x, k) on a set of
rays, once this amplitude is given on a surface where φ is constant. The Borel lemma then
constructs an asymptotic solution equivalent to the desired exact solution.

Chapter 4 deals with an important notion, which is -in my opinion- at the basis of micro-
local analysis : the stationary phase method, closely related to asymptotic expansions. Its
application is possible whenever one can use the Morse lemma to represent the phase as a
quadratic phase. An application to particle physics of the stationary phase theorem is the
subject of chapter ??.

Similarly, chapter 6 presents divergent integrals, called oscillating integrals, to which we
will associate a value thanks to the stationary phase theorem. The operators associated with
these oscillating integrals are the Fourier integral operators. The oscillating integrals of chapter
6 use functions a(x, ξ) ∈ C∞(X × IRd), which have some nice behavior in the asymptotic
parameter |θ|. These properties allow to introduce systematic computational rules. The study
of the functions a(x, θ) is the subject of the chapter ??. A special case of integrals in chapter
6 allows us to generalize the differential operators into a class of operators, called pseudo-
differential operators (studied for example by Kohn and Nirenberg [55]). The study of the
properties and regularity of these operators is presented in chapter 8. In particular, we will
define a law on the symbols which corresponds to the composition law of the operators.

Chapter 9 studies the intrinsic character of notions related to operators and introduces the
symplectic geometrical framework associated to pseudo-differential operators and the Fourier
integral operators. Using this geometrical framework, we give the theorem allowing to compose
Fourier integral operators.

Chapter ?? links Fourier integral operators and asymptotics calculations of Lax from
chapter 2, in the sense that the phase φ introduced by Lax, solution of the so-called eikonal
equation, can be taken as an oscillating phase in a Fourier integral operator, thus generalizing
the asymptotic oscillating solutions. We study more generally the Lagrangian solutions, gen-
eralization of the notion of phase solution of the eikonal equation. We deduce the behavior of
solutions of hyperbolic problems in the neighborhood of caustics.

In the chapter 11, Claude Bardos details a global application of the Fourier integral
operators, which allows, from the eigenvalues of the Dirichlet Laplacian on an open set Ω, to
know some properties of this open set. This problem is popularized by the sentence ”Can we
hear the shape of a drum?”1.

Chapter 12 proves the theorem of propagation of singularities for waves, which is a gener-
alization of the laws of geometrical optics, using both using both the Fourier integral operators
to construct the construct a solution and to transform the propagation problem into a simpler
problem by means of a canonical transformation. These two points of view are equivalent.

The reflection of an electromagnetic wave by a dielectric object, first application of asymp-
totic expansions, is studied in chapter ?? and the reflection theorem of hyperbolic singularities

1Can we hear the shape of a drum?
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is proved in the case of an open set containing absorbing dielectric material. We use here a
generalization of Lax’s asymptotic calculations to hyperbolic pseudodifferential operators, as
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[90].

Finally, chapter 14 studies the diffractive case, where the incident ray arrives tangentially
at the boundary of the Ω object, in two cases : the Friedlander’s model problem [42], original
example, and the the case of diffraction by a convex plane, as in Gilles Lebeau’s results on
the Gevrey 3 regularity [66] and the thesis of the author [57]. In this chapter, written in
collaboration with Daniel Bouche, we compare the calculations of the microlocal analysis and
the calculations used in the boundary layer method.

4. Acknowledgements

The author would like to thank all those who made it possible for this course:
the students of the University of Paris Nord, who had the patience to follow and understand
the sometimes complicated calculations,
and the analysis group of the University of Paris Nord (Michel Balabane, Laurence Halpern,
Patrice Le Calvez) who gave him the opportunity to teach in the DEA of Applicable Mathe-
matics.

The author is also greatly grateful to Johannes Sjöstrand for the course followed at the
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CHAPTER 1

Formal asymptotics

In this chapter, we present an asymptotic formal expansion for a number of systems of
equations of Physics. We study the wave equation, the Helmholtz equation in a dispersive
medium and more generally the More generally, hyperbolic problems. Some of these asymp-
totics are presented in exercises.

These formal asymptotics will be justified mathematically in the next chapters of this
book.

1. Introductory examples

We first give two examples which allow to define an asymptotic expansion. The two
functions we present are solution of the wave equation, and we can calculate their asymptotic
expansion. They have in common that they are oscillating in time and space.

1.1. Plane waves and the wave equation. The simplest example traditionally con-

sidered is the plane wave (~k ∈ IRd, ω ∈ IR+)

up(~x, t) = eiωt−i
~k.~x, ~x ∈ IRd, t ∈ IR.

Lemma 1.1. (1) The function up is a non L2(IRd+1) (but in L2
loc) of the wave equa-

tion (∆− c−2∂2
t2)u = 0 if and only if

(1.3) ω2 − |~k|2c2 = 0,

(2) The solution of the wave equation in dimension 1

(
∂2u

∂x2
− c−2 ∂

2u

∂t2
)(x, t) = (

∂

∂x
− c−1 ∂

∂t
)(
∂u

∂x
− c−1 ∂u

∂t
).

with Cauchy data u0(x), u1(x) is

(1.4)
u(x, t) = 1

2 (u0(x+ ct) + u0(x− ct)) + 1
2c

∫ x+ct

0
u1(y)dy − 1

2c

∫ x−ct
0

u1(y)dy

= 1
2 (u0(x+ ct) + u0(x− ct)) + 1

2c

∫ x+ct

x−ct u1(y)dy.

The relation of the first item is written |~k| = ω/c, and is called the relation of dispersion
in the vacuum.

When the dimension of the ambient space is 1, the two possible values of k are ±k/c,
which correspond to two plane waves, propagating respectively in the direction of x > 0 and
x < 0. and x < 0.

Proof. Let u be a solution of the wave equation, we associate to it v = ∂xu + c−1∂tu,
which is a solution of ∂xv − c−1∂tv = 0. We deduce that w(z, t) = v(z − ct, t) verifies
∂tw(z, t) = 0. So w(z, t) = w(z, 0) = v(z, 0). The equality v = ∂xu+ c−1∂tu becomes

∂xu(x, t) + c−1∂tu(x, t) = w(x+ ct, 0).

Let h(z) = 1
2

∫ z
0
w(y, 0)dy. We verify that (∂x + c−1∂t)h(x+ ct) = w(x+ ct, 0). It comes

then that

(∂x + c−1∂t)(u(x, t)− h(x+ ct)) = 0

which immediately leads to

13



14 1. FORMAL ASYMPTOTICS

u(x, t) = h(x+ ct) + g(x− ct).
The Cauchy conditions at t = 0 are

u0(x, 0) = u(x, 0), ∂tu0(x, 0) = u1(x, t).

So we have the two equalities

g(x) + h(x) = u0(x), g′(x)− h′(x) = c−1u1(x),

which gives (5.2) which gives (1.4). �

Remarks : 1) if the support at t = 0 of the wave, equal to Supp u0 ∪ Supp u1, is the
interval [a, b], the support at t of the wave is included in [a− ct, b+ ct]. This set of points is
called the light cone.

2) if there is information at t = 0 at a point x0, that is u0 or u1 is nonzero, then at t0 there
is information at x0 + ct0 and at x0 − ct0. This reflects the propagation of the information at
speed c.

3) We see that two progressive waves appear when u0(x) = ±(ik)−1u1(x) = e−ikx. We
will omit the velocity c. It will however intervene in a hidden way in solutions of the Maxwell’s
equations through the relation ε0µ0c

2 = 1, and instead of considering the pulsation ω we will
consider the equations with the wave number k = ω/c.

1.2. Some insight as introduction to asymptotic expansions. In this paragraph,
we use the special functions solution of the wave equation (in dimension 2 or in dimension 3),
to see that the notion of asymptotics appears naturally.

For the wave equation in dimension 2, we introduce the Hankel functions.

Proposition 1.1. The outgoing solutions of the wave equation in IR2 × IRt are equal to

+∞∑
n=0

ane
inθ−iωtH1

n(kr),

with
∑
|an|2 < +∞, where H1

n(x) is the Hankel function of the first kind, solution of r2f ′′ +

rf ′ + (r2 − ν2)f = 0 when ν = n, uniquely defined by k
1
2H1

n(kr)( 2
πr )

−1
2 e−ikr ' e−

1
2nπ−

1
4π

when k goes to +∞.

Proof. A solution of the wave equation with speed 1 in IR2 × IR is written u(r, θ, t) =
e−iωt+iνθf(r). In writing the Laplacian operator in polar coordinates

(1.5) ∆ =
1

r

∂

∂r
(r
∂

∂r
) +

1

r2

∂

∂θ2
,

we see that the function f is a solution of

r2f ′′ + rf ′ + (k2r2 − ν2)f = 0

Consider the It satisfies

x2(H1
n)”(x) + x(H1

n)′(x) + (x2 − n2)H1
n(x) = 0.

The function vn(r, θ, t) = e−iωt+inθH1
n(kr) is solution of the wave equation in dimension 2. If

we place ourselves at a point r 6= 0, we write (see Watson [98]) for n fixed and k going to +∞:

(1.6) k
1
2H1

n(kr) = (
2

πr
)

1
2 eikr−

1
2nπ−

1
4π

∞∑
m=0

cm(r)k−m +O(knrne−2kr).

This expression is called an asymptotic expansion in k−1 for large wave number problem
thanks to k = ωc. The speed of the wave being fixed, it is equivalent to speak of a high
frequency problem.



2. DEFINITIONS. 15

To understand the meaning of the notion of asymptotics for this example, we define
HM
n (kr) as the function obtained by truncating the series (1.6) at order M in k. We have

formally, for uM = k
1
2HM

n (kr)e−iωt+inθ

(∆− c−2∂2
t2)]− uM = O(k−M+1),

The meaning of the term O must be specified.
The function einθH1

n(kr) is a solution of the Helmholtz equation to which we associate
a sequence of functions uM which are not solutions of the Helmholtz equation but which
are a better candidate when M tends to +∞”, in the sense that (∆ − c−2∂2

t2)uM will be
moreover in smaller and smaller in k. It turns out that these functions uM approach the
solution einθH1

n(kr) of the Helmholtz equation, but the question is whether such results are
general. �

In this chapter and in the next chapter, we define asymptotic solutions which are not
solutions in the usual sense.

2. Definitions.

We define an asymptotic expansion as follows :

Definition 1.1. Let a function b ∈ C∞(Ω×]0, 1[) (if we choose a small asymptotic pa-
rameter ε), or b ∈ C∞(Ω×]1,+∞[) (if we choose a large asymptotic parameter k).

Let bj(y) be a sequence of functions of C∞(Ω). The relation

b(y, ε) '
∑

bj(y)εj

means that, for any integer m ≥ 0, for any index α ∈ INn and for any compact K included in
Ω, there exists a constant C(K,m,α) (whose behavior is not specified here) such that

∀y ∈ K, |∂αyα(b(y, ε)−
j=m∑
j=0

bj(y)εj)| ≤ C(K,m,α)εm.

The definition is easily transcribed for a large asymptotic parameter, as well as the defini-
tion for k ≥ k0 or ε ≤ ε0. We also define the notion of asymptotic equivalence of two functions
b and c of C∞(]0, 1[×Ω):

Definition 1.2. We say that b(y, ε) and c(y, ε) are asymptotically equivalent if

∀K ⊂ Ω,∀m ≥ 0,∀α,∃C(K,m,α) > 0,∀y ∈ K, |∂y
α

(b(y, ε)− c(y, ε))| ≤ C(K,m,α)εm.

This indicates that, uniformly on any Ω compact, the difference b − c is rapidly
decaying in ε (or rapidly decaying in k).

Let us define the oscillating asymptotics. We introduce, this time, a large parameter k in
order to emphasize that the notion of asymptotics is linked to a parameter, but that the results
written with a ‘small’ parameter are inseparable from those written with a ‘large’ parameter.
Let us consider for example

(2.7) v(x, k) = a(x, k)eikx,

where a verifies the assumptions of the definition 1.1. Its derivatives in x sorts out powers of
k, so that

∂αxαv(x, k) ' eikxk|α|bα(x, k),

where bα is still of the form of Definition 1.1. To take into account in the asymptotic expansions
the functions of the form (??), it is then useful to introduce the notion of equivalence between
two oscillating functions, expressed in the
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Definition 1.3. Let a and b be two functions satisfying the assumptions of the definition
1.1. Let φ and ψ be two functions of class C∞.

We say that a(x, k)eikφ(x) ' b(x, k)eikψ(x) when{
φ(x) = ψ(x) + ψ0

a(x, k)eikψ0 ' b(x, k)

A result, known as Borel’s lemma, indicates that any formal asymptotic expansion is
associated with a function C∞. It is the subject of the next section.

3. Borel’s Lemma

Proposition 1.2. Let bj be a sequence of complex numbers. There exists a function b(ε),
of class C∞, such that, for all M ≥ 0, b has a Taylor expansion in 0 of order M

b(ε) =

j=M∑
j=0

bjε
j + εMo(1).

Let bj(y) be a sequence of functions C∞(Ω). There exists a function b(y, ε) ∈ C∞(Ω×[0, 1])
such that

b(y, ε) '
∑

bj(y)εj .

The Borel’s lemma proves the existence of a function b(y, ε) such that b(y, ε) '
∑
j bj(y)εj

for any sequence of functions C∞ bj(y), but does not prove the existence of the sum, even
pointwise, of bj(y)εj . In in fact, we consider a function b which is equal to an infinite series
absolutely convergent as well as all its derivatives, and which approaches well term by term the

formal series. There is no uniqueness either, as the example of the function f(x) = 1x≥0e
− 1
x2 .

Indeed,
∑

0xn can be associated with f since the Taylor expansion of f in 0 is of f in 0 is 0.

Proof. This proof is a constructive proof.
We show the first point of the proposition. To do this, we give ourselves a function χ(ε) in

C∞0 (]−1, 1[), identically 1 on [−0.5, 0.5]. We choose suitably (which is done below) a sequence
of of positive numbers positive numbers Lj greater than 1, and we write

b(ε) =
∑
j

εjχ(Ljε)bj .

Its Taylor series in ε in 0 is
∑
j ε
jbj .

We choose the Lj , for j ≥ 1, by the inequality

(3.8) maxm≤j−1|
∂m

∂εm
(χ(Ljε)ε

jbj)| ≤ 2−j .

Indeed,
| ∂

m

∂εm (χ(Ljε)ε
jbj)| ≤ |bj ||

∑p=m
p=0 CpmL

m−p
j χ(m−p)(Ljε)

j!
(j−p)!ε

j−p|
≤ |bj |(

∑p=m
p=0 CpmL

m−j
j ||χ(m−p)|| j!

(j−p)! )

≤ |bj |Lj (
∑p=m
p=0 CpmL

m−j+1
j ||χ(m−p)|| j!

(j−p)! ).

Thus, for m ≤ j − 1 and Lj > 1, we find

max
m≤j−1

| ∂
m

∂εm
(χ(Ljε)ε

jbj)| ≤
|bj |
Lj

2jj!||χ||j−1

where ||χ||j is the Hj norm of χ. We choose then

Lj ≥ 2jj!||χ||j−1|bj |.
We thus obtain (??).

We have then, for m fixed, uniform convergence of
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∑
j≥m+1

∂m

∂εm
(χ(Ljε)ε

jbj).

The function b, sum of b0χ(L0ε) and of the previous sum for m = 0 exists and is indefinitely
differentiable on IR.

We write

b(ε)−
∑j=m
j=0 bjε

j = b(ε)−
∑m
j=0 bjχ(Ljε)ε

j +
∑m
j=0 bj [χ(Ljε)− 1]εj

= εm+1
∑∞
j=0 bj+m+1χ(Lj+m+1ε)ε

j +
∑m
j=0 bj [χ(Ljε)− 1]εj

= εm+1S1(ε) + S2(ε).

The function S1 is bounded by

||χ||∞
∞∑
j=0

|bj+m+1|
Lj+1
j+m+1

≤ ||χ||∞
∞∑
j=0

|bj+m+1|
Lj+m+1

≤ ||χ||∞
∞∑
0

1

2j+m+1||χ||j+m+1(j +m+ 1)!
≤ 1

2m
.

The second term S2(ε) of the decomposition is zero on |ε| ≤ 1
Lm

. Thus, for 1 ≥ |ε| ≥ 1
Lm

,

|S2(ε)
εm | ≤ max|ε|≤1 |S2(ε)|Lmm, and, for ε ≥ 1, |

∑j=m
j=0 εj−m(χ(Ljε)− 1)| ≤ (||χ||+ 1)

∑m
j=0 |bj |.

We deduce

S2(ε) ≤ D(m)εm.

We have proven the inequality:

sup[−1,1](b(ε)−
j=m∑
j=0

bjε
j) ≤ Cmεm.

The function b is of class C∞ and admits
∑
bjε

j as an asymptotic expansion in ε→ 0.
For the second point of the theorem, we give ourselves a compact K in y and a truncation

order m of the asymptotic series.
We introduce, as in the proof of the first point of the theorem bj(y)χ(Ljε)ε

j . We verify

that, on K and for |ε| ≤ L−1
j

|∂|α|+myαεm (bj(y)χ(Ljε)ε
j)| ≤ ||bj)|||α|αm,qL−1

j .

By replacing bj in the demonstration of the first part by the norm L∞ of bj on K, one obtains
a choice of Lj that ensuring the convergence of the infinite series in ε. This convergence
allows the construction of a function b(y, ε) of C∞([−1, 1], C∞(K)). We have moreover a
choice of Lpj ensuring the uniform convergence of the series constructed with the χ(Lpjε) and
of all its derivatives in α of order at most p. Finally the two sums at order m are equal when
|ε| ≤ (2Lpj )

−1. We then evaluate

b(y, k)− bM (y, k) = εM
+∞∑

j=M+1

εj−Mχ(Lpjε)aj(y) +

M∑
j=0

χ(Lpjε)− 1)bj(y),

as well as all the derivatives up to order |α| = p.

It is easy to see that the first term in a similar decomposition of ∂
|α|
xα (b(y, k)− bM (y, k)) is

bounded by εM2−M , and the second term is zero in [−(2LpM )−1, (2LpM )−1]. By an argument
similar to the previous one, we can find a constant C(K,M, p) such that the derivative α of
of the second term is increased by C(K,M, p) (we divide and as 0 is not a pole, we have the
result).

We can then apply the previous method, which allows us to compare this function b(y, ε)
with the sum

∑m
j=0 bj(y)εj . We then control

∂
|α|
yα (b(y, ε)−

j=m∑
j=0

bj(y)εj)
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by the constant used previously sup[−1,1]/[−L−1
j ,L−1

j ](ε
−mS2(y, ε)). This completes the proof

of proposition 1.2. �

4. The Helmholtz equation

Let us consider again the wave equation (∆− ∂2
t2)u = 0.

Definition 1.4. Let v(x, k) be a local asymptotic solution of the Helmholtz equation,
which verifies (4.9). Let Σ0 be a hypersurface. We say that u is a solution of the equation
(∆ +k2)u(x, k) = 0 with the initial condition1 v(x, k)|Σ0

= u(x, k)|Σ0
when there exists r(x, k)

such that {
r|Σ0 = 0
(∆ + k2)(v + r) = 0

or, in an equivalent formal way, r = (∆ + k2)−1(O(k−∞)).
Note that the problem we study here is a Dirichlet condition problem and not a Cauchy

problem.

We assume that the solution of this equation is a tempered in time distribution with values
in D′(IR3). Its partial Fourier transform in time, denoted û(x, k), then exists and we verify
that

< ∆û(x, k), φ(x) > =< û(x, k),∆φ(x) >=
∫
eikt < u(x, t),∆φ(x) > dt

=
∫
eikt < ∆u(x, t), φ(x) > dt =

∫
eikt < ∂2

t2u(x, t), φ(x) > dt
=
∫
−k2eikt < u(x, t), φ(x)dt = −k2 < û(x, k), φ(x) >

so (∆ + k2)û(x, k) = 0. This equation is called the scalar Helmholtz equation.
Conversely, if û(x, k) is a solution distribution of the Helmholtz equation, then

u(t, x) =
1

2π

∫
IR

e−iktû(x, k)dk

is a solution of the wave equation. An asymptotic solution of the scalar Helmholtz equation
is an oscillating function in k, of the form

a(x, k)eikφ(x),

such that a(x, k) '
∑∞
j=0 aj(x)(ik)−j . We consider the case where a0 is not identically zero,

which amounts to studying the non-zero solutions (indeed, if there is no j0 such that aj0 is
not identically zero, then all terms of the asymptotic asymptotic expansion of a are zero, i.e.
a ' 0, and if there exists j0 such that, for j < j0 aj = 0 and aj0 not identically zero, we
can divide u(x, k) by (ik)−j0 and then we are back, since the equation is linear, to a solution
whose dominant term is non-zero). The notion of asymptotics is understood when k tends to
infinity, and we then speak of an increasingly oscillating solution. In fact, the only result that

this asymptotic construction gives directly is, if aM (x, k) =
∑j=M
j=0 k−jaj(x)

(4.9) (∆ + k2)(a(x, k)eikφ(x)) = O(k−∞)

or
(∆ + k2)(a(x, k)eikφ(x)) ' 0.

We first prove the

Proposition 1.3. If aeikφ is an asymptotic solution, then

(4.10)

 a0(1− |gradφ|2) = 0
a1(1− |gradφ|2) + 2grada0gradφ+ (∆φ)a0 = 0
aj(1− |gradφ|2) + 2gradaj−1.gradφ+ (∆φ)aj−1 + ∆aj−2 = 0, j ≥ 2.

1Here, the word initial is an abuse of language which will be justified in the chapter 4 when we will study
the analytical conormal waves
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Introducing the operators L1 and L2 defined on Cinfty(IRn) by L1(u) = 2gradφ.gradu+(∆φ)u
and L2(u) = ∆u, (the index of each operator refers to à its order) and the function L0 on the
vector fields in IRn such that L0(V ) = 1− |V |2. System (4.10) writes L0(gradφ) = 0

L1(a0) = 0
L1(aj) = −L2(aj−1).

The first equality is called the eikonal equation.
The second equality is called the transport homogeneous.
The third equality is the same transport equation, but inhomogeneous.

Proof. For the moment, this is only formal asymptotics. By considering the classical
form of the Laplacian operator (i.e. ∆ = div(grad)), we verify, given the relations

grad(fg) = fgrad(g) + ggrad(f)
div(fV ) = gradf.V + fdiv(V )

that

∆(aeikφ) = div(eikφ(grada+ ikagradφ))
= [ikgradφ.(grada+ ikagradφ) + div(grada+ ikagradφ)]eikφ

or

(4.11) ∆(aeikφ) = eikφ(∆a+ ik(2grada.gradφ+ a∆φ)− k2|gradφ|2a).

Equality :

(∆ + k2)(a(x, k)eikφ(x)) = O(k−∞) ' 0

implies (4.10).
It is clear that when a0 is not identically zero, then |gradφ| is of norm 1 on the support

of a0. We then solve the other equalities on the support of a0, and we obtain

2grada0.gradφ+ (∆φ)a0 = 0,

then

2gradaj−1.grad + (∆φ)aj−1 + ∆aj−2 = 0.

We will make frequent use of these equations. A treatment of the transport equations in
the scalar case will be done in the chapter 3. �

Remark 1. When φ is a solution of the eikonal equation |∇φ|2 = 1, the value of φ on
the surface Σ0, and the condition
∇φ(x), x ∈ Σ0 is not tangent to Σ0 at x
allow to determine locally (in a generic case) the φ phase.

Indeed, we are in the case where the integral curves of the vector field ∇φ are transverse
to Σ0. We parametrize the surface Σ0 by a unitary system of local coordinates u1, ..., ud−1.
The phase φ restricted to Σ0 is then given, in the neighborhood of x0, by ψ(u). The condition
of transversality is equivalent to |∇uφ| < 1. The equation φ(x) = φ(x0) can be solved locally
according to the data ψ. Let us note Σ = x, φ(x) = φ(x0)}.

Let us then give an interpretation of Σ0. We suppose that the function u(x, k) =
a(x, k)eikφ(x) is holomorphic in k in the complex half-plane Imk < 0. By considering the
inverse Fourier transform in time (and applying the Paley-Wiener-Schwartz theorem) we ver-
ify that v(x, t) = F−1(u)(x,−φ(x0)) is supported on only one side of Σ. Indeed, we can deform
the integration contour of the inverse Fourier transform into IR − ia, a > 0. Since the result
is independent of a (by holomorphy) and the limit when a tends to +∞ is zero for any (x, t)
such that φ(x) + t < 0, we find that v is zero at a point of φ(x) + t < 0. We will see that this
amounts to write Cauchy conditions on v and on its derivative at t = −φ(x0).



20 1. FORMAL ASYMPTOTICS

5. Generalization of the asymptotic methods to differential operators with non
constant coefficients.

We replace here ∆ by a differential operator P (x, ∂x) with real coefficients C∞ of order
2, which we we write :

(5.12) P (x, ∂x) =
∑
j,l

ajl(x)
∂2

∂xjxl
+
∑
j

bj(x)
∂

∂xj
+ c(x).

We introduce the differential part of P (x, ∂x), noted P b(x, ∂x) (following Taylor’s notation
[94]), equals to

(5.13) P b(x, ∂x) = P (x, ∂x)− c(x).

The propagation problem is called hyperbolic (and the operator P −∂2
t2 is then said to be

hyperbolic) when A is a positive definite bilinear form. To write the asymptotic expansion we
do not need this ellipticity assumption on A, but we will need it to prove that the asymptotic
expansion yields a solution. We associate to A its canonical bilinear form, at any point x :

(5.14) A(ξ, η) =
∑
j,l

ajl(x)ξjηl.

The relation

∂2

∂xjxl
(a(x, k)eikφ(x)) = [

∂2a

∂xjxl
+ ik(

∂φ

∂xl

∂a

∂xj
+

∂φ

∂xj

∂a

∂xl
) + ika∂2

xjxl
φ− k2 ∂φ

∂xj

∂φ

∂xl
a]eikφ

allows to write

P (aeikφ) = [Pa+ ik[2A(gradφ, grada) + P b(φ)a]− k2aA(gradφ, gradφ)]eikφ.

The first order transport operator associated to the bilinear form is :

(5.15) L1(a) = 2A(gradφ, grada) + P b(φ)a.

We verify that the eikonal and transport equations associated à P + k2 are 1−A(gradφ, gradφ) = 0
L1(a0) = 0
L1(aj) = −P (aj−1).

We notice that the operator L1 is written ∂A(x,ξ,ξ)
∂ξ |ξ=gradφ.

∂
∂x + P b(φ). .

We summarize the results

Lemma 1.2. Let P be the operator defined by (5.12). We associate to it the bilinear form
A (5.14), the differential part P b of P (5.14) and the transport operator L1 (5.15). We have
the equality

e−ikφ(x)P (a(x, k)eikφ(x)) ' k2(1−A(gradφ, gradφ))a(x, k) + ikL1(a0)
+
∑
j=0(ik)−j+1(L1(aj) + P (aj−1))

when a(x, k) '
∑
j=0 aj(x)(ik)−j.

In the case where the matrix aij(x) is positive symmetric, the operator P (x, ∂x) is, except
for a vector field and a constant function, a Laplacian operator as introduced in exercise 1.2.
exercise 1.2. We consider the metric gij(x) = aij(x). The Laplacian associated to this metric
is

∆af = (deta(x))−
1
2

∑
j

∂
∂xj

[
∑
l alj(x)(deta(x))

1
2
∂f
∂xl

)]

=
∑
l(deta(x))−

1
2

∑
j

∂
∂xj

[alj(x)(deta(x))
1
2
∂f
∂xl

)] +
∑
l,j alj(x) ∂2f

∂xl∂xj
.
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The operator P −∆a is an operator of order 1, associated to a vector field V , such that
a, V , and c are uniquely defined by P b −∆a = V.grad + c.

6. The harmonic Maxwell equations

In this section, we study the asymptotic solution of a system of coupled partial differential
equations: the system of harmonic Maxwell equations. The use of the term “harmonic” comes
from the the fact that we considered the Fourier transform in time of the solution of the system
of Maxwell’s equations in IR3 × IRt.

We thus consider the equations (ε, µ independent of the position, ω denotes the frequency
or Fourier variable in time) 

rotE + iωµH = 0,
rotH − iωεE = 0,
divE = 0,
divH = 0.

Lemma 1.3. In the representation

Ej(x) = ej(x, ω)eiωφ(x), Hj(x) = hj(x, ω)eiωφ(x),

the eikonal equation associated with this system is

|gradφ|2 = εµ,

and the equations for the principal term are{
gradφ ∧ rote0 − µroth0 − dive0gradφ = 0
gradφ ∧ roth0 − divh0gradφ+ εrote0 = 0.

We deliberately choose in these expressions not to consider the Helmholz equation consider
the vector Helmholtz equation obtained directly by replacing in the equality rotE+ iωµH = 0
E = (iωε)−1rotH then using the zero divergence condition to have rotrotE = ∆E−graddivE.

We present in the chapter 12 dedicated to the properties of Maxwell’s equations written
in intrinsic form the calculations of direct asymptotic expansions obtained from the equations
of Lemma 1.3.

Lemma 1.4. The system of Maxwell’s equations leads to the following system for the
leading order term:

(6.16)



gradφ ∧ e0 + µh0 = 0,
gradφ ∧ h0 − εe0 = 0,
e0.gradφ = 0,
h0.gradφ = 0,
rotej + (gradφ ∧ ej+1 + µhj+1) = 0,
rothj + (gradφ ∧ hj+1 − εej+1) = 0,
divej + ej+1.gradφ = 0,
divhj + hj+1.gradφ = 0.

Proof. As rot(feiωφ) = (rotf+iωgradφ∧f)eiωφ and as div(feiωφ) = (divf+iωf.gradφ)eiωφ,
we obtain

(6.17)


rote+ iω(gradφ ∧ e+ µh) = 0,
roth+ iω(gradφ ∧ h− εe) = 0,
divh+ iωh.gradφ = 0,
dive+ iωe.gradφ = 0.

The first equation implies iωµh = −rote−iωgradφ∧e. By multiplying the second equation
by iωµ, we find
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ω2µεe+ iωgradφ ∧ (iωµh) + rot(iωµh) = 0.

We then deduce

ω2εµe− iωgradφ ∧ (rote+ iωgradφ ∧ e)− rot(rote+ iωgradφ ∧ e) = 0.

Using the equality

(6.18) gradφ ∧ (gradφ ∧ e) = −|gradφ|2e+ (e.gradφ)gradφ

we find

ω2[εµe− |gradφ|2e+ (e.gradφ)gradφ]− iωgradφ ∧ rote− rot(rote+ iωgradφ ∧ e) = 0.

By replacing (e.gradφ) with the fourth equation of the system (6.17), we obtain

ω2[εµe− |gradφ|2e] + iω[divegradφ− gradφ ∧ rote− rot(gradφ ∧ e)]− rotrote = 0.

When we assume that

e =
∑

ej(iω)−j , h =
∑

hj(iω)−j ,

with e0 6= 0, we deduce the eikonal equation of the lemma 1.3 by cancelling the highest degree
term in ω of this equality, after having assumed that e admits an asymptotic expansion.

Obtaining the eikonal equation by this method, as we can see, is relatively easy. The
relations between the terms e and h, on the other hand are more difficult to obtain owing
to these substitution methods. substitution methods. We use a direct method, replacing by
their asymptotic expansion of the quantities e and h in the system before substitution. We
assume that e and h give identical contributions in powers of ω. If this were not the case, then
we would have either gradφ ∧ e = 0, or h = 0 from the first equation, depending on whether
e dominates h or the other way around. If e is larger than h, then, according to the second
equation, e = 0, which gives a null solution. So e and h have a principal term of the same
order.

The relation (6.18) allows to decompose e using the unit vector t = gradφ
|gradφ| :

e = (e.t)t− t ∧ (t ∧ e).

It is therefore logical to consider a system where t∧ e and e.t are are known simultaneously to
compute the solution. By calculating gradφ ∧ (gradφ ∧ (e, h)) as given by the above system,
we obtain as a system from the first two relations(

0 µ
−ε 0

)(
gradφ ∧ ej+1

gradφ ∧ hj+1

)
−|gradφ|2

(
ej+1

hj+1

)
=

(
divej

divhj

)
.gradφ−

(
gradφ ∧ rotej

gradφ ∧ rothj .

)
We notice that e0 and h0 are orthogonal to gradφ then using (6.18) to (εµ−|gradφ|2)h0 =

0. If h0 were equal to 0, then e0 would be also equal to 0. We find the eikonal equation :

|gradφ|2 = εµ

Using the eikonal equation, the first term of the system is rewritten as

(6.19) e0 = ε−1gradφ ∧ h0 =

√
µ

ε
t ∧ h0.

Note that, in this case, the cancellation of the 0 order term leads to the eikonal equation as
well as to a relation between the first terms of e and h. The transport equation is obtained
by cancelling the term term of next order. Indeed, if we consider the equations relating
rote0, roth0 to e1, h1, and making gradφ∧ on these equations, we find

gradφ ∧ rote0 + gradφ ∧ (gradφ ∧ e1) + µgradφ ∧ h1 = 0,
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which gives, by replacing gradφ ∧ h1 by εe1 − roth0, the equation (obtained by using the
relation dive0 + e1gradφ = 0, the eikonal equation and (6.18)

(6.20)

{
gradφ ∧ rote0 − µroth0 − dive0gradφ = 0
gradφ ∧ roth0 − divh0gradφ+ εrote0 = 0

These two equations are the transport equations on e0, h0. We proved Lemma 1.3. �

To get back to the classical transport equations (each coordinate is a solution of a scalar
Helmholtz equation, and the successive equations on each term of the asymptotic expansion
are given by (4.10)), it is sufficient to replace the relation µh0 = −gradφ ∧ e0 in the first
equation of (6.20). This gives

gradφ ∧ rote0 + rot(gradφ ∧ e0)− dive0gradφ = 0.

We verify that h0 follows the same transport equation as e0.
A simple but tedious calculation leads to find, for the first coordinate A1 of gradφ∧rote0 +

rot(gradφ ∧ e0):

A1 = ∂φ
∂x2

(
∂e01
∂x2
− ∂e02

∂x1
)− ∂φ

∂x3
(
∂e03
∂x1
− ∂e01

∂x3
) + ∂

∂x2
( ∂φ∂x1

e0
2 −

∂φ
∂x2

e0
1)− ∂

∂x3
( ∂φ∂x3

e0
1 −

∂φ
∂x1

e0
3)

= ∂
∂x1

(gradφ.e0)−∆φe0
1 + dive0 ∂φ

∂x1
− 2gradφ. ∂e

0

∂x1
.

We deduce the transport equations for each term e0
p, p = 1, 2, 3 :

[2∇φ.∇+ ∆φ]e0
p = 0, e0.∇φ = 0.

This method, as we have seen, is tedious and not very general because the form of the
operators divergence, rotationel, gradient are very particular. We will see in the chapter 2
how to write in a general way such calculations, using results of Lax and Rauch.

7. Exercises

Exercise 1.0 : Fundamental solution of of the Helmholtz equation in IR3. 1) Show that the
function, defined for (x, y) ∈ IR3 × IR3, equal to

G(x, y) =
eik|x−y|

4πik|x− y|
is a solution of

(∆x + k2)G(x, y) = δx=y.

What can we say about H(x, y) = e−ik|x−y|

4πik|x−y|?

2) Give two solutions of (∆ + k2)u(x) = f(x). Interpretation?
Exercise 1.1 : asymptotic expansion in the wave equation. We consider the wave equation

(∆− ∂2
t2)u(x, t) = 0,

in which, let us note, there is no asymptotic parameter. Find a formal solution of this equation
in the form

u(x, t) = a(x, t, k)eikφ(x,t).

Show that this problem is the same as finding the solution of the eikonal equation L0(gradψ) =
0. We will study the surfaces isophases of φ.
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Exercise 1.2 : Helmholtz equation in a space with a g metric. In this exercise, we introduce
the notion of metric Laplacian, which will be useful to study Maxwell’s equations in an open
space, locally in the neighborhood of an edge. This metric Laplacian is the right formulation
of the wave problems; it will be taken up again in the chapters 10 and 11.

The space X considered, included in IRn, is provided with the metric g(x). This translates,
by definition, into the fact that the product scalar product on TxX, tangent space to X at x is

< u, v >g=
∑
ij

gij(x)uivj ,

(g(x)) being a symmetric matrix defined positive at any point x and (u, v) are two tangent
vectors to X at x.

1) Extend the definition of the Laplacian by generalizing the relation∫
IRn

h(x)∆f(x)dx = −
∫

(gradf.gradh)dx,

valid in IRn with the (usual) identity metric for functions C∞ with compact support. We will
note ∆g the Laplacian metric defined in this way.

2) Write the formal asymptotic expansion of ∆g + k2

Exercise 1.3 : Radon transform and Radon transform and wave equation. 1) The Radon
transform is defined by (ω, s) ∈ S2 × IR

Rf(ω, s) =

∫
x.ω−s=0

f(x)dx̂,

x̂ being the coordinate on the hyperplane x.ω = s.
Verify that Rf(−ω,−s) = Rf(ω, s), and that the Fourier transform and the Radon trans-

form are related, for ω of norm 1, by the relation Ff(tω) =
∫

IR
e−itsRf(s, ω)ds.

2) Compute R−1g(x) and R(∆f) for n odd.
3) Write in terms of Radon transform the solution of the equation in IR3 and prove that if

the initial data have their support in |x| < R, then the solution is null for |x| < |t|+ R. Can
we give an identical result with the support of the source term?

Solution of the exercise 1.0. 1) We verify that

∂xjG(x, y) =
xj − yj
|x− y| G(x, y)(ik − 1

|x− y| )

It comes then

partial2x2
j
G(x, y) =

G(x, y)

|x− y| (ik−
1

|x− y| )+G(x, y)
xj − yj
|x− y|

xj − yj
|x− y|3 +

(xj − yj)2

|x− y|2 (ik− 1

|x− y| )
2G(x, y).

Summing up, we obtain

∆xG = G[
3

|x− y| (ik −
1

|x− y| )− (ik − 1

|x− y| )
|x− y|2

|x− y|3 +
|x− y|2

|x− y|3 + (ik − 1

|x− y| )
2].

All calculations done, we obtain ∆xG(x, y) = −k2G(x, y). From Similarly, taking the complex con-
jugate in this relation, ∆xH(x, y) = −k2H(x, y) for x 6= y. The distribution (∆x + k2)G(x, y) is
supported in x = y. On the other hand, we write, using the form of the Laplacian in spherical
coordinates, for a test function independent of θ, φ :∫

IR3

(∆x + k2)G(x, y)φ(|x|)dx =

∫ +∞

0

eikr

4πikr
[
1

r

∂

∂r
(r
∂φ

∂r
) + k2φ]4πr2dr.

The explicit calculation thus gives, after integrations by parts in r∫∞
0
k2rφ(r)dr −

∫∞
0
r∂rφ∂r(e

ikr)dr =
∫∞

0
k2rφ(r)dr −

∫∞
0
r∂rφ∂r(e

ikr)dr

= k2
∫∞

0
rφ(r)dr − ik

∫∞
0
r∂rφe

ikrdr

= k2
∫∞

0
rφ(r)dr + ik

∫∞
0
φ∂r(re

ikr)dr

= ik
∫∞

0
φeikrdr.

The result follows from this. 2) We immediately verify that, for f ∈ Linfty(IR3)
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u(x, k) =

∫
IR3

G(x, y)f(y)dy

is then a solution of (∆ + k2)u = f , and v(x, k) =
∫

IR3 H(x, y)f(y)dy.
Solution of the exercise 1.1. The relations of section 4 give

∆xa+ ik(2∇xφ.∇xa+ a∆xφ)− k2|∇xφ|2a− ∂t2a− ik(2∂tφ.∂ta+ a∂2
t2φ) + k2(∂tφ)2a = 0

The eikonal equation is, here,

(∂tφ)2 = |∇xφ|2.
The transport operator corresponding to L1 is

2(∇xφ,−∂tφ).(∇x, ∂t) + (∆− ∂2
t2)

We suppose that there exists a point (x0, t0) such that φ(x0, t0) = 0 and such that ∇tφ(x0, t0) 6= 0
(this represents a surface which propagates in time). We further assume that the phase is C∞ at in
the neighborhood of this point. In the neighborhood of this point, there exists a function ψ(x) such
that ψ(x0) = t0 and φ(x, t) = 0⇔ t = ψ(x).

As φ(x, u+ ψ(x)) = 0⇔ u = 0, the function a(x, u) = int10∂tφ(x, su+ ψ(x))ds verifies

φ(x, u+ ψ(x)) = ua(x, u).

We deduce φ(x, t) = (t−ψ(x))b(x, t), with b(x, t) = a(x, t−ψ(x), and b(x, ψ(x)) 6= 0 in a neighborhood
of x0.

∇xφ(x, t) = −∇xψ(x)b(x, t) + (t− ψ(x))∇xb(x, t)

∂tφ(x, t) = b(x, t) + (t− ψ(x))∂tb(x, t).

The function φ is a solution of the eikonal equation, so

b2(x, t) + 2(t− ψ(x))b(x, t)∂tb(x, t) + (t− ψ(x))2(∂tb(x, t))
2

= (∇xψ(x))2b2(x, t) + (t− ψ(x))2(∇xb)2 − 2(t− ψ(x))∇xb.∇xψ.
By writing this equality, true for all t, for t = ψ(x) and using b(x, ψ(x)) 6= 0 in a neighborhood of x0,
we find

|∇xψ| = 1

and
2b∂tb+ (t− ψ(x))(∂tb)

2 = −2∇xbψ + (t− ψ(x))(∇xb)2.

We have thus verified that φ(x, t) = b(x, t)(t−ψ(x)), with |∇xψ| = 1. The isophase surfaces of φ can
be defined in the same way at any point (x0, t0) such that ∂tφ(x0, t0) 6= 0. We have the result :

For all (x0, t0), there exists ψφ(x0,t0) such that |∇xφa| = 1 for all a and such that, locally in the
neighborhood of (x0, t0) :

{(x, t) ∈ IRd ×R,φ(x, t) = φ(x0, t0)} = Sφ(x0,t0) = {(x, ψφ(x0,t0)(x)), x ∈ IR}.

Solution of the exercise 1.2. 1) The metric Laplacian ∆g is defined by

(7.21)

∫
Rn

(∆gf)(x)h(x)dgx = −
∫
Rn

< gradf, gradh >g dgx.

Let’s see what to take for the volume form dg. Assuming that the volume is independent by change
of variable, we consider a point x0 and write the eigenvectors of the matrix g(x0) (unitary for the
identity metric on IRn), which form an orthonormal basis of IRn. Writing then g(x0)(u, u) =

∑
λjU

2
j ,

the Ui being the coordinates of u in the proper basis of g(x0), the volume element volume is then√∏
λi, which gives, by noting |g| the determinant of the matrix g

dgV = |g(x0)|
1
2 dV.

We have thus constructed the volume element dgx = |g|
1
2 dx. This local equality is due to, among

other things



26 1. FORMAL ASYMPTOTICS

i) the fact that a diagonal matrix is associated to a volume element volume as above and
ii) the fact that the space of n alternating linear platforms on IRn is of dimension 1, so dgx = λdx.
Using the relation (7.21), we have∫

M

(∆gf)(x)h(x)|g(x)|
1
2 dx = −

∫ ∑
j,l

gjl(x)
∂f

∂xj

∂h

∂xl
|g(x)|

1
2 dx.

From this, after integration by parts, we immediately derive

∆gf(x) = |g(x)|−
1
2

∑
l

∂xl(|g(x)|
1
2

∑
j

gjl(x)∂xlf).

We rewrite this equality using the notations div and grad for the operators ∂x1 + ∂x2 + ∂x3 et
(∂x1 , ∂x2 , ∂x3) :

∆g = |g(x)|−
1
2 div(|g(x)|

1
2 g(gradf)).

This formulation of the Laplacian operator is invariant by change of variable. The divergence and ro-
tational operators associated à metric will be defined later, during the study of the Maxwell Maxwell’s
equations.

2) By introducing a(x, k)eikφ(x), we verify that

e−ikφ(x)∆g(ae
ikφ(x)) = |g|−

1
2 div[|g|

1
2
∑
j,l gjl(x)(grada+ ikgradφa)

= |g|−
1
2 div[|g|

1
2 gjl(x)grada] + ik|g|−

1
2 divgradφa)

+ik
∑
j,l gjl(x)gradagradφ− k2∑

j,l gjl(x)gradφgradφ

+ik|g|−
1
2 div[|g|

1
2
∑
j gij(x)gradjφ)]a.

This example shows that the formal calculation of the section (5) is much faster; the canonical bilinear
form associated to P is is the metric form and is written

∑
j,l gjl(x)ξjξl. Its derivative is written as

∂xij (A(x, ξ, ξ)) = 2
∑
l

gjl(x)ξl

As ∆g(1) = 0, ∆g has no constant term. The result then follows. We will come back in another

part of the course to the problem of obtaining an intrinsic writing for this operator operator and

deduce a faster formulation of the eikonal and transport equations..
Solution of the exercise 1.3. 1) We write

Ff(tω) =

∫
IR3

e−itx.ωf(x)dx.

We can thus, for any fixed ω ∈ S2, define in an independent way independently of x.ω a measure on
x.ω = s. This measure is denoted dx̂ω, and dx = dx̂ωds. We check that

∫
x.ω=s

dx̂ωf(x) = Rf(s, ω),
which gives the equality we are looking for.

2) We then write the equality on the Fourier transform transform :

f(x) =
1

(2π)3

∫
IR3

eix.ξFf(ξ)dξ.

We replace the Fourier transform by its expression in function of the Radon transform, writing ξ = ρθ,
θ of norm 1, and then :

f(x) = 1
(2π)3

eiρx.θ
∫

IR3 Ff(ρθ)ρ2dρdθ

= 1
(2π)3

∫∞
0

∫
S2

∫
IR
dseiρ(x.θ−s)Rf(s, θ)ρ2dρdθ

= 1
2π

∫∞
−∞

∫
IR
dseiρ(x.θ−s)ρ|2dρ 1

2(2π)2

∫
S2 dθRf(s, θ)

= 1
2(2π)2

∫
S2 dθ[(− ∂2

∂s2
)RRf ](x.θ, θ).

The last line of this equality comes from the fact that |ρ|2 is the symbol for the second derivative
in s; it will be clear that that in dimension n, this term is replaced by |ρ|n−1, and so the equivalent

operator will be the pseudodifferential operator (−∂2
s2)

n−1
2 .

The inversion formula in IRn is

(7.22) f(x) =
1

2(2π)n−1

∫
Sn−1

dθ[(− ∂2

∂s2
)
n−1

2 Rf ](x.θ, θ).

We then check that, thanks to the correspondence between the transform of Fourier transform
and the Radon transform, that
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F(∂xjf)(tω) =

∫
IR

e−itsR(∂xjf)(s, ω)ds

On the other hand, the first term is equal to itωjFf(tω), equal therefore to itωj
∫
R e
−itsRf(s, ω)ds.

It comes

ωj

∫
IR

(− ∂

∂s
)(e−its)Rf(s, ω)ds = itωj

∫
IR

e−itsRf(s, ω)ds =

∫
IR

e−itsR(∂xjf)(s, ω)ds,

and by integration by parts on the first term

ωj

∫
IR

e−its(
∂

∂s
)Rf(s, ω)ds

∫
IR

e−itsR(∂xjf)(s, ω)ds.

The relation

ωj(
∂

∂s
)Rf(s, ω) = R(∂xjf)(s, ω)

allows, with |ω| = 1, to have

R(∆f)(s, ω) =
∂2

∂s2
(Rf)(s, ω).

3) It is then elementary to calculate the solution of the Cauchy problem. Indeed, we have

(∆− ∂2
t2)u(x, t) = 0

with u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), all assumed L2(IR3). Considering the Radon transform in x
of u, denoted F (s, ω, t), we obtain the problem :

(∂2
s2 − ∂

2
t2)F (s, ω, t) = 0

F (s, ω, 0) = Ru0(s, ω), ∂tF (s, ω, 0) = Ru1(s, ω).

The solution of this problem is explicit; it is given by the expression (1.4)
We find

F (s, ω, t) =
1

2
(Ru0(t+ s, ω) +Ru0(t− s, ω)) +

1

2

∫ t+s

t−s
calRu1(z, ω)dz.

The solution is then the inverse Radon transform of F (s, ω, t), obtained by the expression (7.22).
Then we see that we makes intervene F (x.θ, ω, t) in the expression, thus derivatives of Ru0(t+x.θ, ω)
and of Ru0(t− x.θ, ω) (and the same with Ru1). We suppose that the initial data are supported for
|x| < r. They are null for |x| ≥ R. In particular, the hyperplane x.ω = s for s > R is outside the
zone where u0 is nonzero, so

Supp(u0) ⊂ {|x| < R} ⇒ R(s, ω) = 0, s > R.

The variable s considered is then either x.θ− t, or x.θ+ t, so, as θ is of norm 1, |x.θ− t| ≥ |x| − t, so

if |x| > t + R, the transform of the initial data is zero. Thus, we verify that the solution is null for

|x| > |t|+R.





CHAPTER 2

Asymptotic methods for hyperbolic systems

In this chapter, we present the results of Lax [60] which prove, under sufficient regularity
assumptions, that the hyperbolic matrix problems of order 1 admit an asymptotic solution
and that this asymptotic solution is quite close to the actual solution. The Lax method allows
to solve in generic cases the eikonal and transport equations obtained in the case of systems.
We obtained, in the lemma 1.3, that the equations on the principal term e0, h0 of E,H and
on the φ phase are:
• the eikonal equation on φ :

|gradφ|2 = εµ,

• a compatibility condition between the first terms of e and h :

e0 = ε−1gradφ ∧ h0

(equivalent to µh0 = −gradφ ∧ e0),
• the transport equations on the first terms{

gradφ ∧ rote0 − µroth0 − (dive0)gradφ = 0
gradφ ∧ roth0 + εrote0 − (divh0)gradφ = 0.

The situation obtained in this case is different from the one described in section 4 where no
compatibility condition appears, the only equation on the first term is a partial differential
equation. In the case of the system of Maxwell’s equations, we find a non-differential relation
(called the compatibility condition) and partial differential equations. This chapter clarifies
and generalizes the notion of compatibility relation and the induced transport equation.

1. Construction of solutions of symmetric hyperbolic systems

We recall in this first paragraph a classical existence and uniqueness result for the Cauchy
problem, due to Friedriechs [28]. We introduce, following Rauch [86] and Lax [60], a hyper-
bolic operator :

Definition 2.1. A symmetric hyperbolic matricial operator on IRd× IRt is an operator of
(C∞0 (IRd × IRt))

m in itself which takes the general form

Lu = A0(x, t)∂tu+

j=d∑
j=1

Aj(x, t)∂xju+B(x, t)u.

The matrices (Aj)0≤j≤d are symmetric and verify

∀α ∈ INd,∀p ∈ IN,∃Cjα,p ∈ IR,∀(x, t) ∈ IRd+1, |∂αx ∂
p
tAj(x, t)| ≤ Cjα,p.

Moreover, A0 is positive definite and there exists c > 0 such that A0 − cId ≥ 0.

We have the existence and uniqueness result

Proposition 2.1. Let L be a hyperbolic symmetric matricial operator. Let g be in
Hσ(IRd), f ∈ H1

loc(IR, H
σ(IRd)) (in the case where this operator is matricial, consider g1, ...gm

and f1, ..., fm, m being the number of unknown functions).
The problem {

Lu = f,
u(x, 0) = g(x),

29
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admits a unique solution in C(IR, Hσ(IRd)), which verifies the estimate

||u(t, .)||Hσ(IRd) ≤ CeCt||g||Hσ(IRd) +

∫ t

0

CeC(t−s)||f(s, .)||Hσ(IRd)ds.

Proof. 1) A priori estimate. Let v(x, t) = ∂αx u. One checks that

A0(x, t)∂tv +
∑
j

Aj(x, t)∂xjv = Lv.

Moreover

d

dt
(A0v, v)L2(IRd) = (∂tA0v, v)L2(IRd) + (A0∂tv, v)L2(IRd) + (A0v, ∂tv)L2(IRd).

By replacing the right-hand side of the previous equality A0∂tv by Lv −
∑
j Aj∂xjv and

by integrating by parts on xj , we find

(A0∂tv, v)L2(IRd) = (Lv, v)L2(IRd) +
∑
j

(v, ∂xj (A
jv))L2(IRd).

The matrices Aj , 0 ≤ j ≤ d being symmetric, one gets

d

dt
(A0v, v)L2(IRd) = (∂tA0v, v)L2(IRd) + (Lv, v)L2(IRd) + (v, Lv)L2(IRd) + (

∑
j

(∂xjAj)v, v)L2(IRd).

From (A0v, v) = (A
1
2
0 v,A

1
2
0 v) and from (v, Lv) = (A

1
2
0 v,A

− 1
2

0 Lv), the classical Cauchy-

Schwartz inequality and the inequality A
− 1

2
0 ≤ c− 1

2 Id of Definition 2.1 yield

(v, Lv)L2(IRd) ≤ c−
1
2 ||Lv||L2(IRd)||A

1
2
0 v||L2(IRd) = ((A0v, v)L2(IRd))

1
2 ||Lv||L2(IRd)c

− 1
2 .

We denote by h(t) = (A0v, v)
1
2

L2(IRd)
. Thanks to the assumptions of the definition, ∂tA0 is

bounded by the constant C0
0,1. Introduce C(A) = max1≤j≤d C

j
1,0. We thus obtain

2h(t)
d

dt
(h(t)) ≤ C0

0,1c
−1h2(t) + 2c−

1
2h(t)||Lv||L2 + C(A)h2(t),

which yields, when h(t) 6= 0

h′(t) ≤ C1h(t) + c−
1
2 ||Lv||L2 .

Gronwall’s lemma leads to

h(t) ≤ h(0)eC1t + c−
1
2

∫ t

0

||Lv||L2(IRd)(s)e
C1(t−s)ds,

expression valid even when h vanishes. Note that this comes from the the fact that the adjoint
of L is explicit, and that L− L∗ is a bounded operator.

We have thus obtained the L2 estimate :

(1.23)
||∂αx u||L2(IRd)(t) ≤ c− 1

2h(t)

≤ c− 1
2 ||A

1
2
0 ∂

α
x u(0)||eC1t +

∫ t
0
c−1eC1(t−s)||L∂αx u||(s)ds.

The Poisson bracket [L, ∂αx ] is equal to
∑
β,1≤|β|≤|α| Cα,β∂

β
x , hence

L∂αxφ = ∂αxLφ+
∑

β,1≤|β|≤|α|

Cα,β(x, t)∂βxφ(x, t).

The inequality (1.23) is rewritten
(1.24)

||∂αx u||L2(IRd)(t) ≤ c−
1
2 ||A

1
2
0 ∂

α
x u(0)||eC1t +

∫ t
0
c−1eC1(t−s)||

∑
β Cα,β(x, s)∂βxu||(s)ds

+
∫ t

0
c−1eC1(t−s)||∂αx f(., s)||ds.
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We use again the Cauchy-Schwarz inequality, and we denote by Cα,β(s) = maxx∈IRdCα,β(x, s).
Inequality (1.24) implies

||∂αx u||L2(IRd)(t) ≤ c−
1
2 ||A

1
2
0 ∂

α
x u(0)||eC1t +

∑
β c
−1
∫ t

0
Cα,β(s)eC1(t−s)||∂βxu||ds

+
∫ t

0
c−1eC1(t−s)||∂αx f(., s)||(s)ds.

Denote finally by DN (s) = max|α|,|β|≤NC
α,β(s). One gets, summing up for

|α| ≤ N , that

(1.25)
||u||HN (IRd)(t) ≤ c−

1
2 ||A

1
2
0 ||∞||u||HN (0)eC1t + c−1

∫ t
0
Dm(s)eC1(t−s)||u||HN (s)ds

+
∫ t

0
c−1eC1(t−s)||∂αx f(., s)||(s)ds.

The inequality a priori on the solution in HN is again a consequence of Gronwall’s lemma.
2) Existence. Let us show the existence of all terms of the approximation by the Courant-

Friedriechs-Lévy (CFL) finite difference method [28]. We introduce the operators Dh
j such

that

Dh
j φ(x) =

1

2h
(φ(x+ hej)− φ(x− hej)).

We introduce the solution uh of

Lhuh = ∂tu
h +

∑
j Aj(x, t)D

h
j u

h = f,

uh(x, 0) = g(x).

We verify the equality, analogous to the discrete integration by parts with the change of
variable

(Dh
j u

h, Aju
h) = −(uh, Dh

j (Aju
h)).

Considering N(t) = (uh, uh)L2(IRd), one finds

d
dtN(t) = 2Re (Lhuh, uh)−

∑
j(AjD

h
j u

h, uh)−
∑
j(u

h, AjD
h
j u

h)

= 2Re (Lhuh, uh) +
∑
j(u

h, [Dh
j (Aju

h)−AjDh
j u

h]).

One also has

Dh
j (Aju

h)−AjDh
j u

h

=
Aj(x+hej ,t)−Aj(x,t)

2h uh(x+ hej , t)− Aj(x−hej ,t)−Aj(x,t)
2h uh(x− hej , t),

which, using the Taylor formula with integral remainder, is written

Dh
j (Aju

h)−AjDh
j u

h =
1

2

∫ 1

0

∂jAj(x+shej , t)u
h(x+hej , t)+

1

2

∫ 1

0

∂jAj(x−shej , t)dsuh(x−hej , t).

We deduce the majoration L2, after the inequality of Cauchy-Schwarz inequality on uh and
uh(x+ hej) :

|(uh, [Dh
j (Aju

h)−AjDh
j u

h])| ≤ ||uh||2||∂jAj ||∞.
This together with the inequality

|2Re (Lhuh, uh)| ≤ 2||Lhuh||L2 ||uh||L2

yields

d

dt
||uh||(t) ≤ ||f ||L2 +

1

2
(
∑
j

||∂jAj ||∞)||uh||L2 .

We get the following L2 estimate :

||uh||L2(t) ≤ ||g||L2e
1
2 (

∑
j ||∂jAj ||∞)t) +

∫ t

0

e
1
2 (

∑
j ||∂jAj ||∞)(t−s)||f ||L2(IRd)(s)ds.

Note that the constant C =
∑
j |∂jAj ||∞ is independent of h. An similar proof (left to the

reader) then shows the regularity L∞loc(IR, H
N (IRd)).
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For s = 1, we obtain a solution that is in L∞loc(IR, H
1(IRd)). We deduce that

∑
j Aj(x, t)∂xju ∈

L∞loc(IR, L
2(IRd)), hence

∂tu ∈ L∞loc(IR, L2(IRd)).

Let us write u(x, t) = u(x, 0) +
∫ t

0
∂tu(x, s)ds. On the compact set [0, t], ∂tu(x, s) is bounded

and one has
sups∈[0,t]||∂tu(x, s)||L2(IRd) < +∞.

We deduce the local continuity in time of u(x, t). The inequality

||u||L2(IRd)(t) ≤ ||u(x, 0)||L2(IRd) + tsups∈[0,t]||∂tu(x, s)||L2(IRd)

implies

u ∈ C(IR, L2(IRd)).

It is easy to obtain that u belongs to C(IR, Hσ(IRd)) thanks to u ∈ L∞loc(IR, Hs+1(IRd)).
3) Uniqueness. We prove the uniqueness by duality.
Let L = ∂t +G, then tL = −∂t + tG. We introduce for any ψ, rapidly decaying function

(of the Schwartz class) a solution of the problem
tLv = ψ, v|t=T = 0.

This solution exists, as we have seen, and we have, for a solution u of Lu = 0, u|t=0 = 0,∫ T
0

(ψ, u)dt =
∫ T

0
(tLv, u)dt

=
∫ T

0
(−∂tv + tGv, u)dt

=
∫ T

0
((−∂tv, u) + (v,Gu))dt

= −
∫ T

0
((∂tv, u) + (u, ∂tv))dt

= (u(., 0), v(., 0))− (u(., T ), v(., T )) = 0.

This holds for any function ψ in the Schwartz class. As u belongs to the space C(IR, Hσ(IRd)),

we deduce that there exists, by density, a sequence ψn of S(IR × IRd) converging to u. One
has thus u = 0. This ends the proof of Proposition 2.1. �

2. Asymptotic procedure for hyperbolic systems

We show in this section that we can extend to hyperbolic systems the notion of asymptotic
solutions, in particular with the introduction of the eikonal equation. Let L(x, t, ∂x, ∂t) a

hyperbolic operator (Definition 2.1), acting on distributions u(x, t) ∈ (D′)m(IRd × IR). We
introduce a function u(x, t, ε) (called Ansatz, which means in German: Conjecture) in the
form

(2.26) u(x, t, ε) = a(x, t, ε)eiφ(x,t)/ε,

where there exists a sequence aj(x, t) such that

a(x, t, ε) '
∑
j

aj(x, t)ε
j .

Indeed, we conjecture that the hyperbolic system admits a solution of of this form. This
function is supposed to verify :

(2.27) L(x, t, ∂x, ∂t)u(x, t, ε) ' 0.

Note that one sometimes writes u(x, t, ε) = A(x, t, ε, θ)|θ=ε−1φ(x,t) = a(x, t, ε)eiθ where, under
the classical notations of Joly-Metivier-Rauch [51], y is the “fast” variable and (x, t) are the
”slow” variables.

Introduce the functions Wj , j ≥ −1, through :{
W−1 = iL(x, t,∇xφ, ∂tφ)a0,
Wj = iL(x, t,∇xφ, ∂tφ)aj+1 + L(x, t, ∂x, ∂t)aj , j ≥ 0.



2. ASYMPTOTIC PROCEDURE FOR HYPERBOLIC SYSTEMS 33

We denote by π(x, t) is the orthogonal projection on Ker(L(x, t,∇xφ(x, t), ∂tφ(x, t))). We
notice that

L(x, t, ∂x, ∂t)(a(x, t, ε)eiφ(x,t)/ε) '
∞∑

j=−1

εjWj(x, t)e
iφ(x,t)/ε,

Proposition 2.2. The necessary conditions for u to satisfy the equation (2.27) are the
following

(1) equations:{
L(x, t,∇xφ, ∂tφ)a0(x, t) = 0,
iL(x, t,∇xφ, ∂tφ)aj+1(x, t) + L(x, t, ∂x, ∂t)aj(x, t) = 0, j ≥ 0.

(2) The eikonal equation satisfied by φ is

(2.28) det(L(x, t,∇xφ(x, t), ∂tφ(x, t))) = 0

(3) On a leaf of the manifold (2.28), necessary conditions on a0 are

(2.29) ∀(x, t) ∈ V, a0(x, t) ∈ Ker(L(x, t,∇xφ(x, t), ∂tφ(x, t))),

(2.30) ∀(x, t) ∈ V,L(x, t, ∂x, ∂t)a0(x, t) ∈ ImL(∇φ(x, t)).

(4) Introduce a0(x) which satisfies π(x, t0)a0(x) = a0(x) for all x (in the suitable neigh-
borhood). Let a0 be the unique solution of the symmetric hyperbolic system

(2.31)
[π(x, t))L(x, t, ∂x, ∂t)π(x, t)+(I−π(x, t))L(x, t, ∂x, ∂t)(I−π(x, t))]a0(x, t) = 0, a0(x, t0) = a0(x).

Then L(x, t,∇xφ, ∂tφ)a0(x, t) = 0 and L(x, t, ∂x, ∂t)a0 ∈ =L(x, t,∇xφ, ∂tφ).

Proof. At first glance, it seems that the equation W−1 = 0 is the same as for the
the scalar problem. But it is not so : indeed in the scalar case this equality implied that
L(x, t,∇xφ, ∂tφ) is zero, because it was a number (which gave the eikonal equation). On
the other hand in the vector case this equation has a non-trivial solution in a0 when the
determinant is zero, and in this case a0 belongs to the kernel of the matrix L(x, t,∇x, ∂t).
We can call the equation (2.28) the generalized eikonal equation. The equation (2.28) is an
equation of degree m in ∂tφ. This equation has therefore, in general, m roots. The generalized
eikonal equation thus corresponds tom leaves of the manifold and on each leaf we have a system
of transport equations.

Example of Maxwell’s equations. Let us treat an example to show the difference between
the system of hyperbolic equations and scalar equations. In the case of the system of Maxwell’s
equations seen in the section 1.3, we obtain

detK = det


ε∂tφI3

0 ∂x3φ −∂x2φ
−∂x3

φ 0 ∂x1
φ

∂x2
φ −∂x1

φ 0
0 −∂x3

φ ∂x2
φ

∂x3φ 0 −∂x1φ
−∂x2φ ∂x1φ 0

µ∂tφI3

 = 0.

After elementary calculations (based on the calculation of det

(
A B
C D

)
= detAdet(D −

BA−1C)), we find

detK = det((εµ(∂tφ)2 − (∇φ)2)I3 + (∇φ)(∇φ)t) = εµ(∂tφ)2[εµ(∂tφ)2 − (∇φ)2].

The eikonal equation is equivalent to the three equations

∂tφ = c|∇φ|, ∂tφ = −c|∇φ|, ∂tφ = 0.
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Each is a leaf of the characteristic manifold.
Let us now study the equations on a0.

For a given φ, such that, in (x0, t0), Ker(L(x0, t0,∇xφ(x0, t0), ∂tφ(x0, t0))) is not reduced to
{0}, we assume that there exists a neighborhood V of (x0, t0) such that the codimension of
Ker(L(x, t,∇xφ(x, t), ∂tφ(x, t))) is constant. For simplicity the matrix L(x, t,∇xφ(x, t), ∂tφ(x, t))
is denoted in the sequel by L(∂φ(x, t)).

We notice that the condition on a0 is not a differential condition on a0, but a rela-
tion between the different coefficients. This relation is therefore a generalization of the
compatibility condition obtained in section 6. Remark that it is not enough to determine
a0. We had already noticed these two facts for the first term corresponding to the Maxwell
harmonic equations. Denote by L(∇φ(x, t)) the matrix L(x, t,∇xφ(x, t), ∂tφ(x, t)), equal to
∂φ
∂tA0(x, t) +

∑j=d
j=1

∂φ
∂xj

Aj(x, t).

We determine a0 by adding to the compatibility relations (2.29) the differential equations
that we obtain by canceling the next term of the asymptotic expansion W0. Indeed, as
L(∂φ(x, t)) is non injective, the relation L(x, t, ∂x, ∂t)a0(x, t) = −iL(∂φ(x, t))a1(x, t) implies

The two relations(2.29) et (2.30) form a system of m equations with m unknowns, con-
sisting of

m− dim(Ker(L(∂φ(x0, t0))))

differential equations of order 1 and

dim(Ker(L(∂φ(x0, t0))))

relations for a0. We introduce π(x, t) the orthogonal projection on L(∂φ(x, t)).

Lemma 2.1. We have the relations Imπ = KerL(∂φ(x, t)) and Kerπ = ImL(∂φ(x, t)).
The restriction of L(∂φ(x, t)) to Kerπ is invertible.

We use the assumptions of the definition 2.1. Indeed, for all (x, t), the operator is sym-
metric, so the linear operator L(∂φ(x, t)) is symmetric. Its kernel and its image are therefore
in direct orthogonal sum. The restriction of L(∂φ(x, t)) to its image is invertible.

Equation (2.29) is equivalent to

(2.32) π(x, t)a0(x, t) = a0(x, t).

For knowing a0, we add to the compatibility relations (2.32) the transport equation (2.30)

L(x, t, ∂x, ∂t)a0 ∈ ImL(∂φ(x, t)).

This transport equation is rewritten as π(x, t)L(x, t, ∂x, ∂t)a0(x, t) = 0, equation equivalent to

(2.33) π(x, t)L(x, t, ∂x, ∂t)(π(x, t)a0(x, t)) = 0.

Note that (2.33) is an equation on the vector space Imπ. To find a0, we show

Lemma 2.2. The system of equations (2.32), (2.33) + an initial data initial in time
a0(x, t0) verifying π(x, t0)a0(x, t0) = a0(x, t0) is equivalent to the symmetric hyperbolic system

[π(x, t))L(x, t, ∂x, ∂t)π(x, t) + (I − π(x, t))L(x, t, ∂x, ∂t)(I − π(x, t))]a0(x, t) = 0.

From this lemma, we immediately deduce the result of the proposition 2.2. Indeed the
symmetric hyperbolic system (2.31) admits a unique solution for any initial data, which proves
the uniqueness result of the proposition.

The equality π(x, t)a0(x, t) = a0(x, t) comes from the fact that (I − π(x, t))a0(x, t) is
a solution of (2.31) for a zero initial datum, so by uniqueness of the solutions of (2.31) we
deduce that (I − π(x, t))a0(x, t) = 0 for all (x, t). For more convenience, we will denote
by G(x, t, ∂x, ∂t) = π(x, t))L(x, t, ∂x, ∂t)π(x, t) + (I − π(x, t))L(x, t, ∂x, ∂t)(I − π(x, t)) which
intervenes in the equality (2.31).
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Proof of the lemma. From (2.29), (I − π(x, t))a0(x, t) = 0, so

(I − π(x, t))L(x, t, ∂x, ∂t)(I − π(x, t))a0(x, t) = 0.

We thus obtain, by addition of (2.33) to this equality, the equality (2.31).

The coefficient matrix of ∂t in the operator G is Ã0(x, t) = π(x, t)A0(x, t)π(x, t) + (I −
π(x, t))A0(x, t)(I − π(x, t)). Since A0(x, t) is positive definite, Ã0 is also positive definite.
Indeed, let us decompose A0 on Kerπ ⊕ Imπ in the form(

A11
0 (x, t) A12

0 (x, t)
tA12

0 (x, t) A22
0 (x, t)

)
,

the matrices A11
0 (x, t) and A22

0 (x, t) being symmetric. The inequality A0 ≥ cId is rewritten,
by decomposing u = (u1, u2), into the inequality

tu1A
11
0 (x, t)u1 +t u2A

22
0 (x, t)u2 + 2(tu1A

12
0 (x, t)u2) ≥ ctu1u1 + ctu2u2.

Considering successively u2 = 0 and u1 = 0, we find that A11
0 (x, t) ≥ cId and A22

0 (x, t) ≥ cId,
so the matrix

Ã0(x, t) =

(
A11

0 (x, t) 0
0 A22

0 (x, t)

)
verifies Ã0(x, t) ≥ cId1.

In the same way, all the matrices π(x, t)Aj(x, t)π(x, t) are positive symmetric if the Aj(x, t)
are. The system (2.31) is thus a hyperbolic system because the operator G is a strictly
hyperbolic in time Cauchy operator .

Conversely. Assume (2.31) is satisfied and show that c0(x, t) = (I − π(x, t))a0(x, t) is
solution of G(x, t, ∂x, ∂t)c = 0. Since (I − π(x, t))2 = (I − π(x, t)) and (I − π(x, t))π(x, t) = 0,
the equation (2.31) leads to

(I − π(x, t))L(x, t, ∂x, ∂t)(I − π(x, t))a0(x, t) = 0.

relation in the equation (2.31), we obtain [π(x, t)L(x, t, ∂x, ∂t)π(x, t)]a0(x, t) = 0. In using
this time π2 = π and (I − π)π = 0, we find successively

[π(x, t)L(x, t, ∂x, ∂t)π(x, t) + (I − π(x, t))L(x, t, ∂x, ∂t)(I − π(x, t))](π(x, t)a0(x, t))
=

π(x, t)L(x, t, ∂x, ∂t)π(x, t)a0(x, t) = 0.

The vector π(x, t)a0(x, t) is therefore a solution of the same hyperbolic system as a0

and moreover, π(x, t0)a(x, t0) = a(x, t0). The uniqueness result recalled below for hyperbolic
systems gives π(x, t)a0(x, t) = a0(x, t). So (2.31) + initial condition implies both (2.32) and
(2.31). This completes the proof of the lemma 2.2, since a0 is then uniquely determined and
concludes the proof of Proposition 2.2. �

Define the maximum velocity c so that the differential of φ(x, t) does not cancel on

Ω = {(t, x), 0 < t < T <≤ R/c, |x− a| < R− ct}.

Restrict our study to Ω. Let φ(x, t) be a solution of the eikonal equation (2.28). Assume φ is
solution of the eikonal equation (2.28), associated with a leaf characterized by its orthogonal
projection φ(x, t)on =π = KerL(∂φ(x, t)). Introduce the inverse Q on ImL(∂φ(x, t)) of the
the operator (I − π)L(∂φ(x, t))(I − π). The following equations

i) (initial condition) bj(x, t0) = aj(x), for j ≥ 0.
ii) (impedance equation) L(∂φ(x, t))b0(x, t) = 0,
iii) (transport equations) iL(∂φ(x, t))bj(x, t)+L(x, t, ∂x, ∂t)bj−1(x, t) = 0. characterize the

asymptotic solutions of (2.27). One has the following result, which constructs an asymptotic
solution of the hyperbolic system

1The matrices identities used in this paragraph are not equal, we see respectively the identity on Kerπ,
the identity on Imπ and the identity on the whole space
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Theorem 2.1. Assume that the leading order term of the initial value of a at t0 satisfies

(2.34) π(x, t0)a0(x) = a0(x).

• Let a0 solution of (2.31), uniquely determined thanks to Proposition 2.2.
• Assume that initial (partial) conditions aj(x) are such that aj(x) ∈ =π(x, t0) and assume
that aj(x, t) is known for all j ≤ l − 1. Let π(x, t0)aj(x) = aj(x) and impose the initial value
of

(2.35) (I − π(x, t0))aj(x) = iQ(x, t0)[L(x, t, ∂x, ∂t)aj−1](x, t0).

• The function al is uniquely determined by al(x, t0) = al(x) and the equations

(I − π)al = iQ(I − π)L(x, t, ∂x, ∂t)al−1,

G(x, t, ∂x, ∂t)bl = i(I − π)Q(I − π)L(x, t, ∂x, ∂t)al−1 + πL(x, t, ∂x, ∂t)πal,

• There exists a unique sequence aj(x, t) of functions C∞(Ω̄) satisfying i), ii), iii).

Proof. The proof of the theorem is done by induction on j. It is identical for each j, so
we write it to obtain b1. From the equality

(2.36) b1(x, t) = πb1(x, t) + (I − π)b1(x, t),

By replacing (2.36) in the transport equation and using L(∂φ(x, t))π(x, t) = 0, we get

L(∂φ(x, t))(I − π)b1 = iL(x, t, ∂x, ∂t)b0.

The transport equation is thus inhomogeneous. We deduce

(I − π)L(∂φ(x, t))(I − π)b1(x, t) = i(I − π)L(x, t, ∂x, ∂t)b0(t, x).

The kernel of the matrix (I − π)L(∂φ(x, t))(I − π) is KerL(∂φ(x, t)). The kernel and the
image of L(∂φ(x, t)) are are supplementary, so the matrix (I−π)L(∂φ(x, t))(I−π) is invertible
in Kerπ = ImL(∂φ(x, t)). We note its partial inverse Q. We deduce

(2.37) (I − π)b1(x, t) = iQ(I − π)L(x, t, ∂x, ∂t)b0(x, t)

which determines (I − π)b1 as a function of b0. It remains to determine πb1. The system of
which πb1 is a solution from the equation on b2:

iL(∂φ(x, t))b2(x, t) + L(x, t, ∂x, ∂t)b1(x, t) = 0.

As L(∂φ(x, t))b2(x, t) ∈ ImL(∂φ(x, t)) one gets

π(x, t)L(x, t, ∂x, ∂t)b1(x, t) = 0,

Using (2.37) and (2.36) one has

(2.38) π(x, t)L(x, t, ∂x, ∂t)[πb1(x, t) + iQ(I − π)L(x, t, ∂x, ∂t)b0] = 0.

From (2.37) we deduce

(I − π)L(x, t, ∂x, ∂t)(I − π)b1 = i(I − π)L(x, t, ∂x, ∂t)Q(I − π)L(x, t, ∂x, ∂t)b0

Adding (2.38) to these equations, one obtains the following system

G(x, t, ∂x, ∂t)b1(x, t) = i(I − 2π)L(x, t, ∂x, ∂t)Q(I − π)L(x, t, ∂x, ∂t)b0.

This system is then a hyperbolic system and has a unique solution.
The theorem is then a consequence of the

Proposition 2.3. Let a0(x) satisfying π(x, t0)a0(x) = a0(x). We determine b0(x, t) by
the proposition 2.2. Under the condition of compatibility of the initial data

(I − π)a1(x) = iQ(x, t0)L(x, t, ∂x, ∂t)b0(x, t0),

the system {
(I − π)b1 = iQ(I − π)L(x, t, ∂x, ∂t)b0,
πL(x, t, ∂x, ∂t)πb1 = −iπL(x, t, ∂x, ∂t)(Q(L(x, t, ∂x, ∂t)b0),
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is equivalent to{
G(x, t, ∂x, ∂t)b1 = i(I − 2π)L(x, t, ∂x, ∂t)(Q(L(x, t, ∂x, ∂t)b0),
b1(x, t0) = a1(x).

It has thus a unique solution b1.

Proof. the implication ⇒ has just been proved. The reciprocal is the following. Thus,
we assume

(2.39) G(x, t, ∂x, ∂t)b1(x, t) = i(I − 2π)L(x, t, ∂x, ∂t)(I − π)QL(x, t, ∂x, ∂t)b0.

One notices that πG(x, t, ∂x, ∂t) = πL(x, t, ∂x, ∂t)π and that (I − π)G(x, t, ∂x, ∂t) = (I −
π)L(x, t, ∂x, ∂t)(I − π). Hence, from equality (2.39), one deduces{

πL(x, t, ∂x, ∂t)πb1(x, t) = −iπL(x, t, ∂x, ∂t)QL(x, t, ∂x, ∂t)b0,
(I − π)L(x, t, ∂x, ∂t)(I − π)b1 = i(I − π)L(x, t, ∂x, ∂t)QL(x, t, ∂x, ∂t)b0.

From the second equation of this system, one has

(I − π)L(x, t, ∂x, ∂t)[(I − π)b1 − iQL(x, t, ∂x, ∂t)b0] = 0.

As I − π is the identity on =Q and (I − π)2 = I − π, one has

(I − π)L(x, t, ∂x, ∂t)(I − π)[(I − π)b1 − iQL(x, t, ∂x, ∂t)b0] = 0.

As πQ = 0, one has πL(x, t, ∂x, ∂t)π[(I − π)b1 − iQL(x, t, ∂x, ∂t)b0] = 0. Hence, for all t

G(x, t, ∂x, ∂t)[(I − π)b1 − iQL(x, t, ∂x, ∂t)b0] = 0.

The compatibility condition is the zero Cauchy condition for this hyperbolic system. We
deduce for all t that (I − π(x, t0))b1(x, t) = i[QL(x, t, ∂x, ∂t)b0]. We deduce the two equalities
required. The proposition is proved. �

This proves by induction Theorem 2.1. �

Remark 1. The system satisfied by πb1 is

G(x, t, ∂x, ∂t)(πb1) = −iπLQLb0
and the one satisfied by b1 is

G(x, t, ∂x, ∂t)b1 = i(I − 2π)LQLb0.

These two systems are identical only when L(QLb0) is in =π = KerL(∂φ). The only
relation implied by the system on b0 is π(Lb0) = 0, i.e. Lb0 ∈ Kerπ = =L(∂φ).

Remark 2. The condition on aj(x) reduces to an equality on π(x, t0)aj(x), since (I −
π(x, t0))aj(x) is determined by the compatibility condition. On the other hand, we do not
automatically have π(x, t0)aj(x) = aj(x) contrary to the case j = 0. We underline the
difference of presentation with [86] (Theorem 5.4) even if the result is identical: we prefer to
emphasize the condition of compatibility condition induced on the rank j by the data of ak
for k ≤ j − 1.

3. Application to Maxwell equations

The system of Maxwell equations is hyperbolic symmetric in the sense of the definition
2.1. In Indeed, Maxwell equations can be written as Maxwell equations are written

ε∂tE = rotH,−µ∂tH = rotE.

Let u = (E,H) and denote the matrices
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A0 =

(
εI3 0
0 µI3

)
, A1 =


0

0 0 0
0 0 1
0 −1 0

0 0 0
0 0 −1
0 1 0

0



A2 =


0

0 0 −1
0 0 0
1 0 0

0 0 1
0 0 0
−1 0 0

0

 , A3 =


0

0 1 0
−1 0 0
0 0 0

0 −1 0
1 0 0
0 0 0

0


Maxwell equations write

(3.40) A0∂tu+A1∂x1
u+A2∂x2

u+A3∂x3
u = 0.

Matrices Aj are symmetrical, and the matrix A0 is bounded below by min(ε, µ)I6. The eikonal
equation (2.28) is then

(3.41) detA0∂tΦ +A1∂x1
Φ +A2∂x2

Φ +A2∂x3
Φ) = 0.

Let rot∗Φ be the matrix

rot∗Φ =

 0 ∂x3Φ −∂x2Φ
−∂x3Φ 0 ∂x1Φ
∂x2

Φ −∂x1
Φ 0


Equation (3.41) rewrites

det

(
ε∂tΦI3 rot∗Φ
−rot∗Φ µ∂tΦI3

)
= 0,

equivalent to

[εµ(∂tΦ)2 − |∇Φ|2]2εµ(∂tΦ)2 = 0.

The two leaves of the characteristic manifold are thus ∂tΦ = 0 et |∇Φ| = (εµ)
1
2 |∂tΦ|.We are

interested in the second leaf. Say that u0 is in the kernel is equivalent to(
( εµ )

1
2 |∇Φ|I3 rot∗Φ

−rot∗Φ (µε )
1
2 |∇Φ|I3

)(
e0

h0

)
=

(
0
0

)
.

One gets the relations (6.19) :

e0 = (µε )
1
2
∇Φ
|∇Φ| ∧ h

0

h0 = −( εµ )
1
2
∇Φ
|∇Φ| ∧ e

0

It is for this reason that the relation (2.29) is sometimes called impedance condition, the

number Z = (µε )
1
2 which appears here is the impedance of the medium. This notation is, of

course, an abuse of language because the impedance condition is a condition at the boundary,
whereas the relation (2.29) is a valid relation for all x in the domain Ω.

We therefore deduce the eikonal relation c2(∇Φ)2 = (∂tΦ)2 by the very simple calculation
coming from the eikonal equation by rewriting k = ∂tΦ. It is thus (fortunately) the same
eikonal equation as for the Helmholtz problem.

By writing the relations induced by (2.29) in (3.40), we find that the transport equations
linking (e1, h1, e0, h0) which are those given by (2.30) are those written in (6.20).
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4. Asymptotic existence for an elliptic problem

In this section, we change the type of operator, by considering an elliptic operator instead
of a hyperbolic operator. We wish to show an application of asymptotic analysis for elliptic
systems of order 1, and in particular to obtain thanks to asymptotic calculations the gain of
regularity of Pu ∈ Hs → u ∈ Hs+1. Let us notice, in the hyperbolic case, that it is enough to
solve

L(x, t, ∂x, ∂t)c(x, t, ε) = −r(x, t, ε) ' 0

with the Cauchy condition c|t=0 = 0.
In the case where L is an elliptic operator, the above equality is solvable in the neighbor-

hood of any point, and the regularity of c is known as a function of the regularity of r (we can
compare this result with this result can be compared to the result from Taylor stated later in
Proposition 7.8).

We first introduce the elliptic operators of order 1.

Definition 2.2. Let P (x, t, ∂x, ∂t) =
∑d
j=1Aj(x, t)∂xj + A0(x, t)∂t. We say that P is

elliptic in the neighborhood of neighborhood of the point (x0, t0) if there exists a function

χ ∈ C∞0 (IR × IRd) (such that χ = 1 on |x − x0|2 + (t − t0)2 ≤ ε2) and a constant c > 0 such
that the matrix

d∑
j=1

χ(x, t)ξjAj(x, t) + τχ(x, t)A0(x, t)

is bounded below by c(|ξ|2 + τ2)
1
2 Id for all(ξ, τ) ∈ IRd × IR− {(0, 0)}.

J. Rauch demonstrates in his course [86] the proposition :

Proposition 2.4. We suppose that in a neighborhood of (x0, t0), P (x, t, ∂x, ∂t) is an
elliptic operator of order 1.

(1) We can solve Pc = r for r ' 0, and there exists a c which is asymptotically zero
(2) Regularity Hσ :

Pu ∈ Hσ ⇒ u ∈ Hσ+1,

(3) Regularity C∞

Pu ∈ C∞ ⇒ u ∈ C∞

Proof. Let us first note that there are other proofs of this proposition. We choose this
proof in connection with asymptotic expansions. Let P (x, t, ∂x, ∂t) be an elliptic operator in
the neighborhood of a point (x0, t0). Consider χP , and we introduced b(x, t) = χPu(x, t).

The proof proceeds in two steps:
• we construct an asymptotic solution and show that this asymptotic solution ”starts one

step above”, i.e. the first term of the asymptotic expansion is zero
• Then, we show that the Fourier transform of a solution can be characterized by the

solution can be characterized by the asymptotic parameter k = (|ξ||2 + τ2)
1
2 k → +∞ and we

check the asymptotic solution thus calculated.
Asymptotic solution of an elliptic problem
In this part of the proof, the asymptotic parameter is ε → 0. Let us first notice that if

v(x, t, ε) = V (x, t, ε)e
iφ(x,t)
ε , with V (x, t, ε) '

∑
l Vl(x, t)(ε)

l, we get

Pv(x, t, ε) = [i(

d∑
j=1

Aj(x, t)

ε

∂φ

∂xj
+
A0(x, t)

ε

∂φ

∂t
)V (x, t, ε)+(

d∑
j=1

Aj(x, t)
∂V

∂xj
+A0(x, t)

∂V

∂t
)]ei

φ(x,t)
ε .

For all (ξ0, τ0) 6= (0, 0), and for any function b ∈ C∞0 (IRd+1×]0, 1]), one can construct an

asymptotic expansion of tPv(x, t, ε) = χ(x, t)b(x, t, ε)ei
x.ξ0+tτ0

ε , the operator tP being elliptic
as well. Hence φ(x, t) = x.ξ0 + tτ0, and

e−
xξ0+tτ0

ε Pv(x, t, ε) =
i

ε
[

d∑
j=1

Aj(x, t)ξ0,j+A0(x, t)τ0]V (x, t, ε)+[

d∑
j=1

Aj(x, t)
∂V

∂xj
+A0(x, t)

∂V

∂t
].
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Assuming que tPv(x, t, ε) = b(x, t, ε)ei
x.ξ0+tτ0

ε , b(x, t, ε) '
∑
l bl(x, t)(iε)

l, one gets the equa-
tions

[

d∑
j=1

Aj(x, t)ξ0,j +A0(x, t)τ0]V0(x, t) = 0

and, for l ≥ 1,

−[

d∑
j=1

Aj(x, t)ξ0,j+A0(x, t)τ0]+(

d∑
j=1

Aj(x, t)
∂Vl−1

∂xj
+A0(x, t)

∂Vl−1

∂t
)Vl(x, t) = χ(x, t)bl−1(x, t).

One deduces V0(x, t) = 0, et

V1(x, t) = −(
∑
j

Aj(x, t)ξ0,j +A0(x, t)τ0)−1(b0(x, t)),

τ0 = ξ0,0 et τ = ξ0 then all the successive equations giving Vl as a function of Vl−1. We
introduce the convention and x0 = t. Then

V2(x, t) = −(
∑

0≤j≤d

Aj(x, t)ξ0,j)
−1[b1(x, t) +

∑
0≤p≤d

Ap(x, t)
∂

∂xp
(
∑

0≤j≤d

Aj(x, t)ξ0,j)
−1(b0(x, t))).

We have constructed an asymptotic solution of class C∞ whose first term is zero. We
check that all terms, which include bl or derivatives of bl, have a support contained in the
support of χ since b = χPu.

Sobolev regularity of the asymptotic solution
We suppose now ||ξ0||2 + τ2

0 = 1, this in order to distinguish the parameter k and the
direction of the vector (ξ, τ). The construction and Borel’s Theorem (Theorem 1.2) provide

an asymptotic solution (k →∞, k = ε−1) v(x, t, k) ∈ C∞(IRd+1, Sd, k), of support included in
suppχ(x, t), of

tPv(x, t, k) = χ(x, t)eik(x.ξ0+tτ0).

Note that this is equivalent to choosing Pu = eik(x.ξ+tτ0).
We give M such that (1 + η2)sη−2M tend to 0 at to infinity in IRd+1. This value of M

gives the order of truncation of the asymptotic series. We note

vM (x, t; ξ, τ, k) =

M∑
l=1

ilVl(x, t, k
−1)k−l.

Then

(4.42)

F(χu)(kξ, kτ) =< u, χ(x, t)eik(x.ξ+tτ) >
=< u, tPvM (x, t; ξ, τ, k) > +O(k−M )
=< Pu, vM (x, t; ξ, τ, k) > +O(k−M )

=< f, eik(x.ξ+tτ)
∑l=M
l=1 k−lilVj(x, t; ξ, τ, k) > +O(k−M )

=
∑M−1
l=1 k−lilF(fVl) +O(k−M ).

The successive equalities on Vl, identical to the one obtained for V2, show that Vlf can be
written as the product of f by regular derivatives and quotients involving χ and its derivatives.
Let χ̃ be a function C∞ with compact support equal to 1 on suppχ. Then T = ∂xlχ is uniformly
bounded as well as all its derivatives. We deduce that the Fourier transform of ∂xlχf is equal
to the convolution product of the Fourier transform of χ̃f and T . We use then the regularity
of T , which implies the Sobolev regularity of T , to find that the operator ĝ → T̂ ? ĝ is bounded
in Hs. We deduce∫

IRd+1

|F(Vlf)(ξ, τ)|2(1 + |ξ|2 + τ2)sdξdτ ≤ C(l, χ)|χ̃f ||2Hs(IRd+1).

Then the change of variable ξ = kη, τ = kσ allows to obtain
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∫
Sd×IR

|F(Vlf)(kη, kσ)|2k2s+d+1dηdσdk ≤ C(l, χ)|χ̃f |2Hs(IRd+1).

From the equality (4.42), the sum starting at l = 1, we find∫
IRd+1 |F(χu)(ξ, τ)|2(1 + |ξ|2 + τ2)pdξdτ

=
∫

IRd+1 |F(χu)(kη, kσ)|2(k−2 + |η|2 + σ2)pk2p+d+1dηdσ
≤ max1≤l≤M−1(C(l, χ))

∑
l≥1

∫
IRd+1 |F(fVl)(kη, kσ)|2(k−2 + |η|2 + σ2)pk2p+d+1−2ldηdσ.

This sum is convergent for p = s + 1 because l ≥ 1, so we obtain the regularity Hs+1 of the
solution u. We have completed the proof of the second paragraph.

The third paragraph of the theorem can be deduced from the second by the inclusions
between local Sobolev spaces and Ck-function spaces. We will come back to this type of of
method in the paragraph 4.4. �

5. Exercices of chapter 2

Exercise 2.1. 1) Calculate the asymptotic expansion in k of the solution u(x1, x2, k) =(
a1(x1, x2, k)
a2(x1, x2, k)

)
eikφ(x1,x2) of

(5.43) iku+

(
1 2

√
2

2
√

2 3

)
∂x1u+

(
2x1+1

3

√
2(1−x1)

3√
2(1−x1)

3
2+x1

3

)
∂x2u = 0.

2) Consider an initial condition on x1 = 0 of the form u(x2, k) = a(x2, k)eikψ(x2). Give the
solution of the previous problem with this initial condition .

Exercise 2.2. Assume that φ is solution of the eikonal equation (2.28) and that the di-
mension of the kernel of Ker(L(∂φ)) is 1. Prove that a0 is solution of a transport equation
characterized by a vector field.

Correction de l’exercice 2.1. On applique les résultats précédents. On vérifie que l’on a

ik[Id+

(
1 2

√
2

2
√

2 3

)
∂x1φ+

(
2x1+1

3

√
2(1−x1)

3√
2(1−x1)

3
2+x1

3

)
∂x2φ]

(
a1(x1, x2, k)
a2(x1, x2, k)

)
+O(1) = 0

Il existe une solution non triviale si et seulement si le déterminant de la matrice entre crochets est
nul (ce qui correspond à écrire det(L(x,∇xφ)) = 0). La matrice coefficient de ∂x2φ est symétrique,
donc diagonalisable. Ses valeurs propres sont x1 et 1. Le vecteur propre associé à la valeur propre x1

est (−
√

2, 1). Le vecteur propre associé à 1 est (1,
√

2). On voit ensuite que(
1 2

√
2

2
√

2 3

)(
−
√

2
1

)
= −

(
−
√

2
1

)
,

(
1 2

√
2

2
√

2 3

)(
1√
2

)
= 5

(
1√
2

)
.

De ces égalités, on déduit que l’équation eikonale est équivalente à

det(Id+

(
−1 0
0 5

)
∂x1φ+

(
x1 0
0 1

)
∂x2φ) = 0

soit

(1− ∂x1φ(x1, x2) + x1∂x2φ(x1, x2))(1 + 5∂x1φ(x1, x2) + ∂x2φ(x1, x2)) = 0.

Nous introduisons les courbes intégrales respectives des deux champs :

dx1

ds
= −1,

dx2

ds
= x1(s)

soit x1(s) = x0
1−s, x2(s) = x0

2−x0
1s− s2

2
pour le premier, c’est-à-dire x2 = x0

2−x0
1(x0

1−x1)− 1
2
(x1−x0

1)2

dx1

ds
= 5,

dx2

ds
= 1

soit x1(s) = x0
1 + 5s, x2(s) = x0

2 + s pour le deuxième, c’est-à-dire x2 = x0
2 + 1

5
(x1 − x0

1).
On contrôle que φ(x1(s)), x2(s)) = φ(x1(0), x2(0)) − s. On connâıt donc la phase solution de

l’équation eikonale si on la connâıt sur une courbe orthogonale aux champs. On considère donc la
courbe x1 = 0, comme l’énoncé le suggère. Alors on trouve
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• dans le premier cas φ(x1, x2) = φ(0, x2 + 1
2
x2

1) + x1 (les surfaces isophase sont des paraboles)
• dans le deuxième cas φ(x1, x2) = φ(0, x2 − x1

5
)− x1

5
(les surfaces isophase sont des droites).

Représentons

(
a1(x1, x2, k)
a2(x1, x2, k)

)
sur la base propre, par(

a1(x1, x2, k)
a2(x1, x2, k)

)
= α1(x1, x2, k)

(
−
√

2
1

)
+ α2(x1, x2, k)

(
1√
2

)
,

avec α1(x1, x2, k) = 1
3
(−
√

2a1(x1, x2, k)+a2(x1, x2, k)), α2(x1, x2, k) = 1
3
(a1(x1, x2, k)+

√
2a2(x1, x2, k)).

On vérifie alors que

ikα1

(
−
√

2
1

)
+ ikα2

(
1√
2

)
+

(
1 2

√
2

2
√

2 3

)
[∂x1α1

(
−
√

2
1

)
+ ∂x1α2

(
1√
2

)
]

+

(
2x1+1

3

√
2(1−x1)

3√
2(1−x1)

3
2+x1

3

)
[∂x2α1

(
−
√

2
1

)
+ ∂x2α2

(
1√
2

)
]

+ikα1(−∂x1φ+ x1∂x2φ)

(
−
√

2
1

)
+ ikα2(5∂x1φ+ ∂x2φ)

(
1√
2

)
= 0

et on aboutit aux deux équations d’ordre 1

ik(1− ∂x1φ+ x1∂x2φ)α1 − ∂x1α1 + x1∂x2α1 = 0,

ik(1 + 5∂x1φ+ ∂x2φ)α2 + 5∂x1α2 + ∂x2α2 = 0.

On remarque que ces deux équations correspondent à des solutions asymptotiques de problèmes
scalaires d’ordre 1. Il n’existe pas de phase φ et de couple (α1, α2) non nuls tels que φ, α1, α2 vérifie
à la fois les deux équations.

On considère donc comme donnée la valeur de la phase à x1 = 0, soit ψ(x2). Cette phase ψ
génère deux phases φ1(x1, x2) et φ2(x1, x2) telles que

φ1(x1, x2) = ψ(x2 +
1

2
x2

1) + x1,

φ2(x1, x2) = ψ(x2 −
x1

5
)− x1

5
.

Si φ = φ1, la condition nécessaire pour que u soit solution de (5.43) est que a soit colinéaire au

vecteur

(
−
√

2
1

)
. On en déduit que α2 = 0, et α1 est solution de

−∂x1α1 + x1∂x2α1 = 0

et α1 est donc constant sur les caractéristiques du champ (−1, x1). Il vient donc α1(x1, x2, k) =

α1(0, x2 +
x2

1
2
, k).

Lorsque la phase est égale à φ2, nécessairement a est dans le noyau de la matrice associée à φ2,
donc α1 = 0. On trouve 5∂x1α2 + ∂x2α2 = 0, ce qui donne α2(x1, x2, k) = α2(0, x2 − x1

5
, k).

La phase φ est nécessairement égale à φ1 ou à φ2 pour que u(x1, x2, k) = a(x1, x2, k)eikφ(x1,x2)

soit une solution du système (5.43). Dans ces cas, on a respectivement α2 ou α1 nul.
De ces deux résultats, on déduit que si la donnée initiale n’est pas dans l’espace propre associé à

une phase particulière, alors la solution générale ne peut pas s’écrire sous la forme a(x1, x2, k)eikφ(x1,x2).
En revanche, le système différentiel étant linéaire, toute expression de la forme

A(x1, x2, k)eikφ1(x1,x2) +B(x1, x2, k)eikφ2(x1,x2)

est solution lorsque A est colinéaire à

(
−
√

2
1

)
et lorsque B est colinéaire à

(
1√
2

)
, les coefficients

vérifiant les lois de α1 et de α2. De plus, il faut que

A(0, x2, k)eikφ1(0,x2) +B(0, x2, k)eikφ2(0,x2) = a(x2, k)eikψ(x2).

Par des manipulations élémentaires lorsque k tend vers +∞ et en prolongeant k dans le complexe,
on déduit que φ1(0, x2) − ψ(x2) = C1, φ2(0, x2) − ψ(x2) = C2, C1 et C2 étant deux constantes. On
peut les prendre nulles, quitte à inclure le terme ekC1 dans A ou B. Alors il suffit de décomposer
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a(x, k) =

(
A1(x2, k)
A2(x2, k)

)
dans la base propre {

(
−
√

2
1

)
,

(
1√
2

)
} pour obtenir une solution à

“deux phases” :

u1(x1, x2, k) = −
√

2(−
√

2A1+A2
3

)(x2 +
x2

1
2
, k)eikψ(x2+

x2
1
2

)+ikx1

+(A1+
√

2A2
3

)(x2 − x1
5
, k)eikψ(x2−

x1
5

)−ik x1
5 ,

u2(x1, x2, k) = (−
√

2A1+A2
3

)(x2 +
x2

1
2
, k)eikψ(x2+

x2
1
2

)+ikx1

+
√

2(A1+
√

2A2
3

)(x2 − x1
5
, k)eikψ(x2−

x1
5

)−ik x1
5 .

On voit ainsi deux fronts se propager. On pourra les différencier si on suppose que la singularité
de départ est donnée.

Correction de l’exercice 2.2. Si la dimension du noyau est égale à 1 au voisinage d’un point, on
en déduit que a0(x, t) est proportionnel à un vecteur u0(x, t) de ce noyau, qui est connu explicitement
puisque le noyau est de dimension 1. On écrit alors

a0(x, t) = λ(x, t)u0(x, t).

L’équation de transport générale s’écrit

iL(x, t,∇xφ, ∂tφ)aj+1(x, t) + L(x, t, ∂x, ∂t)aj(x, t) = 0.

On appelle u0(x, t) la polarisation de l’onde.
Notons alors que l’équation de transport est

L(x, t, ∂x, ∂t)a0(x, t) ∈ ImL(∂φ(x, t))

ce qui se traduit par πL(x, t, ∂x, ∂t)a0 = 0. Comme a0 = πa0 (puisque a0 ∈ KerL(∂φ(x, t))), on
trouve πL(x, t, ∂x, ∂t)πa0 = 0, équation déjà obtenue précédemment.

L’égalité π ∂
∂xj

= [π, ∂
∂xj

] + ∂
∂xj

π conduit à

(5.44) πLπ =

d∑
j=1

πAjπ
∂

∂xj
+ πA0π

∂

∂t
+

d∑
j=1

πAj [π,
∂

∂xj
] + πA0[π,

∂

∂t
].

Comme π est de rang 1, il existe d + 1 scalaires vj(x, t), qui sont les valeurs propres de πAj , avec
v0(x, t) 6= 0 (ceci car A0 > 0) tels que πAjπ(x, t) = vj(x, t)π(x, t). En notant γ(x, t) le scalaire
(opérateur différentiel d’ordre 1− 1 = 0) tel que

γπ =

d∑
j=1

πAj [π,
∂

∂xj
] + πA0[π,

∂

∂t
],

(5.45) πLπ = [v0(x, t)∂t +

j=d∑
j=1

vj(x, t)∂xj + γ(x, t)]π.

On a donc démontré que πa0 est solution d’une équation régie par le champ de vecteurs sur IRd

((v0(x, t))−1vj(x, t))1≤j≤d.
Cette relation s’obtient aussi immédiatement en remplaçant a0 par λu0. On voit alors que

π(x, t)(Aj(x, t)∂xj (λ(x, t)u0(x, t))) = (∂xjλ)πAju0 + λπAj∂xju0,

qui est colinéaire à u0, π étant de rang 1 et de noyau IRu0.
Donc le champ de vecteurs dont λ est solution est parallèle à ∂ξl∂x + ∂τ l∂t, où l(x, t, ξ, τ) =

iτA0(x, t) + i
∑j=d
j=1 Aj(x, t)ξj . On verra plus loin le rôle de cette fonction de IRd+1 × IRd+1, dans le

chapitre 5.
Conclusion. Le champ de vecteurs v−1

0 (vj) s’appelle la vitesse de groupe de l’onde de polarisation
u0. On remarque que l’équation eikonale s’écrit

det(l(x, t, ξ, τ))|τ=∂tφ,ξ=∂xφ = 0.

Si on résout l(x, t, ξ, τ) = 0, on trouve τ = τ(x, t, ξ) et l’équation donnant la polarisation est

τ(x, t, ∂xφ)A0(x, t)u0(x, t) +

j=d∑
j=1

∂xjφ(x, t)Aj(x, t)u0(x, t) = 0.





CHAPTER 3

Wave propagation and bicharacteristics.

This chapter studies the propagation of a solution of the wave equation along the charac-
teristics, as the theory of geometrical optics can teach us. We demonstrate the propagation
results of geometrical optics in vacuum as long as the ray does not meet the caustic.

Note that this is a local problem: indeed, this solution of the the wave equation can come
from sources located outside the computational domain, and in this case the wave equation is
not satisfied globally (because it is not satisfied in the vicinity of the sources).

In order to use the asymptotic theory, we consider the Helmholtz equation. An asymptotic
result obtained for the Helmholtz equation is equivalent, after inverse Fourier transform in
time, to a result of propagation result for the wave equation. We then consider the system of
equations :

(0.46)


(∆ + k2)u(x, k) = 0,
u(x, k)|Σ = A(x, k)|Σeikφ0 ,
S(u)(x, k) = O( 1

|x| ).

where Σ is a given smooth surface, locally flat (i.e. tangent plane), φ0 is a constant (in other
words, the other words, the phase of the wave on Σ is constant). We will restrict ourselves to
the two most common cases where Σ is a half space or where Σ is the boundary of an open
set Θ. The function A verifies the definition 1.1. The condition

(0.47) u(x, k)|Σ = A(x, k)|Σeikφ0

is an initial condition, with the same abuse of language as in the previous chapter for the
representation of u(x, t) =

∫
eikφ(x)+ikcta(x, k)dk whose wavefront is φ(x) + ct = 0. The name

”initial condition” should be replaced by the expression ”condition at t∗ = −φ0/c”. We refer
the reader to Section 4 for more details on this equivalence.

The condition S(u)(x, k) = O( 1
|x| ) is a Sommerfeld condition at infinity, called the out-

going condition. It indicates for example that the wave is defined only on one side of Σ for
t = t∗ (with remainder terms, which can be either decreasing faster than any inverse power of
k, or exponentially decreasing in k depending on the regularity of the solution).

We know that this problem locally admits a unique solution, by the Holmgren’s theorem
for example, or by uniqueness results of the Dirichlet problem at the boundary. We consider
this solution u(x, k).
Let W (x0) be the Weingarten matrix, matrix of curvature of Σ0 at x0, given by W (x0) =
∇N(x0) where N(x0) is the normal unit vector. If Σ0 has at least one negative curvature,
denote by R0 < 0 the largest negative curvature.

1. Asymptotic solution before caustic points

All geometrical elements of Σ0 yield the asymptotic solution when A is given thanks to

Theorem 3.1. Let u be the unique solution of (0.46), with (0.47) as boundary condition
on Σ. Assume A has an asymptotic expansion a0

j .

45
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There is an asymptotic representation of the solution u as a(., k)eikφ(.) where a, φ solve

(1.48)

 |∇φ|
2 = 1,

∇φ.∇a0 + 1
2∆φa0 = 0,

∇φ.∇ap + 1
2∆φap = − 1

2∆ap−1.

One has

(1) The characteristics x(x0, .), solutions of d
dt (x(x0, t)) = ∇φ(x(x0, t)) w ith x(x0, 0) =

x0are straight lines x(x0, t) = x0 + t∇φ(x0), the gradient of the phase is constant on
each characteristic, and φ(x(x0, t)) = φ0 + t.

(2) The leading order term a0 is given by

(1.49) a0(x(t)) = a0(x(0))exp(−1

2

∫ t

0

∆φ(x(u))du).

Remark that a0 is solution of

(1.50) div (∇φ|a0|2) = 0.

and we obtain the invariance of |a0|2 along sections of tube of rays.
All other terms are given by the relations

(1.51) ap(x(t)) = a0(x(t))[
ap(x(0))

a0(x(0))
− 1

2

∫ t

0

ds
∆ap−1(x(s))

a0(x(s))
].

(3) The amplitude along the ray issued from x0 is given also thanks to the curvatures of
Σ at x0. Every term of the asymptotic expansion aj(x0 + tN(x0)) is in C∞([0, T ])
for a given T < −R0, they are all going to +∞ for the smallest t such that det(Id+
tW (x0)) = 0. The leading order term is given by

(1.52) a0(x0 + tN(x0)) =
a0(x0)

(det(Id+ tW (x0)))
1
2

.

(4) The terms ap, p ≥ 1 of (1.48) are given by the C∞ functions for t < T :

ap(x(t)) =
ap(x0)− 1

2

∫ t
0

∆ap−1(x(s))(det(Id+ sW (x0)))
1
2 ds

(det(Id+ tW (x0)))
1
2

.

(5) Assume Ω totally characteristic for Σ0 at time T (i.e. any point of Ω is reached by
a point of the form x(t), x0 ∈ Σ0, t < T and the transformation Σ0 × [0, T [→ Ω is a
diffeomorphism on its image), there exists a(x, k) ∈ C∞([1,+∞], C∞(Ω)) such that

(k−2∆ + 1)a(x, k)eikφ(x) ' 0.

This is in particular the case when all curvatures of Σ0 are strictly positive, and in
this case T = +∞.

Proof. We construct an expansion induced by the asymptotic expansion of A on Σ. We
write u(x, k) = a(x, k)eikφ(x). The eikonal and transport equations (1.48) were obtained in
the chapter 1.

The introduction of Σ its interpretation and its use will be detailed in the chapter 12.
From the relation |∇φ|2 = 1, we deduce, by differentiating with respect to each variable, the
relation

Hessφ∇φ = 0,

the matrix Hessφ being the hessian matrix, symmetric, given by

Hessφ =


∂2φ
∂x2

∂2φ
∂x∂y

∂2φ
∂x∂z

∂2φ
∂x∂y

∂2φ
∂y2

∂2φ
∂y∂z

∂2φ
∂x∂z

∂2φ
∂y∂z

∂2φ
∂z2

 .

We introduce the characteristics of the Hamilton-Jacobi equation |∇φ|2 = 1, curves x(t)
solutions of the system
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d

dt
x(t) = ∇φ(x(t)), x(0) = x0 ∈ Σ.

We verify that d
dt (∇φ(x(t)) = Hessφ(x(t)) ddtx(t) = Hessφ∇φ = 0, hence ∇φ is constant on

the characteristics, and

x(t) = x0 + t∇φ(x0).

The characteristic curves are straight lines, and ∇φ is constant on these lines. Moreover,
as

d

dt
(φ(x(t)) = ∇φ. d

dt
x(t) = 1,

one checks that φ(x(t)) = φ0 + t car x0 ∈ Σ.
Finally, as φ(x) = φ0 sur Σ, s = 0, we give ourselves a curve γ(s) ⊂ Σ passing through

the point x0 at ∇φ.γ′(0) = 0 which indicates, since γ is arbitrary, that ∇φ(x0) is orthogonal
to the plane tangent to Σ at x0.

Choosing an orientation, defining a side of the surface Σ thanks to ∇φ(x0) = ~N0 ( ~N0 will
be called normal outgoing normal to Σ at x0) and admitting the continuity of φ, we verify
that, in the neighborhood of x0, ∇φ(x) is the normal vector normal exiting Σ at x. The choice
of the orientation is very dependent on the the choice of the outgoing condition, we do not go
into the details of the results that the reader can find for example in [57].

The vector ∇φ(x(t)), equal to ∇φ(x(0)), is also the unit normal vector exiting at Σt =
x0, φ(x) = φ0 + t} at point x(t).
• The transport equation rewrites

d

dt
(a0(x(t))) +

1

2
∆φ(x(t))a0(x(t)) = 0,

hence one gets (1.49). Similarly, considering the inhomogeneous transport equation of which
ap is a solution, and using the method of variation of the constant, we find (1.51). Indeed,
the equation characterizing the term ap is then

d

dt
(ap(x(t))) +

1

2
∆φ(x(t))ap(x(t)) = −1

2
∆ap−1(x(t)).

The solution of the homogeneous equation is a0(x(t)), so we write

ap(x(t)) = C(t)a0(x(t)),

which gives

C ′(t) = −1

2

∆ap−1(x(t))

a0(x(t))
.

The result (1.51) follows.
We can therefore calculate all the terms of the transport equation in terms of function of

∆φ, or, which is equivalent, as a function of a0.
In the system (1.48), we multiply the equation determining a0 by ā0. We obtain

2∇φ∇a0ā0 + ∆φ|a0|2 = 0.

Taking the conjugated expression (we suppose that there exists α ∈ C| such that φ(x)/α ∈ IR
for all x and we divide the equation by α to get back to φ real):

2∇φ∇ā0a0 + ∆φ|a0|2 = 0.

Summing the two equalities, we obtain ∇φ∇(|a0|2) + ∆φ|a0|2 = 0, so we obtain (1.50). We
consider a tube of radius T , supported on isophase surfaces Σ− (corresponding to t = t1) and
Σ+ (corresponding to t = t+), the normal vector outside T on Σ− is −∇φ(x(t−)), and the
unit normal vector exterior to T on Σ+ is ∇φ(x(t+)). It is moreover bounded by definition,

so ∂T = Σ− ∪ Σ+ ∪ T̃ , with, at any point of Σ, n.∇φ = 0.
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The Stokes formula on T gives∫
T

div (|a0|2∇φ)dx =

∫
∂T

(|a0|2∇φ).ndσ =

∫
Σ+

|a0|2dΣ+σ −
∫

Σ−

|a0|2dΣ−σ.

Equality div (|a0|2∇φ) = 0 yields∫
Σ+

|a0|2dΣ+
σ =

∫
Σ−

|a0|2dΣ−σ,

which is also expressed as the conservation of energy on the tubes of rays. We now interpret

exp(
∫ t

0
∆φ(x(u))du) as being the measure function associated to

• Explicit calculations of ∆φ and of a0:
Relations (1.49) and (1.51) show that ∆φ plays an essential role in the calculation of the
coefficients. We rely here on the relation

∆φ = Tr(Hessφ),

where Hessφ is the Hessian matrix of the φ phase. Let τ be a vector tangent to Σ0 at x0.
The matrix of curvature matrix of Σ0, traditionally called Weingarten matrix and denoted by
W (x0), is given by

gradN(x0) = W (x0).

its eigenvectors on Σ are the directions of curvature, its eigenvalues are the principal curva-
tures. This matrix is defined on the space tangent to the surface Σ at x0.

Using this matrix, we determine the Hessian matrix of the phase φ, which will give, by
computing the trace of this hessian matrix, the Laplacian of φ.

Let P be a plane passing through x0 containing N(x0), x0 ∈ Σ0 and be the curve γ drawn
on Σ0, parametrized by the curvilinear abscissa curvilinear u, equal to P ∩Σ0 with γ(0) = x0.
The vector γ′(0) is a tangent vector to Σ0 at γ(0) (and N(x0), γ′(0) is a basis of P ). Then the
components of the vector γ”(0) on the basis given by (γ′(0), N(γ(0))∧ γ′(0)) are respectively
the curvature and torsion of the γ curve. We have the relation γ”(0) = W (γ(0))γ′(0).

The relation N(γ(u)) = ∇φ(γ(u)) indicates that

W (γ(u))γ′(u) = gradN(γ(u))γ′(u) = Hessφ(γ(u))γ′(u)).

This implies that W (γ(0)) and Hess(γ(0)) coincide on the tangent plane to Σ0 at γ(0). More-
over, as ∇φ(γ(u)) is of norm 1, we can derive with respect to u the equality

||∇φ(γ(u))||2 = 1,

which yields Hessφ(γ(u))(∇φ(γ(u)), γ′(u)) = 0.
The vector ∇φ(γ(u)) is in its kernel (because Hessφ∇φ = 0) and the Hessian matrix of

∇φ is a symmetric matrix, so it is diagonalizable in an orthonormal basis. The tangent plane
to the manifold at x0, which is orthogonal to the line IRN(x0) is stable. If we decompose
Hessφ on the normal vector N(x0) and on the vectors which diagonalize W . As W and
Hessφ coincide on the plane, we find that TrHessφ = 0 + κ1 + κ2. We have thus proved that
∆φ(x0) = TrW (x0). We deduce that ∆φ(x0) is the sum of the principal curvatures of Σ0 in
x0. The Hessian of the phase can be identified with the application on the tangent plane given
by the Weingarten matrix.

Let us finally study Σt. A point of Σt can be written as x0 + t∇φ(x0). We can construct
the curve γt(v) ⊂ Σt from the curve γ(u) ⊂ Σ0 by constructing the points of the form
γt(u) = γ(u) + tN(γ(u)). As u is not a curvilinear abscissa on γt(u), we normalize u to obtain
a curvilinear abscissa. To do this, we write

d

du
(γt(u)) = γ′(u) + tgradN(γ(u))γ′(u).

As gradN(γ(u)) = W (γ(u)), one gets

d

du
(γt(u)) = (Id+ tW (γ(u)))γ′(u).
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Moreover, the equality ∇φ(γt(u)) = ∇φ(γ(u)) yields, after derivation

Hessφ(γt(u))
d

du
(γt(u)) = Hessφ(γ(u))γ′(u),

hence

Hessφ(γt(0))(Id+ tW (γ(0)))γ′(0) = Hessφ(γ(0))γ′(0).

To obtain the Hessian of φ on Σt, we assume that the matrix Id+ tW (γ(0)) is invertible. In
this case, we find

(1.53) Hessφ(γt(0))τ = W (γ(0))(Id+ tW (γ(0)))−1τ

for any τ tangent vector to Σt, otherwise it is verified only on Im(Id+ tW (γ(0))).
Proving (1.52) is now possible. Recall that x(t) depends on x0, in the sense that x(0) =

x0 = γ(0). We deduce from the equality (1.53), using again Hessφ(γt(0))N(γt(0)) = 0, the
equality

(1.54) Hessφ(x(t)) = Hessφ(x0)(Id+ tW (x0))−1.

We deduce from (1.54) the value of a0. Indeed,

∆φ(x(s)) = Tr(Hessφ(γs(0))) = Tr(Hessφ(x0)(Id+ sW (x0))−1).

We show that

(1.55)
d

ds1
Log(det[Id+(s+s1)W (x0)])|s1=0 =

det(Id+ sW (x0))Tr[W (x0)(Id+ sW (x0))−1]

det(Id+ sW (x0))

Indeed, equality

det(Id+ (s+ s1)W (x0)) = det(Id+ sW (x0))[1 + s1Tr[W (x0)(Id+ sW (x0))−1]] +O(s2
1),

and the limited expansion of the determinant of a matrix allows us to obtain the derivative
with respect to s1. As

d

ds
Log(det[Id+ sW (x0)]) =

det(Id+ sW (x0))Tr[W (x0)(Id+ sW (x0))−1]

det(Id+ sW (x0))
,

one deduces
∫ t

0
∆φ(x(s))ds = Log(det(Id + tW (x0))). We have the equality (1.52) and ob-

tained the principal term.
To obtain the term a1, we recall the equation satisfied by the term aj ; it is

2
daj
ds

+ ∆φaj = −i∆aj−1

which rewrites
dbj
ds

= − i
2
a−1

0 ∆aj−1

where bj = aj/a0. Hence

bj(x(s)) = bj(x0)− i

2

∫ t

0

a0(x(s))−1∆aj1(x(s))ds.

With the hypothesis t ∈ [0, T [, T being the first value of t for for which det(Id+ tW (x0)) = 0,
on the characteristic from x0. Assuming the two principal curvatures of Σ0 equal to κ1 and
κ2, which can be negative, det(Id+ tW (x0)) = (1 + tκ1)(1 + tκ2) and it comes T = +∞ if the
two curvatures are positive, T = min(−κ−1

1 ,−κ−1
2 ) otherwise. When T < +∞, we say that

the point x(T ) is a point of the caustic associated with the phase. The last item of
Theorem 3.1 comes from Borel’s theorem (Theorem 1.2) that a sequence of functions of C∞(Ω)
allows to construct a function a(x, k), in C∞([1,+∞], C∞(Ω)), which admits as asymptotic
expansion in k the formal series of ap(x)(ik)−p. We can then evaluate (k−2∆+1)(a(x, k)eikφ(x))
by (4.11). Fixing then M , order of truncation of the series series and noting aM (x, k) the sum
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of the first M terms of the series aj(x)(ik)−j , we apply the result of Borel’s Lemma (Theorem
1.2). This proves Theorem 3.1. �

2. Explicit expression after a caustic point

We now consider the solution of the system

(∆ + k2)u(x, k) = 0, u(x, k)|Σ = A(x, k)|Σeikφ0

and that this solution exists everywhere. For any point x0 of Σ, consider the associated radius
x0 + t∇φ(x0) = x0 + tN(x0). We assume that, on [0, T ], the matrix (I + tW (x0)) is singular
only in t = t0, 0 < t0 < T . The radius does not have a singularity (this is consistent with the
definition of caustics, which correspond to an accumulation of rays and not to the singularity
of a ray).

We show that the amplitude can be computed for any t ∈]t0, T ] knowing the amplitude
in the neighborhood of x(T ). We prove

Lemma 3.1. Let t be such that t0 < t ≤ T . The solution a0 of (1.48) is given by the
relation

a0(x(t)) =
a0(x(T ))

(det(Id+ (t− T )W (x0)))
1
2

eik(T−t).

Proof. We suppose that u(x + TN(x), k) admits an asymptotic expansion (asymptotic
in k) in the neighborhood of x0. We express the amplitude at any point of the form x+ tN(x),
t0 < t ≤ T from the expansion of u(x+TN(x), k) in the neighborhood of the point x+ tN(x).
From Theorem 3.1, we deduce that (∆ + k2)u = 0, u(x, k)|ΣT = AT (x, k)|ΣT eik(φ0+T ) admits
a solution as a function of Id + tW (x). We choose for that the backward direction on the
characteristic whose equation is d

dtx(t) = −N(x + TN(x)). Let t0 be the smallest positive
solution of det(Id+ t0W (x0)) = 0. Thus the amplitude a0(x(t)) of Theorem 3.1 diverges when
t→ t0, t < t0. Consider the solution of the system of eikonal and transport equations (1.48),
parameterized by s :

(2.56)

 ∇φ(y(s)) = −∇φ(x0),
y(s) = x(T )− s∇φ(x0),
∇φ(y(s)).∇a0(y(s)) + 1

2∆φ(y(s))a0(y(s)) = 0.

Let ΣT be the set of points x such that φ(x) = t0+T . Let WT be the Weingarten matrix of ΣT .
For s = 0, we notice that y(0) = x(T ) = x0 + TN(x0) ∈ ΣT and that ∇φ(y(0)) = −∇φ(x0).
The point y(0) belongs to the surface ΣT . From Theorem 3.1, we deduce y(s) = x(T − s) and

a0(y(s)) =
a0(y(0))

(det(Id− sWT (x0)))
1
2

.

Let us also notice that when Γ(u) is a curve on ΣT and that Γs is its image in the translation
by −s∇φ(x0),

d

du
(Γs(u)) = (Id− sWT (Γ(u)))Γ′(u).

The 0 order transport equation of (2.56) is transformed into

d

ds
(Log(a0(y(s))) +

1

2

d

ds
Log(det(Id− sWT (x0))) = 0.

This completes the proof of the lemma. �

To determine the expression of a0(x(T )) as a function of function of a0(x0) we need the
tool called stationary phase. Go to the chapter 4, Section 8 for the solution of this problem.
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Remark 2. The energy flow

(2.57) Φ(t) =

∫
St

|a0|2(x)dσ,

where dσ is the surface measure on St = Σt ∩ Tt1,t2 is conserved along the rays.

Indeed, for (t1, t2) ∈ [0, t0[2 or (t1, t2) ∈]t0, T ]2, we define a tube of radius by its section
Vt1 (which is a neighborhood of x(t1) in Σt1 , and which can also be be constructed as the
intersection of a neighborhood of x(t1) in IR3) and by

Tt1,t2 = {x+ tNt1(x), 0 ≤ t ≤ t2 − t1, x ∈ Σt1 ∩ Vt1 .

We note then that (2.57) is independent of t for t ∈ [0, t0[ as for t ∈]t0, T ] F We prove in
section 8 that φ(0) and φ(T ) are proportional (and φ(T ) = φ(0), result used in [57]).

3. Generalization to the case of a wave equation with a metric A(x)

Consider a positive symmetric matrix A(x). We consider the following wave equation :

Pu = [∂2
t2 −

∑
jl

∂xj (Ajl(x)∂xl)]u = 0.

We look for the solution of the eikonal equation in time and space, as well as and of the
transport equation. For this purpose, we consider a function u(x, t, k) = a(x, t, k)eikφ(x,t)

where a has the asymptotic expansion

a(x, t, k) '
∑
j≥0

aj(x, t)(ik)−j .

Hence

Pu(x, t, k) = k2U(x, t, k)eikφ(x,t)

where a(x, t, k) '
∑
j≥0 aj(x, t)(ik)−j implies

U(x, t, k) ' Pj(a)(x, t)(ik)−j .

One checks

P0(a)(x, t) = a0(x, t)((A(x)∇xφ,∇xφ)− (∂tφ)2)

P1(x, t) = a1(x, t)((A(x)∇xφ,∇xφ)− (∂tφ)2)− 2∂tφ∂ta0 + 2(A(x)∇xφ,∇xa0) + a0(x, t)Pφ.

The eikonal equation is thus

∂tφ(x, t) = −(A(x)∇xφ,∇xφ)
1
2 .

We consider particular functions φ, adapted to the wave propagation: φ(x, t) = ψ(x)− t.
Recall that this choice amounts to evaluate the surface φ(x, t) = 0 and to solve it in time.

Consider f a solution of

∂tf + (A(x)∇xψ(x)).∇xf = 0

and h the solution of the transport equation with initial condition

∂th+ (A(x)∇xψ).∇xh+∇x.(A(x)∇xψ)h = 0,
h(x, 0) = 1

.

We introduce the application of V ⊂ IRn in W ⊂ IRn which, at x associates X(x, t), the
solution of

dX
dt = A(X(x, t))∇xψ(X(x, t)),
X(x, 0) = x.

We demonstrate



52 3. WAVE PROPAGATION AND BICHARACTERISTICS.

Lemma 3.2. We consider the eikonal equation (which solution is ψ(x)) and the transport
equation deduced from the wave operator in a Riemannian metric A. The characteristics
X(x, t), solution of

dx

dt
= A(x(t))∇xψ(x(t)), x(0) = x

satisfy

a0(x(t), t)(det
dX

dx
)−

1
2 = a0(x, 0).

This reflects the conservation of energy on the ray tubes.

Proof. First, checks

d
dt

∫
IRn

f(x, t)h(x, t)dx =
∫

IRn
(∂tfh+ ∂thf)dx = −

∫
IRn
{(A(x)∇xψ).∇x(fh) +∇x.(A(x)∇xψ)(fh)}dx

= −
∫

IRn
∂x(A(x)∇xψfh)dx = 0.

On the other hand, at t fixed, X(x, t) is a diffeomorphism of IRn. We know that, since f
is invariant on the characteristics, namely f(X(x, t)) = f(x), we find that∫

IRn
f(x, 0)dx =

∫
IRn

f(X(x, t), t)dx =

∫
IRn

f(X, t)
dX

|dXdx (X, t)|
,

This implies, using h(x, 0) = 1

∫
IRn

f(x, t)h(x, t)dx =

∫
IRn

f(x, 0)h(x, 0)dx =

∫
IRn

f(x, 0)dx =

∫
IRn

f(X, t)

|dXdx |
dX.

In particular, this equality is true in the case

(h(x, t))−1 = |dX
dx
|.

We will prove this equality by calculating h and |dXdx | separately.
Let σ(x) = div[A(x)∇xψ(x)]. The function h(X(x, t), t) is a solution of

∂t(h(X(x, t), t)) = ∂th(X(x, t), t) +∇xh(X(x, t), t).dxdt
= −(A(X(x, t))∇xψ(X(x, t))).∇xh(X(x, t), t)
−div(A(X(x, t))∇xψ(X(x, t)))h(X(x, t), t)
+∇xh(X(x, t), t).(A(X(x, t))∇xψ(X(x, t)))
= −σ(X(x, t))h(X(x, t), t).

Hence

h(x(t), t)) = h(x, 0)e−
∫ t
0
σ(X(x,s))ds.

The transport equation on a0, which was obtained above, is

−2∂tφ∂ta0 + 2(A(x)∇xφ,∇xa0)− a0(x, t)[∂2
t2φ−

∑
j,l

∂xj (Ajl(x)∂xlφ)] = 0.

By multiplying by ā0 and taking the real part of the the expression obtained, we find

−∂tφ∂t(|a0|2)− ∂2
t2φ|a0|2 + (A(x)∇xφ,∇x|a0|2) +

∑
j,l

∂xj (Ajl(x)∂xlφ)|a0|2 = 0.

One is left with

−∂t[|a0|2∂tφ] +
∑
j,l

∂xl [Ajl(x)∂xlφ|a0|2] = 0.

When the phase φ(x, t) is equal to ψ(x)− t, one deduces that

∂t|a0|2 +
∑
j,l

∂xj [Ajl(x)∂xlψ|a0|2] = 0.

The equation of characteristics is
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dXi

dt
=
∑
j

Aij(X(x, t))
∂ψ

∂xj
(X(x, t)).

By deriving it with respect to xp, we find

d

dt

∂Xi

∂xp
=
∑
q

∂

∂Xq
[
∑
j

Aij(X)
∂ψ

∂xj
(X)]X=X(x,t)

∂Xq

∂xp
(x, t).

Denote by Biq(x, t) = ∂
∂Xq

[
∑
j Aij(X) ∂ψ∂xj (X)]X=X(x,t). From the identity

d

dt
|dX
dx
| =

∑
l

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂X1

∂x1

∂X1

∂x2
... ∂X1

∂xd
∂X2

∂x1

∂X2

∂x2
... ∂X2

∂xd
... ... ... ...∑

q Bql
∂Xq
∂x1

∑
q Bql

∂Xq
∂x2

...
∑
q Bql

∂Xq
∂xd

... ... ... ...
∂Xd
∂x1

∂Xd
∂x2

... ∂Xd
∂xd

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

we deduce, by developing with respect to the q−th line and using the fact that a determinant
with two identical lines is zero, the equality

d

dt
|dX
dx
| =

∑
l

Blqδlq|
dX

dx
|.

Note finally that∑
l

Bll(x, t) =
∑
l,j

∂Alj
∂xl

(X(x, t))
∂ψ

∂xj
(X(x, t)) +Alj(X(x, t))

∂2ψ

∂xj∂xl
(X(x, t)) = σ(x).

Quantity |dXdx (t)| and h−1(t) are solution of the same first order differential equation, and

as for t = 0, X(x, 0) = x, |dXdx |(x, 0) = 1 = h−1(0). One obtains thus |dXdx (t)| = h−1(t). The

equation for |a0(X(x, t), t|2 being the same as the equation on h(x, t), one deduces

|a0(X(x, t), t)|2 = |a0(x(0), 0)|2e−
∫ t
0
σ(X(x,s))ds

⇒
a0(X(x, t), t)(|dX(x,t)

dx |)− 1
2 = a0(x, 0).

�

4. Exercises of chapter 3

Exercice 3.1 : Propagation of a wave. calculate, for all point of the space IR3 :
1) a wave, propagating at velocity 1, centered at O at the time t = −T , which amplitude

is known at t = 0 on the sphere of radius T .
2) a wave, propagating at velocity 1, which wavefront at t = 0 is the sphere S0 of center

O and of radius T propagating in the direction of the normal unit vector directed towards the
center of S0.

Exersice 3.2 : Wave equation with non constant velocity. We consider the wave equation
which velocity depends only on the position x ∈ IRd :

(∂2
t2 − c−2(x)∆)u = 0.

1) What is the eikonal equation? What are the transport equation? Write these equations in
the set of variables (x, t) and in the set of variables x.

2) Propose an equation for the characteristics such that φ(x) satisfies φ(x(s)) = φ(x(0))−s.
Give the equation of the characteristics and solve the transport equations.

3) Do again the analysis for the equation Pu = 0, P = ∂2 − div(A(x)∇).
4) Propose a change of variable in the wave equation that could be useful.
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Solution de l’exercice 3.1. Nous imaginons une onde, centrée en 0 à t = −T , se propageant à la
vitesse 1 dans le vide. A l’instant t = 0, cette onde a son front d’onde situé sur la sphère de rayon T .
La surface Σ0 est donc {x, |x| = T}. Le vecteur ∇φ est donc ~er. Comme ∆φ = div(gradφ), on vérifie
que

∆φ = ∂x(
x

r
) + ∂y(

y

r
) + ∂z(

z

r
) =

2

r
,

Utilisant le résultat précédent, on trouve que x(t) = x0+t~er = x0+t x0
|x0|

, et donc lorsque x0 ∈ BT ,

x(t) ∈ Bt+T .
On retrouve l’équation de transport

d

dt
a0(x(t)) = −a0(x(t))

t+ T
d’où

a0(x(t)) = a0(x0)(1 +
t

T
)−1

puis

ap(x(t)) = (1 +
t

T
)−1[ap(x(0))− 1

2

∫ t

0

∆ap−1(x(s))(1 +
s

T
)ds)

Dans la deuxième application, nous supposons au contraire que le front est Σ0, muni de la
deuxième orientation. On vérifie alors que

Σt = {x, |x| = T − t}, x(t) = x0 − t
x0

|x0|
puis que a0(x(t)) = a0(x0)(1− t

T
)−1.

On vérifie donc que a0(x(t)) devient singulier pour t = T . Les rayons se focalisent tous au point
0, et tous les termes de l’équation de transport deviennent singuliers. Nous avons donc exhibé deux
cas où on pouvait résoudre les équations de transport, et dans un cas t peut aller jusqu’à +∞.

Solution de l’exercice 3.2. 1) Nous introduisons donc un petit paramètre ε. Alors on recherche
une solution sous la forme

σ(x, t, ε)eiψ(x,t)/ε.

On obtient alors

−ε−2[(∂tψ)2 − c−2(x)(∇xψ)2]

+iε−1[2∂tψ∂tσ − 2c−2(x)∇xψ∇xσ + (∂2
t2ψ − c

−2(x)∆ψ)σ]

+(∂2
t2 − c

−2(x)∆)σ = 0.

L’équation eikonale est alors

(∂tψ)2 = c−2(x)(∇xψ)2.

On peut écrire, au voisinage d’un point (x0, t0) avec l’hypothèse ∂tψ(x0, t0) 6= 0,

ψ(x, t)− ψ(x0, t0) = a(x, t)(t− ψ(x)),

où t0 = ψ(x0) et a(x0, t0) 6= 0. On vérifie que l’équation satisfaite par φ et par a se met sous la forme

a2(x, t)[1− c−2(x)(∇xφ(x))2] =

−(t− φ(x))[
2

c2
a∇xa∇xφ+ 2a∂ta+ (t− φ(x))(∂ta)2 − 1

c2
(t− φ(x))(∇xa)2],

ce qui donne, en t = φ(x) au voisinage de x = x0

(∇xφ(x))2 = c2(x).

et l’équation sur a correspondant à annuler le terme de droite entre crochets.
Obtenir l’équation de transport n’est pas évident sous cette forme; il faut plutôt revenir à une

formulation du type

b(x, t, ε)ei
t−φ(x)
ε

et obtenir l’équation de transport sur b. En effet, cela revient à imposer ψ(x, t) = t − φ(x), auquel
cas ∇xψ = −∇xφ et ∆ψ = −∆φ, ∂2

t2ψ = 0. Les équations de transport deviennent
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∂tb+ c−2(x)∇xφ∇xb+
1

2
c−2(x)∆φb− iε

2
(∂2
t2 − c

−2∆)b = 0.

Cette équation de transport, simple, sera étudiée plus loin. Pour l’instant, concentrons nous sur les
définitions des caractéristiques. Celles-ci doivent être orthogonales aux surfaces d’onde, donc on doit
avoir

dx

ds
= α(x(s))∇xφ(x(s)).

La fonction φ(x(s)) est, suivant l’hypothèse de l’énoncé, linéaire en s donc

d

ds
(φ(x(s))) = 1 = ∇xφ(x(s))

dx

ds
= α(x(s))(∇xφ(x(s)))2,

ce qui donne α(x) = c−2(x). Si les courbes caractéristiques sont définies par

dx

ds
= c−2(x(s))∇xφ(x(s)), , x(0) donné

alors φ(x(s)) = φ(x(0)) + s.
Notons que, contrairement au cas scalaire (vitesse constante), les rayons ne sont pas des droites.

En effet, soit ~t(x(s)) = ∇xφ(x(s))
c

. C’est le vecteur unitaire tangent au rayon. Alors, lorsqu’on le
dérive, en utilisant Hessφ∇xφ = c∇xc, égalité qui provient de l’équation eikonale, on trouve

d

ds
(~t(x(s)) =

Hessφ dx
ds

c
−
∇xc dxds
c2

∇xφ =
1

c2
(∇xc− (~t.∇xc)~t,

qui est la projection orthogonale de ∇xc dans le plan orthogonal à ~t. Ce vecteur n’a aucune raison

d’être nul.





CHAPTER 4

Stationary phase theorem

In this section, we introduce one of the essential tools for a deeper understanding of wave
propagation: the stationary phase theorem. We will use this name in most of the cases studied,
even when dealing with the saddle point method.

Traditionally, the stationary phase methods are applied to so-called oscillatory integrals,
and allow integrals, and allow to find, under a certain number of conditions, an equivalent
when k tends to +∞, of

∫
Ω
a(x, k)eikφ(x). Historically, this integral was not the first to be

studied. The saddle point method, on the other hand, gives an equivalent of integrals of the

form
∫ b
a
σ(x)ekψ(x)dx, where the ψ phase has a non-degenerate maximum at a point x0 of the

interval [a, b]. The stationary phase method differs significantly in principle from the saddle
point method. Indeed, in the stationary phase theorem, the critical point considered is a
stationary point for the function φ(x) (it can be a maximum, a minimum or a saddle point)
whereas the saddle point method applies only to the neighborhood of a maximum.

The integral
∫

Ω
a(x, k)eikφ(x)dx, with φ real, is called an oscillatory integral, and a detailed

theory is given in the chapter 8. To justify the use of this name, note that when φ is real, the
function eikφ(x) is oscillatory. For example, if we consider φ(x) = x2, for x ∈ [−1, 1], when k

is large, the intervals where φ takes the same values are the intervals [( 2πn
k )

1
2 , ( 2π(n+1)

k )
1
2 ].

Thus, the stationary phase method is more general than the Laplace method, since the
phase can be of the form eikφ(x). In all that follows, we will often call the stationary phase
theorem all the results that formally amount to the computation of a non-degenerate extremum
of a phase.

1. Laplace’s method

We give the result of Laplace’s method which can be found for example in the exercise
book of Polya and Czego [84].

Laplace [59] introduced this method for the computation of
∫
e−a

2x2

cos rxdx when the
bounds are −∞ and +∞ (p 107). For the calculation of an equivalent of

∫
ydx, Laplace

introduced the representation y = Y e−t
µ+1

where Y has a Taylor expansion (p 101). He then
studied the special case µ = 1 (p 112), from which he deduced the expansion of

∫
ydx.

Polya and Czego present this method in [84] for the computation of an equivalent in n

of
∫ b
a

[f(x)]ndx, where f , strictly positive, has a maximum inside [a, b]. If we rewrite f(x) =

elog f(x), denoting by x→ φ(x) = log f(x), we formulate the result of Polya and Czego as

Theorem 4.1. Let φ(x) be of class C2 on ]a, b[, a < a1 < a2 < b, which reaches its
maximum at a single point x0 of the interval ]a1, a2[, such that φ′′(x0) < 0. Let a(x) be a
continuous function on [a, b], such that a(x0) 6= 0.

An asymptotic equivalent when k → +∞ of
∫ a2

a1
a(x)ekφ(x)dx is ( 2π

k(−φ′′ (x0))
)

1
2 ekφ(x0)a(x0).

Proof. There exist ε0 > 0 and ε such that, for x ∈ I =]a1, x0 − ε[∪]x0 + ε, a2[, then
φ(x) ≤ φ(x0)− ε0. We write

e−kφ(x0)

∫ a2

a1

a(x)ekφ(x)dx =

∫
I

a(x)ek(φ(x)−φ(x0))dx+

∫ x0+ε

x0−ε
a(x)ek(φ(x)−φ(x0))dx.

57
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One notices that

φ(x)− φ(x0) = (x− x0)2

∫ 1

0

(1− t)φ′′(tx+ (1− t)x0)dt.

Assume that a(x0) 6= 0. For ε small enough, there exist α, β > 0 such that β < |a(x0)| and
α+ φ′′(x0) < 0 and for any x ∈ [x0 − ε, x0 + ε]

(x− x0)2[φ′′(x0)− α] ≤ φ(x)− φ(x0) ≤ (x− x0)2[φ′′(x0) + α].

a(x0)− β ≤ a(x) ≤ a(x0) + β,

which allows to have a lower bound and an upper bound of
∫ x0+ε

x0−ε a(x)ek(φ(x)−φ(x0))dx by

(|a(x0)| − β)ekφ(x0)
∫ x0+ε

x0−ε e
−k(−φ′′(x0)+α)(x−x0)2

dx

≤
|
∫ x0+ε

x0−ε a(x)ek(φ(x)−φ(x0))dx|
≤

(|a(x0)|+ β)ekφ(x0)
∫

IR
e−k(−φ′′(x0)−α)(x−x0)2

dx.

Recall that ∫ +∞

−∞
e−k[−φ′′(x0)∓α](x−x0)2

dx = (
2π

k|φ′′(x0)± α|
)

1
2 .

Moreover, one checks that

(1.58)

∫ +∞
x0+ε

e−kC(x−x0)2

dx ≤ − 1
2kCε

∫∞
x0+ε

(−2kC(x− x0))e−k(x−x0)2C

≤ 1
2kCεe

−kε2C ,

hence the inequalities

(|a(x0)| − β)ekφ(x0)( 2π
k(−φ′′(x0)+α) )

1
2 − 2

∫ +∞
x0+ε

e−k(−φ′′(x0)+ε)(x−x0)2

dx

≤
|
∫ x0+ε

x0−ε a(x)ek(φ(x)−φ(x0))dx|
≤

(|a(x0)|+ β)ekφ(x0)
∫

IR
e−k(−φ′′(x0)−ε)(x−x0)2

dx.

We also have the inequality |
∫
I
a(x)ek(φ(x)−φ(x0))dx| ≤Me−kε0 .

We deduce that k
1
2 e−kφ(x0)

∫ a2

a1
a(x)ekφ(x)dx − a(x0)( 2π

(−φ′′(x0)+α) )
1
2 tends to 0 when k

tends to +∞. This completes the proof of Theoreme 4.1. �

We generalize this result to a compact interval K of IRn and a phase φ(x) defined on this
compact. We study ∫

K

ekφ(x)a(x)dx.

Consider the set of points where φ′ vanishes.
In the first case, we assume that this set is empty. Since φ′ does not cancel on the compact

K, there exists δ > 0 such that |φ′| ≥ δ. Then we have∫
K
ekφ(x)a(x)dx = 1

k

∫
K

d
dx (ekφ(x)) a(x)

φ′(x)dx

= − 1
k

∫
K
ekφ(x) d

dx ( a(x)
φ′(x) )dx+ 1

k

∫
∂K

ekφ(x) a(x)
φ′(x)dσ(x).

The maximum of the phase φ, denoted by l, is achieved on the boundary ∂Ω.

We verify that d
dx ( a(x)

φ′(x) ) = a′(x)
φ′(x) −

a(x)φ′′(x)
(φ′(x))2 , thus | ddx ( a(x)

φ′(x) )| ≤ |a
′|∞
δ + |a′|∞|φ′′|∞

δ2 . There

is therefore a constant C, equal to µ(K)( |a
′|∞
δ + |a′|∞ + |a′|∞

δ2 ) + µ(∂K) |a
′|∞
δ (µ(K) denotes

in this paragraph the Lebesgue measure of K), such that

|
∫
K

ekφ(x)a(x)dx| ≤ C

k
ekl.
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We have obtained a majoration whose main term is in k−1ekmaxφ. It is therefore negligible
compared to the term of the Lemma 4.1.

We have the

Lemma 4.1. Assume that the points where the derivative of φ is zero are isolated points
and contained in the interior of K, denoted by x1, ..., xN . Assume in addition (and this is a
generic condition) that φ′′(xj) 6= 0 for all j.
Let J ⊂ {1, ...N} the set of indices of the points where φ reaches its maximum, equal to l.
Then

e−kl
∫
K

ekφ(x)a(x)dx ' (
2π

k
)

1
2

∑
j∈J

a(xj)

(−φ′′(xj))
1
2

.

Proof. There exist N + 1 functions χ1, ...χN dans C∞0 (K) such that

χ+
N∑
j=1

χj = 1,

each function χj has its support in a compact Kj containing xj , is equal to 1 on a neighborhood
K ′j of xj , such that, on K ′j , φ

′′(x) does not vanish and the sets K ′j have an empty intersection.
The function χ, on the other hand, has its support in the complementary of a bounded open
set K̃ which does not contain any xj . Thus the restriction of χ on K has its support in a
compact set which does not contain any xj .

We thus write

e−kl
∫
K
ekφ(x)a(x)dx =

∑
j∈J e

−kl ∫
K
ekφ(x)a(x)χj(x)dx+

∑
j /∈J e

−kl ∫
K
ekφ(x)a(x)χj(x)dx

+e−kl
∫
K
ekφ(x)a(x)χ(x)dx.

Consider aj =
∫
K
ekφ(x)a(x)χj(x)dx. The compact Kj contains only the critical point xj . If

φ(xj) is a maximum of φ on the considered interval, then we apply Lemma 4.1 . When j /∈ J ,

the maximum is strictly smaller than l, so ek(φ(xj)−l) is exponentially decreasing, so is O(k−1).
Let us study the case xj minimum of φ. In this case, there exists a point xj′ , j

′ 6= j, which
is a local maximum, such that φ(xj′) ≥ maxx∈Kjφ(x) + b, b being a strictly positive constant.
Thus φ(x) ≤ φ(x′j)− b, from which we deduce

aje
−kφ(xj′ ) =

∫
Kj

a(x)χj(x)ek(φ(x)−φ(xj′ ))dx,

uniformly bounded by e−bkµ(Kj)supKj |a|.
On the other hand there is no critical point on the support of χ. The maximum of φ on

the support of χ, denoted by l0 is strictly smaller than l. The integral
∫
a(x)χ(x)ek(φ(x)−l0)dx

is therefore negligible, and we deduce the result of the Lemma 4.1. �

2. Non-stationary phase theorem

We state a first result of asymptotic regularity for an oscillatory integral, associated to an
integrand including the term eikφ(x). Such phases will be studied in detail in Section 3.

Proposition 4.1. Let φ(x) be a function of class C∞ on Ω open bounded subset of IRn,
x = (x1, ..., xn). We assume that φ does not have any critical point on Ω.

Let a be in C∞0 (Ω), of support contained in K compact. We introduce u(k) =
∫

Ω
a(x)eikφ(x)dx.

For all N , there exists a constant CN such that

|u(k)| ≤ CNk−N .

Proof. As ∂xj [e
ikφ(x)] = ik∂xjφ(x)eikφ(x), we deduce

eikφ(x) = [
1

ik

∑
j

∂xjφ

|∇φ|2
∂

∂xj
](eikφ(x)).

Let L denote the operator
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L(f) = −
∑
j

∂

∂xj
(
f(x)(∂xjφ)

|∇φ|2
).

The function |∇φ| has no zero on the compact K, so there exists c > 0 such that |∇φ| ≥ c > 0,
so the operator L has no singularity. From the equality

a(x) =
∑
j

a(x)(∂xjφ)∑
p(∂xpφ)2

∂φ

∂xj

one deduces, after an integration by parts for a ∈ C∞0 (Ω):∫
Ω

a(x)eikφ(x)dx =
1

ik

∫
Ω

L(a)eikφ(x)dx.

The coefficients of L are C∞ and depend on the derivatives of φ of order 2. By composition,
the coefficients of Lk depend on the derivatives of φ of order k + 1 at most. We then verify
that, if |a|p denotes the maximum on Ω of the derivatives of a of order p at most, then for all
M there exists a constant CM such that

(2.59) |LM (a)| ≤ CM (|φ|M+1, |a|M ).

After successive integration by parts, one has∫
Ω

a(x)eikφ(x)dx = (
1

ik
)M
∫

Ω

LM (a)eikφ(x)dx

which yields the inequality of the Lemma, using (2.59).
It has therefore been shown that, when the phase is not stationary, the oscillatory integral

is bounded by any negative power of k, which ends the proof. �

3. Saddle point method for a complex phase.

3.1. A preliminary calculation.

Lemma 4.2. Let a ∈ S(IR) and introduce

I(a, λ) :=

∫
IR

e−
λ
2 (x−i)2

a(x)dx.

One has
∀N, ∃CN > 0, |I(a, λ)| ≤ CN ||a||CN (IR)λ

−Neλ/2.

Proof. Note that, on IR, the phase has no critical point. On the other side

−λ
2

(x− i)2 = −λ
2
x2 + iλx+

λ

2
,

from which one deduces the estimate

|I(a, φ)| ≤ ||a||∞(
2π

λ
)

1
2 eλ/2,

from which we could deduce that the integral behaves in e
λ
2 , and thus that we would not have

an asymptotic expansion. This is not the case; in fact we write

I(a, λ) = e
λ
2 [

∫
IR

e−
λ
2 x

2

a(x) cos(λx)dx+ i

∫
IR

e−
λ
2 x

2

a(x) sin(λx)dx].

Let M be the operator

Mf(x) =
1

(x− i)
∂f

∂x
(x).

Its adjoint operator L, given by
∫
Lfgdx = −

∫
Mgfdx for all f,g compactly supported is

Lf(x) = ∂
∂x ( f(x)

x−i ). These two operators act on functions of C∞(IR). Identity L(e−
λ
2 (x−i)2

) =

−λe−λ2 (x−i)2

implies
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I(a, λ) = − 1

λ

∫
IR

M(e−
λ
2 (x−i)2

)a(x)dx =
1

λ

∫
IR

e−
λ
2 (x−i)2

L(a)(x)dx,

hence

I(a, λ) = λ−NI(LN (a), λ).

These calculations are similar to the proof of the non stationary phase result. The bound that
one obtains is thus

∀N, ∃CN > 0, |I(a, λ)| ≤ CN ||a||CN (IR)λ
−Neλ/2.

�

We will see in the rest of this chapter that we are not in the framework of the stationary
phase theorem (in which case we could conclude that this phase is non-stationary): one of
the crucial hypotheses (the behavior of the phase), which is that Re(− 1

2 (x − i)2) ≤ 0, is not
verified.

To continue the analysis, let F (λ) = I(1, λ). This function, which is defined for all λ > 0,
verifies, after derivation of the integral, the differential equation:

F ′(λ) = − 1

2λ
F (λ)

from which one deduces λ
1
2F (λ) = F (1). One has thus

λ
1
2F (λ) =

∫
R

e−
1
2 (u−λ

1
2 i)2

du.

When λ → 0, the limit of this quantity is (2π)
1
2 . As the function λ

1
2F (λ) is constant and

continuous on IR∗+, it is then equal to its limit (2π)
1
2 . Hence

I(1, λ) = (
2π

λ
)

1
2 .

We will see below that this result is similar to the one given by the Bergmann transform.
If we want to calculate I(1, λ) using the Laplace method (also called the saddle point

method), we introduce the contour in the complex plane which is the rectangle whose one

side is [−R,R] and whose opposite side passes through the point i. The function e−
λ
2 (x−i)2

is
holomorphic in this rectangle, so the integral over the rectangle is zero. This leads to∫ R

−R
e−

λ
2 (x−i)2

dx =

∫ R

−R
e−

λt2

2 + i

∫ 1

0

e−
λ
2 (−R−iu−i)2

du+ i

∫ 1

0

e−
λ
2 (R+iu−i)2

du.

The first term is equivalent to ( 2π
λ )

1
2 when R goes to +∞ thanks to Lemma 4.1.

The two other terms are bounded by e−
λ
2 (R2−1), which tend to 0 faster than any inverse

power of λ when λ goes to +∞, as soon as R > 1. Now, let us suppose a(z) holomorphic
in the band 0 ≤ =z ≤ 1, with majorations of a and all its derivatives analogous to those of
a ∈ S.

The calculation is identical, and we find

I(a, λ) '
∫

IR

e−λ
t2

2 a(t+ i)dt.

On this integral, we apply the usual stationary phase theorem.

3.2. The Laplace method for a general complex phase. We consider an holomor-
phic function φ verifying the following hypotheses:

(1) (H1) on the adherence B̄ of a connected open set B of the complex plane, φ has only
one critical point z0 and it is non-degenerate, that is φ′(z0) = 0, φ′′(z0) 6= 0.



62 4. STATIONARY PHASE THEOREM

(2) (H2) there exists a path z(t) verifying z(0) = z0, ż(0) 6= 0 (and t → φ(z(t)) is
oriented in the opposite direction of the trigonometric direction) and a ε > 0 such
that

∀t ∈ [−ε, ε],Re [φ(z(t))− φ(z0)] ≤ 0.

Moreover, Re (φ(z(±ε))− φ(z0)) < 0.
(3) (H3) By defining B̄ = [a−, a+], there are two paths C± such that C± joins a± to

z(±ε), of length L± depending only on the open B, and a constant δ > 0 such that,
on C+ ∪ C−:

Re [φ(u)− φ(z0)] ≤ −δ.
We have the proposition

Proposition 4.2. Let φ satisfy (H1-H2-H3). For any a, holomorphic symbol on the
region Ω of boundary ∂Ω = {[a−, a+], C+, C−, z([−ε, ε])}

e−λφ(z0)

∫ a+

a−

eλφ(x)a(x)dx

admits an asymptotic expansion in λ which is that of∫ ε

−ε
eλ(φ(z(t))−φ(z0))a(z(t))ż(t)dt.

Proof. As the functions a and φ are holomorphic on Ω, the integral on the contour ∂Ω is
zero (Cauchy theorem). This is written, assuming that the oriented paths γ±(s) representing
C± are in the trigonometric direction, one has

e−λφ(z0)
∫ a+

a−
eλφ(x)a(x)dx =

∫ ε
−ε e

λ(φ(z(t))−φ(z0))a(z(t))ż(t)dt

+
∫
C+ e

λ(φ(γ+(s))−φ(z0))a(γ+(s))γ̇+(s)ds

+
∫
C− e

λ(φ(γ−(s))−φ(z0))a(γ−(s))γ̇−(s)ds

On note r(λ) =
∫
C+ e

λ(φ(γ+(s))−φ(z0))a(γ+(s))γ̇+(s)ds+
∫
C− e

λ(φ(γ−(s))−φ(z0))a(γ−(s))γ̇−(s)ds.

We apply the usual stationary phase theorem to the first term, since ψ(t) = −i(φ(z(t))−φ(z0))
verifies =ψ ≥ 0, with =ψ > 0 on the boundary, and ψ has a critical point at t = 0 of value 0.

We know that |r(λ)| ≤ ||a||∞(L+ + L−)e−λδ. We write∫ ε

−ε
eλ(φ(z(t))−φ(z0))a(z(t))ż(t)dt = (

2π

λ
)

1
2

N−1∑
p=0

apλ
−p + rN (λ)

with |rN (λ)| ≤ CNλ
−N for λ ≥ λ0, the constant depending on a and its derivatives in the

domain Ω. We then introduce r′N (λ) = rN (λ) + r(λ). There exists a constant C ′N such that,
for λ ≥ λ0

|r′N (λ)| ≤ C ′Nλ−N .
We thus proved the proposition. �

Corollary 4.1. If, in the open set Ω, the phase φ admits several critical points z1, ...zd
such that Re φ(z1) > Re φ(z2) > ... > Re φ(zd), then, under the same assumptions 1. and 2.
as before for the critical points

e−λφ(z1)

∫ b

a

a(x)eλφ(x)

admits an asymptotic expansion which is only in the neighborhood of z1, provided that one
can deform the boundary of the domain into a contour such that Re (φ(z)− φ(z1)) ≤ −δ < 0,
except in a neighborhood of z1.
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4. Holomorphic saddle point method and control of all remainder terms

There are as many stationary phase theorems as there are situations situations in which
we can reduce to such a expansion. We will see for example in the chapter 5 another statement,
which will also be used in the section 8. It will will occur even in cases where the phase is
stationary with a degenerate critical point, as it will be considered in the chapter 10, the
chapter 11 or the chapter 13: their common point being the existence of a more general
oscillatory phase which reduces at almost all the points to the considered phase, and which
presents a non-degenerate critical point1. The statement of this section is close to Laplace’s
method, which is also called the saddle point method, which explains the title of the present
chapter. This is a result given in the book of J. Sjöstrand [89]:

Theorem 4.2. (1) There exists a constant CN depending only on the dimension N ,
such that for all n, k > 0, and any holomorphic function u defined on a neighborhood
of the ball of radius 1 in C| N

k
N
2

∫
|x|≤1,x∈IRN

e−kx
2/2u(x)dx = (2π)

N
2

p=n∑
p=0

upk
−p +Rn(k)

where the up are equal to 1
(p!) ((∆

2 )pu)(0) and where the remainder Rn verifies

|Rn(k)| ≤ CN (n+ 1)
N
2 k−n−1(n+ 1)!2n+1sup|z|≤1,z∈C| N |u(z)|

(2) One has, for u ∈ C∞0 (IRN ) of support BN ,

(4.60)

∫
BN

e−kq(x)u(x)dx ' (
(2π)N

kNdetQ
)

1
2

∑ 1

m!km
(
∆q

2
)m(u)(0).

where the Laplacian ∆q is given by div(Q−1∇), q(x) = 1
2 (Qx, x).

Proof. The proof of this theorem of the complex stationary phase is done in three steps:

(1) Bound of the remainder using the maximum principle.
(2) Compute each term from the Taylor series
(3) Complementary study for a smooth compactly supported function and an arbitrary

quadratic form 1
2 (Qx, x), Q constant matrix.

We begin with the proof of the second point.
We verify, on z ∈ C| , |z| ≤ 1, the inequality (coming from |u(p)(0)| ≤ p!sup|z|≤1,z∈C| |u(z)|)

|u(z)−
p=2n−1∑
p=0

u(p)(0)

p!
zp| ≤ (2n+ 1)sup|z|≤1,z∈C |u(z)|.

By the holomorphic maximum principle on u, we deduce

|u(z)−
p=2n−1∑
p=0

u(p)(0)

p!
zp| ≤ (2n+ 1)sup|z|≤1,z∈C |u(z)||z|2n.

We can generalize this inequality on C| N by considering all complex lines of C| N passing
through the origin and the functions f(λ) = u(λz), where z ∈ C| N et λ ∈ C| . One gets (using∑
α+δj=β

p!
α! = p!

β!

∑
βj = (p+1)!

β! in the induction)

∂pf(λ) =
∑
|α|=p

p!

α!
zα∂αu(0),

which yields

1More precisely, if the φ(x) phase admits a degenerate critical point at x0, we can find a ψ(x, θ) which is
equivalent to φ and which has no degenerate critical point degenerate
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(4.61) |
∑

α,|α|=p

∂αu

α!
zα| ≤ sup|z|≤1,z∈C |u(z)|

and, using the result for N = 1,

(4.62) |u(z)−
p=2n−1∑
p=0

∑
|α|=p

u(α)(0)

α!
zα| ≤ (2n+ 1)N [sup|z|≤1,z∈C| N |u(z)|]|z|2n.

The estimate of the remainder term in 4.2 comes from the previous estimate.
Calculation of the holomorphic integral when the symbol is a polynomial. One checks, for

a homogeneous function p2l of degree of homogeneity 2l that

(4.63) I(p2l) =

∫
IRN

e−x
2/2p2l(x)dx = (l!)−1(2π)

N
2 (

∆

2
)l(p2l)(0).

En effet,
∫
e−

x2

2
∆
2 p2ldx = 1

2

∫
x.∇xp2le

− x2

2 dx after integration by parts. One notices that

x.∇xp2l = 2lp2l(x), from which one deduces
∫
e−

x2

2 (∆
2 p2l)(x)dx = l

∫
e−

x2

2 p2l(x)dx. On the

other side, (∆
2 )m(p2l)(0) = δmlCl(2l)!, where Cl is the sum of the coefficients of x2l

j dans p2l.
We then apply a reasoning by recurrence on the order of homogeneity. We notice moreover
that for a homogeneous polynomial of odd order, the integral is zero.

We deduce∫
IRN

e−k
x2

2 (
∑

|α|≤2n+1

u(α)(0)

α!
xα)dx = (

2π

k
)
N
2

n∑
l=0

1

l!kl
[(

∆

2
)l(
∑
|α|=2l

u(α)(0)

α!
xα)](0).

Remark that

(
∆

2
)l(
∑
|α|=2l

u(α)(0)

α!
xα)(0) = ((

∆

2
)l)u(0),

hence ∫
IRN

e−k
x2

2 (
∑

|α|≤2n+1

u(α)(0)

α!
xα)dx = (

2π

k
)
N
2

n∑
l=0

1

l!kl
(
∆

2
)lu(0).

Let us introduce

Rn(k) = k
N
2

∫
|x|≤1

e−k
x2

2 u(x)dx− (2π)
N
2

n∑
l=0

1

l!kl
(
∆

2
)lu(0).

One has

Rn(k) = k
N
2

∫
|x|≤1

e−k
x2

2 [u(x)−
∑

|α|≤2n+1

u(α)(0)

α!
xα]dx−kN2

∫
|x|≥1

e−k
x2

2 [
∑

|α|≤2n+1

u(α)(0)

α!
xα]dx.

Denote by Sn(k) = k
N
2

∫
|x|≥1

e−k
x2

2 [
∑
|α|≤2n+1

u(α)(0)
α! xα]dx. After the change of variable

x = rω, ω ∈ SN−1, one finds

Sn(k) = k
N
2

p=2n+1∑
p=0

∫ ∞
1

e−k
r2

2 rN−1+pdr
∑
|α|=p

∫
SN−1

u(α)(0)

α!
ωαdω.

Using the estimate (4.61), one finds

|Sn(k)| ≤ kN2
p=2n+1∑
p=0

∫ ∞
1

e−k
r2

2 rN−1+pdrV ol(SN−1) sup|z|≤1|u(z)|.

From (4.62), one deduces
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(4.64)

|Rn(k)| ≤ V ol(SN−1) sup|z|≤1|u(z)|[kN2
∫ 1

0

(2n+3)r2n+2rN−1e−k
r2

2 dr+

p=2n+1∑
p=0

k
N
2

∫ ∞
1

e−k
r2

2 rN−1+pdr].

As
∑2n+1

0 1 = 2n+ 2 and as, for r ≥ 1 and p ≤ 2n+ 1, rN+p−1 ≤ r2n+N+1, one gets

|Rn(k)| ≤ V ol(SN−1) sup|z|≤1|u(z)|(2n+ 3)k
N
2

∫ ∞
0

r2n+N+1e−k
r2

2 dr.

We want to calculate this integral and find an equivalent when n is infinite. Let us introduce

F (k) =

∫ ∞
0

e−k
r2

2 dr,G(k) =

∫ ∞
0

re−k
r2

2 dr.

One has

F (k) = (
2π

k
)

1
2 , G(k) =

1

k
.

Moreover ∫ ∞
0

r2pe−k
r2

2 dr = (−2)pF (p)(k),

∫ ∞
0

r2p+1e−k
r2

2 dr = (−2)pG(p)(k).

One deduces from these equalities∫ ∞
0

r2pe−k
r2

2 dr = (2π)
1
2 k−p−

1
2

(2p)!

p!

1

2p
,

∫ ∞
0

r2p+1e−k
r2

2 dr = k−p−1p!.

We are therefore looking for an equivalent, when n is large, of 2
N
2 +n(n + N

2 )! when N is

even, and of (2π)
1
2

(2n+N+1)!

(n+N+1
2 )!

2−n−
N+1

2 when N is odd. To fix the ideas, let us divide by n! and

use Stirling’s formula. For N even, we find

2
N
2

+n(n+N
2 )!

n! ' 2
N
2 +n(n+ N

2 )n+N
2 e−n−

N
2 (2π(n+ N

2 ))
1
2n−nen(2πn)−

1
2

= 2
N
2 +ne−

N
2 (1 + N

2n )
1
2 (n+ 1)

N
2 (1 +

N
2 −1

n+1 )
N
2 (1 + N

2n )n,

which yields the equivalent G(n+N
2 )(k) ' C ′N2n(n+ 1)

N
2 n!k−n−

N
2 −1. Similarly, for N odd, we

find as equivalent

(2π)
1
2

(2n+N+1)!

n!(n+N+1
2 )!

2−n−
N+1

2 ' (2n+N+1)2n+N+1+ 1
2 e−2n−N−1

nn+ 1
2 e−n(n+N+1

2 )n+N+1
2

+ 1
2

en+N+1
2 2−n−

N+1
2

'
√

2(n+ 1)
N
2 (1 + N+1

2n )n+ 1
2 (
n+N+1

2

n+1 )
N
2 e−

N+1
2 2n+N+1

2

one has, similarly

F (n+N+1
2 )(k) ' C ′′N2n(n+ 1)

N
2 n!k−n−

N+1
2 −

1
2 .

The limit of the expression (2n+3)k
N
2

∫∞
0
r2n+N+1e−k

r2

2 dr/2n+1(n+1)!(n+1)
N
2 kn+N

2 +1

is C ′N when n goes to +∞. It is thus bounded for all n by CN . One deduces

|Rn(k)| ≤ CNV ol(SN−1) sup|z|≤1|u(z)|(n+ 1)!(n+ 1)
N
2 2n+1k−n−1.

The proof of the third item is now easy through a change of variable in the integral on a
compact set We use the orthonormal change of variable given by q(x) = 1

2

∑
aiv

2
i characterized

by Pv = x where P is a unit matrix. Note that detQ =
∏
ai. Since the change of variable is

orthonormal, we have ∫
BN

e−kq(x)u(x)dx =

∫
BN

e−
k
2 (

∑
i aiv

2
i )u(Pv)dv.
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Let U(v) = u(Pv). It is immediate that∫
BN

e−kq(x)u(x)dx =

∫
B̃N

e−
k
2

∑
i t

2
iU(

ti√
ai

)
dt

(
∏
ai)

1
2

where the ball B̃N is an ellipsoid induced by the
√
ai. As q(x) = 1

2 (Qx.x) = 1
2 (tPQPv, v) =

1
2

∑
aiv

2
i , one finds Q = P Diag(ai)

tP and then∫
B̃N

e−
k
2

∑
i t

2
iU(

ti√
ai

)
dt

(detQ)
1
2

' (2π)
N
2

k
N
2 (detQ)

1
2

∑
p≤n

k−p(
L

2
)pU(0)

where

L =

i=N∑
i=1

∂2

∂t2i
=

i=N∑
i=1

1

ai

∂2

∂v2
i

.

Note that ∂2U
∂v2
i

=
∑
l,m PilPim

∂2u
∂xl∂xm

(Pv), hence

LU =
∑
l,m,i

1

ai
PilPim

∂2u

∂xl∂xm
(Pv)

which defines the Laplace operator Q under the form

(4.65) ∆q = div(Q−1grad).

Theorem 4.2 is proved.
�

Note that this is a very powerful theorem, for the first two items thanks to holomorphy:

we have found an majorant whose behavior in n is 2n+1(n + 1)!(n + 1)
N
2 k−n−1. The result

also applies in the third item when u is analytical.

Remark: forN = 1, one finds
∫∞

0
r2ne−k

r2

2 dr = (2π)
1
2

(2n+2)!
(n+1)!2n+1 = (2π)

1
2 (n+1)!2n+1C

n+1
2n+2

22n+2 ,

hence the constant C1 is (π2 )
1
2 . For N = 2, the integral calculation gives 2n+1(n+ 1)!, hence

C2 = 2.

Lemma 4.3. We assume that φ admits a non-degenerate critical point x0 and that the
Hessian matrix of φ is positive definite. We obtain the Laplacian associated to φ in x0 thanks
to the equality

(4.66)

∫
e−kφ(x0)e−kφ(x)a(x)dx ' (2π)

N
2

k
N
2 (detHessφ(x0))

1
2

∑
m≥0

1

m!km
(
∆φ

2
)mu(x0).

We apply Morse’s lemma to the neighborhood of a non-degenerate critical point by noting
p the number of positive eigenvalues (counting their multiplicity) of Hessφ(x0). There exists
a system of coordinates x̃ such that, locally

(4.67) φ(x) = φ(x0) +
1

2
(
∑
i≤p

(x̃i)
2 −

∑
j>p

(x̃j)
2),

The application x → x̃ is a local diffeomorphism of IRN . In the case studied below p = N ,
and we compute∫

BN

e−kφ(x)u(x)dx = e−kφ(x0)

∫
B̃N

e−
k
2

∑N
j=1(x̃j)

2

u(x−1(x̃))|Jac(∂x
−1(x̃)

∂x̃
)|dx̃.

To do this, we use the result of the proposition 4.60 since this phase is quadratic (according
to Morse’s lemma and the assumption in x0). The asymptotic expansion of

ekφ(x0)

∫
BN

e−kφ(x)u(x)dx

is thus



5. STATIONARY PHASE THEOREM 67

(4.68) (
2π

k
)
N
2

n∑
p=0

1

p!kp
(
∆x̃

2
)p[u(x−1(x̃))|Jac(∂x

−1(x̃)

∂x̃
)|](x0).

Identifying the terms in k−p of the equality (4.68) and noting that detφ′′(x0) = |∂x̃∂x |
2(x0),

one finds

(
∆x̃

2
)p[u(x−1(x̃))|Jac(∂x

−1(x̃)

∂x̃
)|](x0) = |Jac(∂x

−1(x̃)

∂x̃
)(x0)|(∆φ

2
)pu(x0).

We deduce a formal definition of the laplacian ∆φ associated with to the φ phase in the
neighborhood of x0:

∆φu = |Jac(∂x
−1(x̃)

∂x̃
)|−1∆x̃(|Jac(∂x

−1(x̃)

∂x̃
)|u)

In dimension 1, we will compute explicitly the Laplacian in the section 6.

5. Stationary phase theorem

The above results are given when the integral to be computed contains a term of the form
e−kφ(x). These are generalizations of Laplace’s method or the saddle point method.

The asymptotic expansions obtained in the previous sections can be written formally for
integrals of the form

∫
a(x)eikφ(x)dx. We show in this section that the expressions found

are the asymptotic expansions of the integral
∫
a(x)eikφ(x)dx. The two main results (from

Hörmander’s treatise, Theorem 7.7.5 of [47]) are stated in the following proposition.

Proposition 4.3. Let φ be a phase on IRN admitting at x0 a non degenerate critical
point, that is ∇xφ(x0) = 0 and Hessφ(x0) is invertible. We suppose for (i) that Re φ ≥ 0 in
a neighborhood of x0 and for (ii) that =φ ≥ 0 on B(x0, r).

Then the following two results are true, for χ function C∞ with support in a ball of center
x0 (the determinations of the roots of detHessφ(x0) are chosen to be positive real part)

(i)

∫
IRN

χ(x)e−kφ(x)u(x)dx ' (
(2π)N

kNdetHessφ(x0)
)

1
2

∑
p≥0

k−p(p!)−1(
1

2
∆φ)p(u)(x0)e−kφ(x0),

(ii)

∫
IRN

χ(x)eikφ(x)u(x)dx ' (
(2π)N

kNdetHessφ(x0)
)

1
2 e

iNπ
4

∑
p≥0

(
i

k
)p(p!)−1(

1

2
∆φ)p(u)(x0)eikφ(x0).

This proposition is only true for a phase such that =φ(x) > 0 on the boundary of the
open set (see [89], Theorem 2.8). On the other hand, if u satisfies the hypotheses of Lemma
7.7.3 of Hörmander[48], we recover the theorem.

Proof. Since Hessφ0 is nondegenerate, we apply (4.67). If, moreover, the Hessian ma-
trix is symmetric positive definite at x0, there exists a change of variable such that, in the
neighborhood of x0, there is a change of variable

(5.69) φ(x) = φ(x0) +
1

2
(z̃, z̃).

From the result obtained in the case where the matrix Hessφ(x0) is positive definite, we
deduce the result in the general case where φ is given by (4.67) by successively separating the
integrals on the variables x̃j for j > p and x̃j for j > p. One will then notice that the result on∫
a(x̃)e−i

k
2 x̃

2

dx̃ is obtained by taking the conjugate expression of the asymptotic expansion of∫
ā(x̃)ei

k
2 x̃

2

dx̃.

Lemma 4.4. In the case (5.69), there exists a matrix Q(x) such that φ(x) = φ(x0) +
1
2 (Q(x)z.z), z = x− x0.
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We apply the formula of Taylor formula with integral remainder:

φ(x) = φ(x0) +
∑
i,j

∫ 1

0

(1− t)∂2
xixjφ(tx+ (1− t)x0)(x− x0, x− x0)dt.

On note alors

Qjk(x) = 2

∫ 1

0

(1− t)∂2
xjxk

φ(tx+ (1− t)x0)dt,

which is proven by noticing that for g(t) = ∇φ(tx+ (1− t)x0)(x− x0),∫ 1

0

(1− t)
∑
i,j

∂2
xixjφ(tx+ (1− t)x0)(x− x0, x− x0)dt =

∫ 1

0

(1− t)g′(t)dt

and after integration by parts, using
∫ 1

0
g(t)dt = φ(x) − φ(x0), one gets

∫ 1

0
(1 − t)g′(t)dt =

φ(x)− φ(x0) + g(0).

We verify that Qj,k(x0) = 2∂2
xjxk

φ(x0)
∫ 1

0
(1 − t)dt from which the matrix (Qj,k(x0))

is symmetric positive definite. Since φ is of class C3, there exists ε0 > 0 such that, for
|x − x0| ≤ ε0 the matrix (Qjk(x)) is positive definite. The root of the matrix Q(x0) is the
matrix characterized by the eigenvalue

√
λi on the subspace Ei. We write then

Q(x) = (Q(x0))
1
2 [Id+ (Q(x0))−

1
2 (Q(x)−Q(x0))(Q(x0))−

1
2 ](Q(x0))

1
2 .

The square root of the matrix Id+R(x), where ||R(x)|| ≤ ε for a usual norm, can be computed

by the expansion in integer series associated to (1 + x)
1
2 . This expansion is absolutely con-

vergent because Rp commutes with Rq for all p, q. Hence one can construct B(x) symmetric
such that tB(x)B(x) = Id+R(x). Let A(x) be such that tA(x)A(x) = Q(x). One can choose

A(x) = B(x)(Q(x0))
1
2 . One can then define the change of variable z̃ = A(x)x which gives

φ(x) = φ(x0) +
1

2
(A(x)x.A(x)x) = φ(x0) +

1

2
(z̃.z̃).

By definition, the Laplacian associated with the metric is

∆̃ =
∑
j

∂2
z̃2
j
.

The first item is proven.
The following proof of the second paragraph is directly inspired by the proof of lemma

7.7.3 of Hörmander. It is based on the Fourier transform of the distribution ei
x2

2 ∈ S ′(IR).

Lemma 4.5. The Fourier transform of ei
x2

2 ∈ S ′(IRN ) is the tempered distribution (2π)
N
2 ei

ξ2

2 .

Proof. Consider u(x) = ei(
∑
j x

2
j )/2. Then Dju(x) = ixju.

Suppose v distribution verifying the equalities Djv(x) = iξjv. By considering the dis-
tribution 1

uv, which is well defined because u−1 is a C∞ function, we find that Dj(
1
uv) =

u−2(Djvu−Djuv) = 0. So the distribution 1
uv is a constant.

The Fourier transform of the equality Dju = ixju yields

ξj û(ξ) = −iDj(û).

We apply the previous result, which gives û(ξ) = û(0)ei
∑
j(ξ

2
j )/2. The coefficient û(0) is

obtained by introducing a simple modification of u(x) as uε(x) = ei(
∑
j(1+iεx2

j )/2). The function

uε is in S(IRd) and in the sense of the topology of S ′, uε converges to u. Moreover,∫
IRN

uε(x)e−ix.ξdx =

j=N∏
j=1

(

∫
IR

e−ixjξj+i
x2
j
2 −ε

x2
j
2 dxj).

As
∫

IR
e−ixjξj+i

x2
j
2 −ε

x2
j
2 dxj = 1√

ε

∫
IR
dye
− y

2

2 + i
ε
y2

2 −iy
ξj√
ε , it is enough to study the integral
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F (λ) =

∫
IR

dye−
y2

2 +iλ y
2

2 −iyζ .

After deformation in the complex plane of the integral on IR into the integral on IR + iζ, one
finds

F (0) = e−
ζ2

2 (2π)
1
2 .

The function F is differentiable, and its derivative is

F ′(λ) =
∫

IR
dy i

2(1−iλ)2 [((1− iλ)y + iζ)2 − 2iζ((1− iλ)y + iζ)− ζ2]e−
y2

2 +iλ y
2

2 −iyζ

= −i ζ2

2(1−iλ)2F (λ) + i
2(1−iλ)F (λ)

after integration by parts.
We have then

d

dλ
(e

ζ2

2(1−iλ)F (λ)) =
i

2(1− iλ)
e

ζ2

2(1−iλ)F (λ).

Denote by G(λ) = e
zeta2

2(1−iλ)F (λ), we verify that, if the unique root of 1− iλ with positive real

part2 is denoted by (1− iλ)
1
2 ,

d

dλ
[(1− iλ)

1
2G(λ)] = 0.

Thus, since G(0) = (2π)
1
2 and G is continuous in λ = 0, the integral being normally

convergent, it comes

F (λ) = e−
ζ2

2(1−iλ)
(2π)

1
2

(1− iλ)
1
2

.

Replacing ζ by ξj/
√
ε, λ by ε−1, one gets

∫
IR

e−ixjξj+i
x2
j
2 −ε

x2
j
2 dxj =

1√
ε

(2π)
1
2

(1− i
ε )

1
2

e
ξ2j

2i−2ε .

As β( 1
ε ) = − 1

2
1
ε

1
α(ε) and as ε

1
2α(ε−1) goes to 1√

2
, ε

1
2 β(ε−1) goes to − 1√

2
. Hence the limit in

the space S ′ of ûε(ξ) is (2π)
N
2 ei

Nπ
4 e

ξ2

2i .

The Fourier transform of x→ eikx
2/2 is, using an homotethy

ξ → (
2π

k
)N/2ei

Nπ
4 e−iξ

2/2k.

One considers then h ∈ S(IRN ). One has

< eik
x2

2 , h >=

∫
eik

x2

2 h(x)dx =
1

(2π)N

∫
dξĥ(ξ)(

2π

k
)
N
2 eiN

π
4 e−i

ξ2

2k .

We use the expansion in series of the exponential, which leads to the asymptotic expansion
of this integral. �

This ends the proof of Proposition 4.3. �

Remark 3. The theorem of the oscillatory stationary phase can also be proved by consid-
ering a deformation of the integration contour in the complex plane.

2Notice that (1− iλ)
1
2 = α(λ) + iβ(λ) = ( 1

2
(1 + (1 + λ2)

1
2 ))

1
2 − iλ

2
( 1

2
(1 + (1 + λ2)

1
2 ))−

1
2 .
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We verify that we have to consider ix2 = −(e−
i
4x)2 = −y2. Classically, we consider the

integral on the circle of radius R, which we divide into θ ≤ π/4 − a and π/4 − a ≤ θ ≤ π/4.
In the first case, the phase grows as R sin a and in the second case, we use a majoration of
the the integral by Ra (by finite integration domain). We then use the fact that the integrand
is compactly supported or fast decaying to suppress this integral on the great circle. Thus

we have equality of the integral on IR and the integral on IRe
iπ
4 . From an historical and

documentary point of view, this method is used in quantum physics and is is called the Wick
rotation.

6. Morse lemma for stationary non degenerate points and construction of the
associated Laplacian operator

We give in this section a construction of the Laplacian associated to a stationary phase.
We rigorously find in the particular case of dimension 1 the result of the proposition 4.60.

Proposition 4.4. We consider a φ-phase with a non-degenerate critical point at x0, of
signature (d, 0), i.e. ∇xφ(x0) = 0 and Hessφ(x0) is a quadratic form of signature (d, 0). In

the neighborhood of x0, there exists a diffeomorphism h from IRd into IRd, such that

φ(x) =
1

2
(h(x))2 + φ(x0).

Its Jacobian is J(x) = det(h′(x)), where h′ is the gradient of the application h, hence a matrix
of M(d× d).

The Laplacian associated to this phase in the neighborhood of the point x0 is given by the
following relation

∆φa(x) = div[J(x)(h′th′)−1∇ a
J

].

In the case of dimension 1 space, where h′(x) is a function and J(x) = h′(x), we find

∆ 1
2h

2(x)a(x) = ∂x[
1

h′(x)
∂x(

1

h′(x)
a(x))].

Proof. We begin with the dimension 1 of space. By translation, we assume φ(0) =
φ′(0) = 0, φ”(0) > 0. The phase φ considered rewrites

φ(x) = x2

∫ 1

0

φ”(tx)(1− t)dt,

and one introduces the function h(x) = x(2
∫ 1

0
φ”(tx)(1− t)dt) 1

2 , which is a function C∞ in a

neighborhood ]−ε0, ε0[ of 0, where ε0 satisfies 2
∫ 1

0
φ”(tx)(1−t)dt > 1

2φ”(0),−ε0 ≤ x ≤ ε0. The
function h is monotonous on (−ε0, ε0) hence is a diffeomorphism of [−ε0, ε0] on [h(−ε0), h(ε0)]
which is a neighborhood of 0. Its reciprocal function is denoted by g and one has

∫ +ε0

−ε0
e−kφ(x)a(x)dx =

∫ +ε0

−ε0
e−

1
2k(h(x))2

a(x)dx =

∫ h(ε0)

h(−ε0)

e−
1
2ky

2

g′(y)u(g(y))dy.

Using the result of Theorem 4.2, one finds∫ h(ε0)

h(−ε0)

e−
1
2ky

2

g′(y)a(g(y))dy ' (
2π

k
)

1
2

p=n∑
p=0

k−p

p!
(
1

2

∂2

∂y2
)p[g′.(a ◦ g)](0)

Let L1 be the operator g′(h(x)) d
dx . The relation df

dy = dx
dy

df
dx implies L1f(g(y)) = df

dy (y) hence
d2pf
dy2p = L2p

1 f(g(y)) hence∫ ε0

−ε0
e−kφ(x)a(x)dx ' (

2π

k
)

1
2

n∑
p=0

1

p!2pkp
L2p

1 [g′(h(x))a(x)]|x=0.
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Let L2 be the operator3 given by L2F = d
dx [g′(h(x))F (x)]. One has L1[g′(h(x))F (x)] =

g′(h(x))L2F (x), hence Lk1 [g′(h(x))F (x)] = g′(h(x))Lk2F (x), from which one deduces, using
g′(h(0)) = g′(0) = 1

h′(0) = 1

(φ′′(0))
1
2∫ ε0

−ε0 e
−kφ(x)a(x)dx ' ( 2π

k )
1
2

∑n
p=0 g

′(h(0)) 1
p!2pkpL

2p
2 a(0)

' ( 2π
kφ′′(0) )

1
2

∑n
p=0

1
p!2pkp (L2p

2 a)(0).

Denote finally by

∆ 1
2h

2a(x) = ∂x(
1

h′(x)
∂x(

1

h′(x)
a(x))),

which is a differential operator with variable coefficients, but which is not in no case equal to
(Hessφ(0))−1∂2

x2a. The formula of the stationary phase is then∫ ε0

−ε0
e−kφ(x)a(x)dx ' (

2π

kφ′′(0)
)

1
2

n∑
p=0

1

p!kp
[
1

2
(∆ 1

2h
2)pa](0).

We place ourselves in the case where Hessφ(x0) is a positive definite matrix. Using the
diffeomorphism h(x) = x̃, local diffeomorphism of the neighborhood of x0 on a neighborhood

of 0 ∈ IRd, of reciprocal application g, we find, by introducing Jpq(y) =
∂gp
∂yq

(y), et j(y) =

det(Jpq(y)) and recalling that φ(x) = φ(x0) + 1
2 (h(x))2,

∂

∂yq
[a(g(y))j(y)] =

∑
p

Jpq(y)
∂

∂xp
[a(x)j(h(x))]

then

∆y[a(g(y))j(y)] =
∑
i,j,p

Jpj
∂

∂xp
[
∑
i

Jij(h(x))
∂

∂xi
[a(x)j(h(x))]].

This formula is not very explicit. By integrations by parts of the integral against a test function
v(y) ∈ C∞0 (IRd), to which we associate the test function test function V (x) = v(h(x)), we have
the following equalities:∫

∆y[a(g(y))j(y)]v(y)dy = −
∫
∇y[a(g(y))j(y)]∇yvdy

= −
∫

(tJ∇xV.tJ∇x(a.(j ◦ h)))deth′(x)dx
= −

∫
(∇xV.J tJ∇x(a.(j ◦ h)))deth′(x)dx

=
∫
V (x)∇x.[J tJ∇x(a.(j ◦ h))deth′(x)]dx.

We introduce the differential operator D given by

Da(x) = ∇x.[deth′(x)J tJ∇x[a(x).j(h(x))]].

Then ∫
∆y[a(g(y))j(y)]v(y)dy =

∫
V (x)Da(x)dx =

∫
v(y)Da(g(y))

dy

deth′(g(y))
.

One then deduces (thanks to the relation j(y)det h′(g(y)) = 1)

∆y[a(g(y))j(y)] =
1

det h′(x)
divx[det h′(x)J tJ∇x(

a

det h′(x)
)]|x=g(y) = D(a)(g(y))j(y).

By induction, one finds
∆p
y[a(g(y))j(y)] = Dp(a)(g(y))j(y).

One has then∫
e−kφ(x)a(x)dx ' ( 2π

k )
d
2 e−kφ(x0)

∑∞
p=0

1
kp2pp!D

p(a)(x0)j(0)

' ( (2π)d

kddet Hessφ(x0)
)

1
2 e−kφ(x0)

∑∞
p=0

1
kp2pp!D

p(a)(x0).

The Laplacian associated with the φ phase is then naturally

3The operator −L2 is the adjoint of the operator L1
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∆φa = Da = ∇x.[deth′(x)J tJ∇x[
a(x)

deth′(x)
]].

Proposition 4.4 is proved. �

In a number of applications, one wants to eliminate only a part of the integration variables,
it is then necessary to keep the other integration variables as parameters. The critical point
in the variables to be eliminated then depends on these parameters. An easy generalization
of the stationary phase theorem is the stationary phase theorem with parameters. This is the
subject of the following section

6.1. Stationary phase theorem with a parameter. The general situations where
one wishes to use the stationary phase theorem the stationary phase theorem usually involve
several variables, and it may be useful to apply the theorem to only some of the variables. We
have the following Theorem (theorem 7.7.6 of [48]):

Theorem 4.3. Assume that φ, smooth function from IRd×IRn−d to IR, satisfies ∇xφ(0, 0) =
0, Hessxφ(0, 0) is non-degenerate. Denote by σ the signature of the hessian matrix (difference
between the number of positive and negative eigenvalues). Assume that a is of class C∞, with
compact support containing x0.

(1) The locus of the critical points of φ in x, given by ∇xφ(x, y) = 0, takes the form
x = x(y) for y in a neighborhood of y = 0, with x(0) = 0.

(2) We assume a of class C∞, supported in a neighborhood V ×W of x = y = 0. There

are differential operators Lφj (x, y, ∂x) in x of order 2j, depending on the parameter y
and the phase φ, such that such that∫

a(x, y, k)eikφ(x,y)dy

' eiσπ/4(
2π

kddet(Hessxφ)(x(y), y)
)

1
2 eikφ(x(y),y)

∑
j

Lφj (x, y, ∂x)a|x=x(y)(y)k−j .

(3) Under a diffeomorphism (x, y) ↔ (X, y), the critical points of the phases φ(x, y)
and φ(x, Y ) may be distinct, the critical values and the asymptotic expansion are
invariant.

The last paragraph of this theorem is extremely useful when one studies canonical forms
of phases with certain properties. We see, for example, that when a phase φ(x, t) has two
critical points at t that critical points at t that coincide at x = 0, then we can represent this
phase as

φ0(x) +
T 3

3
− a(x)T

which allows to express
∫
b(x, T )eik(φ0(x)+T3

3 −a(x)T )dT using the Airy function introduced
below in the exercise 4.1) (and its derivative). This representation will be used in the section
4. The proof of this theorem is the subject of the exercise 4.2. The theorem 4.3 will also be
used in the chapter 11.

7. Application to the solution of the wave equation generated by given data on a
surface

We consider a smooth surface S, bounded or not. We compute, for x /∈ S

(7.70) Ik(x) =

∫
S

eik|x−y|

|x− y|
c(y)dσS(y),

where dσS(y) is the measure on S induced by the Euclidean measure on the ambient space.
We will only be concerned here with local results. The manifold S can be a free surface in
space, on which a solution is known; it can also be the boundary of an obstacle. We assume
it to be compact, or we assume c to be compactly supported.
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Case where c does not depend on k. As for all y ∈ S, (∆ + k2) e
ik|x−y|

|x−y| = 0 for x /∈ S (as

has been noticed in chapter 1), we have

(∆ + k2)Ik(x) = 0 ∀x /∈ S.
We calculate this integral using the phase (Proposition 4.3, paragraph (ii)). For this

purpose, let us introduce φ0(y) = |y−x|. We introduce a local parametrization of the surface4

and the semi-geodesic coordinates u ∈ Rn−1 ∩ V (y0), y0 ∈ S, V neighborhood in IRn of y0.
A point of V (y0) is represented by u and by l such that y = Y (u, l) = y(u) + l(u)n(y(u)).
The Jacobian of the transformation is computed later (Section 4, Section 4.2); it involves the

geodesic matrix of the boundary. We introduce the matrix M̃(u, l) = (∂jyk, ∂lyk).
We introduce Φ(u) = φ0(y(u)), we check that

∂Φ

∂uj
=

y(u)− x
|y(u)− x|

.
∂y

∂uj
.

The vectors ( ∂y∂uj ) form a basis of the tangent space Ty(u)S. The phase Φ is stationary if

and only if y(u)−x is orthogonal to the vector ∂y
∂uj

(u) for all j, thus orthogonal to the tangent

hyperplane Ty(u)S. Let y(u0) be a critical point. There exists λ such that

(7.71)
y(u)− x
|y(u)− x|

= λ~n(y(u)).

The comparison of the norms gives λ = ±1 and the orientation gives λ = −1.
Therefore, there exist u0 and l0 such that x = y(u0) + l0~n(y(u0)). Then u = u0 is a

solution of (7.71). The corresponding point y is a point which makes extremum the distance
to the boundary. It is not necessarily unique; indeed, if the surface S is a sphere, and if the
point x is the center of the sphere then all points on the surface are suitable.

Assume that S = ∂Ω, where Ω is convex. If y ∈ V (y0)∩CΩ, then the vector ~n(y0) defined
above is the exterior normal unit vector to Ω at y0 and there is uniqueness of the solution of
(7.71). To show this, let us compute the Jacobian. It is sufficient to show that the matrix
∂2Φ

∂ui∂uj
is non-degenerate to obtain the local uniqueness of the solution of the system ∂Φ

∂ui
= 0.

From ∂Φ
∂uj

= y(u)−x
|y(u)−x| .

∂y
∂ui

, we deduce

(7.72)
∂2Φ

∂uj∂um
=

y(u)− x
|y(u)− x|

.
∂2y

∂uj∂um
+
∂umy.∂ujy

|y(u)− x|
−

(y(u)− x, ∂ujy)(y(u)− x, ∂umy)

|y(u)− x|3
.

We calculate this value at the critical point u0. From the orthogonality of ~n and the tangent
vector to the surface, we deduce

∂2Φ
∂uj∂um

(u0) = −~n(y(u0)). ∂2y
∂uj∂um

+
∂umy.∂uj y

|y(u)−x| −
(~n(y(u0)),∂uj y)(~n(y(u0)),∂umy)

|y(u0)−x|

= −~n(y(u0)). ∂2y
∂uj∂um

+
∂umy.∂uj y

|y(u)−x| ,

using the orthogonality of y(u) − x to the tangent plane of the boundary at y(u). As
~n(y(u)).∂ujy(u) = 0, on gets the identities

∂

∂um
(~n(y(u))).∂ujy(u) + ~n(y(u)).

∂2y

∂uj∂um
(u) = 0.

It appears, as in the chapter 1 the Weingarten matrix W which is the derivative of the normal
vector along direction (and whose eigenvalues are the principal curvatures of the surface ∂Ω),

such that ∂
∂um

(~n(y(u))) = W (y(u)) ∂y
∂um

(7.73) W (y(u)).∂umy(u)∂ujy(u) + ~n(y(u)).∂2
ujumy(u) = 0,

4as it is detailed later (Chapter 10)
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which yields

∂2Φ

∂uj∂um
(u0) = W (y(u)).∂umy(u)∂ujy(u) +

∂umy.∂ujy

|y(u)− x|
.

The determinant of ( ∂2Φ
∂uj∂um

(u0)) is zero when the point x is located at the center of

curvature of S. We introduce the matrix

L(x, y(u)) = W (y(u)) +
1

|x− y(u)|
Id

One obtains

(det(∂2
ujumΦ)(u0))−

1
2 dσS(y)/du = (det(W (y(u)) +

1

|x− y(u)|
Id))−

1
2 ,

and the equivalent of Ik given by the stationary phase theorem is equal to

Ik(x) ' (
2π

k
)
n−1

2 c(y(u0))(det(W (y(u0)) +
1

|x− y(u0)|
Id))−

1
2 eik|x−y(u0)|.

The above calculation was performed when c(y) is independent of k.
Case where c has an oscillatory phase in k. In a second application we assume that c(y, k) =

a(y, k)eikφ(y) where a is compactly supported in y. The considered phase is

ψ(y) = |x− y|+ φ(y).

The gradient of the phase, using the same boundary representation y = y(u), is

∂ujψ(y(u)) = [
y(u)− x
|y(u)− x|

+∇φ].∂ujy(u).

This gradient is null when the vector [ y(u)−x
|y(u)−x| + ∇φ] is orthogonal to the vectors (∂ujy(u)).

This means that it is collinear à ~n(y(u)). For a critical point, there exists λ such that

y(u)− x
|y(u)− x|

+∇φ = λ~n(y(u)).

We notice that ∇φ is tangent to S, thus orthogonal to ~n at the considered point and moreover
|∇φ(y(u))| ≤ 1. We suppose that S = ∂Ω, Ω convex and that x ∈ CΩ. It comes λ2 +
(∇φ(y(u)))2 = 1, so we define a unit normal vector by

(7.74)
y(u)− x
|y(u)− x|

= (1− ||∇φ(y(u))||2)
1
2~n(y(u))−∇φ(y(u)) = ~t(u).

Finding u is equivalent to solving the equation x = y(u) + µ~t(y(u)).
An interesting special case is the case where ∇φ(y(u)) is of norm 1. The point x is then

located on the tangent to S parallel to the vector ∇φ(y). So, for a given x, we have to find the
tangent point of any line coming from x tangent to S, which will give the admissible points
y(u).

We use |∇φ(y(u))| ≤ 1 to calculate the Jacobian of u → φ(y(u)). The relation (7.72)
allows to obtain

∂2
ujum(ψ(y(u))) = y(u)−x

|y(u)−x| .∂
2
ujumy +

∂umy.∂uj y

|y(u)−x| +∇φ(y(u)).∂2
ujumy

− ((y(u)−x).∂uj y)((y(u)−x).∂umy)

|y(u)−x|3 + Hessφ∂ujy∂umy.

eliminating terms through (7.74) and using the orthogonality of ~n(y(u)) with ∂ujy(u), we find

∂2
ujum(ψ(y(u))) = (1− (∇φ(y(u)))2)

1
2~n(y(u)).∂2

ujumy +
∂umy.∂uj y

|y(u)−x|

− (∇φ(y(u)).∂uj y)((∇φ(y(u)).∂umy)

|y(u)−x| + Hessφ∂ujy∂umy.

Finally, using (7.73), we obtain
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∂2
ujum(ψ(y(u))) = (1− (∇φ(y(u)))2)

1
2W (y(u))∂ujy∂umy +

∂umy.∂uj y

|y(u)−x|

− (∇φ(y(u)).∂uj y)((∇φ(y(u)).∂umy)

|y(u)−x| + Hessφ∂ujy∂umy.

We introduce the orthogonal projection π parallel to ∇φ(y(u)). We have

∂2
ujum(ψ(y(u))) = (1− (∇φ(y(u)))2)

1
2 [W (y(u)) + 1

|y(u)−x|Id]∂ujy∂umy

+Hessφ∂ujy∂umy + |∇φ(y(u))|2
|y(u)−x| π(∂ujy).π(∂umy).

This allows us to obtain, in the case where |∇φ| = 1, that the Jacobian of the transfor-
mation is equal to det[Hessφ+ 1

|y(u)−x|Id].

We state the results of this paragraph:
Let c(y, k) = a(y, k)eikφ(y), where a '

∑+∞
j=0 ajk

−j , where aj and all its derivatives are
bounded in k for k ≥ 1, a compactly supported if S is not compact

Proposition 4.5. • The asymptotic contribution of a source c(y, k) (assumed to
be supported in y or S is compact) on an boundary S to the the integral

Ik(x) =

∫
S

eik|x−y|

|x− y|
c(y, k)dσS(y)

depends crucially on the phase φ.
• The point y(u(x)) where we compute a(y, k) (which is the point of the boundary

contributing to the value of Ik(x)) is a solution of

y(u(x))− x
|y(u(x))− x|

= (1− (∇φ(y(u(x))))2)
1
2~n(y(u(x)))−∇φ(y(u(x))).

• The Jacobian of the phase is thus

det[(1− |∇φ|2)W (y(u(x))) + Hessφ(y(u(x))) +
1

|y(u(x))− x|
].

Lemma 4.6. The two following cases are useful in practical •: the phase φ is zero. The
point y(u(x)) is the one which minimizes the distance to S. The Jacobian is equal to the
product Π(κi(u(x)) + 1

d(x,S) ), the κi(u(x)) being the main curvatures of the surface at the

point y(u(x)).
• the gradient of the phase φ is 1. Let y(u) be a point on the boundary such that the line

(xy(u)) is tangent to S. The Jacobian of the phase is the product of all β + 1
|y(u)−x| where β

is an eigenvalue of the hessian matrix of φ.

The previous discussion on the critical points of the phase allows us to obtain an asymp-
totic expansion of Ik(x).

We end this section of applications of the stationary phase method to the to the wave
equation by the scattering calculation which can be found in all found in all the scattering
matrix courses. It can be found for example in the course of R. B. Melrose, given at Stanford
University [78].

For this, we introduce the spectral resolution of the identity, which is the transcription in
polar coordinates of the identity

f(x) = (2π)−n
∫

IRn
eizξ f̂(ξ)dξ

qui se réécrit

f(x) = (2π)−n
∫ +∞

0

∫
Sn−1

eiλx.ω f̂(λω)λn−1dλdω.

Either E0(λ) is the spectral projector, given by

E0(λ)f(x, λ) = (2π)−n
∫
Sn−1

eiλx.ωλn−1f̂(λω)dω,

and thanks to the spectral theorem, Id =
∫∞

0
E0(λ)dλ.
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Or Φ0(x, ω, λ) = eiλx.ω the family of plane waves of pulsation ω and of wave vector norm
is λ > 0, then

E0(λ) = (2π)−nλn−1F0(λ)F ∗0 (λ)

where F0 is an operator from C∞(Sn−1) onto S ′(IRn) given by

(F0(λ))g(x) =

∫
Sn−1

Φ0(x, ω, λ)g(ω)dω

and F ∗0 (λ) acts from S(IRn) to C∞(Sn−1):

(F ∗0 (λ)h)(ω) =

∫
IRn

Φ0(x, ω,−λ)h(y)dy

By applying the stationary phase theorem, we obtain

(7.75)
F0(λ)g(θ|x|) ' eiλ|x|(λ|x|)− 1

2 e−
1
4π(n−1)i(2π)

n−1
2

∑
j≥0 |λx|−jh

+
j (θ)

+e−iλ|x|(λ|x|)− 1
2 e

1
4π(n−1)i(2π)

n−1
2

∑
j≥0 |λx|−jh

−
j (θ).

We write x = |x|θ. The phase is then written iλ|x|θ.ω. As the integral is invariant by rotation,

we choose the coordinates on Sn−1 so that θ.ω = ω1, with ω1 = ±(1− (ω′)2)
1
2 . We note J(ω′)

the Jacobian of the transformation dSn−1ω into dω′. It comes

F0(λ)g(θ|x|) =
∫

IRn−1 eiλ|x|ω1g(ω1, ω
′)J(ω′)dω′

=
∫
Sn−1 e

iλ|x|(1−(ω′)2)
1
2 g((1− (ω′)2)

1
2 , ω′)J(ω′)dω′

+
∫

IRn−1 e−iλ|x|(1−(ω′)2)
1
2 g(−(1− (ω′)2)

1
2 , ω′)J(ω′)dω′.

Thanks to the Taylor expansion (1 − (ω′)2)
1
2 = 1 − 1

2 (ω′)2 + o((ω′)2), we verify that the
stationary phase theorem applies to the stationary phase applies to the point ω′ = 0 and
that h+

0 (θ) = g(θ), h−0 (θ) = g(−θ). The terms h±j are results of the action of iterates of the
Laplacian on the sphere, which is the operator L associated to the critical point θ.ω = ±1 of
the phase θ.ω.

From the expression ∆ = −
∫∞

0
λ2E0(λ)dλ, we deduce that any solution of deduces the

fact that any solution of (∆− λ2)u = 0 verifies so (|ξ|2 − λ2)û(ξ) = 0, that is, taking ξ = rθ,
the equality û(ξ) = δ(r − λ)g1(θ). By inverse Fourier transform, we find

u(x) = (2π)−n
∫

IRn
eirx.θδ(r − λ)g1(θ)rn−1drdθ

donc

u = F0(λ)((2π)−nλn−1g1).

The above asymptotic expansion extended to g1 distribution leads to

Lemma 4.7. For any function h(θ) of class C∞(Sn−1), there exists a solution of (∆ +
λ2)u = 0 admitting for |x| → ∞ the expansion

u(|x|θ) = eiλ|x||x|− 1
2 (n−1)h(θ) + e−iλ|x||x|− 1

2 (n−1)h1(θ) +O(|x|− 1
2 (n+1)).

The relation between h1 et h is, thanks to the asymptotic expansion, h1(θ) = in−1h(−θ), which
is the simplest of scattering matrices.

8. Solution of the wave equation across the caustic with the stationary phase
method

In this section, we use the results on the complex stationary phase to complete the section
2 of chapter 3. In particular, we compute the value of a0(x(T )) solution de (1.48) for T > t0,
where t0 is the first point for which det(Id+ t0W (x0)) = 0, if it exists. We introduce ψ(t) =
φ0 + t. For t < t0 we know that ψ(t) = φ(x(t)) and we notice that ψ is defined everywhere. is
well defined.

We prove the following result:
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Proposition 4.6. Let Σ be a surface of class C∞ in IR3, and let a(x, k) '
∑
j aj(x)k−j,

aj being of class C∞ on IR3, and a being of class C∞ on IR3 × [1,+∞[. Consider a constant
φ0 ∈ IR. Let b(x, k)be ' bj(x)k−j solution of (∆ + k2)(b(x, k)eikφ(x)) ' 0,

φ(x) = φ0, x ∈ Σ,
b(x, k)|Σ = a(x, k).

All the terms b(x, k) can be calculated x(t) = x0 + tN(x0) out of the points t ≥ 0. such
that det(Id+ tW (x0)) = 0. In particular

b0(x) =
∑

x0∈Σ,x=x0+tN(x0)

a0(x0)

(|det(Id+ tW (x0))|) 1
2

ein
π
2

where −n is the Maslov index, equal to the number of points of the caustic crossed between 0
and t on each line x0 + sN(x0).

Remark 4. We have not expressed here the solution in the neighborhood of the point t0,
point of the caustic; this will be done in the next section.

Proof. We call the Bargmann transform of the function u(x) ∈ L1(V ), V ⊂ IRd the
holomorphic function

Tu(z, k) =

∫
V

e−
k
2 (z−x)2

u(x)dx.

The Bargmann transform allows us to get rid of the points of the caustic C by deforming
the parameter on the bicaracteristics in the complex, so that the function obtained is always
continuous in t. In fact, we will deform the parameter up to t− i. We denote by

d(t, k) = Tu(x0 + (t− i)∇φ(x0), k).

We write

ψ(x) = φ(x) + i
2 (x− (x0 + t∇φ(x0)) + i∇φ(x0))2

= φ(x)− i
2 + i

2 (x− (x0 + t∇φ(x0)))2 −∇φ(x0).(x− (x0 + t∇φ(x0)))

This phase admits a critical point in x at the point x = x0 + t∇φ(x0). Indeed, there exists
a matrix A(x) such that

∇φ(x)−∇φ(x0 + t∇φ(x0)) = A(x).[x− (x0 + t∇φ(x0))].

The matrix A(x) + iId is invertible since A is real.
There exists a neighborhood V of t = 0 such that, for t ∈ V , the equation ablaxψ(x) = 0

has a unique solution equal to x = x0 + t∇φ(x0). We notice that this result is true for x in
the connected connected component of IR3\C containing Σ. Moreover, the Hessian matrix of
this phase is Id+ iHessφ(x). We are in the conditions of application of the complex stationary
phase theorem, the critical value of the phase is i/2 + φ(x0 + t∇φ(x0)) = i/2 + φ0 + t and the
determinant of the Jacobian is i3det(Wt(x0)− iId).

In the rest of the proof, we consider a point x0 ∈ Σ and we study the ray coming from
x0. The solution is the superposition of the set of solutions, where we consider for each x the
set of points x0 ∈ Σ such that there exists t such that x = x0 + t∇φ(x0).

One may wonder why there could be several solutions. This will be presented later; let us
note for the moment that the phase characterizing a simple caustic (the fold) is given by

Φ(a(x), b(x), T ) =
T 3

3
− a(x)T + b(x)

and that a stationary phase calculation leads to consider two critical points when a(x) > 0 (see
Exercise 4.1 for the proof of this statement). The result of the Lemma 4.1 gives a contribution
for all critical values. This approach is a current research topic: the numerical computation of
multivalued solutions of the of the eikonal equation is now operational (see the work of J.D.
Benamou, the thesis of I. Solliec, and the search for multivalued viscosity solutions in[11],
[91], [12], [1]).
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In the rest of the proof, we consider a point x0 ∈ Σ and we study the ray study the ray
coming from x0. Consider the amplitude b∗0(y) associated to the part of the wave carried on
the ray x0 (y ∈ {x0 + s∇φ(x0)}). We then consider the expression d∗(t, k) coming from the
calculation of stationary phase at this point. The stationary phase theorem (Proposition 4.2)
leads (in dimension d = 3) à

d∗(t, k) ' e k2 (
k

2π
)

3
2 b∗0(x0 + t∇φ(x0))eiφ0+it(det(Id− iWt(x0)))−

1
2 (1 +O(k−1)).

This is true for any t on the radius, outside t0, by modifying the argument the argument
(replacing for example t by t−T and the point x0 by the point x0 +T∇φ(x0)). The expression
of d∗(t, k) for t < t0 is transformed using the relation

Wt(x0) = (Id+ tW (x0))−1W (x0)

and the relation

b∗0(x0 + t∇φ(x0)) = b∗0(x0)/(det(Id+ tW (x0)))
1
2 .

We obtain, for t < t0 (only the main term is written here)

d∗(t, k) = e
k
2 ( k

2π )
3
2 b∗0(x0)eiφ0+it[det(Id+ tW (x0))(Id− iWt(x0))]

1
2

= e
k
2 ( k

2π )
3
2 b∗0(x0)eiφ0+it[det(Id+ (t− i)W (x0))]−

1
2 .

Similarly, for t > t0, we verify that

d∗(t, k) = e
k
2 ( k

2π )
3
2 b∗0(x0 + T∇φ(x0))eiφ0+i(t−T+T )[det(Id+ (t− T )W (x0))(Id− iWt(x0))]

1
2

= e
k
2 ( k

2π )
3
2 b∗0(x0 + T∇φ(x0))eiφ0+it[det(Id+ (t− i)W (x0))]−

1
2 [det(Id+ TW (x0))]

1
2

The function Tu(z, k) is holomorphic in Imz 6= 0 by analytical so in particular the function
Tu(x0 + (t− i)∇φ(x0), k) is continuous in t. The determination of the root is chosen so that
the function

t→ (det(Id+ tW (x0)))
1
2 (det(Id− iWt(x0)))

1
2

is continuous in t. We deduce the equality

b∗0(x0) = b∗0(x0 + T∇φ(x0))[det(Id+ TW (x0))]
1
2 .

The choice of the determination of the square root allows us to write, using the Maslov using
the Maslov index n,

(det(Id+ tW (x0)))−
1
2 = e

inπ
2 (|det(Id+ tW (x0))|)− 1

2 .

In particular, if we place ourselves in the case d = 3 and κ1 < κ2 < 0, then

(8.76)


0 < t < −κ−1

1 , n = 0,
−κ−1

1 < t < −κ−1
2 , n = −1,

t > −κ−1
2 , n = −2.

We thus calculated the amplitude along a ray. To obtain the solution of the Helmholtz
equation, we must superimpose the set of solutions, and, in particular, for each x, consider
the set of each x, consider the set of x0 ∈ Σ such that there exists t such that x0 + t∇φ(x0) =
x. At any point x in space the asymptotic solution is the superposition of the amplitudes
corresponding to all the rays from Σ arriving at point x at time t. Thus, even if b∗0(x0) = a0(x0),
there is no reason why a0(x0 + t∇φ(x0)) = b∗0(x0 + t∇φ(x0)), but a0(x0 + t∇φ(x0)) can be
written b∗0(x0 + t∇φ(x0)) + c0, where c0 will eventually refer to another value of a0 in y0 such
that y0 + t∇xφ(y0) = x = x0 + t∇φ(x0). �
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9. Exercises of chapter 4

Exercise 4.1: The Airy function. 1) Prove thatξ → exp(i ξ
3

3 ) is in S ′(IR). One defines the

Airy function Ai as the inverse Fourier transform in S ′(IR) of exp(i ξ
3

3 ). Prove that Ai ∈ S ′
is a C∞ function such that, for all η > 0,

Ai(x) =
1

2π

∫
IR+iη

exp(iξ3/3 + ixξ)dξ.

2) Prove that Ai is solution of the ordinary differential equation

Ai′′(x) = xAi(x).

3) Choosing η accordingly in terms of x prove that the resulting phase can be written, for
all x > 0:

−ξ2
√
x+ i

ξ3

3
.

Calculate an asymptotic expansion of Ai when x goes to +∞.
4) Recover the asymptotic expansion of Ai by writing the new function Ai(k

2
3u) and ap-

plying the stationary phase theorem.
Exercise 4.2 Degenerate stationary phase theorem. Consider a phase φ on a manifold X

which has critical points on a submanifold W of dimension d, that is ∇zφ(z)|z∈W = 0.

1) Prove that there is a local chart z = (x, y), y ∈ IRd such that the system of equations
∂xφ(x, y) = 0 is equivalent, in the neighborhood of a point (x(y0), y0) ∈W , to x = x(y) (hence
locally, the equation of W isx = x(y)).

2) Assume now that, in these new local coordinates Hessx2φ is non degenerate. Evaluate,
for any a ∈ C∞(X), the integral ∫

X

eikφ(z)a(z)dz.

Solution de l’exercice 4.1. 1) On vérifie que

Re (i
ξ3

3
+ iξx) = Re (i(ζ + iη)3/3 + iζx− ηx = −ζ2η + η3/3− ηx.

L’intégrale converge donc. Il n’y a pas de résidu entre =ξ = η1 et =ξ = η2 dans le plan complexe,
donc elle est indépendante de η > 0.

Elle est alors de classe C∞ puisque le comportement en ξ est en e−ηξ
2

.
On vérifie enfin que, au sens des distributions de S ′, exp(i(ζ + iη)3/3) converge vers exp(iζ3/3)

lorsque η tend vers 0 par valeurs positives, donc on peut appliquer la continuité de la transformée de
Fourier et donc on a convergence dans S ′.

2) On vérifie que ∫
IR+iη

(ζ2 + x)ei(ζ
3/3+ζx)dζ = 0.

On remarque que le terme ζ2 correspond à −Ai”(x), d’où le résultat.

3) La phase stationne en ξ = −iη ± ix
1
2 lorsque x > 0. On choisit η = x

1
2 pour avoir les deux

points critiques 0 et 2ix
1
2 . On vérifie que la phase s’écrit, pour cette valeur de η:

i(ξ3/3 + ix
1
2 ξ2 +

2

3
ix

3
2 ).

On a alors

Ai(x) =
1

2π
exp(−2

3
x

3
2 )

∫
IR

e−x
1
2 ξ+iξ3/3dξ.

En effectuant le développement de Taylor de l’exponentielle, on trouve

Ai(x) =
1

2π
exp(−2

3
x

3
2 )

∫
ξ∈IR

dξ[

N∑
p=0

(
i

3
)p
ξ3p

(p)!
e−x

1
2 ξ2 +Rn].
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On a l’égalité
∫

IR
ξ3qe−x

1
2 ξ2dξ = x−3q/4−1/4

∫
IR
u3qe−u

2

du, nulle lorsque q est impair. Pour q = 2p,

on trouve 2
∫ +∞

0
dv

2v
1
2
v3pe−v = Γ(3p+ 1

2
). Chaque terme de la somme est alors égal à

x−
1
4 [

N∑
p=0

(−9)p
Γ(3p+ 1

2
)

(2p)!
x−3p/2,

car le terme (q!)−1 est égal à ((2p)!)−1. Le développement asymptotique de Ai(x) s’écrit alors

Ai(x) =
1

2π
exp(−2

3
x

3
2 )x−

1
4

N∑
p=0

(−1

9
)p

Γ(3p+ 1
2
)

(2p)!
x−

3p
2 +

∫
ξ∈IR

dξRN

Le terme Rn est majoré par le premier terme après la troncature de la série définissant Φ que l’on n’a

pas considéré, soit ξ3N

N !
. Ceci donne alors le majorant du terme général de la série.

4) Nous écrivons

Ai(k
2
3 u) =

1

2π

∫
ξ∈IR+ik

1
3 η

ei(ξ
3/3+k

2
3 uξ)dξ.

Effectuons le changement de variable ξ = k
1
3 τ , l’intégrale a lieu sur τ ∈ IR + iη. Alors

Ai(k
2
3 u) =

k
1
3

2π

∫
τ∈IR+iη

eik(τ3/3+uτ)dτ.

La phase φ(s) = u(s + iη) + 1
3
(s + iη)3 admet deux points critiques complexes qui sont s =

−iη ± i
√
u pour u > 0. Le jacobien est alors égal à 2(sc + iη) = ±2i

√
u. La valeur critique est

±iu
3
2 + 1

3
(±i)3u

3
2 = ±i 2

3
u

3
2 . Celle correspondant à −i 2

3
u

3
2 donne une phase qui tend vers +∞ à +∞.

Nous la rejetons car Ai admet une limite lorsque x tend vers +∞. Il reste alors

k
1
3

2π
(

2π

k2
√
u

)
1
2 e−k

2
3
u

3
2

comme premier terme, c’est-à-dire le k−
1
6 e−

2
3
ku

3
2 u−

1
4 (4π)−

1
2 . En remarquant que x = k

2
3 u, on

retrouve le comportement de la forme x−
1
4 e−

2
3
x

3
2 Γ( 1

2
)

2
. Notons que cette méthode de recherche des

points de phase stationnaire complexe sera utilisée dans le chapitre 5.
Une remarque pour terminer cette étude de la fonction d’Airy: on note que Ai(x) est solution

de l’équation u” − xu = 0. Cette solution est exponentiellement décroissante pour x > 0, mais elle
n’est pas nulle, alors qu’elle vérifie la condition de Sommerfeld en +∞. Ceci nous aide à préciser nos
idées sur la notion de support dont nous avions parlé: en effet le support de la fonction d’Airy est IR
tout entier, mais, asymptotiquement, elle contribue uniquement dans la zone x ≤ 0. Il y a donc une
différence entre le support et le support asymptotique. Si on forme par exemple l’équation eikonale
vérifiée par une phase φ correspondant à Ai(x), on trouve (φ′)2 + x = 0, donc la phase n’est définie
que dans la zone x ≤ 0 et les rayons associés vivent dans x ≤ 0. En revanche, là encore, la solution a
pour support IR tout entier.

La dernière remarque est la suivante: la fonction d’Airy est l’unique solution dans S ′ de u” = xu.
En particulier, c’est une solution frontière, dont le graphe sépare le graphe des solutions qui s’annulent
de celui des solutions dont la dérivée s’annule. Si on note w0 et w1 les solutions respectivement
associées aux données de Cauchy (u(0) = 1, u′(0) = 0) et (u(0) = 0, u′(0) = 1), on trouve A′(x) =
Ai(0)[w0(x)−

∫∞
0

ds
(w0(s))2

w1(x)], ce qui fixe la condition de Cauchy sur Ai. Ceci est l’équivalent du fait

qu’une seule condition de Cauchy suffit lorsqu’on a la condition de décroissance à l’infini (Sommerfeld
par exemple).

Preuve de l’exercice 4.2. Le résultat (dû à Colin de Verdière), est le résultat global qui permettra,
dans le chapitre 11, de tenir compte des géodésiques fermées dans l’influence d’un objet.

1) Nous notons que le système d’équations

∇zφ(z) = 0

est un système de rang n− d, puisque l’espace des z solutions est de dimension d. Ceci veut dire qu’il
existe n− d équations indépendantes (s’en convaincre en regardant les équations tangentes). Notons
alors les coordonnées en question (zj1 , ...zjn−d). En réordonnant les coordonnées et en considérant

que (zk)k/∈{j1,...jn−d} est difféomorphe à IRd, on peut écrire z = (x, y), y ∈ IRd. Alors les équations

∇xφ(x, y) = 0
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sont n − d équations indépendantes. Par le théorème des fonctions implicites, on peut considérer y
comme un paramètre, remarquer que Hessx2φ est inversible, et écrire la solution comme x = x(y).
Alors on peut écrire ∫

X

eiφ(z)a(z)dz =

∫
IRd

dy

∫
IRn−d

dxeikφ(x,y)a(x, y)J(x, y).

L’application du théorème de la phase stationnaire en x (Théorème 4.3) conduit à

∫
X

eikφ(z)a(z)dz '
∫

IRd

dy(2π/k)
n−d

2

|detHessx2φ(x(y), y)| 12
(
∑
n≥0

Ln(y, ∂y, ∂x)a(x, y)|x=x(y))e
ikφ(x(y),y).

On note alors que ∂yjφ(x(y), y) =
∑
p ∂xpφ(x(y), y)

∂xp
∂yj

+ ∂yjφ(x(y), y). En utilisant le fait que la

phase φ(z) stationne sur W , on vérifie que ∂yjφ(x(y), y) = 0, donc

∂yjφ(z)|W = 0.

On note alors la valeur constante de φ(z) sur W par φ(W ). Il reste alors∫
X

eikφ(z)a(z)dz ' eikφ(W )

∫
IRd

(2π/k)
n−d

2 dy

|detHessx2φ(x(y), y)| 12
(
∑
n≥0

Ln(y, ∂y, ∂x)a(x, y)|x=x(y)).





CHAPTER 5

Fréchet space of symbols.

In this section, we present the symbolic calculus, as it has been as it has been introduced
by Hörmander [48]. We note indifferently by û or by F(u) the Fourier transform of an element

u ∈ S ′(IRd). The symbols were introduced to generalize the ordinary differential operators,
based on the relation

i|α|ξαû(ξ) = F(∂αx u)(ξ)

which rewrites, for u ∈ S(IRd):

∂αx u(x) =
1

(2π)d

∫
IRd
eix.ξ(iξ)αû(ξ)dξ.

Remark 5. For P = a0(x, t)∂t +
∑j=d
j=1 aj(x, t)∂xj , (operator introduced in the chapter 2

in the case m = 1) we obtain

Pu(x, t) =
1

(2π)d+1

∫
IRd+1

[ia0(x, t)τ + i

j=d∑
j=1

ξjaj(x, t)]û(ξ, τ)eix.ξ+it.τdξdτ.

Proof. By writing û(ξ, τ) =
∫

IRd+1 u(y, s)dyds and replacing in the previous integral
(which is a convergent integral), Pu(x, t) is written formally

(0.77) Pu(x, t) =
1

(2π)d+1

∫
IR2d+2

a(x, t, ξ, τ)ei(x−y)ξ+i(t−s)τu(y, s)dydsdξdτ,

where a(x, t, ξ, τ) = [ia0(x, t)τ + i
∑j=d
j=1 ξjaj(x, t)]. Indeed, it is only formally because this

integral is not the integral of a function of L1(IR2d+2). �

In exercise 2.2, this function had been introduced and noted l(x, t, ξ, τ), and its null
manifold corresponded to the locus of points (x, t,∇xφ, ∂tφ), φ being the solution phase of the
the eikonal equation.

We perform the change of variable ξ = λΞ, τ = λσ, and we verify that we boil down to
integrals of the type of those which will be studied in 4, where the asymptotic parameter is λ.
In the chapter 6, we will consider integrals of the form

(0.78) Ia,φ(u) =

∫
IRd×IRN

dydθeiφ(x,y,θ)a(x, y, θ)u(y)

which are the generalization of the representation (0.77) of the differential operators, the
variable θ replacing (ξ, τ) and the variable y replacing (y, s).

We want to be able to apply the non-stationary phase theorem, so we want to be able
to differentiate as many times as we want in y and θ in the the integrals defined by (0.78).
Moreover, we want the behavior of this integral to be identical to that of (0.77), so a derivation
with respect to the variable θ of the function a(x, y, θ), analogous to a(x, t, ξ, τ) in (0.77), must
lead to a decrease of 1 in the power of θ, while a derivation in y or in x should not change
anything in the behavior in |θ| for θ large.

Based on these remarks, we define a set of functions C∞, having decay properties in the
variable θ, which we call symbols. In the original presentation of L. Hörmander, the oscillating
integrals of the type (0.78) were studied first. The symbols form an algebra, and we will see

83
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in the next chapter that this algebra is associated to an algebra of operators, called pseudo-
differential operators, which contains the differential operators with variable coefficients. We
generalize in the chapter 8 this algebra of operators into what L. Hörmander calls the Fourier
integral operators, and which are one of the essential tools that this course wishes to present.

In this chapter we study the topological properties of this algebra of symbols, we defer to
chapter 7 the fact of defining the symbolic calculus (product of two symbols compatible with
the composition of the operators). Note that the historical motivation for introducing of the
symbols is not the one used here, the symbols were created for transcribe easily on functions
the rules of calculation on the differential operators. We prefer this presentation because it is
the logical continuation of the theorems of the stationary phase.

We will prove the analog of Borel’s lemma (Theorem 1.2) for symbols of decreasing degree
of homogeneity (or order). This part is inspired by the course given by J. Sjöstrand at the
University of Orsay in 1987-1988 [43].

1. Definition of the space of symbols

Let X be an open set of IRd and consider the set X ⊂ IRd. We define the space of symbols
of order m on X × IRd × IRd and of weight ρ, δ through

Definition 5.1.
(1.79)

Smρ,δ(X × IRd) =

{a(x, θ) ∈ C∞(X × IRd)∀K ⊂⊂ X,∀α ∈ INd,∀β ∈ INd,∃C(m,K,α, β, a)

LetKbeafixedcompactsup(x,θ)∈K×IRd,|θ|≥1|∂αx ∂
β
θ a(x, θ)| ≤ C(K,α, β, a)(1 + |θ|)m−ρ|β|+δ|α|.}

For a ∈ Smρ,δ(X × IRN ), the smallest constant C(m,K,α, β, a) satisfying the equality 1.79 is

denoted by Nm
α,β,K(a).

Such spaces are non empty: indeed, considering a(x, ξ) = ξm1 , we verify that

|α| ≥ 1, |β′| ≥ 1⇒ ∂βξ ∂
α
x a = 0.

As ∂β1

ξ1
a = m!

β1!ξ
m−β1

1 , we find that, in cases where this derivative is non-zero (β1 ≤ m)

(1 + |ξ|)−m+ρ|β|−δ|α||∂β1

ξ1
∂αx a| ≤

m!

β1!
|ξ1|m−β1(1 + |ξ1|)−m+ρβ1 ,

which is, for any ρ and for any δ, bounded by m!
β1! . When α 6= 0 or β′ 6= 0, the inequality is

trivially verified.
We also define the space S−∞ of symbols which decay faster than faster than any inverse

power of θ:

(1.80) S−∞(X × IRd) = {a, supK |∂αx ∂
β
θ a| ≤ C(a, α, β,K,M)(1 + |θ|)−M}.

Note that the definition of symbols given in this chapter, and which we will use from now
on, is more general than the definition in the preamble, since we allow ρ ≤ 1 (i.e. a loss of
powers of θ less than 1 at each derivation) as well as δ ≥ 0 (i.e. a possible gain of powers of
θ when we differentiate with respect to x). Examples of such symbols are used in this course;
in particular, one may encounter (ρ, δ) = ( 1

3 , 0) and (ρ, δ) = (1
3 ,

2
3 ).

Let us give an example of a symbol of S0
1,0, which will be the truncation symbol. Let us

consider a function χ ∈ C∞(IRd), such that χ(θ) = 1 for |θ| ≤ 1/2 and χ(θ) = 0 for |θ| ≥ 1.

The symbol χj(θ) = χ( θj ) is bounded in S1
1,0(X × IRd). Indeed, when we compute

∂βθ χj(θ), we find

∂βθ χj = j−|β|(∂βθ χ)(
θ

j
)

The function χ is C∞0 so there exists cβ such that (∂βθ χ) ≤ cβ . We verify that, for |θ| ≥ 2j,

|(1 + θ)|β|∂βθ χj | = 0 and is less than (1 + 2j)|β|j−|β| for |θ| ≤ 2j, thus by 3|β|. So we have

∂βθ χj ≤ 3|β|cβ(1 + |θ|)−|β|
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which proves that χj belongs to S0
1,0.

2. Fundamental properties

The elementary and fundamental properties of the spaces of symbols are summarized in
the

Proposition 5.1. • If a ∈ Smρ,δ(X × IRN ), then, for all m′ ≥ m, all ρ′ ≤ ρ and

all δ′ ≥ δ, a ∈ Sm′ρ′,δ′ .
• The product of an element of Smρ,δ and Sm1

ρ,δ is in Sm+m1

ρ,δ .

Proof. The first item is a consequence of the relation −ρ|β| + δ|α| ≤ −ρ′|β| + δ′|α| for
ρ′ ≤ ρ, δ′ ≥ δ, and of, in addition, m′ ≥ m.

For the proof of the second item, by Leibniz’ formula, we have

∂αx ∂
β
θ (ab)(x, θ) =

∑
α′,β′,|α′|≤|α|,|β′|≤|β|

Cα
′,β′

α,β (∂α
′

x ∂
β′

θ a)(∂α−α
′

x ∂β−β
′

θ b).

One deduces

|∂αx ∂
β
θ (ab)(x, θ)|x∈K,θ∈IRd ≤

∑
α′,β′,|α′|≤|α|,|β′|≤|β|

Cα
′,β′

α,β Nα′,β′,K(a)Nα−α′,β−β′,K(b).

hence

Nα,β,K(ab) ≤
∑

α′≤α,β′≤β

Cα,β
′

α,β (supα′≤α,β′≤βNα′,β′,K(a))(supα′≤α,β′≤βNα′,β′,K(b)).

Together, the first item and the second item of Proposition 5.1 impliy

(2.81) a ∈ Smρ,δ, b ∈ S
m1

ρ′,δ′ ⇒ ab ∈ Sm+m1

min(ρ,ρ′),max(δ,δ′).

�

Proposition 5.2. (1) The space of symbols with this family of semi-norms is a

Fréchet space for the family of semi-norms Nm
α,β,K on Smρ,δ(X × IRd).

(2) If (aj)j≥1 is a bounded sequence in Smρ,δ, which converges pointwise to a(x, θ), the

limit a is in Smρ,δ and the sequence (aj) converges in the sense of symbols in Sm
′

ρ,δ for

m′ > m.
(3) For the family of semi-norms defined in Proposition 5.1, the space S−∞ is dense, for

the topology of Sm
′

ρ′,δ′ , in Smρ,δ for m′ > m.

Proof. We denote by Cα,β,K the uniform bound of all norms of ∂βθ ∂
α
x aj on K, which is

independent of j.
Thanks to the inequalities allowing to control ∂xf in function of ∂2

x2f and f , we verify
that, on any compact K

|∂x(aj − al)| ≤ C1(K)||aj − al||∞ + C2(K)(||aj − al||∞||∂2
x2(aj − al)||∞)

1
2 .

We know that the sequence aj is bounded in Sm, so in particular, on a compact, we know
that

||∂2
x2(aj − al)||∞ ≤ 2(1 + |θ|)m+2δC2,0,K .

We place ourselves on a compact K in θ to apply the previous result, so

|∂x(aj − al)| ≤ C1(K)||aj − al||∞ + C2(K)C
1
2

2,0,K(||aj − al||∞)
1
2 .

There is a uniform bound of the infinite norm of the sequence on the compact K × K,
pointwise convergence at any point, so uniform convergence on the compact K × K. We
conclude that the sequence ∂xaj is a Cauchy sequence on this compact, uniformly bounded,
so it converges and the limit is uniform.
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By induction on the length |α| + |β|, we show that the sequence ∂αx ∂
β
θ aj is a Cauchy

sequence, and uniformly convergent on any compact of the form K × K. Unfortunately, we
cannot verify the uniform convergence on K × IRd, because it is not a compact. On the other
hand, we find that the limit a is in C∞(X × IRd), and since we have

|∂αx ∂
β
θ aj | ≤ Cα,β,K(1 + |θ|)m−ρ|β|+δ|α|,

the pointwise convergence proves that the pointwise limit is in Smρ,δ(X × IRd). One introduces

kα,βj (x, θ) = ∂αx ∂
β
θ (aj − a)(x, θ)(1 + |θ|)−m′+ρ|β|−δ|α|. One notices that

|kα,βj (x, θ)| ≤ (1 + |θ|)m−m
′
2Cα,β,K .

Let us define Rα,β,Kε > 0 such that, for |θ| ≥ Rα,β,Kε , one has (1 + |θ|)m−m′2Cα,β,K ≤ ε
2 . On

the compact K×B(0, Rα,β,Kε ), the sequence aj converges uniformly in C∞ to a. The sequence

∂αx ∂
β
θ aj therefore converges on this compact to ∂αx ∂

β
θ a, so there exists j(ε, α, β,K) such that

j ≥ j(ε, α, β,K)⇒ kα,βj (x, θ) ≤ ε

2
, (x, θ) ∈ K ×B(0, Rα,β,Kε ).

We use a truncation in θ to reduce to symbols with compact support. The proof of the
last item of the proposition 5.1 is obtained by constructing, for a ∈ Smρ,δ, a sequence of S−∞

converging to a. As χj ∈ S0
1,0∩S−∞, the sequence of symbols aj = aχj is bounded in the sense

of the topology of Smρ,δ, is in S−∞ and converges pointwise to a. We use the third paragraph

of the the proposition 5.2 to obtain that aj converges to a for the topology of Sm
′

ρ,δ, m
′ > m.

This shows the density of S−∞ in Smρ,δ for the topology of Sm
′

ρ,δ for m′ > m. Conversely, if a
sequence aj verifies the hypotheses of the proposition 5.2, we deduce that there is convergence

on any compact of ∂αx ∂
β
θ aj to ∂αx ∂

β
θ a. The proposition 5.2 is proven. �

Proposition 5.3. Let aj ∈ S
mj
ρ,δ (X × IRN ). We suppose that the decreasing sequence mj

tends to −∞. Then there exists a ∈ Sm0

ρ,δ , unique modulo S−∞, such that

a−
∑
j<k

aj ∈ Smkρ,δ .

Proof. We prove uniqueness. Let a′ be another symbol. Then a− a′ is in Smk for all k.
It is therefore in S−N for all N , which justifies a− a′ ∈ S−∞.

The existence of a comes from a method similar to the one used for the proof of Borel’s
theorem (Theorem 1.2) (there exists a function C∞ whose the Taylor series is given). We
construct, for Lj ≥ 1 a strictly increasing tending to +∞ the symbol

ãj(x, θ) = (1− χ(
θ

Lj
))aj(x, θ).

If θ is given, then for | θLj | ≤
1
2 , ãj = 0. So if j is such that Lj ≥ 2|θ|, then ãj(x, θ) = 0. We

can therefore define, for all (x, θ), the sum of ãj , which is locally finite. The function obtained

a(x, θ) is a function C∞(X × IRd).
We note in this paragraph χj the function (which was written above χLj ):

χj : θ → χ(
θ

Lj
)

is a symbol of S0
1,0(IRd). The symbol ãj is in S

mj
ρ,δ , so is in S

mj+1
ρ,δ . We can then choose the

sequence Lj (as in the proof of Theorem 1.2) such that, for all j ≤ |α|+ |β|,

(2.82) |∂αx ∂
β
θ ãj(x, θ)| ≤ 2−j(1 + |θ|)1+mj−ρ|β|+δ|α|.

Indeed, we verify that |ã0| ≤ |a0| on the support of 1 − χ(L0θ), which is included in
θ ≥ 1

2L0. Therefore, on the support of ã0,

(1 + |θ|)−1−m0 |ã0| ≤ sup|θ|≥ 1
2L0

N0,0,K(a0)(1 + |θ|)−1 ≤ 2N0,0,K(a0)

2 + L0
.
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The choice of L0 is L0 ≥ 2N0,0,K .
We proceed by induction. We assume that the Lj have been chosen such that, for 0 ≤

j ≤ n− 1, we have

|α|+ |β| ≤ l ≤ n− 1⇒ Nml+1
α,β,K(ãl) ≤ 2−l.

Let j = n and study ãj . We verify that

b = ∂αx ∂
β
θ (ãj) = ∂αx [

∑
β′≤β

Cβ,β′∂
β′

θ ajL
−|β|+|β′|
j (∂β−β

′

θ χ)(
θ

Lj
)].

As N
mj+1
α,β,K(ãj) = max |b(x, θ)|(1 + |θ|)−mj−1−δ|α|+ρ|β|, one uses

b(x, θ)(1 + |θ|)−mj−1−δ|α|+ρ|β|

= (1+|θ|)−1
∑
β′≤β

Cβ,β′ [(1+|θ|)−mj−δ|α|+ρ|β
′|∂αx ∂

β′

θ aj ](1+|θ|)ρ(|β|−|β
′|)L
−|β|+|β′|
j (∂β−β

′

θ χ)(
θ

Lj
).

We denote by Dj,β the constant (
∑
β′≤β |Cβ,β′ |) maxα≤β |∂αθ χ|N

mj
α,β′,K(aj). From the iden-

tity

b(x, θ)(1 + |θ|)−mj−1−δ|α|+ρ|β| = 0 sur χ = 1

we deduce the inequality

|b(x, θ)(1 + |θ|)−mj−1−δ|α|+ρ|β|| ≤ 2

Lj
Dj,β .

We then take Lj ≥ 2j+1Dj,β , which gives the inequality (2.82). Let us note here that the

control of ãj in S
mj+1
ρ,δ is a control in 2−j . For example, we notice that the sequence 1−χj ∈ S0

1,0

tends to 0 in S1
1,0.

We then consider α, β, k,K given. For p ≥ N ≥ |α|+ |β|, we have

|∂αx ∂
β
θ ãp| ≤ 2−p(1 + |θ|)1+mp−ρ|β|+δ|α|

so a fortiori, since mp ≤ mN and a−
∑p=N−1
p=0 ãp =

∑∞
p=N ãp

|∂αx ∂
β
θ (a−

N−1∑
p=0

ãp)| ≤ (1 + |θ|)1+mN−ρ|β|+δ|α|.

We choose N such that mk+1 ≥ mN + 1 and N ≥ |α| + |β|. This is possible because the
sequence mk tends to −∞. Then, we write ck+1 = a−

∑
j≤k aj and we verify

ck+1(x, θ) =
∑

k+1≤j≤N−1

ãj + (a−
∑

j≤N−1

ãj) +
∑
j≤k

(ãj − aj).

We use the fact that
∑
j≤k(aj − ãj) is in S−∞, the inequality

|∂αx ∂
β
θ (a−

N1∑
p=0

ãp)| ≤ (1 + |θ|)1+mN−ρ|β|+δ|α|

that we have just proven and the inequality (obtained because ãj is the product of aj ∈ S
mj
ρ,δ

and (1− χj) ∈ S0
1,0 and S0

ρ,δ)

|∂αx ∂
β
θ ãj(x, θ)| ≤ D(α, β)(1 + |θ|)mj−ρ|β|+δ|α|.

We deduce the inequality

|∂αx ∂
β
θ ck+1(x, θ)| ≤ ND(α, β)(1+|θ|)mk+1−ρ|β|+δ|α|+(1+|θ|)mk+1−ρ|β|+δ|α|+C1(1+|θ|)mk+1−ρ|β|+δ|α|

and this estimate proves that ck+1 belongs to S
mk+1

ρ,δ .

We have thus proved the convergence in the sense of Sm0 norms of
∑
j≤k aj . This com-

pletes the proof of Proposition 5.3. �
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Remark: there is no uniqueness, since the choice of two functions χ or two sequences Lj
for the same function χ leads to two different values of

∑
ãj .

Proposition 5.4. Let aj be a sequence in S
mj
ρ,δ , where mj decreases to −∞. Assume that

there exists a such that, for any compact K, any multi index, there exist Mα,β and Cα,β,K

|∂αx ∂
β
θ aj | ≤ Cα,β,K(1 + |θ|)Mα,β .

Assume that there exists a sequence m′k which tends to −∞ such that

|a(x, θ)−
k−1∑
j=0

aj(x, θ)| ≤ CK,k(1 + |θ|)m
′
k .

One has a =
∑j=+∞
j=0 aj +O(S−∞).

Proof. By the proposition 5.3, a′ =
∑∞
j=0 aj exists and is in Sm0

ρ,δ . Then b = a − a′

verifies

b = a−
k−1∑

0

aj +

k−1∑
0

aj − a′.

The first term is bounded by CK,k(1 + θ|)m′k thanks to the hypothesis of the proposition
and the second term is bounded by CK,k,0,0(1 + |θ|)mk by the result of the proposition 5.3.

For any M positive integer, there exists k such that mk and m′k are all both smaller than
−M . Therefore there exists CK,M such that

|b| ≤ CK,M (1 + |θ|)−M .
Recall the following inequality for |α|+ |β| = 1:

(2.83) |∂αx ∂
β
θ b(x, θ)| ≤ C(K)(sup|b|) 1

2 ((sup|∂2α
x ∂2β

θ b|) 1
2 + (sup|b|) 1

2 ).

We place ourselves in the case |α|+ |β| = 2, to generalize this inequality. We obtain

|∂αx ∂
β
θ b| ≤ C|α+|β(K)[max |b|+ max |b| 12 | × max

|γ1|+|γ2|=|α|+|β|
∂

2(γ2+γ1)
xγ1θγ2 b| 12 ].

We rely for the study on

Lemma 5.1. • For f of class C4 on a compact K,

||f”||∞ ≤ C1(K)||f ||∞ + C2(K)||f (4)||∞.
•

||∂xf || ≤ C1[||f ||+ ||f || 12 ||∂2
x2f ||

1
2 ]

•
||∂2

x2f || ≤ C2[||f ||+ ||f || 12 ||∂4
x4f ||

1
2 ]

||∂2
θ2f || ≤ C2[||f ||+ ||f || 12 ||∂4

θ4f ||
1
2 ].

If we restrict f to [−a, a], a > 0, then there exist θ1, θ2 ∈]0, 1[ such that

f”(0) =
f(x) + f(−x)− 2f(0)

x2
− x2

24
(f (4)(θ1x) + f (4)(−θ2x)).

If f (4) = 0, we find |f ′′(0)| ≤ 4
x2 ||f |∞. Otherwise, we have

|f ′′(0)| ≤ 4

x2
||f ||∞ +

x2

12
||f (iv)||∞

and we optimize this majorant for |x| ≤ a. In the case where 4
√

3( ||f ||∞||f(4)||∞
)

1
2 > a2, one find

the desired inequality

|f”(0)| ≤ 8

a2
||f ||∞ +

2√
3
||f ||

1
2∞||f (4)||

1
2∞.

This inequality is not satisfactory when a is small. It is then necessary to study this case, i.e.
when the point where we compute a majorant of f” is close to the boundary of the compact
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K. For this purpose, we use the function φ : φ(x) = 5f(x)− 4f(2x) + f(3x), which allows us
to to obtain f”(0) as a function of f and f (4).

For the bound of ∂2
xθf , we write

||∂2
xθf || ≤ C1[||∂xf ||+ ||∂xf ||

1
2 ||∂3

xθ2f ||
1
2 ]

||∂3
xθ2f || ≤ C1[||∂2

θ2f ||+ ||∂2
θ2f ||

1
2 ||∂4

x2θ2f ||
1
2 ].

All the bounds obtained in the case of one variable (the constant C2 are adapted to the
situation of a second derivative in x and θ in a compact through

|∂2
xθf | ≤M(||f ||, ||∂4

x4f ||, ||∂4
θ4f ||, ||∂4

x2θ2f ||) ≤ C3[||f ||+ ||f || 12 max
|α|+|β|=2

||∂2α
x2α∂

2β
θ2βf ||

1
2 ].

This argument can be performed for |α|+ |β| = n ∈ N by induction on n. The symbol b
is then in S−∞. The proposition 5.4 is proven. �

In the next chapter, we introduce the tool that allows us to construct the algebra of
pseudodifferential operators associated to the algebra of the symbols. We would already
have all the tools that would allow us to define it formally, but we choose to introduce the
law of composition thanks to the composition of the associated operators. The symbols of
Sm1,0(X × IRd) are the symbols that look like the most to polynomials in ξ of degree at most
m with coefficients C∞ in x ∈ X, which are the symbols associated to the partial differential
operators of order at most m (hence they are called in this book classical symbols). The

space Sm1,0(X × IRd) is denoted in this book by Sm(X × IRd).

3. The Friedlander Model Problem

In this section, we begin the study of a problem which will serve as a guideline in this
manuscript to which will serve as a guideline in this approach to microlocal analysis; it is
the Friedlander model problem. Inspired by the 1977 paper of Friedlander [42], it allows to
study, in a simple case, of a problem of a tangent ray at an boundary, whose formal treatment
is similar to the one at caustics introduced in the chapter 9. The notations introduced here
will be followed throughout the study, in particular in the chapters 6,7, 9. The introduction
of the operator (3.84) is somewhat arbitrary, we will see in the section 4 why Friedlander
introduced this operator. In this chapter, the main purpose of using this example is to show
some simple problems of partial differential equations involve in a natural way symbols which
are not classical, these symbols belong to S0

1/3,2/3.

We give ourselves the operator on IR+ × IR2

(3.84) Pu(x, y1, y2) =
∂2u

∂x2
− (1 + x)

∂2u

∂y2
1

+
∂2u

∂y2
2

.

Introduce, for θ1 ∈ C| , =θ1 < 0, and θ2 ∈ IR, the real numbers λ, Z, Z0, ξ, ξ0 for

θ1 = |θ1|ei(
3π
2 +λ),−π

2
≤ λ ≤ π

2
hence

θ
2
3
1 = −|θ1|

2
3 e

2i
3 λ, θ

− 4
3

1 = |θ1|−
4
3 e−

4i
3 λ.

One introduces

ξ = θ
− 4

3
1 θ2

2 − (1 + x)θ
2
3
1

ξ0 = θ
− 4

3
1 θ2

2 − θ
2
3
1

One denotes by

|θ| = (θ2
1 + θ2

2)
1
2

Z = |θ1|
2
3 − (1 + x)θ2

2|θ1|−
4
3

Z0 = |θ1|
2
3 − θ2

2|θ1|−
4
3 .

One solves
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(3.85)
Pu = 0, u ∈ D′(IR+ × IR2)
u(0, y) = f(y), f ∈ E ′(IR2)
u(x, y1, y2) = 0, y1 < 0.

1) Show that the solution of (3.85) is written, for f ∈ S(IR2)

u(x, y) =
1

(2π)2

∫
IR2

K̂x(θ1, θ2)f̂(θ1, θ2)eiy1θ1+iy2θ2dθ1dθ2

in the sense of Fourier integrals. One assumes that Kx, solution of

(3.86)
PKx = 0
K0(y) = δy=0

Kx(y1, y2) = 0, y1 < 0.

has a Fourier transform, equal in =θ1 < 0 to1

K̂x(θ1, θ2) =
Ai(ξ)

Ai(ξ0)
,

where Ai is the classical Airy function, inverse Fourier transform of t → ei
t3

3 , which is in
C∞(IR) and is a solution of Ai′′(x) = xAi(x) for all x .

2) a) Show that the function Φ defined by the equality

u
1
4 Ai(u)exp(

2

3
u

3
2 ) = u

1
4 Φ(u)

admits, as well as its inverse, an asymptotic expansion for u ∈ IR+ large, in inverse powers

of u
3
2 , expansion uniformly valid in arg u ∈ [−π + ε, π − ε].
b) Let G be a given function of class C∞. Prove by induction the existence of functions

C∞ Qk,αj (x, θ), homogeneous in θ of degree of homogeneity 2
3 (j + k)− |α|, such that

∂kxk∂
α
θα [G(Z)] =

j=|α|∑
j=0

G(k+j)(Z)Qk,αj (x, θ)

3) Consider the function C∞, denoted by σ0, null for t ≤ 1, identically equal to 1 for
t ≥ 2. We introduce σ2(t) = σ0(δ2t), 0 < δ2 < 1/2. We introduce

a2(x, θ1, θ2) = σ0(|θ|)σ2(Z0)
Φ(ξ)

Φ(ξ0)
.

a) Show that σ2(Z0) ∈ S0
1/3,0(IR2).

b) Using the inclusion S0
1/3,0 ⊂ S

0
1/3,2/3, show that a2 ∈ S0

1/3,2/3.

4) a) Show that

(1− σ0(|θ|)) Ai(ξ)

Ai(ξ0)
∈ S−∞.

Let σ1 be the even function, null on [1 − δ1,+∞[, equal to 1 on [0, 1 − 2δ1], e.g. σ1(u) =

1 − σ0(δ1|u| + 1 − 3δ1). Let h be the function equal to (s2 + 1)−
1
2 (s2 − 1)

3
2 on [1, (1 + x)

1
2 ],

equal to (s2 + 1)−
1
2 [(s2 − 1)

3
2 − (s2 − 1− x)

3
2 ] on [(1 + x)

1
2 ,+∞[. It is reduced to a function

γ(x), which we can express, for s ≥ (1− δ1)−1.
b) Show that

|σ0(|θ|)σ1(
θ1

|θ2|
)exp(−2

3
(ξ

3
2 − ξ

3
2
0 ))| ≤ exp(−2

3
γ(x)|θ|).

1The last inequality of (3.85) shows that y1 plays the role of time, and that we study the reflection of a

wave on the boundary x = 0, which is related by the notion of solution supported in y1 ≥ 0 to the extension
Imθ1 < 0 by the theorem of Paley-Wiener-Schwarz theorem.
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c) Prove that, for all n, there exists Cn such that

|∂nxn(σ0(|θ|)σ1(
θ1

|θ2|
)

Ai(ξ)

Ai(ξ0)
)| ≤ Cnexp(−1

3
γ(x)|θ|).

d) Conclude that a1(x, θ) = σ0(|θ|)σ1( θ1
|θ2| )

Ai(ξ)
Ai(ξ0) belongs to a space of symbols.

5) Let us denote by

a3(x, θ) = [K̂x(θ)− (1− σ0(|θ|)) Ai(ξ)
Ai(ξ0) − σ0(|θ|)σ1( θ1

|θ2| )
Ai(ξ)
Ai(ξ0)

−a2(x, θ)exp(− 2
3 (ξ

3
2 − ξ

3
2
0 ))]exp( 2i

3 Z
3
2 signθ1)1x>δ

a) Show that the support S of a3 is given by the inequalities

|θ| ≥ 1, |θ2| ≤ (1− 2δ1)−1|θ1|, Z0 ≤ 2δ2.

b) Determine the smallest cone containing S.
c) Show that Z has a strictly positive minorant on {(x, θ), x > δ, |θ1| ≥ (1− 2δ1)|θ2|}.
d) Show that a3 ∈ S0

1/3,2/3.

Solution. 1) We assume that Kx(y), fundamental solution of P with support in IR+ ×
IR+×IR, which is, thanks to the partial hypoellipticity of the operator P , in C∞(IR+,D′(IR2)),

admits a Fourier transform K̂x(θ). This Fourier transform is thus a solution of

∂2
x2K̂x(θ) + [(1 + x)θ2

1 − θ2
2]K̂x(θ) = 0

with K̂0(θ) = 1. We write the change of variable X = a1(θ)x+ a2(θ) to bring us back to the
equation characteristic of the Airy function. We then have

a2
1∂

2
X2K̂x − [θ2

2 − a−1
1 θ2

1(X − a2)]K̂x = 0

One choose a2 = −θ2
2θ
−2
1 a1 and a3

1 = −θ2
1. The equation is written

(3.87) ∂2
X2K̂x(θ)−XK̂x(θ) = 0.

We know that Kx = 0 for y1 < 0. Since

K̂x(θ) =

∫
IR2

e−iy1θ1−iy2θ2Kx(y)dy

the function K̂x(θ) extends analytically in θ1 in =θ1 < 0 and remains bounded. We can then

determine the roots θ
2
3
1 by the representation indicated in the text, and we have

X = θ2
2θ
− 4

3
1 − (1 + x)θ

2
3
1 .

From (3.87), we deduce that there exist two functions C1(θ) and C2(θ) such that

K̂x(θ) = C1(θ) Ai(X) + C2(θ) Bi(X).

When Re (θ
2
3
1 ) < 0, the solution Bi(X) is exponentially increasing and is not in S ′(IR2), which

gives C2(θ) = 0. Using the condition K̂x(0) = 1, one obtains C1(θ) = (Ai(θ2
2θ
− 4

3
1 − θ

2
3
1 ))−1. It

suffice then to write ξ = θ2
2θ
− 4

3
1 − (1 + x)θ

2
3
1 and ξ0 = θ2

2θ
− 4

3
1 − θ

2
3
1 .

2) a) This asymptotic expansion was done in exercise 1 of the chapter 4.3. To obtain the

one of (u
1
4 Φ(u))−1, we invert the series of Taylor series in u−

3
2 .

b) The method used is the same as in exercise 6 of this chapter. We prove by induction
the existence of homogeneous functions Qαj (x, θ) such that

∂αθ (G(Z)) =

|α|∑
j=1

Qαj (x, θ)G(j)(Z).

For α = (1, 0) ou (0, 1), one finds:
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Q
(1,0)
1 (x, θ) =

2

3
|θ1|−

1
3 sign(θ1)[1− 2(1 + x)

θ2
2

θ2
1

], Q
(0,1)
1 (x, θ) = −2|θ1|

2
3 (1 + x)

θ2

θ2
1

,

and for |α| ≥ 1, we have the induction relations

Qα+α1
1 (x, θ) = ∂α1

θ Qα1 (x, θ)

Qα+α1

|α+α1|(x, θ) = Qα1
1 (x, θ)Qα|α|(x, θ)

Qα+α1
j (x, θ) = ∂α1

θ Qαj (x, θ) +Qα1
1 (x, θ)Qαj−1(x, θ), 2 ≤ j ≤ |α|.

The symbol Qα1
1 is homogeneous of degree − 1

3 . We perform an induction to obtain the

degree of homogeneity of Qα1
j . It is assumed that d0Qαj = 2

3j − |α|, then

d0Qα+α1
1 = d0Qα1 − 1 =

2

3
− |α| − 1

d0Qα+α1

|α|+1 = d0Qα|α| −
1

3
= −1

3
|α| − 1

3

d0Qα+α1
j =

2

3
j − |α| − 1

since, for the last item, the two terms have the same degree of homogeneity 2
3j − |α| − 1 =

2
3 (j − 1)− |α| − 1

3 . Then, we check that

∂kx∂
α
θ G(Z) = ∂αθ [(∂xZ)kG(k)(Z)].

Applying Leibniz’s formula proves that

∂kx∂
α
θ G(Z) = ∂αθ [(−1)kθ

2
3k
1 G(k)(Z)] = (−1)k

∑
α′

Cα
′

α ∂
α′

θ (G(k)(Z))su∂α−α
′

θ (θ
2
3k
1 ).

3 a) Apply 2 b) to the function G(k) to find the decomposition, where

Qk,αj = (−1)kCα
′

α Q
α′

j ∂
α−α′
θ (θ

2k
3

1 ), j ≥ 1

Qk,α0 = (−1)k∂αθ (θ
2k
3

1 ).

One easily checks that the order of Qk,αj est 2k
3 − (|α| − |α′|) + 2j

3 − |α
′|, which is the desired

result.
3 a) Similarly, for k = 0 and x = 0, we have

∂αθα(σ2(Z0)) =

j=|α|∑
j=0

Q0,α
j (0, θ)σ

(j)
2 (Z0)

The boundedness of σ2 and of all its derivatives (its first derivative is in derivative is in
C∞0 (IR) in x) implies that the maximum order of θ in the derivative is − 1

3 |α|. We conclude

as in exercise 6 of this chapter since σ2 ∈ S0
0,0.

b) We verify that ξ = Zei
π
3 sign(θ1). The function ψ:

u→ σ2(u)

Φ(uei
π
3 sign(θ1))

=
σ2

Φ∗
(u)

is in C∞. We then check that

∂kx∂
α
θ a2(x, θ) =

∑
α1+α2+α3=α

Cα1,α2,α3
α ∂α1

θ σ0(|θ|)∂α2

θ (ψ(Z0))∂kxk∂
α3

θ3
(Φ∗).

This equality leads to a majorant of each term obtained by expanding each derivative into

(1 + |θ|)− 1
3 |α2|− 1

3 |α3|+ 2
3k,
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hence the result. We could also have written

σ0(|θ|) ∈ S0
0,0(IR2) ⊂ S0

0,0(IR× IR2) ⊂ S0
1/3,2/3(IR× IR2)

ψ ∈ S0
1/3,0(IR2) ⊂ S0

1/3,0(IR× IR2) ⊂ S0
1/3,2/3(IR× IR2)

and, thanks to b), we know that

Φ∗ ∈ S0
1/3,2/3(IR× IR2)

hence a2 ∈ S0
1/3,2/3(IR× IR2).

4) a) This symbol is compactly supported, so we use exercise 1 of this chapter. We have

a0(x, θ) = (1− σ0(|θ|)) Ai(ξ)
Ai(ξ0) ∈ S

−∞(IR× IR2).

b) The relation

(s2 + 1)−
1
2 ((s2 − 1)

3
2 − (s2 − 1− x)

3
2 ) = x.

2s2 − 2− x+ (s2 − 1)
1
2 (s2 − 1− x)

1
2

(s2 + 1)
1
2 ((s2 − 1)

1
2 + (s2 − 1− x)

1
2 )

allows to see that, for x > 0 and s ≥ (1+x)
1
2 , this expression is strictly positive, and bounded

below by xα(x), α(x) > 0 when x > 0. Since, moreover, the function (s2 + 1)−
1
2 (s2 − 1)

3
2

is strictly increasing on [1, (1 + x)
1
2 ], it is bounded below by its value in (1 − δ1)−1 for s ≥

(1− δ1)−1. Noting then γ(x) = min(xα(x), h((1 + x)
1
2 ), h((1− δ1)−1)), γ(x) > 0 for x > 0.

We verify that

|θ1| ≤ |θ2|√
1+x
⇒ Re (− 2

3 (ξ
3
2 − ξ

3
2
0 )) = − 2

3 [(−Z)
3
2 − (−Z0)

3
2 ]

|θ2|√
1+x
≤ |θ1| ⇒ Re (− 2

3 (ξ
3
2 − ξ

3
2
0 )) = 2

3 (−Z0)
3
2

|θ2| ≤ |θ1| ⇒ Re (− 2
3 (ξ

3
2 − ξ

3
2
0 )) = 0.

We see that |θ1| = |θ|(1 +
θ2
2

θ2
1
)−

1
2 . One checks σ1( θ1

|θ2| ) 6= 0 ⇒ | θ1θ2 | ≤ 1 − δ1. This implies

that

|θ2

θ1
| ≥ (1− δ1)−1.

One checks that

2

3
Re (ξ

3
2 − ξ

3
2
0 ) =

2

3
|θ|h(

θ2

θ1
), |θ2| ≥ |θ1|.

One deduces, from the inequalities on h, that

|exp(−2

3
(ξ

3
2 − ξ

3
2
0 ))| ≤ e− 2

3γ(x)|θ|.

c) We first check that, uniformly in |argξ| ≤ π − ε,

C1 ≤ (1 + |ξ| 14 )|Ai(ξ)exp(
2

3
ξ

3
2 )| ≤ C2

Since ξ and ξ0 are of argument ±π3 , the inequality is satisfied and we have

| Φ(ξ)

Φ(ξ0)
| ≤ C2

C1

1 + |Z0|
1
4

1 + |Z| 14
.

We write the right hand side as

f(s) =
1 + |θ1|

1
6 |1− s2| 14

1 + |θ1|
1
6 |1 + x− s2| 14

.

We check that, in this equality, s = θ2
θ1

and is, in absolute value, greater than (1− δ1)−1 > 1.
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When s2 ≥ 1 +x, s ≥ 0, the function is decreasing, so increased by its value in s2 = 1 +x.
When s2 ≤ 1 + x, we see that that it is also increased by this value. We have

| Φ(ξ)

Φ(ξ0)
| ≤ C2

C1
(1 + x

1
4 |θ1|

1
6 ).

Moreover, the derivative with respect to x of order k of the function Ai(ξ) involves the
derivative of Ai of order k, which is written Pk(ξ) Ai(ξ)+Qk(ξ) Ai′(ξ). We verify that we have
estimates and a similar asymptotic expansion for Ai′. Moreover, the the degree of P2m and
Q2m+1 is m, that of P2m+1 and Q2m+2 is m+ 1.

As we have

∂kxk(Ai(ξ)) = (−|θ1|
2
3 )k(Pk(ξ) Ai(ξ) +Qk(ξ) Ai′(ξ),

there exists a constant C(k) and an exponent n(k) such that

|exp(
2

3
ξ

3
2 )∂kxk(Ai(ξ))| ≤ C(k)|θ|n(k)

We deduce, by considering Dk the majorant for |θ| ≥ 1 of |θ|n(k)e−
1
6γ(x)|θ|, that

(3.88) |∂kxk(σ0(|θ|)σ1(
θ1

|θ2|
)

Ai(ξ)

Ai(ξ0)
)| ≤ C(k)Dkexp(−1

2
γ(x)|θ|).

d) When we study all the derivatives in θ of this symbol, we do not change the behavior.
The exponential decay of a1(x, θ) implies the faster decay than any polynomial, hence a1 ∈
S−∞(IR× IR2).

5) a) Let us introduce

ψ3(θ) = 1− (1− σ0(|θ|))− σ0(|θ|)σ1(
θ1

|θ2|
)− σ0(|θ|)σ2(Z0).

Hence ψ3(θ) = σ0(|θ|)[1− σ1( θ1
|θ2| )− σ2(Z0)]. For

θ2
1

θ2
2
≥ (1− δ1)2, one sees that σ1 is zero. As,

for Z0 ≥ δ2, one finds
θ2
2

θ2
1
≥ 1 + δ2

|θ1|
4
3

θ2
2
≥ 1. We deduce that

(1− σ1(
θ1

|θ2|
))σ2(Z0) = σ2(Z0)

hence

φ3(θ) = σ0(|θ|)(1− σ1(
θ1

|θ2|
))(1− σ2(Z0)).

Support of φ3 is of the required form, using the supports of σ0, 1− σ1 et de 1− σ2.
b) Relation Z0 ≤ 2δ2 writes, denoting by θ1 = u1|θ|, θ2 = u2|θ|:

u2
1 + u2

2 = 1, |u1|
2
3 − u2

2|u1|−
4
3 ≤ 2δ2|θ|−

2
3 ≤ 2δ2

We conclude that the boundary of the intersection of the unit ball with Z0 ≤ 2δ2 is given by

u2
1 + u2

2 = 1, u2
1 − u2

2 = 2δ2u
4
3
1 .

The solution of this system being denoted by (γ, (1− γ2)
1
2 ), the above inequalities imply that

|u1| ≤ γ, hence |θ1| ≤ γ

(1−γ2)
1
2
|θ2|. Denote thus by κ(δ2) = γ

(1−γ2)
1
2
− 1. This constant tends

to 0 when δ2 tends to 0, since the equation of degree 3 in u
2
3
1 has only one real root, which is

equal to 1 when δ2 = 0.
We see that

S ⊂ C = {θ, (1− 2δ1)|θ2| ≤ |θ1| ≤
γ

(1− γ2)
1
2

|θ2|}

with equality in at least one point of each generatrix of the cone.
c) We write

Z|θ2|−
2
3 = (1 + x)(

|θ1|
|θ2|

)
2
3 − (

|θ1|
|θ2|

)−
4
3 .
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Then, as the right hand side of this equality is an increasing function of the variables |θ1||θ2| ,

we find

Z|θ2|−
2
3 ≥ (1 + x)(1− 2δ1)

2
3 − (1− 2δ1)−

4
3 .

Let δ > 0. Hence, if we have (1 + δ)(1 − 2δ1)2 > 1, that is δ1 <
1
2 (1 − 1√

1+δ
), hence for

x > δ, Z|θ2|−
2
3 ≥ ∆ > 0, where ∆ = (1− 2δ1)−

4
3 [(1 + δ)(1− 2δ1)2 − 1].

On the support of φ3, |θ2| ≥ (1 − γ2)
1
2 |θ|. Hence {(x, θ), x > δ, |θ1| ≥ (1 − 2δ1)|θ2|}, one

finds Z ≥ D|θ| 23 . We are always outside |θ| ≤ 1, so Z has a strictly positive minorant.

4. Exercises of chapter 6

Exercise 1: Compactly supported symbols. Let a be C∞0 (X×IRd). Show that a ∈ S−∞(X×
IRd). Note that this implies that, for χ function C∞0 (X × IRd), and for a ∈ Smρ,δ(X × IRd),

a− a(1− χ) ∈ S−∞.
Exercise 2: the generic symbol of order m. Let a be a positively homogeneous function of

order m in the region |θ| ≥ 1. Show that a is in Sm1,0.

Exercise 3: A symbol of S0
1/2,1/2. Show that if f is a positive function on X × IRN ,

homogeneous of degree 1 in ξ, then

e−f ∈ S0
1
2 ,

1
2
.

Exercise 4: A symbol of S0
0,1. Prove that the function, on IRN × IRN , equal to eix, is in

S0
0,1.

Exercise 5: A symbol of S0
2/3,1/3. Let m(x, τ) = e−τ

1
3 x, where τ

1
3 is the reciprocal function

of y3 on IR. Show that it is a symbol of S0
1/3,2/3. We will show that, for d ≥ 1, there exists a

polynomial such that

∂dτm = (−1

3
τ−

2
3 )dxPd(x, τ

− 1
3 )m.

Exercise 6: A symbol of S0
1
3 ,0

and of S
2m
3

1,0 . Let r ∈ C∞(IR). We construct, on Γ = {|η| ≤
c0|ξ|}, the function a(ξ) = r(|ξ|− 1

3 ).

Show that r ∈ S0
0,0(IR)⇒ a ∈ S0

1
3 ,0

(Γ) and that r ∈ Sm1,0(IR)⇒ a ∈ S
2m
3

1,0 (Γ).

Proof. For exercises 2 and 3:
We rely on the inequality

|θ|− 1
2 |∇xf(x, θ)|+ |θ| 12 |∇θf(x, θ)| ≤ CK |f(x, θ)| 12 .

This inequality is a consequence of

|∇xf(x, θ)| = |θ||∇xf(x,
θ

|θ|
)|

and

|∇θf(x, θ)| = |∇xf(x,
θ

|θ|
)|.

For a function F of class C2, assuming F > 0 and being in a compact included in Ω, we see
that, for |y| small enough small

F (α+ y) = F (α) + yF ′(α) + C(y)|y|2 ≥ 0.

One checks that, if y = −rF ′(α), with C(y)r ≤ 1
2 , one gets

(F ′(α))2 ≤ F (α)

r − C(y)r2
,

which gives the inequality, valid in a compact such that F (α) > 0:



96 5. FRÉCHET SPACE OF SYMBOLS.

|F ′(α)| ≤ C(F (α))
1
2 .

We then have the majoration, valid in x in a compact K, since

|∇xf(x,
θ

|θ|
)| ≤ CS,K |f(x,

θ

|θ|
)| 12 ,

the constant CS,K corresponding to the unit sphere in | θ|θ| | = 1.

By the homogeneity of f , we then see that

|f(x,
θ

|θ|
)| 12 = |θ|− 1

2 |f(x, θ)|.

In the same way, for f ′θ, we take directly the bound with the derivative in θ for θ
|θ| , which

belongs to a compact where f is nonzero.
Thus

|∇θf(x,
θ

|θ|
)| ≤ C1

K,S |∇f(x,
θ

|θ|
)|,

which gives immediately, with the homogeneities sought

|∇θf(x, θ)| ≤ C1
K,S |θ|−

1
2 |f(x, θ)| 12 .

We thus proved the majoration by taking the constant CK equal to the sup of CS,K and C1
K,S .

So, for θ of modulus greater than 1

|∇xf(x, θ)|k|∇θf(x, θ)|e−f(x,θ) ≤ Ck+l(1 + |θ|)k/2−l/2|f(x, θ)|k/2+l/2e−f(x,θ).

As xne−x ≤ nne−n, for all x ≥ 0, we obtain:

|∇xf(x, θ)|k|∇θf(x, θ)|e−f(x,θ) ≤ Ck+l(1 + |θ|)k/2−l/2(
k + l

2
)k/2+l/2e−

k+l
2 .

One then shows by induction

∂αx ∂
β
θ (e−f ) =

∑
α′,β′

aα′,β′(∂xf)α
′
(∂θf)β

′
e−f

where the symbol aα′,β′ belongs to S
|α|−|α′|−|β|+|β′|

2
1,0 . Assume that, for (α, β) given, the symbol

∂αx ∂
β
θ (e−f ) belongs to S

|α|−|α′|−|β|+|β′|
2

1,0 . Then

ef∂xj [aα′,β′(∂xf)α
′
(∂θf)β

′
e−f ] = ∂xj [aα′,β′ ](∂xf)α

′
(∂θf)β

′

−aα′,β′(∂xf)α
′+δj (∂θf)β

′

+
∑
k,αk≥1 aα′,β′∂

2
xjxk

f(∂xf)α−δk(∂θf)β
′

+
∑
l,βl≥1 ∂

2
θlxj

(∂xf)α(∂θf)β−δl

Note that ∂2
xjxk

f ∈ S1
1,0 et que ∂2

xjθl
f ∈ S0

1,0, because f is homogeneous

We have

bjα′,β′ = ∂xj (aα′,β′) ∈ S
|α|−|α′|−|β|+|β′|

2
1,0 ⊂ S

|α+δj |−|α
′|−|β|+|β′|
2

1,0 ,

bjα′+δj ,β′ = −aα′,β′ ∈ S
|α|−|α′|−|β|+|β′|

2
1,0 = S

|α+δj |−|α
′+δj |−|β|+|β

′|
2

1,0

bjα′−δk,β′ = α′kaα′,β′∂
2
xjxk

f ∈ S
|α|−|α′|−|β|+|β′|

2 +1
1,0 = S

|α+δj |−|α
′−δk|−|β|+|β

′|
2

1,0

et

bjα′,β′−δl = β′laα′,β′∂
2
xjθl

f ∈ S
|α|−|α′|−|β|+|β′|

2 1
1,0 = S

|α+δj |−|α
′|−|β|+|β′−δl|

2
1,0 ,

which allows to write

∂xj (∂
α
x ∂

β
θ e
−f )
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=∑
α′,β′,k,l

[bjα′,β′(∂xf)α
′
(∂θf)β

′
+ bjα′+δj ,β′(∂xf)α

′+δj (∂θf)β
′

+bjα′−δk,β′(∂xf)α
′−δk(∂θf)β

′
+ bjα′,β′−δl(∂xf)α

′
(∂θf)β

′−δl ]e−f .

For this decomposition, we find the same behavior of bj as functions of |α|, |α′|, |β|, |β′|. Differ-
entiating in θ, we use that ∂2

θjθk
f is a symbol of order −1,and we obtain the same equalities for

the symbols ckα′,β′ , c
k
α′,β′+δk

, ckα′−δl,β′ , c
k
α′,β′−δj (left to the reader). The induction is complete.

We check that, for βi = (δij)j or αi = (δij)i, the result is true. It is therefore true by
induction.

We then combine the information on the symbol aα′,β′ with the obtained, to check that

the derivative ∂αx ∂
β
θ (e−f ) is bounded by terms of the form

(1 + |θ|)
|α|−|α′|−|β|+|β′|

2 +
|α′|−|β′|

2 ,

that is a bound of the form (1 + |θ|)
|α|−|β|

2 .
We proved that e−f belongs to S0

1
2 ,

1
2

.

For the exercise 4, one notices that

∂αx ∂
β
ξ (eix.ξ) = i|α|∂βξ (ξαeix.ξ) = [

∑
β′,|β′|≤|β|

i|α|+|β
′|a(β, β′)∂β−β

′

ξ (ξα)(xβ
′
)]eix.ξ

which immediately gives the majoration of this expression, on a compact K in x, by

CK(α, β)(1 + |ξ|)|α|.
Exercise 4 is solved.

Finally, for exercise 5, we verify that

∂τm(x, τ) = −1

3
τ−

2
3xm(x, τ)

Induction shows

∂d+1
τ m(x, τ) =

(−1

3
τ−

2
3 )d+1x2Pd(x, τ

− 1
3 )m−1

3
τ−

4
3 (−1

3
τ−

2
3 )d∂λPd(x, τ

− 1
3 )m+2τ−

1
3 (−1

3
τ−

2
3 )d+1Pd(x, τ

− 1
3 )τ−

1
3

Denote by

Pd+1(x, λ) = xPd(x, λ) + λ2∂λPd(x, λ) + 2λPd(x, λ).

This equality by induction defines a sequence of polynomials, so the intermediate result is
proved.

Then, we have

∂αx ∂
d
τm = ∂dτ ((−τ 1

3 )αm) =

j=d∑
j=1

Cjd(−1

3
τ−

2
3 )jxPj(x, τ

− 1
3 )m∂d−jτ (−τ 1

3 )α + ∂dτ ((−τ 1
3 )α)m.

Exercise 6. We use a direct method in the case where rSm1,0(IR). We verify that

|r(|ξ|− 1
3 η)| ≤ C0,0(1 + ||ξ|− 1

3 η|)m

which yields

|r(|ξ|− 1
3 η)| ≤ C0,0(|ξ| 13 + |η|)m|ξ|−m3 ≤ C0,0(1 + |ξ|+ |η|) 2m

3 .

This leads to the exponent 2m
3 . Moreover:

∂αξ ∂
β
η (r(|ξ|− 1

3 η)) = ∂αξ [|ξ|−
|β|
3 (∂βs r)(|ξ|−

1
3 η)].

We verify that, for |ξ| ≥ 1 and (ξ, η) ∈ Γ,

(4.89) |ξ|− 1
3 ≤ (1 + c0)−

1
3 2

1
3 (1 + |ξ|+ |η|)− 1

3 .
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It is easy to demonstrate, thanks to the equality

|ξ| = (

dimX∑
j=1

ξ2
j )

1
2

that the symbol |ξ|−|β| is a symbol of S
− |β|3
1,0 (Γ).

The symbol r belongs to Sm1,0(X), hence the inequality

|∂βs r(s)| ≤ C0,β(1 + |s|)m−|β|.
Along with inequality (4.89) pour {ξ ≥ 1} ∩ Γ, one sees that

|∂βs r(|ξ|−
1
3 η)| ≤ C0,βsup(1, (

2

1 + c0
)

1
3 (|β|−m))(1 + |ξ|+ |η|) 2

3 (m−|β|).

One is left, for (ξ, η) ∈ {ξ ≥ 1} ∩ Γ, with

|[|ξ|−|β|(∂βs r)(|ξ|−
1
3 η)]| ≤ C0,βsup(1, (

2

1 + c0
)

1
3 (|β|−m))(1 + |ξ|+ |η|) 2m

3 −
1
3 |β|.

Notice then that

∂ξj l(|ξ|−
1
3 ) = −1

3
|ξ|− 1

3 [∂tl(|ξ|−
1
3 )]

ξj
|ξ|
,

which allow, by induction to write all derivatives in ξ of

|ξ|−
|β|
3 (∂βs r)(|ξ|−

1
3 η)

as a sum of derivatives of order α′ of ∂βs r, the coefficients being in the unit sphere, weighted by

terms in |ξ|−
|α′|

3 . So we finally have the result, since a majorant of |ξ|−
|α′|

3 est sup(1, ( 2
1+c0

)
1
3 |α
′|)(1+

|ξ|+ |η|)−|α′|. The proof by induction is finished.
The second method is similar to the method used in the exercise 3. We prove by induction

the existence of a sequence of functions Sαj (ξ, η), α ∈ IN2 − {(0, 0)}, 1 ≤ j ≤ |α| such that

∂αξ,ηa(ξ, η) =

|α|∑
j=1

Sαj (ξ, η)r(j)(|ξ|− 1
3 η)

avec, de plus, Sαj homogène de degré 2
3j − |α|.

Hence

∂ξ(g(|ξ|− 1
3 η)) = −1

3
|ξ|− 1

3
ξ

|ξ|
η

|ξ|
g′(|ξ|− 1

3 η).

∂η(g(|ξ|− 1
3 η)) = |ξ|− 1

3 g′(|ξ|− 1
3 η).

We conclude that

S
(1,0)
1 (ξ, η) = −1

3
|ξ|− 1

3
ξ

|ξ|
η

|ξ|

S
(0,1)
1 (ξ, η) = |ξ|− 1

3 ,

which are homogeneous polynomials of degree 2
3 − 1.

Denote by α1 ∈ {(1, 0), (0, 1)}. One checks that

Sα+α1
1 = ∂α1Sα1

1

Sα+α1

|α+α1| = Sα|α|S
α1
1

2 ≤ j ≤ |α|, Sα+α1
j = ∂α1Sαj + Sαj−1S

α1
1 .

Assuming that Sαj is a homogeneous polynomial of degree 2
3j − |α|, we verify that Sα+α1

1 is

homogeneous of degree 2
3 − 1 − 1, Sα+α1

|α|+1 is homogeneous of degree 2
3 |α| − |α| −

1
3 , and that
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Sα+α1
j is homogeneous of degree 2

3j − |α| − 1 for 2 ≤ j ≤ |α|. This allows us to conclude on

the homogeneity when the order of derivation is |α|+ 1.
In the case where all derivatives of r are bounded, i.e. r ∈ S0

0,0, then we verify that ∂αa

is the sum, with bounded weights, of homogeneous symbols of order 2
3j − |α| for 1 ≤ j ≤ |α|.

The dominant order dominant order is obtained when j = |α|, which thus gives the bound

|∂αa| ≤ C(r(|α|), Sαj , c0)(1 + |ξ|+ |η|)−
|α|
3

which demonstrates the first item. Finally, when r ∈ Sm1,0(IR), the inequality on Γ can be
verified:

|r(j)(|ξ|− 1
3 η)| ≤ Cα,0|ξ|−

m−j
3 (1 + |ξ|+ |η|)m−j ,

which yields that all the terms of the sum are 2m/3− 2j/3 + 2j/3− |α| = 2m/3− |α|. Second
part is proved. �





CHAPTER 6

Oscillatory integrals

We introduced before in Chapter 5, the symbols as a generalization of the differential
operators, described by (0.77).

In this chapter, we define, for any symbol a, integrals of the form (0.78), using the methods
of the chapter 4 on the stationary phase. The presentation of this chapter is essentially
based on the founding article of L. Hörmander [47], which introduces the microlocal analysis
through the intermediary of oscillatory integrals, which are not a priori defined but for which
we describe a procedure to transform these integrals into convergent integrals. We present
this study here for a ∈ Sm1,0(IRd), but this is easily generalized to a ∈ Smρ,δ(IR

d), for δ < 1 and
ρ > 0 in order to ensure the convergence after multiple integrations by parts.

1. Definition of Fourier integral operators

We place ourselves on X openset of IRd. We give the main result which allows us to define
a Fourier integral operator :

Lemma 6.1. Let φ(x, θ) be a phase, homogeneous of degree 1 in θ, for (x, θ) ∈ X × IRN ,

with no critical point on X × IRN − θ = 0}. Then

(1.90) Iφ(av) =

∫
X×IRN

eiφ(x,θ)a(x, θ)v(x)dxdθ

is defined for any symbol a ∈ Sm(X × IRN ), m < −N .
(ii) For any m, the application a → Iφ(av) extends into a application continuous on

Sm(X × IRN ).

(iii) When a ∈ Sm(X× IRN ), the application v → Iφ(av) is a distribution A(a, φ) of order
≤ k for m− k < −N .

Let us start with a comment. It is clear that when a is a symbol of order m ≥ 1, e.g.
a(x, θ) = (1 + |θ|2)

1
2 , the integral over X × IRN is not normally convergent, since (1 + |θ|2)

1
2 is

not integrable. Thus the expression in ii) is not an expression of a convergent integral in L1.
In fact, this convergence is the same type of convergence as that of the integral of the function
sincx (cardinal sine). The purpose of this and the following chapters is to give a meaning to
these integrals which are defined only by their phase.

The lemma ?? can be found in Hörmander [47]. We use the fact that a linear application

of C∞(X×IRN ) in a Frechet space continues for the topology induced by Sm(X×IRN ) admits
a unique extension (Corollary 1.1.12 of [47]).

Preuve. Let a ∈ Sm(X × IRN ), m < −N . As, for a real phase φ

|eiφ(x,θ)a(x, θ)v(x)| ≤ 1Suppv||v||∞N
Suppv
0,0 (a)(1 + |θ|)m,

the integral (1.90) is well defined because m < −N and Suppv is compact. To define, in all
cases on m, an integral equivalent to Iφ(av), we need to give a way to compute Iφ(av) for
m ≥ −N . It is a question of extending the definition of this integral. To do this, we use the
same method as in the the proof of the non-stationary phase theorem, stated in chapter 4
through lemma 4.1. We slightly modify the argument by introducing a function allowing us
to eliminate the neighborhood of 0, where the functions with a negative power of θ are not
defined. We introduce the homogeneous function in θ of degree −2:

ψ(x, θ) = [|θ|2(∇θφ)2 + (∇xφ)2]−1.

101
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Let χ(θ) ∈ C∞0 (IRN ), zero in a neighborhood of θ = 0. The operator

M = −i(1− χ(θ))ψ(x, θ)[
∑
j

|θ|2 ∂φ
∂θj

∂

∂θj
+
∑
p

∂φ

∂xp

∂

∂xp
] + χ(θ)

and its adjoint operator L which writes :

L = i(1− χ(θ))ψ(x, θ)[
∑
j

|θ|2 ∂φ
∂θj

∂

∂θj
+
∑
p

∂φ

∂xp

∂

∂xp
] + χ(θ)− d(x, θ)

(d(x, θ) constructed using all the elements of M), all terms of Lt are of the form
∑
aj∂θj +∑

bp∂xp + c, where all aj are 0th order symbols, bp and c are of order -1, and Meiφ = eiφ. We

have thus the relation for a ∈ Sn(X × IRN ), m < −N :

Iφ(av) = Iφ(Lk(av))

for all k. One checks that a→ Lk(av) is continuous from Sm(X× IRN ) to Sm−k(X× IRN ). As
the integral

∫
|θ|≥1,θ∈IRN

(1 + |θ|)−N−εdθ converges when ε > 0, the integral
∫
eiφ(x,θ)b(x, θ)dθ

is defined for b of order at most −N .
Let a ∈ Sm(X × IRN ) (and this time we have no assumption on m). For all k such

that m − k < −N , that is, for k > m + N , Lk(av) ∈ Sm−k(X × IRN ), so Iφ(Lk(av)) exists.
Moreover, for all k, k′ > m+N ,

Iφ(Lk
′
(av)) = Iφ(Lk(av)).

This number is therefore independent of k > m+N . By definition, we say that

Iφ(av) = Iφ(Lk(av)), k > m+N.

The expression given by Iφ(Lk(av)) is well defined, as a convergent integral. It gives a value
of the integral Iφ(av) which is not defined as an integral. This thus defines a continuous

functional on C∞0 (IRN ) depending on a ∈ Sm(X × IRN ), which is a distribution :

Definition 6.1. Let a ∈ Sm(X × IRN ), The application from C∞0 (X) to IR denoted by
v → Iφ(av) is defined by

Iφ(Lk(av))

for all k such that m− k < −N .

This is the extension of the definition of (1.90) for a ∈ Sm(X × IRN ), m < −N . The
applications thus defined are called the Fourier integral operators.

2. Wavefront set of Fourier integral operators

In the representation

Iφ(av) =

∫ ∫
eiφ(x,θ)a(x, θ)v(x)dxdθ,

we can consider x as the variable of integration. We define

Xφ = {x, ∀θ ∈ IRN − {0},∇θφ(x, θ) 6= 0}.

For any x0 ∈ Xφ, the stationary phase theorem 4.3 allows to define∫
eiφ(x0,θ)a(x0, θ)dθ.

It is indeed an oscillatory integral. For this purpose we introduce the differential operator

Mx0 = i(1− χ(θ))|∇θφ(x0, θ)|−2

j=N∑
j=1

∂φ

∂θj

∂

∂θj
+ χ(θ),
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where the function χ has been introduced earlier. The adjoint of Mx0
for the scalar product in

L2(IRN ) is denoted by Lx0 ; it is a differential operator of order 1. The formula of integration
by parts shows that ∫

eiφ(x,θ)Lkx(a(x, θ))dθ

is absolutely convergent for m− k < −N . It thus defines a distribution, formally denoted by

A(x) =

∮
a(x, θ)eiφ(x,θ)dθ

for all x in Xφ.
Note that, each time we can define an integral through this process, we may often
denote by

∮
the integral after multiple integration by parts.

We verify (exercise 6.1) that

e−iφ(x,θ)∂jxj [L
k
x(a(x, θ))eiφ(x,θ)]

is a symbol of Sm−k+j(X × IRN ). When k is chosen such that m− k + p < −N , the function
A(x) is of class Cp on any compact included in Xφ. Since the reasoning holds for any p, and
since for k > m+N the definition of

∫
eiφadθ does not change, we find that A(x) is C∞ on Xφ.

Recall that the singular support of a distribution A, denoted by SS(A), is the complementary
of the largest openset O(A) where A is a C∞ function. We have the

Proposition 6.1. Let A be the distribution defined by

∀u ∈ C∞0 (X), < A, u >= Iφ(au).

1) The singular support of A is contained in the complementary of Xφ, that is

{x ∈ X,∃θ ∈ IRN − {0},∇θφ(x, θ) = 0}.

2) If a vanish in a conical neighborhood of

C = {(x, θ) ∈ X × (IRN − {0}),∇θφ(x, θ) = 0}

then A is a function of class C∞.

Proof. The distribution A is C∞ on Xφ, so Xφ is complementary to O(A). Thus SS(A),
complementary to O(A), is contained in Xφ.

Moreover, for a identically zero in a conic neighborhood of C, for all x in the projection
of the support of a, (x, θ) /∈ C for all θ ∈ IRN − {0}. Therefore, if x is in π(supp(a)), x ∈ Xφ,
there exists a neighborhood V of x in X for which (y, θ) /∈ C for all y in V and for all θ 6= 0.
Therefore A is of class C∞ on V (x).

Let x be outside π(suppa). Then, if V1 is a neighborhood of x such that V1× (IRN −{0})
is included in the complementary of the support of a, and that, by definition for k such that
m− k < −N , ∫ ∫

eiφ(x,θ)a(x, θ)u(x)dxdθ =

∫ ∫
eiφ(x,θ)Lk(a(x, θ)u(x))dxdθ,

the integral on the right is identically zero since a is identically zero on V1 × IRN − {0}. The
distribution A is then zero on the complementary of π(supp(a)).

In summary, A is a function C∞ on X. It is also called a Fourier integral operator (even
if, rigorously, it is not an operator but a function). �

We define the C∞ wavefront set1 of a distribution A on X ⊂ IRN , which is denoted by
WF (A), subset of X × IRN :

1we use the term C∞ because there exists also an analytic wave front set.
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Definition 6.2. We say that (x0, ξ0) ∈ X × IRN is not in the wavefront set of A if there
exists a function χ, C∞0 compactly supported, identically equal to one in a neighborhood of x0,

and a conical neighborhood Γ of ξ0 in IRN such that the Fourier transform of the distribution
χA is rapidly decaying inside Γ.

In other words

∀p,∃Cp,∀ξ ∈ Γ, | < A(x), e−ix.ξχ(x) > | ≤ Cp(1 + |ξ|)−p.

One has the

Proposition 6.2. Assume that a is zero near θ = 0. Then the wavefront set of A(a, φ)
is included in

{(x,∇xφ(x, θ)), (x, θ) ∈ supp(a),∇θφ(x, θ) = 0}.

Proof. To prove Proposition 6.2, we prove first that a point of the complementary of

{(x,∇xφ(x, θ)), (x, θ) ∈ supp(a),∇θφ(x, θ) = 0}

is not in the wavefront set ofA(a, φ). So we consider first the case where x verifies ∀θ,∇θφ(x, θ) 6=
0. Proposition 6.1 implies that the function A(x) is of class C∞ in the neighborhood of this
point. We place ourselves in the case where there exists a solution to ∇θφ(x, θ) = 0. We sup-
pose that χ is a compactly supported function of class C∞ localized in the neighborhood of an
x of this form. We introduce Γ = {θ,∃x ∈ suppχ,∇θφ(x, θ) = 0} which is thus a conical subset

of IRN thanks to the homogeneity of φ in the variable θ. Consider K1 = {∇θφ(x, θ), θ ∈ Γ}
and K2 disjoint from K1.

We find

F(χA)(ξ) =

∫ ∫
eiφ(x,θ)−ix.ξa(x, θ)χ(x)dxdθ.

We consider here ξ as a parameter. Then the gradient of the phase in x is

∇xφ(x, θ)− ξ.

As θ ∈ Γ and ξ ∈ K2, K1 and K2 being disjoints and ∇xφ(x, θ) being homogeneous in θ,
there exists C(K1,K2) > 0 such that

|∇xφ(x, θ)− ξ| ≥ C(K1,K2)(|θ|+ |ξ|).
We modify the theorem of the stationary phase by considering only the variables x.

There exists L differential operator in x such that tL(ei(φ(x,θ)−ξ.x)) = ei(φ(x,θ)−ξ.x). We
rewrite then the integral F(A) as F(Lk(A)) (condensed notation for the Fourier integral
operator of the same phase and symbol Lk(χA)). We check that the integrand is bounded by

C(a)C(K1,K2)(|ξ|+ |θ|)−k(1 + |θ|)m.

When k0 is fixed such that m− k0 < −N − 1, we verify that

F(χA)(ξ) ≤ c1(k0,K1,K2, a)|ξ|k0−k,

and the Fourier transform of χA is then rapidly decaying in K2. This proves that a point
which is outside the closed cone (set of points (x,∇xφ(x, θ))) is not in the wavefront set of
A. The points of the wavefront set are either of the form (x, ξ) where x is not in the singular
support of A (remark at the beginning of this proof), or of the form (x,∇xφ(x, θ)) and

∇θφ(x, θ) = 0

.
This ends our proof of the Proposition 6.2. �

By giving a particular form to the phase φ, defined henceforth for X = IRd × IRd and
N = d, we define a Fourier integral operator of symbol a ∈ Sm(X × IRd) and of phase

φ(x, y, θ) ∈ S1(X ×X × IRd) by
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Definition 6.3. Let φ(x, y, θ) be a phase such that ∇(x,θ)φ 6= 0. (for θ 6= 0) and φ is
homogeneous of degree 1 in θ. We call the Fourier integral operator of symbol a(x, y, θ) and
phase φ(x, y, θ), the operator from S to S ′ defined by its action on the functions u ∈ C∞0 (X)
by

< Au,ψ >= Iφ(au⊗ ψ) =

∮
X×X×IRd

eiφ(x,y,θ)a(x, y, θ)ψ(x)u(y)dydθdx.

A special case of the previous definition is obtained when φ(x, y, θ) = s(x, θ) − y.θ and

a(x, y, θ) = ã(x, θ), X ⊂ IRd:

Definition 6.4. (X ⊂ IRd)

Let s(x, θ) be a phase such that ∇xs(x, θ) 6= 0, and a(x, θ) ∈ Sm(X × IRd). We introduce
the phase φ(x, y, θ) = s(x, θ)− y.θ.

We call the Fourier integral operator of symbol a(x, θ) and of phase s(x, θ) the operator
from S to S ′:

u→ Au

defined by its action on C∞0 functions through

< Au,ψ >=

∫ ∫
eis(x,θ)a(x, θ)ψ(x)û(θ)dxdθ.

One checks that
< Au,ψ >= Iφ(au⊗ ψ),

is an oscillatory integral on X ×X × IRN . One can also write < Au,ψ >= Is((aû)ψ) using
definition 6.1.

We have the following result on the operator of the definition 6.4 :

Theorem 6.1. Let A be a Fourier integral operator associated with the phase φ(x, y, θ) =
s(x, θ) − y.θ. Then (x, ξ) ∈ WF (Au), ξ 6= 0 ⇒ ∃θ 6= 0 such that ξ = ∇xs(x, θ) and
(∇θs(x, θ), θ) ∈WF (u).

More generally, for A Fourier integral operator following the definition 6.3,

WF (Au) ⊂ {(x,∇xφ(x, y, θ)),∇θφ(x, y, θ) = 0}.

This theorem is the wavefront set version of the operator of Proposition 6.2 (Proposition
2.5.7 of [47]).

Let us prove this Theorem. We give ourselves a point (x0, ξ0) of RRd × IRd − {xi = 0}
and we define the closed set G of θ 6= 0 such that ξ0 = ∇xs(x0, θ). Suppose that for any θ of
of this kind, (∇θs(x0, θ), θ) is not in WF (u). There then exist two conical neighborhoods of
G, Γ ⊂ Γ′, and a conical neighborhood W of ξ0 such that, for x− x0 sufficiently small, θ /∈ Γ,
ξ ∈ W , |∇xs(x, θ) − ξ| ≥ C(|θ| + |ξ|), and (∇θφ(x, θ), θ) /∈ WF (u) for x − x0 small enough
and θ ∈ Γ′, a(x, θ) 6= 0 on Γ′.

We represent J(ξ) = F(χ1Au)(ξ) =
∫ ∫

ei(s(x,θ)−x.ξ−y.θ)a(x, θ)u(y)χ1(x)dxdydθ and we
prove the fast decay in ξ of J(ξ).

The only interesting case is in the neighborhood of the points F(u)(θ) for u localized in
the neighborhood of y and ∇θs(x, θ)−y 6= 0. Then we apply a version of the stationary phase
theorem in integrating by parts in θ. The theorem is proved.

We will see in the chapter 8 that the wavefront set of the operator A defines the class
of Fourier integral operators of the same type than A, associated to the same phase. The
phase will be related to what we call the canonical relation C of A, and we will denote by
A ∈ I(X ×X, C′). In particular, we will show that any Fourier integral operator of associated
to a phase φ(x, y, θ) can be put, in a coordinate system, in the form of a Fourier integral
operator associated to the phase s(x, θ)− y.θ.





CHAPTER 7

Pseudo-différential operators

1. Definition and basic properties

The concepts in this chapter are classical. Many authors have presented the theory of
pseudo-differential operators, among who one can mention J. Sjöstrand and A. Grigis [43],
S. Alinhac and P. Gérard [3], L. Boutet de Monvel [17], L. Hörmander [48], M. Taylor [94],

J.J. Kohn and L. Nirenberg [55], J. Rauch [86] We assume that X ⊂ IRd is the space on
which we work. We aim at constructing a symbolic calculus on the space of symbols
Sm(X ×X × IRd), thus generalizing the composition of differential operators and allowing the
inversion of a certain of differential operators.

The pseudo-differential operators are constructed, as does Hörmander, as a special case of
Fourier integral operators. This presentation does not reflect the history, in which the oper-
ators were first introduced by the intermediary of their symbol and of the symbolic calculus.
We deduce here the symbolic calculus from the stationary phase theorem and not from the
generalization of the calculation of the composition of two differential operators, but we check
that they lead to the same result.

We therefore introduce a particular phase in the Fourier integral operators defined previ-
ously. The phase is then defined for (x, y, ξ) ∈ X ×X × IRd by :

φ(x, y, ξ) = (x− y).ξ =
∑
j

(xj − yj)ξj .

Then we have the definition :

Definition 7.1. To any symbol a ∈ Sm(X ×X × IRd) is associated a particular Fourier
integral operator, called pseudo-differential operator associated to a, denoted by A or by Op(a),
defined by

Op(a)u(x) =
1

(2π)d

∮
X×IRd

ei(x−y).ξa(x, y, ξ)u(y)dydξ,

for u ∈ C∞0 (X). The set of these operators is denoted by Lm(X). The order m of the symbol
corresponds to the order m of the operator.

Let A be a pseudodifferential operator, as in the definition 7.1. Then the distribution Au
is defined by its action on a test function ψ by

< Au,ψ >= Iφ(aψ ⊗ u)

where a(x, y, ξ) ∈ Sm(X×X× IRd) and ψ⊗u ∈ C∞0 (X×X), defined through (ψ⊗u)(x, y) =
ψ(x)u(y). The properties of the phase (x− y).ξ give immediately :

Lemma 7.1. (1) Let P be a differential operator with variable coefficients

P =
∑

α,|α|≤m

aα(x)Dα
x =

∑
α,|α|≤m

i−|α|aα(x)∂αx .

The pseudo-differential operator of symbol

p(x, ξ) =
∑

α,|α|≤m

aα(x)ξα

is equal to P .

107
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(2) The spaces Xφ and C introduced in the Proposition 6.1 are respectively

Xφ = {(x, y), x 6= y ∈ X ×X} C = {(x, x, ξ), x ∈ X, ξ ∈ IRd − {0}}.

(3) As ∇(x,ξ)((x− y).ξ) 6= 0 on X × (IRd − {0}) for all y ∈ X, the distribution

A(y) =

∫
ei(x−y)ξa(x, y, ξ)dxdξ

is well defined as an oscillatory integral.
(4) Similarily, ∇(y,ξ)((x− y).ξ) 6= 0 implies that the application

u→ Iφ(au)

is continuous from C∞0 (X) to C∞(X).

We prove the first item, remark that the symbol 1 is associated to the identity operator,
thanks to the Fourier inversion formula

u(x) =
1

(2π)d

∫
eix.ξû(ξ)dξ =

1

(2π)d

∮
IR2d

ei(x−y).ξu(y)dydξ.

Applying then P to this equality, we can exchange, for û ∈ S, the integration in ξ and the
derivation in x, hence

Pu(x) =
1

(2π)d

∫
eix.ξ

∑
α,|α|≤m

i−|α|(iξ)αaα(x)û(ξ)dξ,

which gives the result. A density argument allows us to conclude. The proof of the other
items is a simple application of the proposition 6.1.

We notice that, for u ∈ C∞0 (X), we can write

Au(x) =

∫
KA(x, y)u(y)dy

with the formal equality defining the distribution KA(x, y) ∈ D′(X ×X)

KA(x, y) =

∫
ei(x−y).ξa(x, y, ξ)dξ.

The distribution KA is called the kernel distribution of A. It has been defined previously.
Extend now the definition of the Fourier integral operator for more general functions than

u ∈ C∞0 . To do this, we consider l ∈ C∞0 (IRd) and check that we can define without problem
Atl(y) =

∫
KA(x, y)l(x)dx. It is a function of class C∞ by the lemma 7.1. We can then define,

for u ∈ E ′, < u,Atl >. By definition we say, for u ∈ E ′, that Au is the distribution given by

< Au, l >=< u,Atl > .

Lemma 7.2. 1) The singular support of KA is contained in the diagonal of X ×X.
2) The singular support of Au is included in the singular support of u.

Proof. The application of the proposition 6.1 allows to verify the first item. For the
second item, let x0 /∈ SS(u), we can find φ identically equal to 1 in a neighborhood of x0 and
ψ identically equal to 1 near SS(u), of disjoint supports.

Since (1−ψ)u is a C∞ function, the function A((1−ψ)u) is C∞, so Au−Aψu ∈ C∞(X).
We also check that φAψ has for distribution kernel φ(x)KA(x, y)ψ(y), and since the sup-

ports of φ and ψ are disjoint, there is no point of the singular support of KA in the support
of φ⊗ ψ. The kernel φ(x)KA(x, y)ψ(y) is therefore C∞, so

φ(x)A(ψu)(x) ∈ C∞(X)

hence

φ(x)Au(x) ∈ C∞(X).

We immediately deduce that x0 /∈ SS(Au). This completes the proof of the lemma 7.2. �
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Definition 7.2. We say that an operator A: C∞0 (X)→ D′(X) linear continuous, which
admits a kernel distribution KA(x, y) ∈ D′(X) is regularizing when KA(x, y) ∈ C∞0 (X ×X).

Lemma 7.3. We have the equivalence:
A is regularizing,
A extends into an operator from E ′(X) to C∞(X).

We deduce that the regularizing operators are, roughly speaking, the pseudo-differential
operators whose symbol is in S−∞:

Proposition 7.1. If A is a regularizing operator, then there exists a symbol a(x, y, θ) of

S−∞(X ×X × IRd) such that

Au(x) =
1

(2π)n

∫ ∫
ei(x−y).θa(x, y, θ)u(y)dydθ.

Proof. One knows that, for u ∈ C∞0 ,

Au(x) =

∫
KA(x, y)u(y)dy.

(which we also write < Au, φ >=< KA, u ⊗ φ >). Thus, if u is regularizing, there is no
problem to define in integral form the function Au ∈ C∞.

We introduce a function χ(θ), of class C∞0 (IRn), of integral equal to (2π)n. We then
construct

a(x, y, θ) = KA(x, y)e−i(x−y).θχ(θ).

This symbol is in S−∞(X×X× IRd), because the function χ is compactly supported in θ and
it is clear that

Au(x) =
1

(2π)n

∫ ∫
ei(x−y).θa(x, y, θ)u(y)dydθ.

�

2. Composition of pseudodifferential operators

We introduce, in a first step, the notion of properly supported operator, so that we can
compose two pseudo-differential operators. Indeed, if u ∈ C∞0 (X), then Bu ∈ D′(X). One
can then apply any differential operator to Bu, and this defines directly the composition
of a differential operator and a pseudo-differential operator, as well as the composition of a
pseudodifferential operator and of a differential operator. However, for A general pseudo-
differential operator, one cannot without any precautions apply A to Bu, because Bu is not a
compactly supported function. It is therefore necessary to be able to extend pseudodifferential
operators to C∞ functions, which will not be possible for any pseudo-differential operator. The
sufficient notion for this extension (linked with the notion of support of the distribution Bu)
is given below.

2.1. Properly supported operators. . For each y ∈ X, we define C(y) = {x ∈
X, (x, y) ∈ Supp(KA)} and, for x ∈ X, C−1(x) = {y ∈ X, (x, y) ∈ Supp(KA)}. We define
C(K) and C−1(K) in a similar way when K is a set.

Definition 7.3. The pseudo-differential operator A is properly supported if and only if,
for any compact K of X, C(K) and C−1(K) are compact.

From this definition, we deduce the following nice properties :

Lemma 7.4. Let A be properly supported

(1) We have the inclusion

Supp(Au) ⊂ C(supp(u)).

(2) C−1(x0) ∩ supp(u) = ∅ ⇒ Au = 0 in a neighborhood of x0.
(3) A is continuous from C∞0 (X) in itself. It can be extended, as was done above for the

extension of any pseudo-differential operator into a continuous operator from C∞(X)
to C∞(X), from E ′ to E ′, or from D′ to D′.
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In other words, the action of A does not extend the support too much, which allows to
look more like a differential operator. This is relative: indeed the size of the support of Au
can be ”much larger” (for example for a metric on u) than that of the support of u, but the
support of Au remains remains compact. The second paragraph of the lemma states that if
the support of u is far from x0, then Au is zero near x0. Any pseudo-differential operator is,
more or less, properly supported. This is expressed in the :

Proposition 7.2. For all A ∈ Lm(X), there exists A′ ∈ Lm(X), properly supported, and
A” ∈ L−∞(X) such that A = A′ +A”.

Proof. The idea is to write A = Aψ+A(1−ψ), where ψ will have localization properties.
We construct 1 − ψ such that it vanishes in a neighborhood of the diagonal. Moreover, it is
sufficient that the support of ψ defines a relation, in the sense that C(K) and C−1(K) are
compact.

The construction we adopt here is the one presented by J. Sjöstrand in [43] Consider a
partition of unity of X locally finite (finite on any compact), that is

1 =

∞∑
j=0

χj(x)⇒ 1 =
∑
j,k

χj(x)χk(y).

If C is constructed from this partition of the locally finite unit in X×X, then this ensures that
C(K) is compact, since there exists a finite number of non-zero χj on K. As we want 1−ψ to be
zero on the diagonal, we impose for 1−ψ that the remaining terms verify suppχj∩suppχk = ∅
for j 6= k. It is enough to use

ψ(x, y) =
∑

j,k,supp(χj)∩supp(χk) 6=∅

χj(x)χk(y).

The operator ψA is properly supported since C(K) and C−1(K) are compact (locally finite
sum). It remains to show to complete the construction that (1 − ψ)A ∈ L−∞. This is a
consequence of the first paragraph of the lemma 7.2, because SS(K(1−ψ)A) = ∅.

�

Remark. Note that operators whose symbol is not in S−∞ can however be regularizing
operators: indeed for example, the symbol (1 − χ(x, y))ξm is in Sm(X ×X × IRn) (and not
in Sm−1, so not in S−∞). On the other hand, the associated pseudodifferential operator is
written

Pu(x) =

∫
dy(1− χ(x, y))u(y)

1

(2π)n

∫
ξmei(x−y).ξdξ,

which yields

Pu(x) =< im(
∂

∂y
)mδx−y, (1− χ(x, y))u(y) > .

Since χ has been constructed to be identically equal to 1 in a neighborhood of the diagonal,
P is the null operator, so is regularizing. Therefore, when A is regularizing, there exists a
symbol a ∈ S−∞ such that A is the symbol operator a, but this does not mean that any mean
that any symbol a representing A is in S−∞. This remark also proves that it is not necessary
for the symbol to be zero for the pseudo-differential operator to be zero.

2.2. Reduction of pseudo-differential operators. The pseudo-differential operators
can be represented by symbols depending only on x and ξ, as shown in :

Proposition 7.3. Let P be the properly supported pseudodifferential operator of symbol
p(x, y, ξ) depending on the variables (x, y, ξ) of order m on X × X × IRd, where the local

dimension of X is d, for example X ⊂ IRd.
1) There exists a symbol q(x, ξ), of order m on X× IRd such that P −Op(q) is an operator

in L−∞(X).
2) This symbol q(x, ξ) is given by the relation

(2.91) q(x, ξ) = e−ix.ξP (ei(.).ξ)
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since P is properly supported
3) The symbol q has the following asymptotic expansion

q(x, ξ) '
∑
|α|∈INd

1

i|α|
1

α!
(∂αξ ∂

α
y p(x, y, ξ))|y=x.

This Proposittion allows us to define the symbol of a properly supported pseudo-differential
operator:

Definition 7.4. Let P be the properly supported pseudodifferential operator of symbol
p(x, y, ξ). We call the symbol of P , and denote by σ(P ), the symbol q(x, ξ) ∈ Sm(X × IRd).

We have

Proposition 7.4. The symbol σ(P ) is uniquely defined in the quotient space Sm(X ×
IRd)/S−∞.

Proof. The proof of this result is for example in [43]. We propose in exercise 1 a formal
proof relying on the stationary phase theorem. This formal calculation is a direct application
of the methods of the previous chapter. The proof of [43] reads as follows :

Restricting to a properly supported operator on the support of p in the variables x and y,
the operator P extends to functions of C∞, so the integral defining the action of P on ei(.).ξ

is well defined. Finally

e−ix.ξP (ei(.).ξ) =
1

(2π)d

∮
p(x, y, ξ)ei(x−y).(η−ξ)dydη.

The only critical point in (y, η) of this phase is (x, ξ). We truncate therefore in the neigh-
borhood of η − ξ of the order of ξ. For this, J. Sjöostrand introduces the function L on IR+,
identically equal to 0 for x ≥ 0.5, identically equal to 1 for 0 ≤ x ≤ 1

3 . We verify as in
the proof of the proposition 6.2 that, thanks to the non-stationary phase theorem (with the

operator L = 1
|η−ξ|

∑j=d
j=1(ξj − ηj) ∂

∂yj
)

1

(2π)d

∮
(1− L(

|η − ξ|
|ξ|

))p(x, y, η)ei(x−y).(η−ξ)dydη.

is a symbol of S−∞(X × IRd). This is presented as an exercise of Chapter 5. �

We then return to the study of

I(x, ξ) =
1

(2π)d

∮
p(x, x+ s, ξ + σ)L(

|σ|
|ξ|

)e−isσdsdσ.

On this integral, the stationary phase method applies, and we have the asymptotic ex-
pansion in λ of the integral obtained when ξ = λω, |ω| = 1 and σ = λτ . One checks that this
defines an asymptotic expansion through

I(x, ξ) =
∑

|α|≤N−1

λ−|α|i−|α|
1

α!
∂αs ∂

α
σ (p(x, x+ s, λ(ω + τ))L(|τ |))|s=τ=0 + SN (λ).

We thus bound λNSN (λ) by all the derivatives of p(x, x + s, λ(ω + τ))L(|τ |) up to and
including the order 2N + 1.

The result is also true for all derivatives of I. This completes the calculation since the
symbol e−ixξP (ei(.)ξ) is therefore equivalent, modulo S−∞, to I(x, ξ).

We propose a second proof of Proposition 7.3, based on the properties of symbols, ex-
tracted from Hörmander [47]. In addition, it will provide a nice expression of the symbol:

Lemma 7.5. Let p be a symbol of Sm(X ×X × IRn), properly supported. The asymptotic
expansion of its Fourier transform is given by∫

IR2n

p(x, y, η)ei(x−y).ηdydη '
∑
α

1

i|α|α!
∂2α
ηαyαp|y=x.
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Proof. Based on Fourier transform properties, we write

u(y) = (2π)−n
∫

IRn
û(η)eiy.ηdη.

Hence

Pu(x) = (2π)−n
∫

IRn
û(η)

∫
IR2n

eiy.ηei(x−y).θp(x, y, θ)dydθ.

As the symbol p is properly supported, we can calculate its action on x→ eixξ. We can also,
without loss of generality, assume that the support of p in (x, y) is compact and included in
||x− y| ≤ 2 . Thus, the symbol of P is

σ(P )(x, η) = e−ix.η
∮

IR2n

eiy.ηei(x−y).θp(x, y, θ)dydθ.

If one introduces u = x− y, ξ = θ − η, then

σ(P )(x, η) =

∮
IR2n

p(x, x+ u, ξ + η)e−iuξdydθ.

We recognize the Fourier transform of the function q(x, u, ζ) = p(x, x + u, ζ). This Fourier
transform is q̂(x, θ, ζ). The symbol p ∈ Sm, thus

∂αx [(θ)β∂γζ q̂(x, θ, ζ)] =

∫
∂γζ ∂

α
x [p(x, x+ u, ζ)]θβe−iu.θdu.

The term θβe−iuθ is transformed, as p is localized for ||x− y|| ≤ 2 using integrations by parts
in u. Thus, as p ∈ Sm, the support of p in variable (x, y) being compact, we verify that there
exists a constant Cα,β,γ such that

|
∫
∂γζ ∂

α
x [p(x, x+ u, ζ)]θβe−iu.θdu| ≤ Cα,β,γ(1 + |ζ|)m−|γ|.

This bound is true for all β, so there exists, for all p, γ, α a constant Cp,γ,α such that

|∂αx ∂
γ
ζ q̂(x, θ, ζ)| ≤ Cp,α,γ(1 + |ζ|)m−|γ|(1 + |θ|)−p.

Then we write a Taylor expansion of q̂(x, θ, ζ). in the neighborhood of ζ = η. It comes

|q̂(x, θ, θ̃ + η)−
∑
|α|<N

∂αη q̂(x, θ, η)
θ̃α

α!
| ≤ CM |θ̃|N

∫ 1

0

dt(1 + |η + tθ̃|)m−N (1 + |θ|)−M .

We choose in this inequality θ̃ = θ, separating the region |θ| < |η|
2 and its complementary,

choosing M = N large enough in the region |θ| < |η|
2 , and M large enough |θ| ≥ |η|2 . Thus,

integrating with respect to θ this inequality, we find

|σ(P )(x, η)− (2π)n
∑
|α|<N

1

α!
∂αη

∫
dηq̂(x, θ, η)θαdθ| ≤ C(1 + |η|)m+n−N .

The power of θ transforms into a derivative in y using the Fourier inversion formula:

i−|α|∂αy q(x, y, η)|y=x = (2π)n
∫

IRn
eiy.θθαq̂(x, θ, η)dθ.

We have constructed a sequence aj (each term being obtained by collecting in the sum
the terms such that |α| = j) of symbols of Sm−j such that

|a−
∑
j<N aj | ≤ C(1 + |η|)µ−j

|∂αx ∂βy a| ≤ C(1 + |η|)µ.
We can thus apply Proposition 5.4, which implies Lemma 7.5. �

Remark that the formal result is a consequence of the stationary phase theorem, but in
this case, where the phase is the one associated with Fourier transform, it is enough to use
classical results on Fourier analysis.
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2.3. Composition of symbols. We define a symbolic composition in the algebra of
symbols, where the symbol of the composition of A and B is not defined by a usual product,
but by an adapted symbolic calculus, denoted by the symbol ] :

σ(A ◦B) = σ(A)]σ(B)

Definition 7.5. The composition of two pseudodifferential operators of respective symbols
σ(A) and σ(B) is given by the symbol, in the quotient space Sm+p(X × IRd)/S−∞(X × IRd),

(2.92) σ(A)]σ(B) =
∑
α

1

i|α|
1

α!
∂αξ σ(A)(x, ξ)∂αx σ(B)(x, ξ).

We have the following result

Proposition 7.5. Let A ∈ Lm(X), B ∈ Lp(X). It is assumed that at least one of the
two is properly supported. Then

A ◦B ∈ Lm+p(X)

and the symbol of A ◦B is σ(A)]σ(B).

Proof. We assume that, for u ∈ C∞0 (X), B is properly supported, that is

Bu(x) =
1

(2π)d

∫
eix.ξb(x, ξ)û(ξ)dξ ∈ C∞0 (X).

Since Bu ∈ C∞0 , then A(Bu) exists for all A. If we now assume that A is properly
supported, it extends continuously on C∞(X), in particular it can act on Bu for all B and
for all u ∈ C∞0 (X).

We write, as in the proof of the proposition 7.2, if A is prope

A = A′ +A”

where A′ is properly supported and A” ∈ L−∞(X). Then A ◦B ' A′ ◦B since B is properly
supported. Similarily, if B is proper, we write B = B′ + B”, B” is regularizing so A ◦ B” is
regularizing.

To be more precise, we have to evaluate
∫
KA′(x, z)KB(z, y)dz when A′ is properly sup-

ported and B is regularizing, and to show that this integral is C∞(X × X). If x is in a
compact set, then KA′(x, z) is nonzero for z in a compact C0, the integral is C∞ in the
variable y. Since A is a pseudodifferential operator which has a symbol in Sm, A′, con-
structed above, is also a operator with a symbol in Sm, and since z is in the compact C0,
the integral

∫
KA′(x, z)KB(z, y)dz is computed through the action of the pseudodifferential

operator A′ on the function of C∞0 in z KB(z, y). The result is in C∞0 , so we have shown that∫
KA′(x, z)KB(z, y)dz is in C∞.

Thus

(A′ ◦B)(u)(x) =
1

(2π)d

∮
IR3d

ei(x−y).ξeiy.ησ(B)(y, η)û(η)dησ(A)(x, ξ)dydξ.

As the operator is constructed as an action on û(η), it is natural to keep the variable η
and to eliminate the variables (y, ξ). The critical point of the phase in this integral is the
point (y, ξ) = (x, η) and that the critical value is x.η. One then gets

(A′ ◦B)(u)(x) =
1

(2π)d

∫
IRd
eix.ηû(η)dη

∮
IR2d

ei(x−y).(ξ−η)σ(B)(y, η)σ(A)(x, ξ)dydξ.

We introduce u and θ such that y = x+ u, θ = ξ − η. One obtains

σ(A′ ◦B)(x, η) =

∫
IR2d

e−iuθσ(B)(x+ u, η)σ(A)(x, η + θ)dudθ.

The symbol p(x, u, η, θ) = σ(B)(x+u, η)σ(A)(x, η+ θ) belongs to Sm(X2× IR2d). We are
thus in the framework of application of the lemma 7.5. We have thus

σ(A′ ◦B) ' σ(A ◦B) '
∑
α

1

i|α|α!
∂αu∂

α
θ p(x, 0, η, η) '

∑
α

1

i|α|α!
∂αξ σ(A)(x, η)∂αy σ(B)(x, η).
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3. Wavefront set of pseudodifferential operators

In this section, we define and describe the properties of the wave front set of pseudodif-
ferential operators.

Definition 7.6. Let A be a pseudo-differential operator of Lm(X), whose principal symbol
symbol is σA. The wavefront set of A, denoted by WF (A), is the smallest cone Γ ⊂ T ?X − 0
such that σA|CΓ ∈ S−∞(CΓ)

We deduce the definition of the wave front set of an integral kernel K:

Definition 7.7. Let K be an integral kernel of D′(Y,X). It is associated with a operator
of C∞0 (X) in D′(Y ). We introduce

WF ′(K) = {(x, ξ; y,−η) ∈ T ?(X × Y )− 0, (x, ξ; y, η) ∈WF (K)}
WF ′X(K) = {(x, ξ) ∈ T ?X − 0, (x, ξ; y, 0) ∈WF ′(K)}
WF ′Y (K) = {(y, η) ∈ T ?Y − 0, (x, 0; y, η) ∈WF ′(K)}

We have

Remark 6. If u ∈ E ′(Y ), WF (u)∩WF ′Y (K) = ∅, then Ku can be defined, and WF (Ku) ⊂
WF ′(K)(WF (u)) ∪WF ′X(K).

This remark will be used in the proof of the theorem of propagation of singularities.

4. Elliptic pseudodifferential operators

4.1. Definition. Let us define an elliptic operator of order m :

Definition 7.8. We say that Op(p) ∈ Lm(X) is an elliptic operator in the neighborhood
of x0 if there exists a compact K containing x0 and a constant c > 0 such that the symbol
p(x, ξ) ∈ Sm(X × IRN ) verifies, for |ξ| ≥ R >> 1

(4.93) ∀x ∈ K,∀ξ ∈ IRN − {0}, |p(x, ξ)| ≥ c|ξ|m.
We say that Op(p) is a microlocal elliptic operator at (x0, ξ0) ∈ X × IRN if there exists a

conical neighborhood V of (x0, ξ0) such that, on V , we have (4.93).

4.2. Inversion of an elliptic operator. We prove the fundamental proposition of
pseudo-differential calculus

Proposition 7.6. (1) Let P be a properly supported elliptic pseudodifferential op-

erator, of symbol p(x, ξ) ∈ Sm(X× IRd). It admits a right-inverse and a left-inverse,
which are equal modulo L−∞.

(2) Let P be an elliptic operator in the neighborhood of (x0, ξ0). There exists a conic
neighborhood V1 of (x0, ξ0), an operator B whose whose essential support does not
meet V1 and an operator Q such that

Q ◦ P = Id+B

Note that Q is called a parametrix of the operator P .

Proof. First check that Q1 ◦ P = Id+R1 and P ◦Q2 = Id+R2 implies Q1 ◦ P ◦Q2 =
Q2 + R1 ◦ Q2 = Q1 + Q1 ◦ R2. If Q1 and Q2 are properly supported, Q1 ◦ R2 ∈ L−∞ and
R1 ◦Q2 ∈ L−∞, then Q1 is equal to Q2 modulo L−∞.

By analogy with the inverse of a series, we start by proving the result for p classical
symbol. We assume that Q is a pseudo-differential operator associated to a classical symbol q.
When P is not associated with a classical symbol, we use 1

p ]p = 1 +
∑
α

1
i|α|α!

∂αξ ( 1
p )∂αx p. Let

q(x, ξ) '
∑
qj(x, ξ), qj(x, ξ) ∈ S−m−j(X × IRN ). The equality Q ◦ P = Id+R1 is equivalent

to the equalities {
q0p = 1,∑
|α|+l=n

1
α!i|α|

∂αξ ql∂
α
x p = 0, n ≥ 1.
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We obtain q0(x, ξ) = (p(x, ξ))−1, which is in S−m(X × IRN ). We then get

q1(x, ξ) = −1

p

∑
|α|=1

1

i
∂αξ ((p(x, ξ)−1)∂αx p(x, ξ) =

1

i

1

(p(x, ξ))3

∑
j

∂ξjp(x, ξ)∂xjp(x, ξ)

hence q1 ∈ S−m−1(X × IRN ). We continue the induction process on l. As the symbol ∂αx p is a

symbol in Sm(X × IRN ), the symbol ∂αξ (ql) is, for l < n, a symbol of S−m−l−|α|(X × IRN ) =

S−m−n(X × IRN ). We then find that qn is a symbol of S−m−n+m−m(X × IRN ) and this
concludes the proof by induction. The sum of the symbols qj is a symbol by the asymptotic
completeness proposition (Proposition 5.4).

The general case can be deduced from this. Indeed, Op( 1
p )◦P −Id, is an operator of order

−1 (or in S−ρ+δ when p is in Smρ,δ) that we denote R. We are thus left to inverting Id+R.
As we have

(1− r)](1 + r) = 1− r2 −
∑
|α|≥1

∂αξ r∂
α
x r = 1− r2

where r2 is of order −2, we deduce that the Neumann series for the ] law yields the inverse of
Op(1 + r).

Let rk = 1− r + r]r − r]r]r + ...+ (−1)kr]r]...]r. One has

rk](1 + r) = 1 + (−1)k(rk+1 − rk)

(the operator Rk+1 − Rp is the composition of k + 1 occurences of R, it is thus a symbol in
L−k, its symbol rk+1 − rk is in S−k). We then use the result of asymptotic completeness.
We prove now item 2 of Proposition 7.6 in the case where p is, modulo S−∞, homogeneous of
degree m. We place ourselves on the conic neighborhood V of the hypothesis of the definition
7.8. The symbol p is obviously nonzero on the boundary of V ∩ X × SN−1 of the elements
of V whose norm of ξ is 1. Let us denote by π the canonical projection on X. We can then
extend p into a function, whose derivatives are all bounded belonging to C∞(π(V ))× SN−1.

We extend the symbol thus obtained to π(V )× (IRN −{0}) by homogeneity of degree m, using
the constants allowing to bound p on the boundary. We denote by p1 this extended symbol.
It is the symbol of an elliptic operator Op(p1).

By paragraph 1, Op(p1) admits a properly supported inverse q such that

Op(q) ◦Op(p1) = Id+ r

which yields
Op(q) ◦Op(p) = Id+ r +Op(q) ◦Op(p− p1).

One chooses V1 such that V1 ⊂ V . Then, as the essential support of p− p1 is contained in the
complementary of V , and as Op(q) is properly supported, the operator r+Op(q) ◦Op(p− p1)
has its essential support distinct from V . This completes the proof of the proposition 7.6. �

4.3. Elliptic regularity. In this section we seek to quantify the relationship between
the wavefront set of u and the wavefront set of Pu for an elliptic pseudodifferential operator
P . We first recall a characterization of the wavefront :

Lemma 7.6. For u ∈ D′(X), one has

WF (u) = ∩{Car(p), p ∈ S0(X × IRN ), Op(p)u ∈ C∞(X)},
Car(p) denoting the set of points (x, ξ) ∈ X × IRN such that p(x, ξ) = 0. We call this set the
characteristic manifold of p.

Note that this result can also be written

WF (u) = ∩{Car(σ(P )), P ∈ L0(X), Pu ∈ C∞(X)}.

Proof. Let (x0, ξ0) ∈WF (u). There exists χ, equal to 1 in a neighborhood of x0 and Γ
a conical neighborhood of ξ0 such that F(χu) is rapidly decreasing. We denote by

Pu(x) =
1

(2π)N

∫
ψ(ξ)F(χu)(ξ)eixξdξ
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where ψ is homogeneous of degree 0 outside a compact, ψ ≡ 1 on Γ′ ∩ {|ξ| > R}, Γ′ conical
neighborhood of ξ0. Then Pu ∈ C∞ and we verify that p(x, y, ξ) = ψ(ξ)χ(y) is an element

of S0(X ×X × IRN ). We deduce σ(p)(x, ξ) ' ψ(ξ)χ(x) + r(x, ξ), r ∈ S−1(X × IRN ), and the
symbol principal of p is therefore nonzero in the neighborhood of (x0, ξ0). We have proved

∩{Car(p), Op(p) ∈ L0(X), Op(p)u ∈ C∞(X)} ⊂WF (u).

Conversely, let (x0, ξ0) be such that there exists p ∈ S0(X× IRN ) such that Op(p)u ∈ C∞
and p(x0, ξ0) 6= 0. Then p is elliptic in a neighborhood of (x0, ξ0) and we note q and B as in
the proposition 7.6. Then

Op(q) ◦Op(p)u = u+ ru ∈ C∞.
One has u = −ru+Op(q)[Op(p)u]+Op(q)◦Op(p−p1)u. Modulo C∞(X), u = Op(q)◦Op(p−
p1)u. We use the inclusion (demonstrated below by using different arguments) WF (Av) ⊂
WF (v)∩ Supp(A). Then we have WF (Op(q) ◦Op(p− p1)u) ⊂ Supp(q)∩ Supp(p− p1). Since
(x0, ξ0) /∈ Supp(p− p1), we deduce (x0, ξ0) /∈WF (u). The lemma is proved. �

We generalize into the

Proposition 7.7. Let P be an operator of order 0, of symbol p. Let u be a distribution
such that there exists U , a conic set containing Supp(P), with U∩WF (u) = ∅. Alors Pu ∈ C∞.

Proof. Let P be an operator of order 0 of symbol p and suppose WF (u) disjoint from
a conic set U which contains the essential support of P Supp(P ).

Consider χ ∈ S0 such that suppχ ∩WF (u) = ∅, χ ≡ 1 near SuppP . The equality

Pu = Pχu+ P (1− χ)u

where Pχu is in C∞ and where P ◦ (1 − χ) is of order −∞ by symbolic calculation leads to
Pu ∈ C∞. �

Alternative proof One can, according to Taylor, construct χ using a microlocal partition
of the unit.

• Since the wavefront is the complementary of the intersection of characteristic sets of P such
that Pu is C∞, for any (x, ξ) in Supp(p) there exists Q such that Qu ∈ C∞ and (x, ξ) is non
characteristic for Q. We use the homogeneity of the symbol, and we restrict to a compact
K in x, and to a compact K on the unit sphere. Then, we construct, for any point (x, ξ) of
Supp(P ), the operator Q as before. We check thus that, for any point (x, ξ) ∈ K×K, there

exists a neighborhood V(x,ξ) such that the operator Q̃ that we can choose in any point of
this neighborhood is Q. We then consider the open cover ∪(x,ξ)∈K×KV(x,ξ) of the compact
K × K. We extract a finite subcollection, which yields a finite list of operators Qj . By
considering Q =

∑
Q∗jQj , Qu ∈ C∞ and Car(Q) ∩ Supp(P ) = ∅.

• We then consider Q1 an elliptic operator coinciding with Q on a neighborhood W of
Supp(P ). It can be constructed by using a localizing function, because it is sufficient that
Q1 is nonzero on the complementary to the neighborhood W and equal to Q, elliptic on the
neighborhood W . A parametrix of Q1 exists (because Q1 is elliptic). We note A = PQ−1

1 .
We check that there exists R3 ∈ L−∞ such that

AQ = PQ−1
1 (Q1 + (Q−Q1)) = P +R3 + PQ−1

1 (Q−Q1)

Since the essential support of a product of operators is contained in the intersection of the
essential supports, and Q − Q1 = 0 on the support of P , we see that Supp(Q − Q1) ∩
Supp(P ) = ∅. This operator is therefore in L−∞. Adding R3 to it, we find an operator R4

of L−∞, which gives

AQ = P +R4,

and so Pu = AQu−R4u, which gives Pu ∈ C∞.

We are now ready to prove the

Proposition 7.8. (1) WF (Pu) ⊂WF (u) ∩ Supp(P )
(2) If P est elliptic, WF (Pu) = WF (u)
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Proof. The second equality of the theorem comes from the first one and from the ex-
istence of a parametrix of an elliptic operator. Indeed, let E be such a parametrix. Then
WF (EPu) = WF ((Id+R)u) = WF (u) so

WF (EPu) ⊂WF (Pu)⇒WF (u) ⊂WF (Pu) ⊂WF (u).

Let us prove, for a general operator, both inclusions.
To prove WF (Pu) ⊂ Supp(P ), we consider a point (x0, ξ0) /∈ Supp(P ). There exists a

conic neighborhood V of (x0, ξ0) and an operator q, identically equal to 1 on V , such that
Supp(Q) ∩ Supp(P ) = ∅. Then QP ∈ L−∞ (because Supp(QP ) ⊂ Supp(P ) ∩ Supp(Q)) and
QPu ∈ C∞. Using the first definition of the wavefront of v, we see that the wavefront of Pu
is in the characteristic set of Q, which does not contains (x0, ξ0). We have thus proved the
first inclusion.

To prove WF (Pu) ⊂ WF (u), we give ourselves a conic neighborhood Γ of WF (u). We
write P = P1 + P2 such that Supp(P1) ⊂ Γ and Supp(p2) ∩WF (u) = ∅. Then P2u ∈ C∞
and WF (Pu) = WF (P1u). We have just seen WF (P1u) ⊂ Supp(P1) so WF (P1u) ⊂ Γ. This
is true for any conical neighborhood of WF (u) so WF (Pu) ⊂ WF (u). This completes the
proof of the proposition 7.8. �

4.4. Local resolubility of an elliptic operator. We have

Proposition 7.9. Let A be an elliptic differential operator of order m with coefficients
C∞ on the open X ⊂ IRn and let x0 ∈ X. There exists an open neighborhood V ⊂ X of x0

such that, for all v ∈ D′(V ) and any W ⊂ V , there exists u ∈ D′(V ) such that Au = v in W

Proof. As in the case of the hyperbolic problem, we use the method of a priori estimates.
Indeed, we verify that, as A is of order m, for any u distribution with compact support K ⊂ X,
u ∈ Hs+m(K), we have

||u||Hs+m(K) ≤ CK,s(||A∗u||Hs(K̃) + ||u||Hs(K̃)).

This is shown by using a properly supported parametrix B ∈ L−m of A∗ and the fact that,
for R ∈ L−∞, R properly supported is continuous from Hs(K̃) into Hs+m(K̃). The equality
u = B ◦A∗u+Ru then gives the result.

Now, for any ε > 0, there exists an r(ε,m) such that, if the diameter of the support of u
is smaller than r(ε,m) then the norm L2 of u is bounded by ε||u||Hm(IRn).

Consider u ∈ Hm(IRn) ∩ E ′(V1), V1 neighborhood of x0 of diameter less than r(ε,m).
Then, using the inequality for s = 0 and K ⊂ V1

||u||Hm(K) ≤ CK,0||A∗u||L2(K̃) + CK,0ε||u||Hm(K).

Consider ε0 > 0 given. We consider K ⊂ V1 and choose ε = min( 1
2CK,0

, ε0) to obtain

(4.94) ||u||Hm(K) ≤ 2CK,0||A∗u||L2(K̃).

We now consider a parametrix C of A, properly supported in V . Thus, for all v ∈ D′(V ),
ACv = v+ Tv, Tv ∈ C∞(X). Let u = Cv, so Au = v+ Tv. If we find w such that Aw = Tv,
then u− w is a solution of A(u− w) = v and is a solution of AU = v.

This brings us back to the problem of solving Aw = Tv in C∞. The associated variational
problem is written

∀φ ∈ C∞0 (K), (Tv, φ) = (Aw, φ) = (w,A∗φ).

By definition of the norm on H−m (dual of the norm in Hm),

|(Tv, φ)| ≤ DK ||Tv||H−m(W )||φ||Hm(W )

Using (4.94) stated for φ, we obtain

|(Tv, φ)| ≤ 2DKCK,0||Tv||H−m(W )||A∗φ||L2(W ).

The application φ→ (Tv, φ) is then a linear form continuous with respect to A∗φ ∈ L2(K̃) for

φ ∈ Hm(K). We then associate a continuous extension for A∗φ ∈ L2(K̃) by the Hahn-Banach

theorem. There then exists w ∈ L2(K̃) such that (Tv, φ) = (w,A∗φ), for φ ∈ Hm(K). This



118 7. PSEUDO-DIFFÉRENTIAL OPERATORS

distribution is denoted by (A)(Tv). The solution of Au = v is then u = Cv − (A)(Tv). This
is a local equality since the inversion has been done for φ ∈ Hm(K). The proposition 7.9 is
proved. �

5. Change of variable in pseudo-differential operators.

We now consider a symbol a(x, ξ). We show that the notion of pseudo-differential operator
Op(a(x, ξ)) (sometimes denoted by a(x,D)) is invariant by change of variable in x. We assume

a(x, ξ) ∈ Sm(X × IRd).
Let χ−1 be a diffeomorphism of K on K ′, K being compact and included in X. Let

b(y,D) be the operator defined by the equality

b(y,D)u(χ(y)) = (a(x,D)u)(χ(y)).

We use the following Proposition, which makes the link between the asymptotic expansion
and the pseudo-differential operators operators (it can be found in particular in the book of
S.Alinhac and P. Gérard [3]) :

Proposition 7.10. Let ψ be a function C∞(IRd), such that dψ 6= 0.

Let u ∈ C∞0 (IRd) and a ∈ Sm(IRd).
Then e−ikψ(x)a(x,D)(u(x)eikψ(x)) = I(x, k) has the following asymptotic expansion in k,

locally uniformly in x

I(x, k) '
∑
α

1

α!
∂αyα [eik(ψ(y)−ψ(x)−dψ(x)(y−x))u(y)]y=xD

α
ξαa(x, kdψ(x)).

Proof. One writes

I(x, k) =

∫ ∫
ei(x−y)η+ik(ψ(y)−ψ(x))a(x, η)u(y)dydη.

The critical point (yc, ηc) in the variables (y, η) of the phase of this oscillatory integral verifies
the equalities x− yc = 0, kdψ(yc)− ηc = 0, or yc = x, ηc = kdψ(x). We perform the change of
variable (y, η)→ (z, ξ) given by y = x+z, η = ξ+kdψ(x). The oscillatory integral is rewritten
as

I(x, k) =

∫
e−izξ+ik(ψ(y)−ψ(x)−dψ(x)(y−x))a(x, ξ + kdψ(x))u(y)dzdξ.

Then we denote by t(y, k) = eik(ψ(y)−ψ(x)−dψ(x)(y−x)). The integral can be written as

I(x, k) =

∫ ∫
e−izξt(x+ z, k)a(x, ξ + kdψ(x))u(y)dzdξ.

The phase z.ξ is quadratic because z.ξ = 1
4 ((ξ + z)2 − (ξ − z)2). The associated Laplacian is

∂2
zjξj

for the critical point z = 0, ξ = 0.

It is easy to generalize the stationary phase theorem to the case where the symbol is at,
even if it is not a classical k-asymptotic symbol. This method is correct because the terms
we add in the phase are of order greater or equal to 2, so they will not produce terms with
positive powers of k. We can see it below by noticing that

∂αyα [t(y, k)u(y)] =
∑
α

1

i|α|α!

∑
β≤α

Cβ∂
β
yβ
u.(∂α−β

yα−β
t(y, k))∂αηαa.

In this expansion, the nonzero terms in z = 0 coming from (∂α−β
yα−β

t(y, k)) are of order |α−β|2

at most since the phase is quadratic. Thus, combined with the term ∂αηαa, we find that the

order in k is km−|α|+
|α−β|

2 or km−
|α+β|

2 : it is an asymptotic sum. We deduce that the symbol
I(x, k) rewrites : ∑

α

1

α!i|α|
∂
|α|
yα [t(y, k)u(y)]|y=x∂

|α|
ηα a(x, η)|η=kdψ,
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which is the expected result, since Dξ = 1
i
∂
∂ξ . The reader interested in more precise estimates

of the terms of this symbol will refer to [3], p 57, Section 8.3, where the estimates are presented
in detail. �

Another proof
Let us take up the calculation in yc = x, ηc = kdψ(yc). The matrix jacobian matrix of

the phase at this critical point is then(
Hessψ −Id
−Id 0

)
.

We check that it is non-degenerate because its inverse is(
0 −Id
−Id −Hessψ

)
The operator involved in the expansion of the stationary phase (the half metric Laplacian), is
then

−
∑
j

∂2
yjηj −

1

2

∂2ψ

∂yjyk
∂2
ξjξk

,

The asymptotic formula is deduced from this, by application of the section 4.3.
This allows us to obtain the

Proposition 7.11. Let χ be a C∞ diffeormorphism of Ω on Ω′, open sets of IRd and let
a be a symbol of Sm(×IRd). We assume that the integral kernel of the operator associated to
a has compact support.

We define the function on Ω′ × IRd, b(y, η), by the equality

(5.95) b(χ(x), η) = e−iχ(x)ηa(x,D)[eiχ(x)η].

1) It is a symbol of Sm(Ω′ × IRd).

2) The kernel associated to b has compact support in Ω′ × IRd.
3) If u ∈ S ′(Ω′), then

(5.96) a(x,D)(u ◦ χ) = (b(y,D)u) ◦ χ.

We have imposed that the kernel of the operator associated to a is compactly supported
to be able to define a(x,D)(u ◦ χ).

Proof. We first check that

a(x,D)eix.ξ = eix.ξa(x, ξ).

Indeed, we verify that, for û with compact support,

a(x,D)[u(εx)eix.ξ](x, ε, ξ) = (2π)−d
∫ ∫

ei(x−y).ηa(x, ξ)eiy.ξu(εy)dydη.

(note the difference between the variable η of integration and the parameter ξ of the symbol).
As ∫ ∫

ei(x−y).ηa(x, ξ)eiy.ξu(εy)dydη = (2π)−n
∫
dηeix.η

∫
dyu(εy)eiy(ξ−η)

=
∫
dηeix.ηε−nû(−ξ+ηε ),

this last integral being compactly supported for ε > 0, we find, by denoting by τ = −ξ+η
ε ,

η = ξ + ετ , so

a(x,D)[u(εx)eix.ξ](x, ε, ξ) = (2π)−n
∫
eix(ξ+ετ)û(τ)dτ.

When ε tends to 0, the right-hand term tends in S ′ to eix.ξ(2π)−n
∫
û(τ)dτ = u(0)eix.ξ.

The source term u(εx)eix.ξ tends in the sense of S ′ to u(0)eix.ξ. We then use the fact that a
pseudo-differential operator extends into a continuous operator from S ′ to D′, continuous, so
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we have the result by continuity. We introduce the symbol b(χ(x), η) = e−iχ(x)ηa(x,D)eiχ(x)η

associated to a pseudo-differential operator). We have

a(x,D)[eiχ(x).ξ] = eiχ(x).ξb(χ(x), ξ).

Let fξ be the function x→ eix.ξ, one has

a(x,D)[fξ ◦ χ] = [eiy.ξb(y, ξ)](y = χ(x)).

So we verify that (5.95) implies

a(x,D)[fξ ◦ χ] = [b(., D)fξ] ◦ χ.

Since the space generated by fξ is dense in S ′, this equality implies

a(x,D)[u ◦ χ] = [b(y,D)u] ◦ χ,

which we had to prove. We have shown the existence of b, which is a symbol. We evaluate
it now with the proposition 7.10. We regularize eiχ(x)η by a function compactly supported
(which we include in a). We then write

b(χ(x), η) = e−iχ(x).η

∫
ei(x−y).ξ+iχ(y).ηa(x, ξ)dξdy.

We can consider this integral as an asymptotic integral in |y| for η 6= 0, using the proposition
7.10. The first method allows to verify that the phase studied is ψ(y) = χ(y).η =

∑
j χj(y)ηj .

One checks that

∂ψ

∂yk
=
∑
j

∂ykχj .ηj =
∑
j

χ′jkηj =
∑
j

tχ′jkηj .

We derive from the proposition 7.10 the calculation of b(χ(x), η). Indeed, the value of the
phase is χ(x)η. It is compensated with the e−χ(x).η which is in coefficient of the symbol, and
we find

b(χ(x), η) =
∑
α

1

α!
∂αy [eiχ(x).η−iχ(y).η−(tχ′(x)η).(y−x)]Dα

ξ a(x, tχ′(x)η).

Finally, if we calculate directly the critical point in (y, ξ) of the phase ψ(x, y, ξ, η) =
(x−y).ξ+χ(y).η−χ(x).η, we find the find the equalities −ξcj+

∑
k ∂yjχk(yc)ηk = 0, xj−ycj = 0,

from which we deduce the change y = x + z, ξj =
∑
k ∂yjχk(x)ηk + βj . We thus obtain the

relation (5.96) by noting that ξc = tχ′(x)η.
�

6. Exercices du chapitre 7

Exercise 7.1 : Reduction of operators. Recover formally, using the stationary phase theo-
rem on the phase (x−y).ξ innX×X×IRdimTx0

X , the action of symbols p(x, y, ξ) and q(x, ξ) on
a C∞ compactly supported function u asi in Lemma 7.3. Is it more than a formal calculation?

Exercise 7.2 :Calculate the symbol of the adjoint operator of an Fourier integral operator
A.

Exercise 7.3 : Change of variable using the Kuranishi trick. We assume that we have the
hypotheses of Proposition 7.11. Prove the result of this proposition using the change of variable
Σ(y, t, ξ) from X × X × IRd to IRd which allows, for all diffeomorphism χ of X, to write in
the neighborhood of y = t

(χ(y)− χ(t)).ξ = (y − t).Σ(y, t, ξ).
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Exercise 7.4 : Inversion of a Fourier integral operator. Let A be a Fourier integral operator,
given by its phase (x− y).ξ + s(x, ξ) and its classical symbol a(x, ξ) ∈ S0(IRd × IRd), elliptic.
Let B the operator defined by the phase (x− y).ξ − s(y, ξ) and by the symbol b(y, ξ).

1) Prove that there exists a classical symbol b ∈ S0(IRd × IRd) such that A ◦ B = Id+ R,
R ∈ L−∞.

2) Déduce that, for all P ∈ Lm(IRd) classical pseudodifferential operator, of classical

symbol p ∈ Sm(IRd× IRd), the operator Q = A ◦P ◦B is a classical pseudodifferential operator

IRd, and that the principal symbols of P and Q satisfy :

qm(y,Σ) = pm(x+∇θs(x, θ(x, x,Σ)), θ(x, x,Σ))

where θ(x, y,Σ) is solution in the neighborhood of x = y of Σ.(x − y) = θ.(x − y) + s(x, θ) −
s(y, θ).

Solution de l’exercice 7.1. La phase dans l’intégrale

Pu(x) =

∫ ∫
ei(x−y)ξp(x, y, ξ)u(y)dydξ

pourrait sembler ùtre une phase linéaire. En réalité, il s’agit d’une phase quadratique de signature
(d, d). Ceci est vérifié grâce à l’égalité :

(6.97) (x− y).ξ =
1

4

∑
j

(xj − yj + ξj)
2 − 1

4

∑
j

(xj − yj − ξj)2.

Nous introduisons le difféomorphisme de IR2d dans lui mùme défini par

(y, ξ)→ (z1, z2) = (ξ − y + x, ξ + y + x).

On voit que dydξ = 1
2d
dz1dz2 par un simple calcul de jacobien. On a donc

∫
IR2d

ei(x−y).ξp(x, y, ξ)u(y)dydξ =

∫
IR2d

ei
1
4
z2
1−i

1
4
z2
2p(x, x− z1 + z2

2
,
z1 − z2

2
)u(x− z1 + z2

2
)
dz1dz2

2d
.

∫
IR2d

ei(x−y).ξq(x, ξ)u(y)dy ∧ dξ =

∫
IR2d

ei
1
4
z2
1−i

1
4
z2
2q(x,

z1 − z2

2
)u(x− z1 + z2

2
)
dz1dz2

2d
.

L’application du théorème de la phase stationnaire à l’une et à l’autre des intégrales est possible.
On applique donc successivement le théorème de la phase stationnaire, sous la forme∫

IR2d

ei
1
4
z2
1−i

1
4
z2
2q(x,

z1 − z2

2
)u(x− z1 + z2

2
)
dz1dz2

2d

=

1

2d

∫
IRd

dz1e
i
(z1/

√
2)2

2

∫
IRd

dz2e
−i (z2/

√
2)2

2 q(x,
1

2
(z1 − z2))u(x− 1

2
(z1 + z2))dz1dz2.

Nous vérifions que ∆z/
√

2 = 2∆z. Appliquons alors le deuxième alinéa de la proposition 4.3.
L’opérateur permettant de connaitre le développement du symbole dans les coordonnées z2 est

∑
l

1

l!
(i)−l(−1)l(

∆z2/
√

2

2
)l

et celui dans les coordonnées z1 est ∑
l

1

l!
(i)−l(

∆z1
√

2

2
)l.

On obtient ainsi

Pu(x) '
∑

(
1

i
)l(l!)−1∂2l

yξ(p(x, y, ξ)u(y))|y=x,ξ=0

Op(q)u(x) '
∑

(
1

i
)l(l!)−1∂2l

yξ(q(x, ξ)u(y))|y=x.
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Calcul des deux premiers termes. Ils sont obtenus grâce à

(1 + i−1∆z1)(1− i−i∆z2)

Il reste ainsi

u(x− 1

2
(z1 + z2))p(x,

1

2
(z1 − z2))|z1=z2=0 +

1

2
i−1(∆z1 −∆z2)[u(x− 1

2
(z1 + z2))q(x,

1

2
(z1 − z2))].

En étudiant coordonnée par coordonnée, on trouve facilement

q(x, 0)u(x) +
∑
j

∂xju(x)i−1∂ξj q(x, 0).

Ceci correspond au développement asymptotique associé à l’opérateur q. Si, par exemple, q est un
opérateur différentiel d’ordre 1, alors q est un polynôme homogène de degré 1, égal à

∑
j aj(x)ξj , qui

vaut 0 pour ξ = 0. On voit alors que le terme que l’on vient de calculer est∑
j

∂xju(x)i−1aj(x).

Ceci achève l’analyse. Pour le cas général, on utilise la formule de Leibniz, et on obtient∑
α1+α2=α

(∂
|α|+|α1|
ξαyα1 p)(x, x, 0)∂

|α2|
xα2 u(x)

On en déduit donc la formule de dérivation en sommant sur les α1 :

P (u) '
∑
β

i−|β|(β!)−1∂
|β|
yβ
u(x)

∑
α,α1/β=α−α1

i−|α1|(α1!)−1∂
|β|
ξβ

(∂
2|α1|
ξα1yα1 p)(x, x, 0).

Nous considérons alors le symbole

q1(x, ξ) =
∑
α1

i−|α1|(α1!)−1 ∂2α1p

∂ξα1yα1
(x, x, ξ).

Comme p est un symbole de Sm, le symbole associé à ∂2α1
yα1ξα1 p(x, x, ξ) est un symbole de Sm−|α1|.

Nons appliquons le théorème de complétude asymptotique (Proposition 5.3), pour voir que cette
somme asymptotique définit un symbole de Sm.

On vérifie que Pu ' Op(q1)u. Il suffit alors de prendre q − q1 ∈ S−∞, en particulier q = q1 pour
obtenir l’égalité du lemme de réduction.

Solution de l’exercice 7.2. On considère, sur L2(X), le produit scalaire canonique (u, v) =
∫
uv̄dx.

L’adjoint d’un opérateur (pseudo-différentiel) A continu de C∞0 (X) dans D′(X) est l’opérateur défini
par (Au, v) = (u,A?v) pour u, v dans C∞0 (X). Lorsque A est un opérateur pseudo-différentiel, il
admet un noyau KA(x, y), et A? a pour noyau la conjuguée de KA(y, x). On suppose que A est un
opérateur pseudo-différentiel dont un symbole est a(x, y, θ). Alors la représentation par une intégrale
oscillante du noyau distribution de A est donnée par

KA(x, y) =
1

(2π)n

∫
a(x, y, θ)ei(x−y)θdθ,

ce qui donne

KA?(x, y) =
1

(2π)n

∫
ā(y, x, θ)ei(x−y)θdθ

(dans cette dernière ligne, il y a à la fois l’échange de x et de y et la conjugaison pour obtenir la mùme
phase); Ainsi, l’opérateur A? est un opérateur pseudo-différentiel, dont un symbole est ā(y, x, θ).

Pour obtenir le symbole principal associé, on commence par prendre pour a(x, y, θ) le symbole
σA(x, θ), symbole principal de A. On constate alors que ā(y, x, θ) = σ̄A(y, θ), et on applique l’alinéa
3) de la proposition 7.3 pour obtenir le symbole

σ?(x, θ) '
∑ 1

i|α|
1

α!
(
∂

∂y
)α(

∂

∂θ
)ασ̄A(x, θ).

Solution de l’exercice 7.3.
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Calcul de b par l’utilisation de l’astuce de Kuranishi. Nous présentons ici une méthode s’appuyant
sur le comportement de phases de la forme φ(x, y, ξ) telles que φ(x, x, ξ) = 0. Elles se factorisent sous
la forme (x − y)g(x, y, ξ). L’exemple que nous abordons ici pour l’étude du changement de variable
est φ(x, y, ξ) = (χ(x)− χ(y))ξ. Nous vérifions en effet que

(a(x,D)u)(x) =
1

(2π)d

∫ ∫
ei(x−z)ξa(x, ξ)u(z)dydξ,

qui se réécrit

(a(x,D)u)(χ(y)) =
1

(2π)d

∫ ∫
ei(χ(y)−z)ξa(χ(y), ξ)u(z)dzdξ.

Cette égalité se transforme en

(6.98) (a(x,D)u)(χ(y)) =
1

(2π)d

∫ ∫
ei(χ(y)−χ(t))ξa(χ(y), ξ)u(χ(t)))(dχ(t))dtdξ.

La phase oscillante considérée est donc

φ(y, ξ, t) = (χ(y)− χ(t)).ξ.

Du théorème des fonctions implicites on déduit le lemme suivant.

Lemma 7.7. Si une phase φ(y, t, ξ) s’annule pour y = t, et si ∇yφ(y0, y0, ξ0) 6= 0 ou ∇tφ(y0, y0, ξ0) 6=
0, il existe une fonction Σ ∈ C∞(K′×K′× IRd) telle que, pour y− t dans un voisinage de 0 et ξ dans
un voisinage de ξ0 on ait

φ(y, ξ, t) = (y − t).Σ(y, t, ξ).

On vérifie que Σ(y, y, ξ) = ∇tφ(y, ξ, y) dans ce voisinage. L’application de X × IRd × X dans lui
mùme, qui à (y, ξ, t) fait correspondre (y,Σ(y, ξ, t), t), est un difféomorphisme local au voisinage de
(y0, ξ0, y0).

La formule d’intégration prouve que

χj(y)− χj(t) =
∑
k

(yk − tk)

∫ 1

0

∂ykχj(st+ (1− s)y)ds

ce qui donne

Σk(y, t, ξ) =
∑
j

ξj

∫ 1

0

∂ykχj(st+ (1− s)y)ds =
∑
k

(yk − tk)

∫ 1

0

ξj∂ykχj(st+ (1− s)y)ds.

La relation dχj =
∑
k ∂ykχjdyk =

∑
k χ
′
jkdyk donne alors χ′jk = ∂ykχj , et comme

Σk(y, y, ξ) =
∑
j

ξj∂ykχj =
∑
j

ξjχ
′
jk =

∑
j

(tχ′)kjξj

on trouve la relation

Σ(y, y, ξ) = (tχ′(y).ξ).

Cette notation est cohérente car χ′ est une matrice, et on l’applique à un élément ξ de IRd. L’application
χ est un difféomorphisme, donc χ′ est une matrice inversible. Localement, au voisinage de la diago-
nale on peut retrouver ξ en fonction de Σ et de y. On peut alors considérer le système d’équations
Σ(y, t, ξ) = Σ, et il existe une solution ξ = Θ(y, t,Σ). On calcule alors l’intégrale (6.98) par

(a(x,D)u)(χ(y)) =
1

(2π)d

∫ ∫
ei(y−t)Σa(χ(y),Θ(y, t,Σ))u(χ(t)))det(χ′(t))dtdΣdΣΘ(x, t,Σ).

Si d(y, t,Σ) est le symbole a(χ(y),Θ(y, t,Σ))det(χ′(t))dΣΘ(x, t,Σ), une application du lemme 7.3 de
réduction permet alors d’obtenir

(a(x,D)u)(χ(y)) =
1

(2π)d

∫ ∫
ei(y−t)Σb(y,Σ)dΣdt,

Le terme dominant de b0 est égal à

b0(y,Σ) = a0(χ(y), (tχ′)−1(Σ)).
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Solution de l’exercice 7.4. Nous ferons ici un usage constant du lemme 7.7 démontré dans
l’exercice 7.2. En effet, une phase de la forme (x− y).ξ + ψ(y)− ψ(x) vérifie l’hypothèse dès
que ξ0 6= ∇ψ(y0).

1) On peut vérifier que, au sens des intégrales oscillantes

A ◦B(u)(x) =
1

(2π)2d

∫ ∫ ∫ ∫
ei(x−z)ξ+is(x,ξ)+i(z−y).θ−is(y,θ)a(x, ξ)b(y, θ)u(y)dydθdzdξ.

Nous appliquons la méthode du col (Théorème 4.3) à la phase totale de cet opérateur dans les
variables z et ξ, qui est

φx,y,θ1 (z, ξ) = (x− z).ξ + (z − y).θ + s(x, ξ)− s(y, θ).
Le point critique est {

ξc = θ
zc = x+ ∂ξs(x, ξc)

et la matrice jacobienne est (
0 −Id
−Id Hessξs(x, ξ)

)
qui est inversible (air désormais connu). La valeur critique de la phase est

(x− y)θ + s(x, θ)− s(y, θ)
Le théorème de la phase stationnaire avec paramètre affirme l’existence d’un symbole L(a, b)(x, y, θ)
tel que

(A ◦B)(u)(x) =

∫
ei((x−y)θ+s(x,θ)−s(y,θ))L(a, b)(x, y, θ)u(y)dydθ.

De plus, on vérifie, puisque les symboles et la phase ne dépendent pas de t dans l’égalité qui suit,
que

L(a, b)(x, y, θ) =
∑
α

1

α!
∂αt D

α
β [a(x, θ+β)b(y, θ)ei[(x−y).θ+s(x,θ)−s(y,θ)]+i[s(x,θ+β)−s(x,θ)−β∂θs(x,θ)]]|t=0,β=0.

Il existe r ∈ S−1(X × Y × IRd) tel que

L(a, b)(x, y, θ) = [a(x, θ)b(y, θ) + r(x, y, θ)]ei(x−y).θ+i(s(x,θ)−s(y,θ)).

Nous appliquons l’astuce de Kuranishi (Lemme 7.7). On vérifie que, dans un voisinage de x,
l’égalité θ + V (x, y, θ) = Σ est inversible, et on peut trouver θ = θ(x, y,Σ). On voit alors que

(A ◦B)(u)(x) =

∫
ei(x−y)ΣL(a, b)(x, y, θ(x, y,Σ))| ∂θ

∂Σ
(x, y,Σ)|dy ∧ dΣ.

Le lemme de réduction 7.3 implique l’existence de c(x,Σ) tel que A ◦ B = Op(c), c étant un
symbole dont l’ordre est la somme des ordres de a et de b. On trouve

c(x, θ) =
∑
α

1

α!
Dα

Σ∂
α
y a(x, θ(x, y,Σ))b(y, θ(x, y,Σ))|y=x.

Egaler le symbole principal à 1 et tous les autres à 0 se fait de proche en proche; ici on identifie b0 en
fonction de (a0)−1, qui est bien défini puisque a0 est le symbole principal d’un opérateur elliptique.
On procède de proche en proche pour identifier bj . De cette façon, on construit un symbole b tel que
le symbole de A ◦ B soit ' 1 (mod S−∞). Ceci achève la preuve du résultat de l’exercice 7.3. Ceci
est la mùme démarche que celle employée dans la démonstration de la proposition 7.6.

2) On applique la mùme méthode de calcul pour évaluer le symbole principal de l’opérateur
A ◦ P ◦ B, où on connait le symbole principal de P . Le symbole principal obtenu après l’application
du théorème de la phase stationnaire est

a(x, θ)b(y, θ)p(x+∇θs(x, θ), θ)
et la phase que nous considérons est

(x− y)θ + s(x, θ)− s(y, θ)
L’astuce de Kuranishi conduit au changement de variable

Σ = θ +∇xs(x, θ).
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Le symbole principal obtenu pour l’opérateur A ◦ P ◦B est donc

q(x,Σ) = p(x+∇θs(x, θ), θ),Σ = θ +∇xs(x, θ).
Nous reviendrons sur ce résultat dans la partie consacrée à la géométrie.





CHAPTER 8

Operators and symplectic geometry

In this chapter, we study some objects related to operators: the characteristic set, the
bicharacteristic flow. We show that the natural framework in which this is possible is called
symplectic geometry (essentially thanks to the the proposition 7.11 which shows that a change
of variable in y induces a change of variable in ξ). We deduce results on the integral operators,
in particular we introduce the canonical relation associated to a Fourier integral operator.
This part is very important for the general analysis of a partial differential equation, since
any property of the symbol of the operator will be true for any similar operator (obtained by
conjugation by an invertible operator or by diffeomorphism). In particular, the bicharacteristic
flow is the generalization of the rays of geometric optics studied in chapter 3.

The conjugation of a pseudodifferential operator by a Fourier integral operator leads to
a new pseudodifferential operator, and the above-mentioned geometric objects (which are
defined on a variable space of dimension 2d) of the old operator and the new operator are
deduced from each other by a transformation adapted to symplectic geometry which is the
canonical relation.

1. Solutions of a pseudo-differential equation

Consider a pseudodifferential operator P on IRd of order m, properly supported, of symbol
p(x, ξ) =

∑m
j=−N pj(x, ξ) ∈ Sm(IR2d), each pj being homogeneous of degree j. The follow-

ing proposition allows to compute the action of P on a function x → u(x, k) which has an
asymptotic expansion.

Proposition 8.1. Let u(x, k) = a(x, k)eikφ(x), such that there exist functions (aj)0≤j of
class C∞ in x such that

a(x, k) '
∑
j≥0

aj(x)(ik)−j .

There exist functions bj(x), of class C∞ in x, such that

e−ikφ(x)(ik)−mP (u)(x, k) '
∑
j≥0

bj(x)(ik)−j .

More precisely, the bj are the terms in the expansion of

(1.99)
∑
l≥0

1

l!(ik)l

∑
|α|=l

∂αuα [eikuA(x,x+u)ua(x+ u, k)]|u=0∂
α
ξαp(x,∇xφ(x), k).

One checks that b0(x) = a0(x)p(x,∇φ(x)) and that b1(x) = a1(x)p(x,∇φ(x))+( 1
2

∑
i,j

∂2p
∂ξiξj

(x,∇φ(x))a0(x)+∑
i
∂p
∂ξi

(x,∇φ(x))∂ja0(x)).

Proof. Let us first consider a particular case.
A linear phase and a polynomial symbol. We choose φ(y) = y.η0, η0 ∈ IRd × {0},

p(y, η) = ηα, a(y, k) = 1. We find∫
IR2d

eik((x−y)η+y.η0)ηαdydη = eikx.η0

∫
IR2d

eik(x−y)(η−η0)ηαdydη.

Let u = y − x and ξ = η − η0.

127
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∫
IR2d

eik((x−y)η+y.η0)ηαdydη = eikx.η0

∫
IR2d

e−ikuξ(η0 + ξ)αdudξ.

We notice then that, when β 6= 0,
∫

IR2d ξβe−ikuξdudξ = 0. Remark that
∫

IR2d e−ikuξdudξ =∫
IRd

1̂(kξ)dξ (using a formal notation for the integral of a Fourier transform in S ′). Hence again∫
IRd

1̂(kξ)dξ = k−d
∫

IRd
1̂(ξ)dξ = ( 2π

k )d. As the Fourier transform of 1 at kξj is the distribution

δ0, we obtain < 1̂(kξj), ξ
βj
j >= 0.

Thus
∫

IR2d e−ikuξ(η0 +ξ)αdudξ = ηα0
∫

IR2d e−ikuξdudξ = ( 2π
k )dηα0 , because we keep only the

0 order term in ξ.
We deduce ∫

IR2d

eik((x−y)η+y.η0)ηαdydη = ( 2π
k )deikx.η0ηα0 .

We use for that the Fourier integral operator representation of the pseudo-differential
operator P . We evaluate ∫

IR2d

ei(x−y)ξ+ikφ(y)p(x, ξ)a(y, k)dydξ.

The change of variable ξ = kη yields∫
IR2d

ei(x−y)ξ+ikφ(y)p(x, ξ)a(y, k)dydξ = km+d

∫
IR2d

eik((x−y).η+φ(y))p(x, η, k)a(y, k)dydη,

where p(x, η, k) =
∑
−N≤l≤m pl(x, η)k−l. We evaluate this integral by the stationary phase

method. The gradient of the phase in (y, η) is

(−ξ +∇yφ(y), x− y).

We generalize this result. To apply the method of the stationary phase, we come back to the
critical points on a compact set. More precisely, it is enough to reduce to a compact set in y
and to a conic neighborhood in η. This is done in the exercise 8.0.

The Jacobian of the phase is (
−Hessφ(y) −Id
−Id 0

)
.

It is invertible thanks to the formula(
−Hessφ(y) −Id
−Id 0

)(
0 −Id
−Id Hessφ(y)

)
=

(
Id 0
0 Id

)
.

The determinant of the Jacobian is equal to (−1)d. We can apply the stationary phase

theorem in the neighborhood of the critical point (x,∇xφ(x)) in IRd
y × IRd

ξ . The value of
the critical phase is φ(x), and the integral admits an expansion in (y, η) whose first term is

pm(x,∇xφ)( 2π
k )

2d
2 a0(x). We propose here a method based on the lemma 7.5 to compute the

functions bj resulting from the stationary phase expansion. We use the classical change of
variable in the neighborhood of the critical point y = x, ξ = ∇yφ(x). Indeed, it will be easier
to express the stationary phase expansion operator in the vicinity of the point (0, 0). We write

y = x+ u, ξ = ∇xφ(x) + θ.

Then there exists (Taylor expansion with integral remainder) a matrix A(x, y) such that

φ(y)− φ(x)− (y − x).∇xφ(x) = (y − x)A(x, y)(y − x).

The integral calculated is

km+d

∫
IR2d

dudθeik[(−u)(∇xφ(x)+θ)+φ(x)+u∇xφ+uA(x,x+u)u]a(x+ u, k)p(x,∇xφ(x) + θ, k),

or

km+deikφ(x)

∫
IR2d

dudθe−ikuθeikuA(x,x+u)ua(x+ u, k)p(x,∇xφ(x) + θ, k).

We have already evaluated in the lemma 7.5 this oscillating integral, where the symbol is
a(x, u, θ) = p(x,∇xφ + θ, k)a(x + u, k)eikuA(x,x+u)u. The expression (1.99) follows and we
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have explicitly all the terms of the asymptotic expansion. By evaluating the derivatives in u
of eikuA(x,x+u)u, we show that the term generated by the derivative ∂αxα on eikuA(x,x+u)u is of
order km+d−α2 . The sum of these terms then defines an asymptotic series (as in the proof of
the proposition 7.11). This ends the proof of Proposition 8.1. �

An easy consequence of this Proposition is

Lemma 8.1. If the function u is a non-trivial asymptotic solution of P , i.e. P (u) ' 0,

then {(x,∇xφ(x))} ⊂ Car(p) ∩ (suppa0 × IRd).

There is a generalization of this lemma for Fourier integral operators, as in [47]. This gen-
eralization is used in the chapter 9 which studies the caustics. We state it in the Proposition:

Proposition 8.2. Let P be a pseudo-differential operator of order m and let A be a
Fourier integral operator (see definition 6.4) of phase s(x, θ) and symbol a(x, θ) ∈ Sp(IRd×IRd).
Then

P (A(u))

defines an Fourier integral operator of the same phase and of symbol b(x, θ) ∈ Sm+p. Each
term bj is computed using the terms of P and of a of sum of orders ≤ j.

This proposition is a consequence of exercise 7.3. It is stated in the article of Duistermaat
and Hörmander[32] in the theorem 4.2.2.2. We will see later that the canonical relation C of
PA is the canonical relation of A, if it exists.

Proof. We detail this proof to show once again a formal application (the word formal
is due to the fact that we do not study here the behavior in k of each term of the formal
expansion obtained, but this expansion can be justified) of the stationary phase theorem. For
this purpose, let us write the oscillatory integral

(1.100) Pv(x) =

∫
eix.ξp(x, ξ)v̂(ξ)dξ =

∮
ei(x−z)ξp(x, ξ)v(z)dzdξ.

We then write the composition of operators

(1.101) P (Au)(x) =

∫ ∫
ei(x−z)ξ+s(z,θ)−y.θp(x, ξ)a(z, θ)u(y)dzdθdydξ.

The associated phase is φ(x, y, z, ξ, θ) = (x − z)ξ − yθ + s(z, θ). To reduce to a Fourier
integral operator, whose phase depends only on (x, θ, y), we apply the stationary phase method
in the variables (z, ξ). The critical point (zc, ξc) is solution of{

−ξc + ∂zs(zc, θ) = 0
zc = x

and the Hessian of the phase is (
Hess sz(z, θ) −Id

−Id 0

)
This phase is non-degenerate, of critical value s(x, θ)− yθ. Thus, using the stationary phase
theorem (Proposition 4.3) and introducing the Laplacian associated to the phase, we have

∆sa(z, ξ) = Tr(

(
0 Id
Id Hesszs(z, θ)

)(
∂2
z2 ∂2

zξ

∂2
zξ ∂2

ξ2

)
)a = 2∂2

zξa+ Hesss(z, θ)∂2
ξ2a.

The operator used in the stationary phase expansion is thus

(i)−1[∂2
zξ +

1

2
Hesss(z, θ)∂2

ξ2 ].

The integral (1.101) rewrites

P (Au)(x) =

∫
eis(x,θ)−yθB(x, y, θ)u(y)dydθ

where the symbol B is equal to
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B(x, y, θ) =
∑
l

(l!)−1(i)−l[∂2
zξ +

1

2
Hesss(z, θ)∂2

ξ2 ]l(p(x, ξ)a(z, θ))|zc=x,ξc=∇zs(zc,θ).

This symbol is of the form b(x, θ). It does not depend on y (which is not always the case in
the application of the stationary phase theorem). �

Remark 7. From the relations ∂2
ξjξk

(p(x, ξ)a(z, θ)) = ∂2
ξjξk

p(x, ξ)a(z, θ)) et ∂2
zjξj

(p(x, ξ)a(z, θ)) =

∂ξjp(x, ξ)∂zja(z, θ), one deduces he term of order −1, which is

b1(x, θ) = [
∑
j

∂ξjp(x, ξ)∂zja(z, θ) +
1

2
(
∑
j,k

∂2
ξjξk

p(x, ξ)∂2
zjzk

s(z, θ)a(z, θ))].

It is an operator of order 1 on a whose coefficients are those of the transport operator ∇ξp.∇z.
In this operator appears Hessp.Hesss which corresponds to the term ∆φa0 in the transport
equation for the Helmholtz equation.

Proof. We continue the calculation of (1.101). In the φ phase, the change of variable

(z, ξ) = (x+ u,∇zs(x, θ) + η)

leads to the phase −u.η + [s(x+ u, θ)− u∇zs(x, θ)]− y.θ. Let

(1.102) p̃(x, θ;u, η) = p(x,∇zs(x, θ) + η)a(x+ u, θ)ei([s(x+u,θ)−u∇zs(x,θ)]−y.θ).

It is a symbol of Sm1,0((u, η) ∈ IR2d), the points x and θ being fixed, since the deriva-
tives in u do not involve additional powers of η. The asymptotic expansion of the integral∫
e−iu.ηp̃(x, θ;u, η)dudη exists through the lemma 7.5. It is necessary to complete this proof,

we have to calculate the symbol obtained in the variable θ. Indeed, a derivation in u of the
symbol p̃ leads to additional powers of θ. The result is true thanks to a method analogous to
the one used in the proof of the proposition 7.10.

We have
(1.103)

A1 = ∂2
ηup̃(x, θ;u, η) =

∑
j
∂p
∂ξj

(x,∇zs(x, θ) + η)[ ∂a∂xj (x+ u, θ) + ia(x+ u, θ)( ∂s
∂xj

(x+ u, θ)− ∂s
∂xj

(x, θ))]

×ei([s(x+u,θ)−u∇zs(x,θ)]−y.θ).

The symbol involved in (1.103) is of the form

r(x, u, θ, η) =
∑
j

∂p

∂ξj
(x,∇zs(x, θ) + η)a(x, u, θ)ei([s(x+u,θ)−u∇zs(x,θ)]−y.θ).

From the equality

r(x, 0, θ, 0) =
∑
j

∂p

∂ξj
(x,∇zs(x, θ))

∂a

∂xj
(x, θ)e−iy.θ,

we deduce that in the term A1 there is no term induced by the phase s . We verify that A1

is of order m− 1 because the derivative of a homogeneous symbol of Sm1,0 is of order m− 1.
The phase s appears in the following terms of the stationary phase expansion. Indeed, let

us introduce

A2 =
∑
l

∂2

∂ηl∂ul
[
∑
j
∂p
∂ξj

(x,∇zs(x, θ) + η)[a(x, u, θ)ei([s(x+u,θ)−u∇zs(x,θ)]−y.θ)] =∑
j,l

∂2p
∂ξj∂ξl

(x,∇zs(x, θ) + η)[
∂a1,j

∂ul
(x, u, θ) + a1,j(x, u, θ)(

∂s
∂xl

(x+ u, θ)− ∂s
∂xl

(x, θ))]ei([s(x+u,θ)−u∇zs(x,θ)]−y.θ).

One finds

∂a

∂ul
(x, u, θ) =

∂2a

∂xj∂xl
(x+ u, θ) + a(x+ u, θ)

∂2s

∂xj∂xl
(x+ u, θ).

In this term, appears the second derivative of s in u, which is of order 1 because s is
homogeneous of order 1 in θ. Thus, this term appears in the term of order m − 1 of the
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symbol a because it is a term of order m− 2 + 1 = m− 1 (the m− 2 comes from the second
derivative of the symbol p). The term A2 is thus a term of homogeneity m− 1.

We recall the expressions

A1(x, θ) =
∑
|α|=1

1
α!∂

α
x a(x, θ)∂αθ p(x, θ) =

∑
j ∂xja∂θjp,

A2(x, θ) =
∑
|α|=2[ 1

α!∂
α
x a(x, θ) + a(x, θ)∂αz s(x, θ)]∂

α
θαp(x, θ) = 1

2

∑
i,j(

∂2a
∂xj∂xk

a+ a ∂2s
∂xj∂xk

∂2p
∂θj∂θk

.

We show in what follows that the term Aj of the stationary phase expansion is of order

of homogeneity ≤ m− [ j+1
2 ] in the variable θ. The asymptotic sum exists by the asymptotic

completeness theorem (Proposition 5.3). This proves the proposition 8.2. Treatment of the
term Aj. In the general case, we have Aj =

∑
|α|=j Dα, avec

Dα(x, θ) = 1
α!∂

α
u∂

α
η [p(x,∇zs(x, θ) + η)a(x+ u, θ)ei(s(x+u,θ)−u∇zs(x,θ))]

=
∑
α′+α′′=α

1
α′!α′′!∂

α
η p(x,∇zs(x, θ))∂α

′′

x a(x, k)∂α
′

u [ei(s(x+u,θ)−u∇zs(x,θ))].

One uses the equality

∂uj [e
i(s(x+u,θ)−u∇zs(x,θ))] = i( ∂s

∂xj
(x+ u, θ)− ∂s

∂xj
(x, θ))[ei(s(x+u,θ)−u∇zs(x,θ))]

from which one deduces, using t(u, x, θ) = ei(s(x+u,θ)−u∇zs(x,θ)), the identity

∂uj t = iujw(u, x, θ)t(u, x, θ).

Hence, for |α′| ≥ 2, one finds, if α′ contains only derivatives of order 1, ∂α
′

uα′
t(0, x, θ) = 0,

and if α′ contains a derivative of order 2, one finds

∂α
′

uα′
t(0, x, θ) =

∑
derivatives of order 2

bj
∂2s

∂u2
j

.

The successive calculation of all the terms is a very technical application of lemma 7.5. �

2. Change of variable and geometrical objects

We define a first geometrical object: the bicharacteristics. They are defined in the space
of positions and impulsions associated to the space of symbols. Remark that it is a classical
presentation in the wave propagation theory, it corresponds in the geometrical and mathe-
matical context to the cotangent bundle. They are the generalization of the rays of geometric
optics introduced in chapter 3, in the sense that the bicharacteristics associated to the operator
ξ2 − k2 are the curves whose first coordinates are the rays and where the second coordinates
are the vectors ~p (of modulus k) giving the direction of the rays. The impulse is then ~p by
analogy with the Hamiltonian |~p|2 − k2.

2.1. The bicharacteristics. Let us start with an example from the result of Section 3,
Chapitre 1.

Proposition 8.3. Consider a solution of the Helmholtz equation (∆ + k2)u(x, k) = 0
associated with the ’initial’ condition u(x, k) = A(x, k)eikφ0 , x ∈ Σ0.

• For each (x(y), u) in Σ0× (−a, a), a0(x(y)+uN(x(y))) = A0(x(y))(det(Id+uW (x(y))))−
1
2 ,

φ((x(y) + uN(x(y))) = φ0 + u (proven in Section 3 of Chapter ??).
• Let v0 be the inverse Fourier transform in k of a0(x)eikφ(x). Its wave front set is

(2.104) WF (v0) ∩B(x0, ε) = {(x(y) + uN(x(y)), φ0 + u,−τN(x(y)), τ)} ∩B(x0, ε).

Proof. In section3 Chapitre 1, we have computed the formal asymptotic solution of (∆+
k2)u(x, k) = 0 under the condition (which we named initial condition) u(x, k) = A(x, k)eikφ0 , x ∈
Σ0. It was thus a constant phase on the manifold Σ0 of codimension 1. codimension 1. We
suppose A(x, k) '

∑
j Aj(x)(ik)−j . To fix our ideas, let us consider a point x0 ∈ Σ0. Then,

for all x ∈ Σ0 ∩ B(x0, ε), small enough, we can define a local coordinate system (y1, y2) on
Σ0 such that x = x(y). For u small enough (so that the matrix det(Id + uW (x)) is invert-
ible for xΣ0 ∩ B(x0, ε), W designating, as we recall, the matrix of curvatures or Weingarten



132 8. OPERATORS AND SYMPLECTIC GEOMETRY

matrix of the φ phase solution of |∇φ| = 1, φ|Σ0
= φ0 on the isophase Σ0), we can define a

diffeomorphism of a neighborhood of x0 in IR3 by the relation

(2.105) x(y, u) = x(y) + uN(x(y)).

One thus knows that

a0(x(y, u)) = A0(x(y))(det(Id+ uW (x(y))))−
1
2

and

φ(x(y, u)) = φ0 + u.

This is the statement of the first item of the Proposition.
Let u0(x(y, u), k) = a0(x(y, u))eik(φ0+u). This is the term of the formal asymptotic solution.
As (2.105) defines a diffeomorphism, the function φ such that φ0 + u = φ(x(y, u)) is a well
defined function. Let

(2.106) u0(x, k) = a0(x)eikφ(x).

The inverse Fourier transform in k of (2.106) is the distribution (formal notation)

v0(x, t) = a0(x)

∫
IR

eikφ(x)+iktdk = a0(x)δ(t− φ(x)).

Recall that the wave front set of a distribution is the complementary of the set of points
(x0, t0, ξ0, τ0) such that that there exists x0 located in the neighborhood of (x0, t0) such that
F(χv0) is fast decaying in a neighborhood of (ξ0, τ0). We suppose that a0(x0) 6= 0. There exists
a neighborhood B(x0, ε) such that |a0(x)| ≥ 1

2 |a0(x0)| on this neighborhood (and therefore is
non-zero). We choose χ so that it has its support contained in this neighborhood. When t0 6=
φ(x0), we can choose χ so that χv0 is identically zero, so the points (x0, t0, ξ0, τ0), t0 6= φ(x0)
are not in the wave front set of v0. The Fourier transform of χv0 is (with a clear abuse of
notation)

I(ξ, τ) =

∫
IR3

a0(x)e−iξ.x
∫

IR

δ(t− φ(x))e−itτdtdx =

∫
IR3

a0(x)e−ix.ξ−iτφ(x)dx.

The diffeomorphism (2.105) yields∫
IR3

dudσΣ0
(y)det(Id+ uW (x(y))a0(x(y, u))eix(y).ξ+iuN(x(y)).ξ+iτφ0+iτu.

Its phase has a stationary point ξ orthogonal to Σ0 and with N(x(y)).ξ + τ = 0. It yields
ξ = λN(x(y)) et τ = −λ. The points where the phase is not stationary correspond to the
points (x(y, u), φ0 +u, ξ, τ) which are not in the wave front set of v0. The wave front set of v0

thus is given by (2.104). This ends the proof �

We give the definition of bicharacteristic curves:

Definition 8.1. The bicharacteristic curves of the differential operator P (or of the ho-
mogeneous symbol p, principal symbol of P ) are the integral curves of the Hamiltonian vector

field Hp ∈ T (T ∗IRd) associated to the symbol p on T ∗IRd:

(2.107) Hp =

j=d∑
j=1

∂p

∂ξj
(x, ξ)

∂

∂xj
− ∂p

∂xj
(x, ξ)

∂

∂ξj

denoted also by

Hp = (
∂p

∂ξ
,−∂p

∂x
).

They satisfy

(2.108)

{
d
ds ((x(s), ξ(s)) = Hp((x(s), ξ(s))
(x(0), ξ(0)) = (x0, ξ0).
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This definition will be clearer from a geometrical point of view in the section 3 de-
voted to the symplectic geometry. In the simple example of the wave operator, its symbol is
p(t, x, τ, ξ) = τ2 − ξ2. The associated Hamiltonian is

Hp = (2τ,−2ξ, 0, 0).

The integral curves of Hp verify τ = τ0, ξ = ξ0. One has, of course τ2 − ξ2 = τ2
0 − ξ2

0 = 0.
Then t(s) = t0 + 2τ0s, x(s) = x0 − 2sξ0. One deduces easily that

• the principal symbol is invariant on the bicharacteristics,
• the solution phase of the eikonal equation can be computed on the bicharacteristics of

the d’Alembert operator. Indeed, the phase of the solution of the Helmholtz equation
obtained after Fourier transformation in time of the wave equation is φ(s′) = φ0 + s′

and x(s′) = x0 + s′∇φ(x0), with ||∇φ(x0)|| = 1. We take s′ = −2s ξ0τ0 to check
that the projection on the physical space of the bicharacteristics of the d’Alembert
operator is coincides with the characteristics and that the phase associated with the
Dalembertian, equal to ψ(x, t) = φ0 + s− t, is computed along the bicharacteristics.

2.2. Change of variable and transformation of the wave front set, the bichar-
acteristics and the eikonal phase. In this section we use the change of variable proposition
7.11 which gives the relation between the change of variable in X ⊂ IRd and the change of
variable induced in X × IRd ⊂ IR2d. We have the

Proposition 8.4. Let χ be a diffeomorphism of IRd in IRd, such that χ(x0) = y0. We

define a diffeomorphism hχ of IRd in IRd × IRd by

hχ(x, ξ) = (χ(x), tχ′(x)−1ξ).

We have
1) Invariance of the wave front set: For all u distribution in S ′(IRd)

WF (u ◦ χ−1) = hχ(WF (u))

2) Invariance of bicharacteristics and of the phase solution of the eikonal equation: For
all P be a classical pseudodifferential operator of principal symbol pm(x, ξ) homogeneous of
degree m, define the classical pseudodifferential operator Q (thanks to proposition 7.11) by

Q(v) ◦ χ−1 = P (v ◦ χ−1),

of principal symbol qm(y, η), where y = χ(x), η = tχ′(x)
−1
ξ.

a) If (x(s), ξ(s))s is an integral curve of the Hamiltonian field Hpm , then hχ(x(s), ξ(s)) is
the integral curve of the Hamiltonian field Hqm passing through hχ(x(0), ξ(0)).

b) If φ is a solution of the eikonal equation associated with pm, then φ ◦ χ−1 is a solution
of the eikonal equation for qm.

The proof is the subject of exercise 1 of this section. Let us note that this result can be
written locally, with some precautions.

In what follows, we generalize the approach already used in the section expressing asymp-
totic solutions of the the Helmholtz equation (Section 1.4), or when we expressed in chapter
2 the solution of a hyperbolic matrix problem of order 1 and its eikonal equation (2.28). We
use here the result proved in Section 1, in particular paragraph 2) b) of the proposition 8.4.
We generalize the notion of eikonal equation. Indeed, we have shown that, for the Helmholtz
equation as for a hyperbolic matrix problem with variable coefficients, there exists a scalar
partial differential equation, for which a function φ phase function is solution, equation that
is called eikonal equation. We have seen in the lemma 8.1 that we could also introduce
an eikonal equation for a usual pseudodifferential operator thanks to the operators integral
Fourier operators. Finally, the proposition 8.4 shows that the set of points (x,∇xφ) where φ
is a solution of the eikonal equation associated to the pseudo-differential operator of principal
symbol pm is transformed in the same way as the bicharacteristic curves when we consider the
operator Q such that Q(uχ−1) = (Pu) ◦χ−1. These intrinsic considerations lead us to study
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not the phase itself, but the sets {(x,∇xφ)} and to generalize them. Such sets are Lagrangian
manifolds, which are Lagrangian solutions of the characteristic equation pm(x, ξ) = 0.

We introduce the geometrical framework in which these sets are well defined, it is the
symplectic geometry. In particular, we will lead to a rigorous and intrinsic definition of the
object introduced in the Definition 8.1 by the relation (2.107). We rely here on J. Sjöstrand’s
course [43]. The interested reader may refer to Stenberg’s treatise [92].

3. Symplectic geometry

We choose in this work to introduce the cotangent bundle as the space of jets on a manifold.
It is also natural to define the tangent bundle first.

3.1. Geometric definition of the cotangent bundle. Let X be a C∞ manifold of
dimension d.

Definition 8.2. The cotangent bundle of X in x0, denoted T ∗x0
(X), is the set of equiv-

alence classes of the equivalence relation f ∼ g ⇔ f − g = o(|x − x0|) in the set of functions
vanishing at x0, and the element associated to f ∈ C1(X, IR) is denoted by df .

T ∗x0
(X) = {f ∈ C1(X, IR), f(x0) = 0}/ ∼

The element df is then the first order germ of f . This definition is abstract; it has the
merit of being intrinsic from the geometrical point of view.

To make it more explicit, place ourselves in a local coordinate system. For each point x0

of X, there exists a neighborhood W of this point and a (well, non-unique) local coordinate
system (x1, ..., xd). The natural basis of T ∗x0

(X) associated to this local coordinate system is

then (dx1, ...dxd). Indeed, let f ∈ C1(X, IR). Then there exists a diffeomorphism χ of X in
Rd such that a point u of X ∩W is written χ(u) = (x1, ...xd). Then, by Taylor’s formula, the

function of IRd in IR equal to f ◦ χ−1 verifies

(3.109) (f ◦ χ−1)(x) = f(x0) +

j=d∑
j=1

∂

∂xj
(f ◦ χ−1)(χ(x0))(xj − (χ(x0))j) + o(|x− χ(x0)|).

Noting that xj − (χ(x0))j is associated with dxj , one has the decomposition of f in T ∗x0
(X).

The cotangent bundle is

T ∗X = ∪x0∈XT
∗
x0

(X).

The canonical projection π, from T ∗X to X is defined by

l ∈ T ∗X ⇒ ∃x = π(l), l ∈ T ∗x (X).

When X is provided with a local coordinate system, then any point of a section T ∗xX
of the cotangent bundle can be characterized by its coordinates in the basis dx1, dx2, ...dxd.
Thus, a point of T ∗X is determined by (x, ξ) where x = π(ρ), π being the natural projection
of T ∗X on X. In T ∗π(ρ)(X), we have

ρ =

j=d∑
j=1

ξjdxj .

This proves that there exists an application T ∗(X)∩π−1(W ) into χ(W )× IRd defined through
ρ → (x, ξ), ρ =

∑
ξjdxj . This application is C∞. Let x1 and x2 two distinct points of X.

As π−1(x1) and π−1(x2) have the same dimension and are disjoint in T ∗X, one deduces that
T ∗(X) is a vectorial bundle C∞.
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3.2. Change of local coordinates. We use the relation (3.109) to identify the repre-
sentation of ρ in the dxj basis. We see that

(3.110) ξj =
∂

∂xj
(f ◦ χ−1)(χ(x0)).

We assume that, in W , X is represented by a second local coordinate system (y1, ...yd).
Then we introduce the diffeomorphism ψ which to a point of X ∩ W makes correspond
(y1, ..., yd) ∈ ψ(X ∩ W ). To the point x0 is associated the element η whose coordinates
in the base dy1, ..dyd are

(3.111) ηj =
∂

∂yj
(f ◦ ψ−1)(ψ(x0)).

Denote by φ = χ ◦ ψ−1. It is the application allowing to pass from coordinates y to the
coordinates x. As ψ−1 = χ−1 ◦ φ, we deduce from (3.111) and (3.110) the equalities

ηj = ∂
∂yj

((f ◦ χ−1) ◦ φ)(ψ(x0))

=
∑
k

∂
∂xk

(f ◦ χ−1)∂φk∂yj

=
∑
k
∂φk
∂yj

ξk

= (t(∂x∂y )ξ)j

where ∂x
∂y is the transfer matrix (

∂φj
∂yk

), Jacobian matrix of the transition application y → x.

We thus summarize the relation characterizing the change of variable in T ∗x0
(X):

Lemma 8.2. Let x0 be a point of X. In the neighborhood of x0, we can define a system
of local coordinates (x), which allows to define a canonical basis of T ∗x0

(X). This construction
can be done for any point in a neighborhood W of x0. The manifold T ∗(X) is thus a manifold
of class C∞. When (x) and (y) are two systems of local coordinates, (x, ξ) and (y, η) describe
the same point of T ∗(X) when x and y describe the same point of X and

ξ = (t(
∂x

∂y
))−1(η).

We notice that we find here, in projection on IRd, the diffeomorphism hchi defined in
paragraph 1 of the proposition 8.4. In particular, this proves that the wave front set WF of a
distribution on a manifold X is identified with a conic closure of the cotangent bundle T ∗X.

3.3. Tangent bundle. We define the tangent space to X at x0 as the dual of T ∗x0
(X)

in the canonical duality of IRd × IRd. Note that the dual base associated with (dx1, ...dxd) by
( ∂
∂x1

, ... ∂
∂xd

). For now, these are ratings. We also define TX = ∪x0
Tx0

(X). Then, by duality,

TX is also a vector bundle and (x, t) and (y, s) describe the same point of TX when x and y
describe the same point of X and when t = (∂x∂y )s.

Let us assume a section of the bundle TX, i.e. a local application of X in TX such that
its composite with the projection π is the identity. Such elements are called fields of vectors.
They can be written, in a system of of local coordinates

V (χ−1x) =

j=d∑
j=1

aj(x)
∂

∂xj

Since, in this system

df =

j=d∑
j=1

∂

∂xj
(f ◦ χ−1)dxj

the duality relation gives

< V, df >=

j=d∑
j=1

aj(x)
∂

∂xj
(f ◦ χ−1).
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We then identify a vector field with a differential operator of order 1, and we say, by duality,
since f is a function, df is a 1−differential form.

3.4. The canonical forms and the Hamiltonian field.

Definition 8.3. The canonical 1−form on T ∗X is ωρ, uplifting from the canonical pro-
jection of T ∗X to X, which is in cartesian coordinates

∑
j ξjdxj.

The canonical 2−form on T ∗X is σ = dω, where ω is the application ρ → ωρ. It is, in
cartesian coordinates,

∑
j dξj ∧ dxj.

These definitions are technical, but they allow to reduce the demonstrations of the propo-
sition 8.4 considerably. We detail the construction of these two objects.

We consider a local coordinate system (x) on X. The bundle T ∗X is identified with

π(W )× IRd thanks to the local coordinates and the natural projection.
For ρ ∈ T ∗X, we can then define the space T ∗ρ (T ∗X), since T ∗X is a manifold C∞. An

element of T ∗ρ (T ∗X) is an equivalence class for ∼ in T ∗X in the neighborhood of ρ. We define,
by the commutative scheme

T ∗X ← T ∗ρ (T ∗X)
π ↓ ↑ π∗
X ← T ∗π(ρ)X

the uplifting π∗. We apply this dual uplifting π∗ to the element ρT ∗π(ρ)(X), and we define the

1-canonical form by
ωρ = π∗(ρ).

This is an element of T ∗ρ (T ∗X). In other words, ρ → ωρ is a differential form on T ∗X. The
coordinates of T ∗X are (x, ξ), the associated canonical basis is (dx1, ...dxd, dξ1, ..dξd), and we
have

ωρ =

j=d∑
j=1

ξjdxj +

j=d∑
j=0

0dξj .

Recall then that we can define a duality between (T ∗X)2 and (TX)2 by

(3.112) < ρ1 ∧ ρ2, t1 ∧ t2 >=< ρ1, t1 >< ρ2, t2 > − < ρ1, t2 >< ρ2, t1 > .

For v ∈ T ∗(T ∗X) one writes

v =

j=d∑
j=1

vj,0(x, ξ)dxj +

j=d∑
j=1

vj,1(x, ξ)dξj

and one defines

dv =

j=d∑
j=1

dvj,0(x, ξ) ∧ dxj +

j=d∑
j=1

dvj,1(x, ξ) ∧ dξj ,

the element dvj,0 or dvj,1 being in T ∗X, and ∧ being the notation used for the the element of
(T ∗X)2 defined by the duality (3.112).

We thus introduce the 2-canonical form σ = dω. Its definition is intrinsic, does not
depend on the coordinate system.

We verify that, for ω the differential form on T ∗X defined above, the functions vj,0(x, ξ)
and vj,1(x, ξ) are known, respectively equal to ξj and 0. So we have

dvj,0(x, ξ) =

k=d∑
k=1

0dxk +

k=d∑
k=1

δkjdξk,

which implies

(3.113) σ = dω =

j=d∑
j=1

dξj ∧ dxj .
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By the definitions used previously, σ is a bilinear form on (TρT
∗X)2, given by

σρ(t1, t2) =< σρ, t1 ∧ t2 > .

When, in a coordinate system, t1 = (s1, τ1) and t2 = (s2, τ2), we verify that

< σ, t1 ∧ t2 > =
∑j=d
j=1 < dξj ∧ dxj , t1 ∧ t2 >

=
∑
j,k,l < dξj ∧ dxj , (s1,kdxk + τ1,kdξk) ∧ (s2,ldxl + τ2,ldξl) >

We notice that dξj ∧ dxj = −dxj ∧ dξj and that < dξj ∧ dxj , dxp ∧ dxq >=< dξj ∧ dxj , dξp ∧
dξq >= 0, then that < dξj ∧ dxj , dxp ∧ dξq >= −δjqδip. From equality

< t1 ∧ t2 >=
∑
j,l

s1js2ldxj ∧ dxl +
∑
j,l

(s1jτ2l − s2jτ1l)dxj ∧ dξl +
∑
j,l

τ1jτ2ldξj ∧ dξl,

one deduces the relation

< σ, t1 ∧ t2 >=< τ2, s1 > − < τ1, s2 > .

There exists a relation H between T ∗ρ (T ∗X) and its dual Tρ(T
∗X) given by

σ(s,Hu) =< s, u >,

for u ∈ T ∗ρ (T ∗X). With canonical coordinates, with u = uxdx + uξdξ, Hu = uξ
∂
∂x − ux

∂
∂ξ .

One introduces the Hamiltonian vector field of f(x, ξ) of class C1 on an openset T ∗X through
the relation Hf = H(df) ∈ T (T ∗X). With

σ(s,H(df)) =< s, df > .

It comes, in canonical coordinates (and we thus find the definition 8.1):

Hf =

j=d∑
j=1

∂f

∂ξj

∂

∂xj
− ∂f

∂xj

∂

∂ξj
.

The intrinsic character of these notions allows us to give a direct proof of Proposition 8.4.
Indeed, the integral curves of the Hamiltonian field are curves on T ∗X. The Hamiltonian field
is intrinsic, so it is transported by the diffeomorphism hχ (associated to the χ diffeomorphism
and defined in section 1 of the proposition 8.4), which is the way to identify the points of
the cotangent bundle. Its integral curves are therefore transported in the same way. Finally,
the symbol of an operator is also defined on the cotangent bundle of in a natural way. This
is a consequence of the proposition 7.11. Indeed, a change of variable in the symbol a(x, ξ)
associated to the operator a(x,D) transforms this operator according to the relation a(x,D)(u◦
χ) = (b(y,D)(u))◦χ and its symbol according to the relation b(χ(x), η) = a(x,t χ′(x).η), which
is equivalent to b(hχ(x, ξ)) = a(x, ξ). In other words, the invariance of the symbol by hχ and

the fact that the point (x, ξ) and the point hχ(x, ξ) represent the same element of T ∗IRd imply

that the symbol is well defined on T ∗IRd.

3.5. Some remarks.

Lemma 8.3. • One has the duality

(3.114) [Hf , Hg] = H{f,g}.

Let (pj)j∈J , (qk)k∈K be a family of functions on M , symplectic manifold (for example
T ∗X), such that

{pj , pk} = 0, {pj , qk} = δjk, {qj , qk} = 0.

and (dpj , dqk) linearly independent.
Then we can complete this family into a family of symplectic coordinates.
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Proof. For the first item, we know that the terms of order 2 disappear in the commutator,
so we keep in what follows only the terms of order 1 or zero. As

HfHg = (
∑
j

∂f

∂ξj

∂

∂xj
− ∂f

∂xj

∂

∂xj
)(
∑
k

∂g

∂ξk

∂

∂xk
− ∂g

∂xk

∂

∂ξk
),

the coefficient of ∂
∂xk

in the commutator is

∑
j

(
∂f

∂ξj

∂2g

∂xj∂ξk
− ∂f

∂xj

∂2g

∂ξj∂ξk
)− (

∂g

∂ξj

∂2f

∂xj∂ξk
+

∂g

∂xj

∂2f

∂ξj∂ξk
).

On the other hand, we verify that

{f, g} = Hfg =
∑
j

∂f

∂ξj

∂g

∂xj
− ∂f

∂xj

∂g

∂ξj
.

One checks that

∂

∂ξk
{f, g} =

∑
j

∂g

∂xj

∂2f

∂ξj∂ξk
+
∂f

∂ξj

∂2g

∂ξk∂xj
− ∂g

∂ξj

∂2f

∂xj∂ξk
− ∂f

∂xj

∂2g

∂ξj∂ξk
.

By comparing, we get the result. We then check that, for p ∈ C∞(T ∗X), Hpp = 0, which
implies that

Hp is tangent to the hypersurface {p = 0}.
Indeed, for (V,W ) ∈ T(x0,ξ0)({p = 0}), p(x0, ξ0) = 0, there exists a curve {(x(t), ξ(t))} ⊂

{p = 0} such that x(0) = x0, ξ(0) = ξ0, ẋ(0) = V, ξ̇(0) = W . The equality p(x(t), ξ(t)) = 0
leads then, by derivation with respect to t and by calculating in t = 0, to prove that (V,W )
in the hyperplane of equation ∂xp(x0, ξ0)V + ∂ξp(x0, ξ0)W = 0. Thus T(x0,ξ0)({p = 0}) =

(∂xp(x0, ξ0), ∂ξp(x0, ξ0))⊥. The vector Hp is then in this tangent space.
The second item is an essential lemma from the geometric point of view to get back

to simpler symplectic coordinate systems. It can be found for example in the course of
Carathéodory’s course [21].

It relies on the relation (3.112). We can, without restricting generality, suppose that
pj(ρ0) = 0∀j ∈ J , qk(ρ0) = 0 ∀k ∈ K. We will also note J and K the respective cardinals of
J and K. The fields Hpj , Hqk commute with each other, because

[Hpj , Hpj′ ] = H{pj ,pj′} = H0 = 0

[Hqk , Hql ] = 0
[Hpj , Hqk ] = Hδjk = 0.

Consider a submanifold G of T ∗X, of dimension 2n−J−K, transverse in ρ0 to the vector
space H = Vect(Hpj , Hqk). The idea of this proof is to construct the transport of G by all
fields Hpj , Hqk . From a parameterization of G, we add a transverse variable propagating the
direction of Hp1 . We construct

Hp1
(G) = {ρ(x1, z) ∈ T ∗X, z ∈ G, ρ(0, z) = z,

d

dx1
(ρ(x1, z)) = Hp1

ρ(x1, z)}.

It is a manifold of dimension dimG+1. We continue the construction by consideringHp2(Hp1G)...
We have thus obtained a local coordinate system (x, y, z) on T ∗X. The fields dpj , dqk are lin-
early independent, so the dimension of Tρ0

((Hqk)k∈K ◦ (Hpj )j∈JG) is equal to 2n− J −K +
J +K = 2n.

The fields commute, so we can talk about coordinates (in other wordsHpj2
(Hpj1

(z)(x1))(x2) =
Hpj1

(Hpj2
(z)(x2))(x1), i.e. the order of application of the operators Hp, Hq is not important).

We also show that ∂
∂x1

= Hp1 , and note that G = {x = y = 0}.
We then need to complete the family pj , qk, which is the objective of our lemma. We

already have pairs of symplectic coordinates given by (pj , qj), j ∈ J ∩K if K is not empty.
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We will complete the family in a first step for all the elements of J ∪K − J ∩K. Consider,
for example, j0 ∈ J, j0 /∈ K. We are looking for the solution of{

Hpjqj0 = δj0j
Hqkqj0 = 0

that is {
∂xjqj0 = δj0j
∂ykqj0 = 0

We also impose qj0(0, 0, z) = q(z), any, such that dq 6= 0. We can then construct qj0(x, y, z).
The family (dpj , dqk, dqj0) is a independent family. We therefore consider this new family as
a starting point.

We proceed by successive iterations, noting that J and K play the same role. We have
thus obtained a system of coordinates

(pj , qj), j ∈ {0, ...J}
verifying (dpj , dqk) free and {pj , qk} = δjk, {pj , pk} = 0, {qj .qk} = 0. By the same method as
before, we have constructed a local coordinate system on local coordinate system on T ∗X,
of the form (x, y, z), where x and y are the 2dim(J ∪K) independent coordinates including
the indices of J ∪ K. We want to complete the system of coordinates (x, y, z). We assume
d < n and order the coordinates in the form the form (x1, ...xd, y1...yd). Let F = {x = y = 0}.
We look for a function qd+1 such that that Hpjqd+1 = Hqjqd+1 = 0 for 1 ≤ j ≤ d, and
dqd+1|F 6= 0. This is possible because the dimension of Tρ0F is at least 2. We then choose
pd+1 as the solution of

Hqd+1
pd+1 = 1, Hqjpd+1 = 0, Hpjpd+1 = 0, pd+1 = p(z), z ∈ F ∩ {qd+1 = 0}

the function p being given on F ∩ {qd+1 = 0}, which is non empty and of dimension greater
than or equal to 1. This process is iterated until the dimension is zero. The resulting system
is (p1, ..pn, q1, ..qn).

Let f and g be two functions C∞ of T ∗X, written in the form f(p, q) and g(p, q), we have
p = p(x, ξ), q = q(x, ξ). We write f(p, q) = F (x, ξ) and g(p, q) = G(x, ξ).

We then verify∑
j
∂F
∂xj

∂G
∂ξj
− ∂F

∂ξj
∂G
∂xj

=
∑
j,j′

∂f
∂pj

∂g
∂pj′
{pj , pj′}+

∑
k,k′

∂f
∂qk

∂g
∂qk′
{qk, qk′}

+
∑
j,k

∂f
∂pj

∂g
∂qk
{pj , qk}+

∑
j,k

∂f
∂qk

∂g
∂pj
{qk, pj}.

Using the relations on the brackets of the new coordinates, we find

{f, g} = {F,G} =
∑
j

∂f

∂pj

∂g

∂qj
− ∂f

∂qj

∂g

∂pj
.

The relation {f, g} = Hfg leads to Hf =
∑
j
∂f
∂pj

∂
∂qj
− ∂f

∂qj
∂
∂pj

. Identification σ(Hf , Hg) =

{f, g} thus yields

σ(
∑
j

−∂qjfdpj + ∂pjfdqj ,
∑
j

−∂qjgdpj + ∂pjgdqj) =
∑
j

∂pjf∂qjg − ∂qjf∂pjg.

One thus has

σ(
∑
j

ajdpj + bjdqj ,
∑
j

cjdpj + djdqj) =
∑
j

−bjcj + ajdj ,

hence σ =
∑n

1 dpj ∧ dqj , and the system of coordinates (pj , qj) is symplectic. Lemma 8.3 is
thus proven. �

It is necessary to introduce a geometrical notion associated to a Fourier integral operator,
its canonical relation. The definition of canonical relations is closely related to particu-
lar submanifolds of T ∗X, associated to the symplectic structure symplectic structure, the
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Lagrangian manifolds. We introduce them here for the definition of the classes of Fourier
integral operators. We will use them again in the chapter 11.

3.6. Definition of canonical relations and canonical transformations. Let X be
a manifold of dimension n.

Definition 8.4. We call Lagrangian manifold any isotropic submanifold Λ of T ∗X (i.e.
satisfying σ|Λ0) of maximal dimension n (dim (x0,ξ0)Λ = n).

This definition comes from the work of Maslov [73], we find it in L. Hörmander [47] and
in J.J. Duistermaat [30]. The author has also seen (in notes of Chazarain, Scientific Meetings
of Cargese) the name of maximal Lagrangian.

A natural example is the manifold {(x, dφ(x)), x ∈ X} = Λφ. This manifold is called
the Lagrangian manifold associated to the phase φ, at least of class C2. The maximality
hypothesis is trivially satisfied, since x is a parameterization of the manifold. We check, on

Λφ that ξj = ∂φ
∂xj

(x), hence dξj =
∑
i

∂2φ
∂xi∂xj

dxi, which implies∑
dξj ∧ dxj =

∑
i,j

∂2φ

∂xi∂xj
dxi ∧ dxj ,

thanks to ∂2
xixjφ = ∂2

xjxiφ because φ of class C2 and dxi ∧ dxj = −dxj ∧ dxi hence the result.

Definition 8.5. A canonical relation C of T ∗(X × Y ) is a subspace of T ∗(X × Y ) '
T ∗X×T ∗Y which is a Lagrangian manifold for the canonical form σX−σY = dx∧dξ−dy∧dη.
In other words

C = {(x, ξ; y, η) ∈ T ∗X × T ∗Y }
is a canonical relation if ΛC = {(x, ξ; y,−η), (x, ξ; y, η) ∈ C} is a Lagrangian manifold for
σX×Y = dx ∧ dξ + dy ∧ dη.

Let H be a canonical transformation from X to Y . It is an application of class C∞ from
T ∗Y on T ∗X which preserves the symplectic structure (i.e. H∗(dy ∧ dη) = dx ∧ dξ).

We check that the graph CC of the canonical transformation H, subset of T ∗X × T ∗Y of
(H(ρ), ρ), ρ ∈ T ∗Y , is a canonical relation.

Assume that there exists a point (x0, η0) such that the canonical projection l from T ∗(X×
Y ) ⊂ IR2n which associates to (x, ξ; y, η) the point (x, η) is a diffeomorphism in the neighbor-
hood of l−1(x0, η0). Then there exists, by the representation theorem of Hörmander (Theorem
9.1, stated and proved later on, whose proof is based on the 9.2 Lemma of completeness of a
canonical basis) a phase φ(x, η) such that, locally, CH is of the form (x, ∂φ∂x (x, η), ∂φ∂η (x, η), η).

In other words, the canonical transformation H is locally of the form

(
∂φ

∂η
(x, η), η)→ (x,

∂φ

∂x
(x, η)).

Let C′ = {(x, ξ; y, η), (x, ξ; y,−η) ∈ C}. One checks that, thanks to

dx ∧ dξ + dy ∧ dη|C′ = dx ∧ d(∂xφ)− d(∂ηφ) ∧ dη

and thanks to the equalities d(∂xiφ) = Hessxixφ.dx+
∑
j
∂2φ
∂xiηj

dηj and d(∂ηjφ) =
∑
ji

∂2φ
∂xi∂ηj

dxi+

Hessηφ.η, using that the matrices Hessx2φ and Hessη2φ are symmetric, one has

dx ∧ dξ + dy ∧ dη|C′ =
∑
ij

∂2φ

∂xi∂ηj
(dxi ∧ dηj − dxi ∧ dηj) = 0.

This shows that C is a canonical relation.
Any canonical relation of X × Y has, modulo a symplectic change of variable in Y , a

generating function φ(x, η). We find the proof in [43] (Theorem 10.1). This result is a superb
result of Egorov, and we recall at the end of this section the original two-page proof.
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Let A be the Fourier integral operator of C∞0 (Y ) in S′(X) given by

(3.115) A(x) =

∫
ei(φ(x,η)−y.η)a(x, y, η)u(y)dydη.

Recalling that this is a formal notation for the action of a distribution of S ′, one should write,
for ψ ∈ S ′,

< Au,ψ >=

∫
ei(φ(x,η)−y.η)a(x, y, η)u(y)ψ(x)dydηdx.

We deduce from the proposition 6.2 that the wave front set of operator A is contained in

WF (Au) ⊂ T ∗X = {(x, ∂x(φ(x, η)− y.η)), ∂η(φ(x, η)− y.η) = 0/(y, η) ∈WF (u)}

which writes also

WF (Au) ⊂ {(x, ∂φ
∂x

(x, η)), (
∂φ

∂η
(x, η), η) ∈WF (u)}.

Let us study explicitly the canonical relation associated to an integral operator. The
function φ is the generating function of the canonical relation C = {x, ∂xφ; ∂ηφ, η), x,X, η ∈
IRd}. To this canonical relation is associated the canonical transformation H. It is easy to see
that WF (Au) ⊂ H(WF (u)).

Remark 8. If A is a pseudo-differential operator on IRd,

Au(x) =
1

(2π)d

∫
T∗IRd

ei(x−y).ηa(x, y, η)u(y)dydη.

The phase φ0(x, η) is thus φ0(x, η) = x.η. The application H is then the identity of T ∗IRd and
the canonical relation C is

C = {(x, η;x, η), (x, η) ∈ T ∗IRd}
associated with the Lagrangian manifold Λφ0 = {(x, x, η,−η)}.

Indeed, as the phase of the Fourier-inverse Fourier transform is ψ(x, y, ξ) = (x− y).ξ, the
associated Lagrangian manifold is Λψ = {(x, y, ∂xψ, ∂yψ), ∂ξψ = 0} = {(x, y, ξ,−ξ), x − y =
0} = {(x, x, ξ,−ξ)}.

Remark 9. We now consider the application Hs of IRd× IRd maping (x, θ) to (y,Σ) such
that that x = y + ∇θs(y, θ), θ + ∇ys(y, θ) = Σ. The Fourier integral operator (according to
the definition 6.4) of phase φ(y, θ) = y.θ + s(y, θ), and of symbol m(y, z, θ) is written

Tms u(y) =

∫
ei(φ(y,θ)−z.θ)m(y, z, θ)u(z)dzdθ =

∫
ei((y−z)θ+s(y,θ))m(y, z, θ)u(z)dzdθ.

We write the identity dΣj = dθJ +
∑
k

∂2s
∂yj∂θk

dθk +
∑
k

∂2s
∂yj∂yk

dyk, hence, as ∂2s
∂yj∂yk

dyk ∧
dyj = 0 for all j, k, one deduces

dy ∧ dΣ =
∑
j

dyj ∧ dθj +
∑
j,k

∂2s

∂yj∂θk
dyj ∧ dθk.

Similarly, from dxj = dyj+
∑
k

∂2s
∂θj∂yk

dyk+
∑
k

∂2s
∂θj∂θk

dθk and the identities dθj∧ ∂2s
∂θj∂θk

dθk = 0

we deduce

dx ∧ dθ =
∑
j

dyj ∧ dθj +
∑
j,k

∂2s

∂yj∂θk
dyj ∧ dθk.

Thus dy ∧ dΣ = dx ∧ dθ. The transformation Hs is a diffeomorphism of the space T ∗(IR2d)

leaving the symplectic structure invariant. It is a canonical transformation on T ∗IRd × T ∗IRd

associated to the canonical relation Cs = {(y, θ +∇ys(y, θ); y +∇θs(y, θ), θ)}.
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Remark 10. (Order of Fourier integral operators). Consider the Fourier integral operator

A, whose phase is φ(x, y, θ), x ∈ IRnX , y ∈ IRnY , θ ∈ IRN , homogeneous in θ of degree 1, and
whose symbol is a(x, y, θ), not yet specified. We apply this Fourier integral operator, defined
by the oscillating integral

Au(x) =

∫
eiφ(x,y,θ)a(x, y, θ)u(y)dydθ

to a oscillatory function u(y) = σ(y, k)eikψ(y). We then denote by ψ̃(x, y) the critical value of
ψ(y) + φ(x, y, θ) at a critical point ηc solution of

∂ηφ(x, y, ηc) = 0.

The principal term of Au(x, k) is written∫
IRnX

a(x, y, ηc)σ(y, k)eikψ̃(x,y)k
N
2 (detJ(φ+ ψ))−

1
2 dy.

This result is independent of the number of variables used in the phase when, with fixed space

dimensions nX and nY , a is in Sm+l(nX ,nY )−N2 .
We find the ordinary pseudodifferential operators when nX = nY = N , in which case it is

sufficient to put l(N,N) = −N/2.

Then, when we formally compose two Fourier integral operators, respectively A1 whose

symbol a1 belongs to Sm1+l(nX ,nY )−N1
2 and A2 of symbol a2 belonging to Sm2+l(nY ,nZ)−N2

2 ,
A1 ◦A2 is given by

A1A2u(x) =

∫ ∫
eiφ1(x,y,θ)+iφ2(y,z,η)a1(x, y, θ)a2(y, z, η)u(z)dydzdηdθ.

We want to obtain a representation of A1 ◦ A2 of symbol b(x, z, ω) ∈ Sm1+m2+l(nX ,nZ)−nω2 .

We formally denote by ω = (y, θ, η) ∈ IRN1+N2+nY and we find the representation

A1A2u(x) =

∫ ∫ ∫ ∫
eiψ(x,z,ω)b(x, z, ω)u(z)dzdω

To have the same order, we need b ∈ Sm1+m2+l(nX ,nZ)−N1+N2+nY
2 , which gives the equality

l(nX , nY ) + l(nY , nZ) = l(nX , nZ)− nY
2
.

Considering then the adjoint A∗ = Iã,ψ of the operator A = Ia,φ of phase ψ(y, x, θ) =
−φ(x, y, θ) and of symbol ã(y, x, θ) = ā(x, y, θ), we find that l(nX , nY ) = l(nY , nX). From the
two equalities, we can then deduce that

l(nX , nY ) = −nX + nY
4

.

We then define the space of Fourier integral operators of having the same canonical relation
and the same weight m.

Definition 8.6. Let φ(x, y, θ) be a phase defined on IRnX × IRnY × IRN . It defines a
canonical relation C on T ∗(X ×Y ). The space Im(X ×Y, C′) of the Fourier integral operators

of symbol a ∈ Sm+
nX+nY −2N

4 (X×Y ×RN ) of canonical relation C associated to the Lagrangian
manifold for σX + σY of C ′andT ∗(X × Y ) is the set of oscillating integrals in S ′ of the form

Au(x) =

∫
RRnY ×IRN

a(x, y, θ)eiφ(x,y,θu(y)dydθ.

This definition does not depend on the number of θ variables used to characterize the
canonical relationship.



3. SYMPLECTIC GEOMETRY 143

3.7. Inversion of Fourier integral operators. We summarize the result of inversion of
Fourier integral operators and conjugation of pseudo-differential operators by Fourier integral
operators in the

Theorem 8.1. Let C be a homogeneous canonical relation of a conic neighborhood of
(y0, η0) ∈ T ∗X, X ⊂ IRd onto a conical neighborhood of (x0, ξ0) ∈ T ∗Y , Y ⊂ IRd associated to
a generating function generating function φ(x, η). Its inverse canonical relation, denoted C−1

is the Lagrangian manifold in T ∗(X×Y ) for dy∧dη−dx∧dθ of points (y, η, x, θ), (x, θ, y, θ) ∈ C.

We consider the operator A ∈ I0(X × Y, C′), of symbol a ∈ S0(X × Y × IRd) elliptic

Au(x) =

∫
T∗X

ei(φ(y,η)−zη)a(y, z, η)u(z)dzdη.

(1) There exists b ∈ S0(Y × X × IRd) such that the Fourier operator operator B ∈
I0(Y ×X, (C−1)′) given by

Bv(x) =

∫ ∫
ei(x.ξ−φ(y,ξ))b(x, y, ξ)v(y)dydξ

verifies AB = Id+R1 ∈ L0(Y ), BA = Id+R2 ∈ L0(X), R1 and R2 are in L−∞.
(2) Let P be a pseudodifferential operator on X of order m of the principal symbol pm.

The operator Q = A ◦P ◦B is a pseudodifferential operator on Y of order m, whose
principal symbol qm is the image of the principal symbol pm of P by the canonical
transformation. Moreover, we have (x0, ξ0, y0, η0) /∈WF (PA−AQ).

Note that a pseudo-differential operator on X is associated to the canonical identity
relation on T ∗(X × X) and to the phase x.η. As we have seen in Remark 3, the space
dimension is equal to the dimension in η, so I0 corresponds to the symbols of S0.

On the other hand, when the canonical relation is generated by the phase φ(x, η), we have
the relation pm(x,∇xφ) = qm(∇ηφ, η), generalization of the relation between the symbols
after change of symplectic variable of the exercise 7.3.

This theorem (not proven here) is a direct consequence of the above definitions and of
exercise 7.3. This is theorem 10.1 of [43], proved by Egorov [34] and which serves as basis for
canonical transformations of pseudodifferential operators in order to

to simple operators.

Egorov considers first a phase function S(x, ξ) satisfying det( ∂2S
∂xiξj

(x, ξ′)) 6= 0. IHe in-

troduces the homogeneous canonical transformation (x, ξ) → (x′, ξ′) with x′j = ∂ξjS(x, ξ′),
ξj = ∂xjS(x, ξ′). Then for any pseudodifferential operator P and any function h, there exists
Q such that

PhΦu = ΦhQu+ Tu

where Φ is the Fourier integral operator

Φv(x) =
1

(2π)n

∫
IRn

û(ξ)eiS(x,ξ)dξ

and where T ∈ L−∞(IRn). The canonical relation of PΦ is equal to the one of Φ, which
corresponds to remark 1 above.

3.8. Composition of Fourier integral operators. In this last paragraph, we state the
composition theorem of the Fourier integral operators through their canonical relations. We
refer the interested reader to chapter 11 where the detailed proof of this theorem is presented.

Let X, Y , Z be three manifolds of dimension nX , nY and nZ and a Fourier integral
operator A1 of X in Y , of canonical relation C1 ⊂ T ∗(X × Y ), a Fourier integral operator A2

of Y in Z, of canonical relation C2. We assume

A1 ∈ Im1(X × Y, C′1), A2 ∈ Im2(X × Y, C′2).

It is assumed that C1 × C2 and T ∗X × T ∗Y × T ∗Z have a transverse intersection, and that
the natural projection C1 ◦ C2 of this intersection to T ∗(X × Z) is clean. We verify that

(ρ1, ρ2) ∈ T ∗X × T ∗Z ∈ C1 ◦ C2 ⇔ ∃ρ ∈ T ∗Y, (ρ1, ρ) ∈ C1, (ρ, ρ2) ∈ C2.
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To say that A1 has canonical relation C1 is equivalent to saying that, microlocally in
the neighborhood of a point of C1, we can represent C1 by a phase φ1(x, θ) of the form
C1 = {(x, θ)}. by a phase φ1(x, θ) in the form C1 = {(x, ∂xφ(x, θ); (∂xφ(x, θ), θ)}. Similarly,
to say that A2 is of canonical relation C2 is equivalent to saying that, microlocally in the
neighborhood of a point of C2, we can represent C2 by a phase φ2(y, w) in the form C2 =
{(y, ∂yφ2(y, w); (∂wφ2(y, w), w)}.

Theorem 8.2. Under the previous assumptions, the operator A1 ◦A2 is a Fourier integral
Fourier integral operator, with canonical relation C1 ◦ C2, of order the sum of the orders of
the symbols of A1 and A2.

Proof. Equalities

A1v(y) =
∫
T∗X

eiφ1(y,θ)−x.θa1(y, θ)v(x)dxdθ
A2u(z) =

∫
T∗Y

eiφ2(z,w)−y.wa2(z, w)u(y)dwdy

one deduces

A2A1u(z) =

∫ ∫
T∗X×T∗Y

ei(φ1(y,θ)−x.θ+φ2(z,w)−y.w)a1(y, θ)a2(z, w)u(x)dxdwdydθ.

We calculate the value of A2A1u at point z, according to the value of u at point x. Thus,
in the space variables, we choose to eliminate the variable y. Since, by analogy with Fourier
analysis, we have to we have to eliminate jointly a dual variable, we have the choice between
θ and w. and w. The choice is indifferent. We formally apply the theorem of the stationary
phase of parameter (x, z, θ) in the variables (y, w). Then the critical point (yc, wc) is a solution
of

∂yφ1(yc, θ) = wc, ∂wφ2(z, wc) = yc.

Let us identify the points of C1 and C2. The point of C1 is (y, ∂yφ1(y, θ); ∂yφ1(y, θ), θ). For y =
yc, we obtain (yc, wc; ∂θφ1(yc, θ), θ). Similarly, the current point of C2 associated with the phase
φ2 is (z, ∂zφ2(z, w); ∂wφ2(z, w), w). For w = wc, we obtain the point (z, ∂zφ2(z, wc); yc, wc).
The critical value of the phase is φ1(yc, θ)+φ2(z, wc)−yc.wc−xθ, and yc and wc depend only
on z and θ. We denote then by

φ̃(z, θ) = φ1(yc, θ) + φ2(z, wc)− yc.wc.

It follows

∂θφ̃(z, θ) = ∂θφ1(z, θ) + ∂θyc[∂yφ1(yc, θ)− wc] + ∂θwc[∂wφ2(z, wc)− yc] = ∂θφ1(yc, θ).

Similarly ∂zφ̃(z, θ) = ∂zφ2(z, wc). The two points of C1 and C2 are respectively

(yc, wc; ∂θφ̃(z, θ), θ) et (z, ∂zφ̃(z, θ); yc, wc).

We thus recognize the point of T ∗(X × Z) equal to ((∂zφ̃(z, θ), θ); (z, ∂zφ̃(z, θ)). It is then
element of the canonical relation C1 ◦ C2.

The transversality condition is equivalent to the non-degeneracy of the critical point. The
calculation of the stationary phase leads to a symbol, whose order is the sum of the orders,
and which is the product of the symbols. We have thus sketched the proof of the theorem 8.2,
which is the theorem 4.2.2 of [48], taken up in the theorem 11.12 de [43].

4. Exercises of chapter 8

Exercice 8.0. Show that only a neighborhood compact in y, conical in ηof the critical
points of the phase (x, y, η) → (x − y).η + φ(y) contributes to the integral of Proposition 1.
Show also that this result is true for the calculation of P (A(u)) in Proposition 8.2.

Exercice 8.1: Prove Proposition 8.4 with direct methods.
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Exercice 8.2: follow-up of the problem on the Friedlander model operator of Section 3. 6)
Consider a point ρ0 = (0, 0, 0, ξ0, η0

1 , η
0
2) ∈ T ∗(IR+ × IR2) ∩ Car(p). Give the bicharacteristic

of P defined through the system (3.84) passing through the point ρ0. For this, one will define

q(x, η1, η2) = (1 + x)η2
1 − η2

2

and one shall express these curves using

S(x, η1, η2) =

∫ x

0

(q(u, η1, η2))
1
2 du.

7) Consider the function, defined on IR+ × IR2 × IR2, through

φ(x, y1, y2, θ1, θ2) = y1θ1 + y2θ2 − S(x, θ1, θ2)sign(θ1).

Prove that the bicharacteristics, starting at the origin y1 > 0 span the space

Σ = {(x, y, ξ, η) ∈ T ∗(IR+ × IR2), x > 0, |θ1| ≥ |θ2|,
ξ = ∂xφ(x, y, θ)
η = ∇yφ(x, y, θ)
∇θφ(x, y, θ) = 0

}

8) Prove that the singular support of the Fourier integral operator K(2) of symbol a2(x, θ)

and of phase l(x, y, Y, θ) = (y−Y )θ− 2
3 (ξ

3
2 − ξ

3
2
0 ) is contained in the union of bicharacteristics

starting at the origin in y1 > 0.
Preuve de l’exercice 8.0. On fixe un compact K dans la variable x, et on considère ψ ∈ C∞0 (K).

On introduit aussi φ̃(y) égale à 1 sur le compact B(K, 1) = {z, d(z,K) ≤ 1}, de support inclus dans
B(K, 2). On calcule la distribution

A(x, k) =

∫
IR2d

eik((x−y)η+φ(y))a(y, k)p(x, η, k)dydη

en considérant son action sur la fonction test ψ. On considère, de plus, une fonction test χ sur IR
qui localise au voisinage de 0. On tronque l’intégrale en η en supprimant un voisinage de η = 0. La
distribution obtenue est notée At.

Soit

I =< At, ψ >=
∫

IR3d e
ik((x−y)η+φ(y))φ̃(y)a(y, k)p(x, η, k)ψ(x)(1− χ(|η|))dxdydη

+
∫

IR3d e
ik((x−y)η+φ(y))(1− φ̃(y))a(y, k)p(x, η, k)ψ(x)(1− χ(|η|))dxdydη

Le premier terme de cette somme est noté I1 et le deuxième terme est noté I2.
étudions d’abord le deuxième terme. Comme At est une intégrale ne η ne contenant pas un

voisinage de 0, on peut écrire le deuxième terme après intégrations par parties en x. Il n’y aura pas
de termes de bord car la fonction ψ est à support compact. Ainsi on introduit l’opérateur L égal à

L =
∑
j

ηj
|η|2

∂

∂xj

qui vérifie L(eikη(x−y)) = ikeikη(x−y). Ainsi, son opérateur transposé étant noté tL, et c’est aussi un
opérateur différentiel, on trouve

I2 = (ik)−M
∫

IR3d

eik((x−y)η+φ(y))(1− φ̃(y))a(y, k)(tL)M [p(x, η, k)ψ(x)](1− χ(|η|))dxdydη.

Cette intégrale est absolument convergente en η dès que M > m + d + 1, après avoir supposé a
intégrable. On sépare l’intégrale en η en deux termes, notés IR2 et I3, avec

I3 = (ik)−M
∫
|η|≥R

eik((x−y)η+φ(y))(1− φ̃(y))a(y, k)(tL)M [p(x, η, k)ψ(x)](1− χ(|η|))dxdydη.

L’inégalité M > m + d + 1 suffit pour affirmer qu’il existe une constante C indépendante de R
telle que I3 ≤ C

R
.

On introduit l’opérateur D dont l’opérateur transposé en η est

tD =
∑
j

xj − yj
|x− y|2

∂

∂ηj
.
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Cet opérateur est régulier sur le support de (1 − φ̃(y)ψ(x), puisque x ∈ K et y ∈ C(B(K, 1)), ainsi
|x − y| ≥ 1. Des intégrations par parties successives dans IR2 conduisent à des termes de bord en
O( 1

R
), et à un terme intégral dans lequel on peut réaliser autant d’intégrations par parties que l’on

souhaite. Finalement
“Pour tout N > 0, il existe deux constantes CN et DN telles que

I2 ≤
CN
kN

+
DN
R

et donc le terme I2 est négligeable dans le calcul de phase stationnaire”.
Enfin, on supprime un voisinage en η du complémentaire de {∇yφ(y), y ∈ B(K, 2)}. On a le

droit de le faire car ces points ne contribuent pas à la phase. On s’est ainsi ramené à un voisinage
compact en y et conique en η des points critiques. La méthode est identique lorsque la phase est
(x− y).θ + s(y, η). Cette démonstration est une conséquence du résultat abstrait suivant:

Lemma 8.4. (Corollary 1.1.12 de Hörmander [47]) Soit L une application linéaire des fonctions
de C∞(X×IRn), s’annulant pour |θ| grand, sur un espace de Fréchet F . On suppose que L est continue
pour la topologie de Sm(X × IRn). Alors L admet une unique extension continue sur Sm(X × IRn)

On peut rendre le support compact en θ grâce au résultat de convergence de la proposition 5.1,

où on a prouvé que si a ∈ Smρ,δ, alors a(x, θ)χ( θ
j
) converge vers a dans la topologie de Sm

′
ρ,δ pour

m′ > m. On applique ensuite le lemme pour définir l’extension une fois le calcul asymptotique fait
avec le symbole tronqué.

Preuve de l’exercice 8.1. Pour le premier alinéa, on sait que (x0, ξ0) /∈WF (u) lorsqu’il existe un
opérateur pseudo-différentiel Op(a) d’ordre 0, tel que a0(x0, ξ0) 6= 0, vérifiant Op(a)u ∈ C∞.

On vérifie alors que y → Op(a)u ◦ χ−1(y) est une fonction C∞, et comme

(Op(a)u) ◦ χ−1) = Op(a′)(u ◦ χ−1)

avec a′(χ(x), η) calculé par la proposition 7.11, on vérifie que le symbole principal de a′ est

a′0(χ(x), η) = a0(x, χ′(x)η)

ce qui entrâıne que a′ est un symbole d’ordre 0, et que a′0(χ(x0), (χ′(x0))−1ξ0) = a0(x0, ξ0) 6= 0.
Il existe un opérateur pseudo-différentiel d’ordre 0, Op(a′), dont le symbole est non nul en

hχ(x0, ξ0), tel que Op(a′)(u ◦ χ−1) ∈ C∞. Donc hχ(x0, ξ0) /∈WF (u ◦ χ−1).
Réciproquement, comme hχ−1 = (hχ)−1,

hχ(x0, ξ0) /∈WF (u ◦ χ−1)⇒ (x0, ξ0) = hχ−1(hχ(x0, ξ0) /∈WF ((u ◦ χ−1) ◦ χ) = WF (u).

On a prouvé l’égalité
hχ(WF (u)) = WF (u ◦ χ−1).

L’égalité
∑
j χ
′
kj(x)dxj = d(χk(x)) permet d’obtenir χ′kj(x) = ∂xjχk(x).

Supposons (x(s), ξ(s)) solution du système
dx
ds

= ∂ξpm(x(s), ξ(s))

dξ
ds

= −∂xpm(x(s), ξ(s)).

On introduit y(s) = χ(x(s)) et η(s) = (tχ′)−1(x(s))ξ(s).
On a donc

ξ(s) = tχ′(x(s))η(s),

donc, utilisant χ′kj(x) = ∂xjχk,

dξj
ds

=
d

ds
(
∑
k

∂xjχk(x(s))ηk(s)) =
∑
k,l

∂2
xjxlχk(x(s))ηk(s)

dxl
ds

+
∑
k

∂xjχk(x(s))
dηk
ds

,

et donc

−∂xjpm(x(s), ξ(s)) =
∑
k,l

∂2
xjxlχk(x(s))ηk(s)∂ξlpm(x(s), ξ(s)) +

∑
k

∂xjχk(x(s))
dηk
ds

.

Ceci se réécrit

−
∑
k

∂xjχk(x(s))
dηk
ds

= ∂xjpm(x(s), ξ(s)) +
∑
k,l

ηk(s)∂2
xjxlχk(x(s))∂ξlpm(x(s), ξ(s)).
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La matrice inverse de tχ′, notée A(x), est caractérisée Ajk(x) telle que∑
j

Apj(x)χ′jk(x) = δpk.

On obtient

−
∑
j

∑
k

Apjχ
′
kj
dηk
ds

=
∑
j

Apj∂xjpm +
∑
j,k,l

Apj∂
2
xjxlηk(s)χk∂ξlpm.

On a donc

−dηp
ds

=
∑
j

Apj(x(s)∂xjp(x(s), ξ(s)) +
∑
j,k,l

(tχ′)−1
pj (χ−1(y(s)))∂2

xjxlχkηk(s)∂ξlpm.

Comme on a la relation

qm(y, η) = pm(χ−1(y), tχ′(χ−1(y)η),

on vérifie que

∂ypqm(y, η) =
∑
j

∂yp(χ−1)j)(y)∂xjpm +
∑
j,k,l

∂2
xjxlχk(χ−1(y))ηk∂ξlpm∂xj (χ

−1(y)).

En comparant, on obtient le résultat

(4.116)
dηp(s)

ds
= −∂ypqm(y(s), η(s)).

Le résultat sur
dyp
ds

s’obtient en notant que

(4.117)
dyp
ds

=
∑
j

∂yj (χ
−1)j

dxj
ds

=
∑
j

∂yj (χ
−1)j∂ξjpm(x(s), ξ(s)) = ∂ηpqm(y(s), η(s).

On a donc montré que (y(s), η(s)) est la bicaractéristique de qm issue du point (y0, η0).
Le résultat pour la phase solution de l’équation eikonale est plus simple encore; il provient de

l’égalité du gradient

∇y(φ ◦ χ−1) = (χ′)−1(χ−1(y))(∇xφ)(χ−1(y)).

Choisissant y = χ(x) dans cette égalité, on obtient

(4.118) qm(y,∇y(φ ◦ χ−1)) = qm(χ(x), (χ′)−1(x)∇xφ(x)) = pm(x,∇xφ(x)) = 0.

Ces égalités impliquent que le front d’onde, les bicaractéristiques, et la variété des {(x,∇xφ)} pour
φ solution de l’équation eikonale sont transportés par hχ dans le changement de variable sur IRd ×
IRd induit par le changement de variable sur IRd donné par χ. C’est un changement de variable
symplectique. Montrons qu’il laisse invariant la forme symplectique dy ∧ dη. De l’égalité

dy ∧ dη = d(χ(x)) ∧ d(t(χ′)−1(x)η) = (
∑
j,k

χ′kjdxj) ∧ (
∑
j,k

∂xj (
t(χ′)−1)kηkdxj +

∑
j,k

(t(χ′)−1)jkdηk)

utilisant la commutation des dérivées en x dans les dérivées secondes de χ, il ne reste pas de terme
en dxj ∧ dxk. Quant aux termes en dxj ∧ dηk, leur coefficient est

∑
l χ
′
lj((χ

′)−1)lk = δjk. On a vérifié

(4.119) dy ∧ dη = dx ∧ dξ.

On dit que hχ est un changement de variable symplectique sur IRd × IRd, et on identifie dans ce
cas IRd × IRd à T ∗(IRd), espace muni de la forme symplectique d(ξdx) qui est invariant en géométrie
par les transformations hχ.

Plus généralement, un changement de variable symplectique est associé à un difféomorphisme
(x, ξ)→ (h1(x, ξ), h2(x, ξ)) tel que

(
∑
j

∂xjh1dxj +
∑
j

∂ξjh1dξj) ∧ (
∑
j

∂xjh2dxj +
∑
j

∂ξjh2dξj) =
∑
k

dxk ∧ dξk.

Ceci donne les conditions nécessaires et suffisantes:



148 8. OPERATORS AND SYMPLECTIC GEOMETRY

∂xih1∂xkh2 − ∂xkh1∂xjh2 = 0
∂ξih1∂ξkh2 − ∂ξkh1∂ξjh2 = 0
∂xih1∂ξkh2 − ∂ξkh1∂xih2 = δij

qui traduisent que les crochets de Poisson des h soient nuls.
Solution de l’exercice 8.2. 6) Le symbole principal de l’opérateur de Friedlander (3.84) est

p(x, ξ, y1, y2, η1, η2) = −ξ2 + (1 + x)η2
1 − η2

2 = q(x, η1, η2)− ξ2.

Les bicaractéristiques sont définies par le système

ẋ = −2ξ

ξ̇ = −η2
1

ẏ1 = 2(1 + x)η1

ẏ2 = −2η2

η̇1 = 0
η̇2 = 0.

Le symbole est nul sur la bicaractéristique, donc

(ξ(s))2 = q(x(s), η(s))

En particulier, pour s = 0, on trouve η2
1 ≥ η2

2 puisque ξ0 est défini. De plus, η1 et η2 sont
constants sur les bicaractéristiques. Il existe donc ε = ±1 tel que

ξ(s) = εq(x(s), η).

Comme l’opérateur est défini pour x ≥ 0, on a, grâce à l’égalité ẋ = −2ξ, directement s ≤ 0 et ε = +1
ou s ≥ 0 et ε = −1.

On a de plus q(x(s), η) ≥ q(0, η) ≥ 0. Pour x(s) > 0, ce qui se produit lorsque ξ(0) < 0, q > 0. Il
est impossible, puisque (ξ0, η0

1 , η
0
2) 6= (0, 0, 0) que q soit nul partout, Donc q > 0 hors du point origine

même si il est nul au point origine. On vérifie que ξ est donc non nul, donc ẋ est non nul, et x peut
être choisi comme nouvelle variable. On se place dans un premier temps pour η2

1 > η2
2 , et ensuite, par

continuité dans les expressions, on peut étendre les résultats à η2
1 = η2

2 . On obtient

dy1
dx

= −ε(1 + x)η1(q(x, η))−
1
2

dy2
dx

= εη2(q(x, η))−
1
2 .

Ce système est exactement
dyj
dx

= − 1
2
ε(q(x, η))−

1
2 ∂ηj q(x, η), qui se réécrit

dyj
dx

= −ε∂ηj (q(x, η))
1
2 ).

Utilisant la fonction S, on trouve
dyj
dx

= d
dx
ε∂ηjS(x, η). On en déduit l’égalité

yj(x) = −ε ∂S
∂ηj

(x, η).

La fonction S est explicite. Il s’agit de calculer∫ x

0

((1 + u)η2
1 − η2

2)
1
2 du = [

2

3η2
1

((1 + u)η2
2 − η2

1)
3
2 ]x0 =

2

3η2
1

[((1 + x)η2
2 − η2

1)
3
2 − (η2

2 − η2
1)

3
2 ].

Comme de plus le signe de dy1
dx

est celui de −εη1 et que l’on n’est concerné que par les bicar-
actéristiques dans x > 0 qui vérifient y1 > 0, on sait que ε est le signe de −η1. Ceci permet de justifier
l’introduction de la fonction φ(x, y, θ).

7) On vérifie que la relation ∇θφ(x, y, θ) = 0 implique

yj = sign(θ1)∇θjS(x, θ)

On vérifie de plus que l’expression η = ∇yφ implique que η = θ, et la relation ξ = ∇xφ implique

ξ = −sign(θ1)(q(x, θ))
1
2 . Toutes ces relations conduisent à

θ = η, y(x) = sign(η1)∂ηS(x, η), ξ = −sign(η1)(q(x, η))
1
2 .

Le point de Σ considéré est alors le point sur la bicaractéristique issue de (0, 0, 0,−sign(η1)(η2
1 −

η2
2)

1
2 , η1, η2) d’abscisse x. Réciproquement, un point d’une bicaractéristique issue de l’origine est dans

Σ.
8) Cette démonstration est une adaptation facile de la démonstration de la proposition 6.2. On

se donne une fonction χ à support compact dans IR+ × IR2. On écrit
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(K(2), χ) = limε→0
1

(2π)2

∫
a2(x, y, θ)σε(θ)exp(−2

3
(ξ

3
2 − ξ

3
2
0 ))χ(x, y)eiy.θdxdydθ.

On définit le cône contenu dans Σ:

Γ1 = {(ξ, η1, η2) ∈ IR3, ξ = ∂xφ, η = ∇yφ = θ, (x, y) ∈ suppχ, η2
1 ≥ η2

2 > 0}.
On vérifie tout d’abord que

2

3
(Z

3
2 − Z

3
2
0 ) = S(x, θ1, θ2)

(ce sont les quantités Z et Z0 introduits dans le 1) de la section 3. On rappelle aussi que sur le support
de a2,

−2

3
(ξ

3
2 − ξ

3
2
0 ) = −2

3
isign(θ1)(Z

3
2 − Z

3
2
0 ).

Il reste donc, au sens des distributions et à une troncature près

(K(2), χ) = 1
(2π)2

∫
a2(x, y, θ)χ(x, y)eiy.θ−isign(θ1)S(x,θ)dxdydθ

= 1
(2π)2

∫
a2(x, y, θ)χ(x, y)eiφ(x,y,θ)dxdydθ

Nous calculons ξ − ∂xφ. Nous trouvons ainsi

ξ − 2

3θ2
1

3θ2
1

2
((1 + x)θ2

1 − θ2
2)

1
2 = ξ − ((1 + x)θ2

1 − θ2
2)

1
2 .

De même, ∂yφ = θ. On suppose (ξ, η) ∈ Γ2 tel que Γ2 ∩ Γ1 = ∅. Il existe C > 0 tel que

mod(x, y, ξ, η) = (ξ − ∂xφ)2 + |η −∇yφ|2 ≥ C(|θ|+ |ξ|+ |η|)2.

L’opérateur M dont l’adjoint est

tM = (mod(x, y, ξ, η))−1[(ξ − ∂xφ)
∂

∂x
+ (η −∇yφ).

∂

∂y
]

est alors un opérateur adéquat pour le théorème de la phase non stationnaire, et on a ei(φ(x,y,θ)−xξ−y.η) =
tMei(φ(x,y,θ)−xξ−y.η).

On vérifie ainsi que l’intégrand dans (K(2), χ) peut être remplaçé, pour tout p par Mk(a2χ).
On utilise le résultat de régularité sur le symbole a2 ∈ S0

1
3
, 2
3

pour conclure que cette intégrale est

décroissante aussi rapidement que toute puissance de (|ξ|+ |η|)−1.
Il vient donc que

Γ2 ∩ Γ1 = ∅ ⇒ suppχ ∩WF (K(2)) = ∅.
Nous avons achevé la preuve de cet exercice.





CHAPTER 9

Lagrangian solutions of the characteristic equation

1. Definition of Lagrangian solutions

The Lagrangian manifold Λφ introduced in section 3.6 has an important but restrictive property:
the canonical projection from T ∗X to X is invertible. Relaxing this assumption allows to account
for caustics. Indeed, at a point close to the caustic, the manifold will be represented through sev-
eral phases, which is equivalent to the existence of several rays passing through this point. The
corresponding bicharacteristics, on the other hand, do not intersect.

We now consider an operator P on C∞(X), with principal symbol p(x, ξ). If P is a differential
operator, a phase is a solution of the eikonal equation associated to P when p(x, dφ(x)) = 0. In other
words, Λφ ⊂ Car(P ).

A generalization of this result has been proved in the previous chapter (lemma 8.1) for pseudo-
differential operators.

In this chapter, we study the Lagrangian manifolds associated to a differential or pseudo-differential
operator. They are called Lagrangian solutions of the characteristic equation p = 0 or of the
operator P . The characteristic manifold (or characteristic equation) is defined by p(x, ξ) = 0, p
being the principal symbol of the pseudo-differential operator P . These Lagrangian manifolds are the
generalization of the Λφ manifolds where φ is a solution of the eikonal equation p(x,∇xφ) = 0.

Definition 9.1. A Lagrangian solution Λ of p = 0 is a manifold

• maximal (dimT(x0,ξ0)Λ = dimTx0(X)),
• (σ|Λ = 0),
• solution (p|Λ = 0). We will sometimes omit p = 0 to write only p.

We have the following results

Proposition 9.1. (1) If a bicharacteristic curve intersects the characteristic manifold, it
is contained in the characteristic manifold,

(2) If a bicharacteristic curve of p intersects Λ, it is contained in Λ.

We noticed before that the principal symbol is invariant on the integral curves of the Hamiltonian.
We deduce the first item of the proposition 9.1.
A weaker version of the second item of the proposition 9.1 is:

Proposition 9.2. Let φ be a solution of the eikonal equation. If a bicharacteristic curve intersects
Λφ, it is contained in Λφ.

Proof. We begin by proving 9.2.
We consider a homogeneous polynomial symbol of order 2, p(x, ξ) =

∑
i,j ai,j(x)ξiξj . We assume

that the Cauchy data (x(0), ξ(0)) = (x0, ξ0) of Hamilton’s equations (2.108), , verify ∇φ(x0) = ξ0
where φ is solution of p(x,∇xφ(x)) = 0.

The equation satisfied by φ is:

(1.120) p(x,∇φ(x)) = 0

Derivating along each variable, one obtains the identity

(1.121) (∂xip+
∑
j

∂2
xixjφ∂ξjp)|Λφ = 0.

Let ωi(s) = ξi(s)−∂xiφ(x(s)), i ≤ i ≤ n, n = dim(TxX).The system of ordinary differential equations
that ω solves is

−dωi
ds

= ∂xip(x(s), ξ(s))−
∑
j

∂2
xjxiφ(x(s))∂ξjp(x(s), ξ(s)).

151
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One notices that ω(0) = 0. Expressing the relation (1.120) at the point x(s), and subtracting the

equality obtained to the equation giving dωi
ds

, we obtain:

− dωi
ds

= −
∑
j ∂

2
xjxiφ(x(s))[∂ξjp(x(s), ξ(s))− ∂ξjp(x(s),∇φ(x(s)))]

+∂xip(x(s), ξ(s))− ∂xip(x(s),∇φ(x(s))).

Using ξiξj − ηiηj = ηj(ξi − ηi) + (ξi − ηi)(ξj − ηj) + ηi(ξj − ηj), one finds:

− dωi
ds

=
∑
j,k ∂xiaj,k(x(s))ωj(s)ωk(s) +

∑
j,k ∂xiaj,k(x(s))(ξj(s)ωi(s) + ξi(s)ωj(s))

−2
∑
j,k ∂

2
xjxiφ(x(s))aj,k(x(s)ωk(s).

which is of the form dω
ds

= A(s)ω(s) − B(s)(ω(s), ω(s)). As ω(0) = 0, the Cauchy-Lipschitz theorem
gives that there exists s0 > 0, depending on the solutions on [0, T ] and not on the initial point, such
that ω(s) = 0 on [0, s0) because of uniqueness of the solution ω = 0 which is a trivial solution. We note
to complete the proof that we can reproduce the previous argument with initial data (x(s0), ξ(s0)),
hence the equality ξ(s) = ∇φ(x(s)) for 0 ≤ s ≤ 2s0. We can continue the argument until [0, T ], since
the extension of the solution is done on an interval independent on the initial datum.

In the case where the symbol is no longer polynomial, by using the Taylor formula with integral
remainder, we find that ∂xip(x(s), ξ(s)) − ∂xip(x(s),∇φ(x(s))) = Gi(x(s), ξ(s),∇φ(x(s))).ω(s) and
∂ξjp(x(s), ξ(s))− ∂ξjp(x(s),∇φ(x(s))) = Rj(x(s), ξ(s),∇φ(x(s))).ω(s) and the system is written ω̇ =
H(s).ω(s), H being known using the explicit functions x(s), ξ(s) and φ(x), and we apply again Cauchy-
Lipschitz theorem.

The proof of the second item of proposition 9.1 comes from the maximality of the isotropic
manifold at (x0, ξ0). Thus there exists a coordinate system y = (y1, ..yn) such that Λ is written, in
the neighborhood of (x0, ξ0), {(x(y), ξ(y)), y ∈ IRn ∩ V }. We use the two relations{

p(x(y), ξ(y)) = 0
ω|Λ = 0

Equality ω|Λ = 0 writes

(1.122)
∑
i

∂ξi
∂yj

∂xi
∂yk
−
∑
i

∂ξi
∂yk

∂xi
∂yj

= 0

(this is the equivalent, when x(y) = y, of ∇ ∧ ξ(x) = 0, hence ξ(x) = ∇ψ(x).) The manifold is
Lagrangian maximal. What changes with the previous proof is that the relation x(y) is not necessarily
invertible invertible (the canonical projection in this case is not surjective). However, since the
manifold is maximal, there exists a subset of (x(y), ξ(y)), denoted (x′(y), ξ”(y)), where x′ has p
coordinates and ξ′′ has q coordinates with p + q = n. We have det(Jac(x′(y), ξ”(y))) 6= 0 at y = 0.
We then define J−1 the application such that y = J−1(x′(y), ξ”(y)).

Remark that there is no uniqueness of the choice of coordinates x′, ξ′′, we thus fix a choice of
variables x and ξ which is bijective. Let J1 the set of indices corresponding to the coordinates of x′(y)
and J2 the set of indices corresponding to the coordinates of x′(y). If J1 ∩ J2 = ∅, we go directly to
the study of the manifold, knowing that J1 ∪ J2 = {1, .., n}.

If J1 ∩ J2 = J 6= ∅, then the coordinates forming a system of independent coordinates are then

[(xj)j∈J1\J , (xj)j∈J , (ξj)j∈J , (ξj)j∈J2\J ].

We note (disjoint unions)

{1, .., n} = J1 ∪K1, {1, .., n} = (J1\J) ∪ J ∪ (J2\J) ∪K+
2 ,K2 = (J1\J) ∪K+

2 .

Let k ∈ K1. By the local inversion theorem based on the fact that the family (x′, ξ”) is maximal,
there exists a function Xk such that

xk(y) = Xk[(xj)j∈J1\J , (xj)j∈J , (ξj)j∈J , (ξj)j∈J2\J ].

Similarly if l ∈ K2, there exists a function Ξl such that

ξl(y) = Ξl[(xj)j∈J1\J , (xj)j∈J , (ξj)j∈J , (ξj)j∈J2\J ].

Let p ∈ J . Then, for k ∈ K1, {xp, xk} = ∂xk
∂ξp

= 0, and therefore the functions Xk are independent

of the variables ξp, p ∈ J . As, moreover, {ξp, xk} = 0 for p ∈ J and k ∈ K1 thanks to J ∩K1 = ∅, Xk
does not depend on the variables ξp, p ∈ J . Similarly, the variables ξl for l ∈ K2 of (xp, ξp), p ∈ J are
independent. We write
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xk(y) = Yk[(xj)j∈J1\J , (ξj)j∈J2\J ].

ξl(y) = Σl[(xj)j∈J1\J , (ξj)j∈J2\J ].

The Lagrangian manifold is therefore written (locally)

Λ = {
[(xj)J1\J , (xj)J , (Yk[(xj)J1\J , (ξj)J2\J ])k∈K1 , (Σl[(xj)J1\J , (ξj)J2\J ])l∈J1\J

, (ξp)J , (ξl)J2\J , (Σl[(xj)J1\J , (ξj)J2\J ])
l∈K+

2
] }.

Thus we notice that locally Λ = Λ̃ × IR2dim J , where Λ̃ is a Lagrangian manifold in IRn−dim J

(depending only on the coordinates (xj)j∈J1\J , (ξj)j∈J2\J). We are back to the elementary case since
(J1\J) ∩ (J2\J) = ∅. The independent coordinates are of the form (x′, ξ”) (no common index).This
is the case we will consider from now on.

Let (X(s),Ξ(s)) be the bicharacteristic curve such that (X(0),Ξ(0)) = (x0, ξ0) = (x(0), ξ(0)).
We thus deduce y(s) from (X ′(s),Ξ”(s)) through

(X ′(s),Ξ”(s)) = (x(y(s)), ξ(y(s)))

in ta neighborhood of y = 0 and therefore in a neighborhood of s = 0 since in this neighborhood, we
have a diffeomorphism (y(s) = J−1(X ′(s),Ξ”(s))).

Let (V (s),W (s)) be the vector (x(y(s)), ξ(y(s))− (X(s),Ξ(s)). By construction, half of its com-
ponents are zero.

We verify the equality:

(1.123)

∑
l
∂ξl
∂ym

(y(s)) dVl
ds
−
∑
l′
∂xl′
∂ym

(y(s)) dWl
ds

=∑
l,j

∂ξl
∂ym

∂xl
∂yj

dyj
ds
−
∑
l
∂ξl
∂ym

(y(s)) ∂p
∂ξl

(X(s),Ξ(s))

−
∑
l′,j

∂xl′
∂ym

(y(s)
∂ξl′
∂yj

(y(s))
dyj
ds
−
∑
l′
∂xl′
∂ym

(y(s)) ∂p
∂xl′

(X(s),Ξ(s))

Using the equality (1.122), valid on Λ, we exchange the derivatives in m and j in the first term

of the right-hand side. We deduce the equality
∑
l,j

∂ξl
∂ym

∂xl
∂yj

dyj
ds

=
∑
l′,j ∂xl′(y(s)

∂ξl′
∂yj

(y(s))
dyj
ds

. For

the other terms, we derive with respect to all yj , 1 ≤ j ≤ n, the equality p|Λ = 0. Then

[
∑
j

∂p

∂xj

∂xj
∂ym

+
∑
n′

∂p

ξn′
p.
∂ξn′

∂ym
]|(x(y(s)),ξ(y(s))) = 0.

Along with the equality (1.123) one has∑
l
∂ξl
∂ym

(y(s)) dVl
ds
−
∑
l′
∂xl′
∂ym

(y(s)) dWl
ds

=∑
l
∂ξl
∂ym

(y(s)) ∂p
∂ξl

(x(y(s), ξ(y(s)))−
∑
l
∂ξl
∂ym

(y(s)) ∂p
∂ξl

(X(s),Ξ(s))

+
∑
l′
∂xl′
∂ym

(y(s)) ∂p
∂xl′

(x(y(s)), ξ(y(s)))−
∑
l′
∂xl′
∂ym

(y(s)) ∂p
∂xl′

(X(s),Ξ(s)).

So we have n equations (1 ≤ m ≤ n), and 2n unknowns of which n are zero by hypothesis. The
assumption of maximality leads to the fact that the system

∂ξ”

∂ym
(y(s)).

dV ”

ds
− ∂x′

∂ym
(y(s))

dW ′

ds
= Tm(s)

is invertible.
We can then write the equations verified by (V ”(s),W ′(s)) in the form

d
ds

(V ”(s),W ′(s)) = C(s, V ”(s),W ′(s)).(V ”(s),W ′(s))
V ”(0) = 0,W ′(0) = 0

which is again a Cauchy problem. Its unique solution is (V ”(s),W ′(s)) = 0. The second item of
Proposition 9.1 is proven. �

We denote for later purposes by:

exp(sHp(x0, ξ0)) = (x(s),∇φ(x(s)))
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the solution of (2.108), notation used because exp(sHp(x0, ξ0)) is the solution of the Cauchy equation1.

2. Representation of Lagrangian solutions through phases

2.1. Lagrangian maximal solution associated with a phase. We specify here the notion
that we had mentioned in the chapter 3 when calculating the asymptotic expansion of the wave
solution with a given condition on a hypersurface Σ0. In fact, we had considered on the set of points
(y,∇φ(y)), y ∈ Σ0 (on which we assumed that φ was constant).

We consider a pseudodifferential operator p on X, a manifold of dimension n. We give a hy-
persurface S in X and a phase φ0 (regular function) defined on S. Let l be the natural injection of
T ∗S into T ∗X. Let π also be the natural projection of {(x, ξ), x ∈ S, ξ ∈ TxX} to T ∗S, defined as
π(x, ξ) = (x, ζ) where the linear form ζ on TxS is the restriction of ξ to TxS. It is assumed that
π−1{(x, dφ0(x))} ∩ Carp 6= ∅.

It is further assumed that the Hamiltonian field Hp is transverse to l(ΛSφ0
) at ρ0 ∈ l(ΛSφ0

)∩Carp.
Then the maximal Lagrangian solution associated to S and φ0 in the neighborhood of ρ0 is denoted
by Λ(φ0), and is the union of the bicharacteristic curves coming from a point of π−1(ΛSφ0

).

Indeed, Λ(φ0) is maximal because Hp is transverse to l(ΛSφ0
) at ρ0, which is of dimension n− 1,

and the maximality comes from Tρ0(Λ(φ0)) = Tρ0 l(Λ
S
φ0

) + HpIR. It is solved by the proposition 9.1.
It is Lagrangian because the bicharacteristic curves are, always by the proposition 9.1.

The bicharacteristic curves are then projected on the characteristic curves x(σ) solutions of
dx
dσ

= ξ(x(σ)) as long as Λ(φ0) is transverse at x(σ) to the fiber of the canonical projection of T ∗X on
X. This construction by means of rays fails when the property of transversality is no longer verified.
We then say that the point belongs to the caustic subset of the Lagrangian manifold.

2.2. Generalization to phases with parameters. This extension should be generalized to
phases, solution of the eikonal equation, involving an additional parameter. Now the points of the
caustics are the points of the Lagrangian manifold considered where this projection is no longer proper,
i.e. where we can no longer consider a a phase ψ : IRN → IR (without parameter) such that Λ = Λψ.

Give ourselves a phase φ(x, θ) with N parameters (θ ∈ IRN ), non-degenerate (∇x,θφ(x, θ) 6= 0)
and one associates to it

Λφ = {(x,∇x,θφ(x, θ)),∇θφ(x, θ) = 0}.

Lemma 9.1. The manifold Λφ is embedded in a Lagrangian manifold.

Proof. We verify that the application iφ, which goes from the set of critical points of φ in the
variable α denoted by Cφ = (x, θ),∇θφ(x, θ) = 0} to T ∗X

iφ(x, θ) = (x,∇xφ(x, θ)) ∈ T ∗X
is a Lagrangian immersion, and its image is Λφ.

We verify that dφ =
∑
j ∂xjφ(x, θ)dxj +

∑N
p=1 ∂xjφ(x, θ)dθj ∈ Λ1(X × Rn) which gives, thanks

to the fact the point (x, θ) is a critical point for φ

dφ|Cφ =
∑
j

∂xjφ(x, θ)dxj .

We deduce i∗φ(
∑
ξjdxj) = dφ|Cφ , which gives, by commutation of d and iφ

i∗φ(d(
∑

ξjdxj)) = d2φ = 0,

hence i∗φ(
∑
j dξj ∧ dxj) = 0. The manifold is locally isotropic. Since φ is non-degenerate, Cφ is a

submanifold of dimension n and we deduce that Λφ, image of a submanifold of dimension n by an
immersion, is maximal. It is thus locally a Lagrangian manifold.

2.3. The Hörmander representation theorem. One has

Theorem 9.1. Let Λ be a Lagrangian submanifold of T ∗X and let ρ0 be a point of this Lagrangian.
There exists a symplectic coordinate system on T ∗X, denoted by (x, ξ) and a non-degenerate

phase φ(x, ξ) such that, O being a neighborhood of ρ0 in T ∗X,

Λ ∩ O = {(x,∇xφ(x, ξ)),∇ξφ(x, ξ) = 0}.

This theorem is stated in [48]. One deduces

1This notation is easy to understand; when Hp is a is a scalar function Hp(ρ(s)) = a(ρ(s)), the Cauchy

problem above has as solution a(ρ(s)) = a(ρ0)es. d
ds

(ρ(s)) = Hp(ρ(s)), ρ(0) = ρ0.



2. REPRESENTATION OF LAGRANGIAN SOLUTIONS THROUGH PHASES 155

Corollary 9.1. There exists a diffeomorphism χ of IRn in X, n being the dimension of Tρ0X,
such that

hχ(Λψ ∩ h−1
χ (O)) = Λ ∩ O

where ψ(y, η) = y.η − H(η). This diffeomorphism is constructed with Darboux’s lemma and the
representation of the Lagrangian in the neighborhood of rho0 by

(2.124) Λ ∩ O = {(x(y), ξ(y)), y ∈ IRn ∩ χ−1(O)}.

Proof. The proof of the theorem is based on the following technical lemma, which will be proved
below:

Lemma 9.2. There exists a coordinate system of X in the neighborhood of x0 such that, in the
associated canonical symplectic coordinate system (x, ξ), the Lagrangian is defined by x = X(ξ).

Assuming that this lemma is proved, we know that σ =
∑
j ξjdxj is zero on Λ. This gives

n∑
j=1

ξj
∂Xj
∂ξp

(ξ) = 0.

Relation d(
∑j=n
j=1 ξjxj) =

∑n
j=1 ξjdxj +

∑n
j=1 xjdξj yields, on Λ

d(

j=n∑
j=1

ξjXj) =

j=n∑
j=1

Xj(ξ)dξj .

Let H(ξ) =
∑j=n
j=1 ξjXj(ξ). One checks that ∂ξpH(ξ) =

∑j=n
j=1 ξj

∂Xj
∂ξp

+ Xp(ξ) = Xp(ξ) and H is

homogeneous of degree 1.
If one introduces φ(x, ξ) = x.ξ−H(ξ), one finds ∇xφ(x, ξ) = ξ et ∇ξpφ(x, ξ) = xp−Xp(ξ). Hence

the Lagrangian manifold is locally represented through φ, that is

Λ ∩ O = {(x, ξ), x = X(ξ)} = {(x,∇xφ),∇ξφ(x, ξ) = 0} ∩ O = Λφ ∩ O.
We have proved the representation theorem.
Let us now prove the lemma 9.2. For this, we use the representation (2.124) of Λ. The family

dx1(y), ...dxn(y), dξ1(y), ...dξn(y) defines a space of dimension n in the neighborhood of the point ρ0

considered, since Λ is maximal (hence of dimension n). Let us denote by J and K respectively the
set of independent coordinates of dx1, ..., dxn and dξ1, ..., dξn. We denote, from now on, by (y, η) the
symplectic coordinate system on IRn associated to (y), and we introduce the natural injection j of
C(IRn) into C(T ∗IRn) by j(f)(y, η) = f(y). The coordinate system (x, ξ) is symplectic, so we have
the relations

{j(xj)(y, η), j(xj′)(y, η)} = 0, {j(ξk)(y, η), j(ξk′)(y, η)} = 0, {j(xj)(y, η), j(ξk)(y, η)} = δjk.

Let pj(y, η) = j(xj)(y, η) = xj(y) and qk(y, η) = j(ξk)(y, η) = ξk(y). These functions on TXIRn

satisfy the hypotheses of the lemma 8.3.
We can then complete this family into a family of symplectic coordinates on T ∗X, denoted by

p1(y, η), pn(y, η), q1(y, η), ...qn(y, η).
Let us write the result of Darboux lemma. We check that the family (dp1, ...dpn, dq1, ...dqn) is

linearly independent. As it is an application from T ∗X to T ∗IRn, writing it in matrix form, one has
AJ 0
BK 0
C1
n−J C2

n−J
D1
n−K D2

n−K


where we reorded the coordinates in T ∗X into j ∈ J, k ∈ K, j′ ∈ {1, ..n} − J, k′ ∈ {1, ..n} −K. We
used here that (pj)j∈J and (qk)k∈K depend only on y.

The matrices AJ and BK are respectively the matrices Jn and Kn of the (∂ylpj)j∈J,1≤l≤n and
(∂ymqk)k∈K,1≤m≤n. Matrices C2

n−J et D2
n−k are resepctively

(∂ηlqk′)k′∈{1,..n}−J,1≤l≤n, (∂ηlpj′)j′∈{1,..n}−K,1≤l≤n.

Since the family (dp1, ...dpn, dq1, ...dqn) is linearly independent, we deduce that the matrices n× n(
AJ
BK

)
,

(
C2
n−J

D2
n−K

)
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are invertible in the neighborhood of (y0, η0), image of ρ0 by the diffeomorphism induced by the
symplectic change of coordinates.

We deduce that the system where η is the parameter{
xj′(y) = pj′(y, η), j′ ∈ {1, .., n} − J
ξk′(y) = qk′(y, η), k′ ∈∈ {1, .., n} −K

admits, by the implicit functions theorem , a unique solution η = Y (y). The result of the lemma (by
transforming the notations) comes from the fact that (η,−y) is a symplectic coordinate system on
T ∗IRn. The phase is then known, it suffices to write φ(y, η) = −ηy −G(y), with G(y) =

∑
j yjY (y).

We have completed the proof of the lemma 9.2. �

The caustics (points where the stationary phase theorem does not does not apply in an oscillating
integral defining a solution) can be studied thanks to Lagrangian solutions. Lagrangian solutions.

3. Caustic points

We give ourselves a phase φ(x, θ) with N parameters, non-degenerate (Hessθφ(x, θ) 6= 0), such
that

Λφ = {(x,∇xφ(x, θ)),∇θφ(x, θ) = 0}

is a Lagrangian solution of P (pseudo)differential operator.
We define (using a notion identical to that of a Fourier integral operator) an oscillatory function

(3.125) uφ,a(x, k) =

∫
IRN

eikφ(x,θ)a(x, θ, k)dθ

where the amplitude a has an asymptotic expansion (see the definition 1.1).
We give the definition of two equivalent phases:

Definition 9.2. Let φ1(x, α) and φ2(y, β) be two phases defined on X × IRN (N is the number
of parameters of the phase).

They are equivalent respectively in (x0, α0) and (y0, β0) if there exists a diffeomorphism

X × IRN → X × IRN

(x, α)→ (A(x),Φ(x, α))

such that A(x0) = y0, Φ(x0, α0) = β0 and a function ψ(x), C∞ in the neighborhood of x0, such that

φ1(x, α) = φ2(A(x),Φ(x, α)) + ψ(x)

Two equivalent Lagrangians (in the neighborhood of a point, the classical terminology is to speak
of a germ of Lagrangians) are, in an analogous way, defined by

Definition 9.3. Two Lagrangians Λ1 (in the neighborhood of λ1) and Λ2 (in the neighborhood
of λ2) are equivalent if and only if there exists a symplectic diffeomorphism χ that leaves invariant
the fibers of the canonical projection π of T ∗X on X and such that χ(Λ1) = Λ2.

We have the (local) uniqueness of the representation by the two following propositions:

Proposition 9.3. Let φ and φ1 be two phases defined respectively on X×IRN and on X×IRn1 . For
x0 ∈ X, the oscillatory functions of the form uφ,a and uφ1,a1 define the same class when there exists
θ0 ∈ IRN , θ1

0 ∈ IRn1 such that iφ(x0, θ0) = iφ1(x0, θ
1
0). The point (x0,∇xφ(x0, θ0)) = (x0,∇xφ1(x, θ1

0))
is denoted by λ0.
Then one has Λφ = Λφ1 in the neighborhood of λ0.

Proposition 9.4. Two Lagrangian manifolds are equivalent ⇔ if there exist two phases φ1 and
φ2, equivalent in the sense of Definition 9.2, such that Λ1 = Λφ1 and Λ2 = Λφ2 .

We can then choose the parameters of the phase φ associated to a Lagrangian manifold in the
neighborhood of a point through the proposition
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Proposition 9.5. Let φ be a non-degenerate phase defining a local map of Λ in the neighborhood
of λ0 = (x0,∇θφ(x0, θ0)), (x0, θ0) ∈ Cφ and recall that πΛ is the canonical projection from Λ to X. If
N is the number of parameters of the phase

N = dimKerTλ0(πΛ) + rang(Hessφθ(x0, θ0))

where (x0, θ0) ∈ Cφ and (x0,∇θφ(x0, θ0)) = λ0.
Moreover, there exists a non-degenerate phase φ0 which locally represents Λ with N0 = dimKer(Tλ0(πΛ))

parameters.

Proof. We prove Proposition 9.4. Weknow that there is a phase φ1 representing Λ1 (Theorem
9.1). We assume Λ1 ' Λ2, hence there exists a symplectic diffeomorphism g, of the form g(x, ξ) =
(χ(x)(x), G(x, ξ)) (since it preserves the fibers of the canonical projection), which transforms Λ1 into
Λ2.

We use the following lemma:

Lemma 9.3. A symplectic diffeomorphism preserving the fibers of the canonical projection is of
the form

(x, ξ)→ (χ(x), (∂xiχj(x))−1(ξ −∇xψ))

We recognize the form of hχ introduced in the proposition 8.4, alinéa 1.

Proof. The diffeomorphism is symplectic, so∑
j

dxj ∧ dξj =
∑
j

d(fj(x)) ∧ d(hj(x, ξ)).

To simplify our expressions, we denote by N the matrix of coefficients Nij(x) =
∂fj
∂xi

((x). Then

dfj(x) =
∑
iNij(x)dxi.

One writes similarly

dhj(x, ξ) =
∑
i

∂xihj(x, ξ)dxi +
∑
k

∂ξkhj(x, ξ)dξk

and the equalities that f, h must verify are{ ∑
j Nij(x)∂xkhj(x, ξ) =

∑
j Nkj(x)∂xihk(x, ξ), ∀j, k∑

j Nij(x)∂ξkhj(x, ξ) = δjk, ∀j, k.
Considering the matrix M(x, ξ) = (Mjk)j,k(x, ξ) = (∂ξkhj)jk(x, ξ), one deduces

(3.126) NM = Id.

One has:

• M is independent of ξ (the dual part of the diffeomorphism is linear in ξ)
• There exists a vector field Xj(x) such that

hj(x, ξ) =
∑
k

(N−1)jk(x)(ξk −Xk(x))

thanks to ∂ξkhj(x, ξ) = (N−1)jk(x), from which one deduces

∂xkhj(x) =
∑
l

∂xk ((N−1)jl)(ξl −Xl(x))−
∑
l

(N−1)jl(x)∂xk (Xl)(x).

The first equalities of the above system defining the symplectic diffeomorphism are∑
j

Nij(x)
∑
l

∂xk (N−1)jl(ξl −Xl(x)) +
∑
j

∑
l

Nij(N−1)jl∂xkXl

=∑
j

Nkj(x)
∑
l

∂xi(N
−1)jl(ξl −Xl(x)) +

∑
j

∑
l

Nkj(N−1)jl∂xiXl.

Reordering the terms into ξl −Xl(x), we find∑
l

(ξl −Xl(x))
∑
j

Nij(x)∂xk (N−1)jl −
∑
j

Nkj(x)∂xi(N
−1)jl =

∂Xk
∂xi

− ∂Xi
∂xk

.

The left hand term writes
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A = ∂xk (
∑
j

Nij(x)(N−1)jl(x))−
∑
j

∂xkNij(x)(N−1)jl(x)−∂xi(
∑
j

Nkj(x)(N−1)jl(x))+
∑
j

∂xjNkj(x).

As Nij(x) = ∂xifj(x), one finds
∑
j Nij(N

−1)jl = δjl and using
∑
j ∂

2
xixkfj−∂

2
xkxifj = 0, one obtains

∂Xk
∂xi

− ∂Xi
∂xk

= 0

which shows that X is the gradient of a function ψ of class C∞ in a neighborhood of x0. The reciprocal
implication (the diffeomorphism written in the lemma is a symplectic diffeomorphism preserving the

fibers of the canonical projection) can be obtained by writing these equalities from ∂Xk
∂xi
− ∂Xi

∂xk
= 0.

The proof of the lemma is complete. �

This lemma being proved, Λ1 = {(x,∇xφ1(x, α)),∇αφ1(x, α) = 0} because φ1 represents locally
Λ1. We deduce

Λ2 = {(f(x), (∇xf)−1(∇xφ1(x, α)−∇xφ(x))),∇αφ1(x, α) = 0}

The phase

φ2(y, β) = φ1(f−1(y), β)− ψ(f−1(y))

is well defined as f is a diffeomorphism in a neighborhood of x0. Hence{
∇βφ2(y, β) = ∇αφ1(f−1(y), β)
∇yφ2(y, β) = (∇xf)−1(∇xφ1(f−1(y), β)−∇xψ(f−1(y)))

The manifold Λ2 is thus

Λ2 = {(y,∇yφ2(y, β)) ∈ T ∗X,∇βφ2(y, β) = 0}.
This demonstrates ⇒ in Proposition 9.4.

For ⇐ in Proposition 9.4, we have two equivalent phases φ2(A(x),Φ(x, α)) = φ1(x, α) − ψ(x),
and we verify that

Λφ2 = {(y,∇yφ2),∇βφ2(y, β) = 0}
which imply the relations{

∇βφ2(A(x),Φ(x, α)).∇αΦ(x, β) = ∇αφ1(x, α)
∇yφ2(A(x),Φ(x, α)).∇xA = ∇xφ1(x, α)−∇xψ.

As (x, α)→ (A(x),Φ(x, α)) is a diffeomorphism and as

(x, ξ)→ (A(x), (∇xA)−1(ξ −∇xψ))

is a symplectic diffeomorphism complete the proof of the reciprocal.

Proof. Let us prove Proposition 9.5. We place ourselves at the point (x0, α0) which characterizes
a point of the Lagrangian manifold ρ0 = (x0,∇xφ(x0, α0)).

One assumes rangHessαφ(x0, α0) = p < N . There is a orthogonal linear change of variables
(which diagonalizes Hessαφ(x0, α0)) such that β = χ(α) and if ψ(x, β) = φ(x, χ−1(β))

Hessβψ(x0, β0) =

(
0 0
0 Hessβ”ψ(x0, β0)

)
where β” ∈ IRp. Locally, the equation ∇β”ψ = 0 has, through the implicit functions theorem (which
can be applied here because the Hessian in β” is non-zero), a unique solution β” = B(x, β′) with
β”0 = B(x0, β

′
0).

The phase

ψ1(x, β′) = ψ(x, β′, B(x, β′))

has N − p parameters and whose gradient is zero at β′0 and its Hessian is non zero at this point thus
locally represents Λψ, as ∇βφ(x, β) = 0 is equivalent to ∇β′ψ(x, β) = 0 and ∇β”ψ(x, β) = 0 and that,
on the other hand

∇xψ1(x, β′) = ∇xψ(x, β′, B(x, β′)) +∇β”ψ(x, β′, B(x, β′))∇xB(x, β′).

Using ∇β”ψ(x, β′, B(x, β′)) = 0 for all (x, β′), one has ∇xψ1 = ∇xψ on ∇βψ = 0. We have therefore
represented Λ by a phase with N − p parameters. �
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Locally, Λ = {(x,∇xψ1(x, θ)),∇θψ1(x, θ) = 0} where ψ1 is a non degenerate phase defined on
X × RN−p such that Hessθψ1(x0, θ0) = 0. At (x0, ξ0) = (x0,∇xψ1(x0, θ0)), the equalities defining Λ
allow to write T(x0,ξ0)Λ as

{(u,Hessxψ1(x0, θ0)u+
∑
j

∂θj∇xψ1(x0, θ0)Σj)} ∩ {∇x∂θjψ1(x0, θ0)u = 0}.

The space tangent at x0 to the canonical projection πΛ from Λ ⊂ T ∗X onto X is thus characterized by
the independent equations ∀j,∇x∂θjψ1(x0, θ0)u = 0. Its kernel is therefore of dimension the number
of corresponding equations, that is N − p. We deduce

dimKerTx0(πΛ) = N − p
which completes the two parts of the proof of the proposition 9.5. We have then built the phase ψ1

with N − p parameters representing the Lagrangian near the point (x0, ξ0).
�

When dimKerTx0(πΛ) 6= 0, we say that the point point x0 is in the caustic of Λ. The classification
of caustics is not our goal, we only study in this book the fold caustics, but we recall the elementary
properties of caustics (which the reader can can find in Duistermaat’s article ([30] Section 3).

Definition 9.4. • The caustic set of the Lagrangian Λ is the set of projections on X of the
critical points of the canonical projection πΛ of Λ into X. The type of the caustic is characterized by
the dimension KerTx0πΛ.

We suppose that the dimension of the space X is n ≤ 4. The seven elementary catastrophes in
Thom’s sense are
• The points whose dimension of the kernel of the canonical projection is 1 are:
the fold (n = 1),
the cusp (n = 2),
the swallowtail (n = 3),
the butterfly (n = 4).

• The points whose dimension of the kernel of the projection is 2 are the umbilical type points
(n = 3).

In particular, a caustic point of type fold if dimKerTx0(πΛ) = 1 and dimKerTx0(πΛ)∩Tx0C1 = 0.

We easily obtain a representation theorem:

Theorem 9.2. Let u ∈ O(Λ), Λ maximal Lagrangian manifold.

(1) If the point x0 is not in the projection of Λ, u is rapidly decaying in k in a neighborhood of
x0.

(2) If the point x0 is in π(Λ) but is not in the caustic of the Lagrangian, u admits a classical

asymptotic expansion in k−j of first term k−N/2.
(3) If the point x0 is in the caustic set of Λ, u defines a representation of the caustic in the

neighborhood of x0.

Proof. For the first item, there is no θ such that ∇θφ(x0, θ) = 0 (if there was one, then we
would construct a point of the Lagrangian which projects on x0). We can apply the non-stationary
phase theorem (Theorem 4.1) to the integral defining u. We then have u ' 0.

For the second item, we consider θ0 such that ∇θφ(x0, θ0) = 0. Let us consider a neighborhood
of x0 in which we solve ∇θφ(x, θ) = 0. As x0 is not in the caustic, the point x0 is not a critical
point for the Lagrangian projection πΛ. We deduce that dimKerTx0πΛ = 0, and therefore p =
rankHessαφ(x0, α0) = N . The Hessian matrix is invertible and we apply the stationary phase theorem
(Proposition 4.3).

The general study of caustics is based on the following result. We prove this result in the following
section only in the case of a singularity of type fold for the canonical projection. A notion of stability
or generality of the phase, expressed in the definition below, is useful:

Definition 9.5. We say that the phase φ(x, α) is stable if, for any function g(x, α) ”small
enough”, we have the equivalence of φ(x, α) and φ(x, α) + g(x, α). It is equivalent to say that any
function f(x, α) of class C∞ is written in the form

f(x, α) = a(x) +
∑
l

bl(x)∂xlφ+
∑
k

ck(x, α)∂αkφ

all coefficients being C∞.
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Duistermaat [30] then proves the

Proposition 9.6. Let φ(x, α) be a stable phase and let g(α) = φ(x0, α).

We denote by g1(α), ...gq(α) a basis of the quotient space C∞(IRN )
{
∑
gk(α)∂αkg(α)} . There is a submersion

x→ y(x) such that

φ(x, α) =
∑

1≥l≥q

yl(x)gl(α) + g(α)

To each type of catastrophe, Thom [95] associated a generating phase and a number of parameters
required in the phase of the Fourier integral operator. Of course, one can always consider (thanks to
the representation theorem 9.1) as many parameters as the dimension N of the space X, but a lemma
of Hörmander ([47], Lemma 3.2.3), which is a generalization of the Morse lemma with parameters,
show that any germ f(α) can be represented by f1(α1, ..., αk0) + Q(αk0+1, .., αN ), f1 being a germ
and Q a non-degenerate quadratic form. The function f1 can be evaluated in the cases of the above
mentioned catastrophes. In particular, for the fold, f1(α1) = α3

1, for the cusp, f1(α1) = α4
1, for the

sparrowtail f1(α1) = α5
1, for the butterfly, f1(α1) = α6

1, and for the umbilicals, we have respectively
f1(α1, α2) = α2

1α2 +α3
1 (elliptical elliptic), f1(α1, α2) = α2

1α2−α3
1 (hyperbolic umbilicus) (hyperbolic

umbilicus) and f1(α1, α2) = α2
1α2 + α4

1 (parabolic umbilicus). The base of the germs is then
• for the fold α3

1 + a(x)α1,
• for the cusp, α4

1 + a(x)α1 + b(x)α2
1,

• for the sparrowtail α5
1 + a(x)α1 + b(x)α2

1 + c(x)α3
1,

• for the butterfly α6
1 + a(x)α1 + b(x)α2

1 + c(x)α3
1 + d(x)α4

1,
• for, respectively, the elliptic and hyperbolic umbilic α2

1α2 ± α3
2 + a(x)α1 + b(x)α2 + c(x)α2

2,
• for the parabolic umbilic α2

1α2 + α4
2 + a(x)α1 + b(x)α2 + c(x)α2

2 + d(x)α3
2. This ends a sketch

of the proof of Theorem 9.2 �

4. The fold caustic

In this section we study the intrinsic representation associated with the fold type germ. The
first study of such a germ has been made by Ludwig [69]. The intrinsic representation uses the Airy
function (already introduced by Airy [2] for the study of the rainbow). This caustic type allows us,
in the next section, to compute the uniform solution in the neighborhood of the rainbow.

The fold singularity, as we have seen, is characterized by the two following relations:
if C1 = {x,dimKerTxπΛ = 1}, then
• the point x0 is a fold with x0 ∈ C1

• KerTx0πΛ is transverse to Tx0C1. There exists thus a 1-parameter phase φ(x, α) such that

Λ = {(x,∇xφ(x, α)), φ′(x, α) = 0}.
We will explicitly construct in the case of the fold the change of variable allowing to return to the
generic phase of the previous section.

We know (since x0 is on the caustic) that φ”(x0, α0) = 0. The caustic is the set of points x such
that there exists α with (x,∇xφ(x, α)) ∈ Λ and

∂2φ

∂α2
(x, α) = 0.

The tangent space to this caustic at (x, α) is given by

{u, ∃τ,
∑
j

∂3φ
∂xjα2 (x, α)uj + φ′′′α (x, α)τ = 0}.

The singularity is of type fold if the equations defining KerTx0πΛ and those defining Tx0C1 have
only one trivial solution. This is the case if, at (x0, α0), φ′′′(x0, α0) 6= 0.

Proposition 9.7. The lagrangian Λ defined by the phase φ at a parameter in the the neighborhood
of the point x0 of the caustic C1 is of type fold at x0 if and only if there exists α0 such that

φ′α(x0, α0) = 0, φ′′α(x0, α0) = 0, φ′′′α (x0, α0) 6= 0

The phase is then a universal deformation of y1 + αy2 − α3

3
. There are two functions f(x) and

g(x) and a change of variable of variable α→ t such that the phase is written

φ(x, α) = f(x) + (x− x0)g(x)t− t3

3
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Note that we shall ofter call φ0 = f and ρ given by ρ(x) = (x− x0)g(x).

4.1. Proof of the explicit change of variable for the phase (Malgrange’s preparation
lemma). We prove here the fundamental representation theorem for oscillatory functions associated
with a fold point.

Theorem 9.3. An oscillatory integral I of phase φ (and of symbol σ(x, α, k)) which has a fold
singularity at (x0, α0), α ∈ R, is characterized by the functions

φ0(x) =
1

2
(φ+(x) + φ−(x)) g(x)(x− x0) = [(

3

4
(φ−(x)− φ+(x)))

1
3 ]2

and there are two symbols σ0(x, k) and σ1(x, k) such that, locally

I = k−
1
3 eikφ0(x)[σ0(x, k)Ai(k

2
3 e

iπ
3 g(x)(x− x0)) + k−

1
3 e

iπ
3 σ1(x, k)Ai′(k

2
3 e

iπ
3 g(x)(x− x0))].

Proof. The existence of α0 has been proved above when assuming the existence of a caustic
point. We assume that this caustic is of type fold. Then the equation

φ′′α(x, α) = 0

can be solved locally in the neighborhood of (x0, α0) by applying the implicit functions theorem in α.
There exists a function θ(x) continuous such that θ(x0) = α0 and φα”(x, θ(x)) = 0.

Critical points. One can then write

φ(x, α) = φ(x, v) + φ′α(x, θ(x))(α− θ(x)) +
1

3
B(α, x)(α− θ(x))3.

As B(α0, x0) 6= 0, there exists C(α, x) such that (C(α, x))3 = B(α, x) where C(α, x) is of the
same sign2 as B(α0, x0) in the neighborhood of this point. The critical points β = α − θ(x) of the
phase are solution of

φ′α(x, θ(x)) +B(β + θ(x), x)β2 +
1

3
β3∂αB(β + θ(x), x) = 0

In the neighborhood of β = 0, this equation has two solutions. The phase φ(x, α) thus admits two
critical values φ+(x) and φ−(x). There are then two functions, noted κ and γ, such that

φ±(x) = φ(x, θ(x)) + (φ′α(x, θ(x)))2γ(x)± 2

3
(φ′α(x, θ(x))κ(x))

3
2 .

Indeed, if we write β = (φ′(x, θ(x))
1
2 t in the area where φ′(x, θ(x)) > 0 (knowing that it is null

for x = x0), we verify that the equation in t has two solutions, since φ′(x, θ(x)) is small. These two
solutions are of the form (in the neighborhood of x0):

t = ±(−B(θ(x), x))−
1
2 +O((φ′(x, θ(x)))

1
2 )

which leads to the fact that the functions κ(x) and γ(x), defined by the equalities

γ(x) = 1
2(φ′(x,θ(x)))2

(φ+(x) + φ−(x)− 2φ(x, θ(x)))
4
3
(φ′(x, θ(x))κ(x))

3
2 = φ+(x)− φ−(x)

are indeed C∞ functions. They are determined thanks to the critical values. First change of
variable We want to construct the change of variable such that

(4.127) φ(x, α) =
1

2
(φ+(x) + φ−(x)) + (φ′(x, θ(x))κ(x)z − z3

3
.

First, note that this equality is consistent since the critical values of the phase written in (4.127) are
those of φ.

Consider ψ(x, α) = φ′α(x, α). We notice that ψ′′α2(x, θ(x)) 6= 0 and ψ′α(x, θ(x)) = 0. By the

Taylor formula with integral remainder, we can write ψ(x, θ(x) = ψ(x, θ(x)) + (α − θ(x))2
∫ 1

0
ds(1 −

s)ψ′′α2(θ(x)+s(α−θ(x)))ds. Assuming ψ′′α2(x, θ(x)) < 0 we apply Morse’s lemma for a non-degenerate
stationary phase and we find

ψ(x, α) = φ′(x, θ(x))− ρ−1(x)t2,

2Note that it is not the classical determination of the cubic root
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where t = (α − θ(x))[−ρ(x)
∫ 1

0
ds(1 − s)ψ′′α2(θ(x) + s(α − θ(x)))ds]

1
2 in a neighborhood of α = θ(x).

Then we denote by ω the function

ω(x, t) = φ(x, α(x, t))− 1

2
(φ+(x) + φ−(x)).

The functions g1(t, x) and g2(t, x) equal respectively to 1
2
(ω(x, t) + ω(x,−t)) and 1

2
ω(x,t)−ω(x,−t)

t
are

even. We introduce the first auxiliary variable

β = φ′(x, θ(x))κ(x).

The critical points in t of ω(x, t) in the variable t are the solutions of t2 = β, from which the

critical values are equal to ± 2
3
β

3
2 (indeed ∂tω(x, t) = ∂tα(x, t)∂αφ(x, α(x, t))). We find directly (for

example by Taylor series of even functions and assuming that the correspondence x ↔ β is a local
diffeomorphism) that g1,2(x, t) = A1,2(t2 − β, β). Hence

φ(x, α(x, t)) =
1

2
(φ+(x) + φ−(x)) + tA1(t2 − β, β) +A2(t2 − β, β)

where A1 and A2 are two functions to be estimated. From equality φ(x, α(x,±β
1
2 )) = 1

2
(φ+(x) +

φ−(x))± 2
3
β

3
2 one deduces

±β
1
2A1(0, β) +A2(0, β) = ±2

3
β

3
2 et 0 = ∂αt[A1(0, β) + 2β∂1A1(0, β)± 2β

1
2 ∂1A2(0, β)]

which yields A1(0, β) = 2
3
β, 2β∂1A1(0, β) + A1(0, β) = 0, ∂1A2(0, β) = 0, A2(0, β) = 0. One writes

Taylor expansions of A1 and of A2 in the first coordinate. One has A2(u, β) = u2H2(u, β) and
A1(u, β) = 2

3
β − 1

3
u + u2H1(u, β), soit A1(t2 − β, β) = β − 1

3
t2 + H1(t, β)(t2 − β)2. Soit H(t, β) =

tH1(t2 − β, β) +H2(t2 − β, β). One obtains

φ(x, α) =
1

2
(φ+(x) + φ−(x)) + (t2 − β)2H(t, β) + βt− t3

3
.

One notices that z = t+ (β − t2)U , βz − z3

3
= βt− t3

3
+ (β − t2)2[U − tU2 − β−t2

3
U3]. If U(β, t)

is the unique solution in the neighborhood of t = 0 of u−u2t− (β− t2)u3/3 = H(t, β), we obtain the
required equality:

φ(x, α) = φ(x, θ(x)) + βz − z3

3
.

4.2. Integral representation of the associated solution. The function representing the
caustic of type fold is the Airy function. From a division lemma of Boutet de Monvel (Preparation
Lemma p 26 of [18]), there exists three functions σ0(x, k), σ1(x, k), h(x, z, k) such that

σ(x, α, k)|dα
dz
| = σ0(x, k) + zσ1(x, k) + (∂zh(x, z, k) + (z2 + (x− x0)g(x))ikh(x, z, k))

We deduce the relation, which allows to write a general representation of the oscillating solution
associated to a caustic of type fold, where we denote by ρ the function x→ (x− x0)g(x):

∫
eikφ(x,α)σ(x, α, k)dα = 2πk−

1
3 e

iπ
3 eikφ(x,θ(x))[

σ0(x, k)Ai(k
2
3 e

iπ
3 ρ(x))

+k−
1
3 e

iπ
3 σ1(x, k)Ai′(k

2
3 e

iπ
3 ρ(x))] + r

].

As the critical values of z → f(x) + (x− x0)g(x)z − z3

3
are intrinsic and equal to

f(x)± 2

3
(s(x))

3
2 = f(x)± 2

3
((x− x0)g(x))

3
2 = φ±(x)

we finish the proof of Theorem 9.3. Indeed, if x 6= x0, then the stationary phase theorem used in the
representation of the theorem 9.3 allows to find

I(a, φ) ' a1(x, k)eikφ+(x) + a2(x, k)eikφ−(x).

The points of the Lagrangian that are not on the caustic are usual points of stationary phase.
We can thus introduce the notion of boundary layer associated with this type of caustic.

Indeed, the integral I is decreasing when the parameter tends to +∞, the I is controlled when

|g(x)(x− x0)| ≤ Ck−
2
3 for all C, the Airy function being then considered in a compact |u| ≤ C. We

verify that g(x0), given by a power of φ′′′(x0, α0) is nonzero. This implies that the representation of



4. THE FOLD CAUSTIC 163

the solution shown in the theorem 9.3 is uniform in any open set of the form |x − x0| ≤ Dk−
2
3 , D

(large) positive constant given. �

In the following paragraph we use the expressions obtained for the solution of the wave equation
to find the Airy function by a boundary layer method. We thus present the way in which Ludwig
introduced caustics.

4.3. Ludwig’s Ansatz for a fold caustic.

Proposition 9.8. Let V be a solution of V ”(t) + tV (t) = 0 and let θ, ρ be two functions, β a
parameter.
If u(x, k) = eikθ(x)[g0(x, kα)V (kβρ(x)) + g1(x, kα)V ′(kβρ(x)] is a solution of the Helmholtz equation
(∆ + k2)u(., k) = 0 (asymptotically) for k large, then

β = 2
3
, (∇θ)2 + ρ(∇ρ)2 = 1,∇θ.∇ρ = 0.

In addition, if

(4.128)

{
2∇θ∇g0 + ∆θg0 + 1

ik
∆g0 + [2ρ∇ρ∇g̃1 + g̃1ρ∆ρ+ g̃1(∇ρ)2] = 0

2∇θ∇g̃1 + ∆θg̃1 + 1
ik

∆g̃1 + [2ρ∇ρ∇g0 + g0∆ρ] = 0,

then

(∆ + k2)(eikθ(x)[g0(x, k)V (k
2
3 ρ(x)) + ik

1
3 g̃1(x, k)V ′(k

2
3 ρ(x))] ' 0.

Proof. We consider solutions of the Helmholtz equation (∆ + k2)u(x, k) = 0 of the form

u(x, k) = eikθ(x)[g0(x, kα)V (kβρ(x)) + 1

ik
1
3

g̃1(x, kα)V ′(kβρ(x)].

It is assumed that the function V satisfies the ODE in Proposition 9.8 (and thus Ludwig assumes a
priori that the solution depends on solutions of the the Airy equation). We suppose that θ is not a
solution of the classical eikonal equation, so ∇θ is not of norm 1 on a neighborhood of a point x0.

We find that there are two symbols (α being identified later) σ0(x, kα, kβ) and σ1(x, kα, kβ) such
that

∆u = −k2eikθ(x)[σ0(x, kα, kβ)V (kβρ(x)) + σ1(x, kα, kβ)V ′(kβρ(x)).

A calculation, left to the reader, shows that

σ0(x, kα, kβ) = [(∇θ)2g0 + 1
ik

(2∇θ.∇g0 + ∆θg0) + 1
(ik)2

∆g0]

+k3β−2ρ(∇ρ)2g0 + 2ik2β−1g1ρ∇ρ.∇θ
+k2β−2[2ρ∇ρ.∇g1 + g1ρ∆ρ+ g1(∇ρ)2],

σ1(x, kα, kβ) = [(∇θ)2g1 + 1
ik

(2∇θ.∇g1 + ∆θg1) + 1
(ik)2

∆g1]

+k3β−2ρ(∇ρ)2g1 + 2
i
kβ−1g0∇ρ.∇θ

−kβ−2[2ρ∇ρ∇g0 + g0∆ρ].

Writing (∆ + k2)u = 0 implies that, asymptotically σ0 ' g0, σ1 ' g1.
We assume g0 of order 0 in k and g1 of order of magnitude kγ (we will have γ = − 1

3
).

One compares the asymptotic expansions

• For 3η − 2 < 0,
– if 2β − 1 + γ < 0, the leading order term term of σ0 leads, either to g0 = 0, or to the

classical eikonal equation (∇θ)2 = 1. When g0 = 0, we examine the following term.
Since 3β − 2 < 0, it comes (∇θ)2g1 = g1, hence (∇θ)2 = 1,

– if 2β − 1 + γ > 0, writing the leading order term term of σ0 gives g1ρ∇ρ∇θ = 0.
Assuming ρ 6= 0, we see that σ1 ' g1 gives the eikonal equation,

– if 2β − 1 + γ = 0, we find (∇θ)2g0 + 2i(k−γg1)ρ∇ρ∇θ ' g0 and, by σ1, the term
g0∇ρ∇θ being of lower order, the eikonal equation is obtained.

• For 3β−2 > 0, we use the same method, by comparing 3β−2, 2β−1+γ and β−1−γ. If the
third is superior to the first one we find g1ρ∇ρ∇θ = 0 and g0∇ρ∇θ = 0, then ρ(∇ρ)2g1 = 0,
ρ(∇ρ)2g0 = 0, then finally after having eliminated the terms of too high of too high order,
the eikonal equation (∇θ)2 = 1.
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We must therefore have β = 2
3

to be able to find a different expression from the usual asymptotic
expansions. In this case, we find:

σ0(x, kα, kβ) = [[(∇θ)2 + ρ(∇ρ)2]g0 + 1
ik

(2∇θ.∇g0 + ∆θg0) + 1
(ik)2

∆g0]

+2ik
1
3 g1ρ∇ρ.∇θ

+k−
2
3 [2ρ∇ρ.∇g1 + g1ρ∆ρ+ g1(∇ρ)2],

σ1(x, kα, kβ) = [[(∇θ)2 + ρ(∇ρ)2]g1 + 1
ik

(2∇θ.∇g1 + ∆θg1) + 1
(ik)2

∆g1]

+ 2
i
k−

2
3∇ρ.∇θg0

−k−
4
3 [2ρ∇ρ.∇g0 + g0∆ρ].

When γ > − 1
3
, we deduce from the first equality σ0 ' g0 that ρ∇ρ∇θ = 0 and that (∇θ)2 +

ρ(∇ρ)2 = 1. The second equality is thus verified for its first term. We then find that ∇ρ∇θ = 0.
When − 2

3
> γ, it is from the second equality that we deduces from the second equality σ1 ' g1

that ∇ρ∇θ = 0. In this case, we deduce again the eikonal equation (∇θ)2 + ρ(∇ρ)2 = 1.
Finally, if − 2

3
< γ ≤ − 1

3
, we find from the second equality the eikonal equation (∇θ)2 +ρ(∇ρ)2 =

1. Thus, replacing c in the first equality, we still find ρ∇ρ∇θ = 0. We have excluded a neighborhood
ρ = 0 because in this neighborhood we would have the eikonal equation on θ.

We thus obtained:

β =
2

3
, (∇θ)2 + ρ(∇ρ)2 = 1, ∇θ∇ρ = 0.

One is left with σ0(x, kα, kβ) = g0 + 1
ik

(2∇θ.∇g0 + ∆θg0) + 1
(ik)2

∆g0 +k−
2
3 [2ρ∇ρ.∇g1 + g1ρ∆ρ+

g1(∇ρ)2] and σ1(x, kα, kβ) = g1 + 1
ik

(2∇θ.∇g1 + ∆θg1) + 1
(ik)2

∆g1 − k−
4
3 [2ρ∇ρ.∇g0 + g0∆ρ]. For

more simplifications, we suppose that γ = − 1
3

(as written in Proposition 9.8. The term of order k−1

of σ0 ' g0 gives

(2∇θ∇g0 + ∆θg0) + 1
ik

∆g0 + i[2ρ∇ρ∇(k
1
3 g1) + (k

1
3 g1)ρ∆ρ+ (k

1
3 g1)(∇ρ)2] = 0

while the one of σ1 ' g1 leads to

(2∇θ.∇(k
1
3 g1) + ∆θ(k

1
3 g1)) + 1

ik
∆(k

1
3 g1)− i[2ρ∇ρ.∇g0 + g0∆ρ].

One denotes by g̃1(x, k
1
3 ) = 1

ik
1
3
g1(x, k

1
3 ) and one deduces the system of coupled equations (4.128){

2∇θ.∇g0 + ∆θg0 + 1
ik

∆g0 + [2ρ∇ρ.∇g̃1 + g̃1ρ∆ρ+ g̃1(∇ρ)2] = 0
2∇θ.∇g̃1 + ∆θg̃1 + 1

ik
∆g̃1 + [2ρ∇ρ∇g0 + g0∆ρ] = 0.

On the other hand, if ρ > 0, it comes (∇θ±√ρ∇ρ)2 = 1, which yields two solutions of the eikonal
equation which are identical on ρ = 0. These two solutions are

φ±(x) = θ(x)± 2

3
(ρ(x))

3
2 ,

and if the above system of transport equations corresponds to the classical system of transport equa-

tions associated to each of these phases for the symbols G±(x, k
1
3 ) = g0(x, k

1
3 )±√ρg̃1(x, k

1
3 ). �

We now construct θ and φ in the neighborhood of a caustic. According to Ludwig, every point
outside the caustic lives on a ray that has left the caustic as well as on a ray that goes on the caustic,
both rays being tangent to the caustic. We parameterize, in dimension 2, the caustic by a abscissa on
the caustic σ and by the tangent distance to the caustic τ . Then, as u is a solution of the Helmholtz
equation and we have

uP (x, k) = a−(x, k)eikσ−(x)−ikτ−(x) + a+(x, k)eikσ+(x)+ikτ+(x) = a−(x, k)eikψ−(x) + a+(x, k)eikψ+(x)

one checks that

(∇ψ±)2 = 1

These phases must correspond to θ± 2
3
ρ

3
2 , which yields θ = 1

2
(ψ+ +ψ−) and ρ = [ 3

4
(ψ+−ψ−)]

2
3 . We

have completed Ludwig’s analysis of caustics. We now present what happens in relation to the usual
calculation. We represent the caustic from the integrals in the form of the theorem 9.3.
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4.4. Calculation in the vicinity of the caustic. We know that, if Σ0 is given, surface on
which φ, solution of the eikonal equation, is constant equal to φ0, then we can define the characteristic
curves x(t) = x+ tn(x) for x ∈ Σ0. The associated Lagrangian manifold of IR3 × IRt is is

Λ∗ = {(x+ t~n(x), t, ~n(x),−1), x ∈ Σ0}.
The canonical projection is proper if the application (x, t) → (x + t~n(x), t) is a bijection. This

imposes that its gradient must be non-degenerate, so degenerate, so that IdTΣ0 + tW has a non zero.
We can see that the points of the caustic (as we defined them above) are the points which

correspond to the definition of the caustics of this chapter. We assume that the two radii of curvature
of the Weingarten matrix are distinct. The Lagrangian manifold Λ∗ is a maximal Lagrangian solution
in the neighborhood of any point which is not on the caustic. Therefore there exists a maximal
Lagrangian solution Λ such that Λ∗ is included Λ. The singularity of the projection π is of type
fold, since 0 is, at time t = −κ−1

1 , a simple eigenvalue. We can therefore apply the theorem of

representation 9.3, and there exists a phase φ(x, θ) equal to θ0(x) + θα(x) − θ3

3
− t representing Λ.

The manifold Λ is then

Λ = {(x, t,∇θ0(x) +∇xαθ),−1, α(x)− θ2 = 0}.
The points of Λ where the projection is not proper are the points where θ = 0, that is α(x) = 0 (the
Jacobian in θ of the phase is 2θ which is equal, at the critical point, to 2

√
α when α(x) ≥ 0). As

Λ = Λ∗ in the vicinity of the points which do not belong to the caustic, we see that the points of the
form (x, t,∇θ0(x)±

√
α(x)α(x),−1) are points of the smooth part of Λ, so in Λ∗.

This allows the introduction of θ and ρ from the previous section, which are obviously θ0 and α.
The geometric interpretation is then the one of the previous paragraph.

We have thus connected the intuitive definition of caustics (points where the classical asymptotic
expansion explodes) and the geometrical definition of this chapter.





CHAPTER 10

Propagation and transverse reflections of singularities.

We prove in this chapter the generalization of the laws of geometrical optics, also called Snell-
Descartes laws. We want to understand the notion of propagation along rays in the case of the two
rays rays drawn below; ray 1 is the incoming ray and ray 2 is the ray that reflects.

The two results that we generalize are the following : light propagates along straight lines, called
rays (example ray 1), and when a ray intersects a boundary, it is reflected (example ray 2) and the
angle of incidence is equal to the angle of reflection. The first result is the aim of theorem 10.1, while
the second is proved in theorem 10.2. We use here the Fourier integral operators to prove these results;
there are other proofs. The advantage of the approach used here, besides the fact that it gives another
application of the Fourier integral operators and allows to use their geometrical properties, is that it
constructs an outgoing parametrix for hyperbolic problems of order 2 with a boundary condition. We
can thus generalize Descartes’ laws for any incident wave and any regular boundary.

In a first part, we consider the propagation of a wave in the vacuum (or in a material) when there is
no caustic point (as it will be explained below). We can then show that the typical problem considered
is a strictly hyperbolic Cauchy problem, i.e. the characteristic manifold is composed of distinct real
leaves in the Fourier variable associated with the normal coordinate to the boundary. Note that this
does not prevent that there is a caustic; the caustic depends on the form of the incident wave and is a
non microlocal phenomenon. Moreover there is propagation along the rays even in the presence of a
caustic, as we have seen in Chapter 8. We prove the propagation of singularities theorem (traditional
name given to the propagation along a ray) in the case of given to the propagation along a ray) in
the case of the derivation operator along a coordinate (Section 10.2). We then use Darboux’s lemma
to reduce any problem to this particular problem, using a transformation in the cotangent manifold
(Chapter 3). We prove finally Theorem 10.1. We use the Fourier integral operators introduced in the
chapter 8 to compute the phase of a reflected wave and the reflection coefficient for different boundary
conditions. The obtention of the coefficients is simplified by the introduction of the two parametrix
of the problem, which are respectively the Fourier integral operator associated with the incoming and
with the outgoing wave.

We generalize here the result obtained for the equation of waves with constant coefficients in
the chapter 3, where we computed the solution of the Helmholtz equation knowing its value on a Σ0

surface. We had shown that the solution was known on particular curves, called characteristic curves
of the Helmholtz operator.

We proved in the section 3 that the ”good” objects to consider when studying the pseudo-
differential operators operators were not the characteristic curves but the bicharacteristic curves, flows
of the Hamilton-Jacobi vector field associated with the symbol of the pseudo-differential operator. We
have verified that the projection on IRd of these bicharacteristic curves were the characteristic curves
of the wave operator.

We therefore want to generalize the propagation results for a pseudo-differential operator. These
propagation results are true in the case where the differential operator studied is a Cauchy strictly
hyperbolic operator. The operators studied in this chapter are said to be of real principal type :

Definition 10.1. We say that p is of real principal type if
p(y, η) ∈ IR for (y, η) ∈ IR2n,
and dp and ηdy are two independent linear forms.

1. Hyperbolic operator: definition, characteristic manifolds

In chapter 2 (definition 2.1), we defined a matricial hyperbolic operator as follows :

L = A0∂t +
∑
j

Aj∂xj

where the matrices Aj are symmetric, and, in addition, A0 is positive definite.

167
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Proposition 10.1. (1) In the case d = 1, consider L = a0(x, t)∂t + a1(x, t)∂x. Its charac-

teristic manifold is {(x, t, ξ,−− a1(x,t)
a0(x,t)

ξ)}.
(2) In the case d = 2 with constant coefficients, consider the system

(1.129)

{
∂tu1 + a1,11∂x1u1 + a1,12∂x1u2 + a2,11∂x2u1 + a2,12∂x2u2 = 0
∂tu2 + a1,12∂x1u1 + a1,22∂x1u2 + a2,12∂x2u1 + a2,22∂x2u2 = 0.

Denote by Aj = (aj,kl)kl the matrices in this system.
The characteristic manifold of the system is {(x1, x2, τ, ξ1, ξ2), p(τ, ξ1, ξ2) = 0} where p(τ, ξ1, ξ2) =
det(τId+A1ξ1 +A2ξ2).

(3) If the coefficients in (1.129) are non constant, we define the characteristic manifold of the
system, using the principal symbol of the equation as {(x1, x2, τ, ξ1, ξ2), p(τ, ξ1, ξ2) = 0}
where p(τ, ξ1, ξ2) = det(τId+A1(t, x1, x2)ξ1 +A2(t, x1, x2)ξ2).

Proof. Proof of Item 1. The equation on u is equivalent to (∂t + a1(x,t)
a0(x,t)

)(u) = 0, of symbol is

l(x, t, ξ, τ) = iτ + a1(x,t)
a0(x,t)

iξ. For the item 2, call P = ∂t + a1,11∂x1 + a2,11∂x2 . The first equation of

(1.129) writes Pu1 + a1,12∂x1u2 + a2,12∂x2u2 = 0.
Applying P to the second equation, we obtain ∂tPu2+a1,12∂x1Pu1+a1,22∂x1Pu2+a2,12∂x2Pu1+

a2,22∂x2Pu2 = 0. Replacing Pu1 by its expression in u2, one obtains

∂tPu2−a1,12∂x1(a1,12∂x1u2+a2,12∂x2u2)+a1,22∂x1Pu2−a2,12∂x2(a1,12∂x1u2+a2,12∂x2u2)+a2,22∂x2Pu2 = 0,

which rewrites

∂2u2
∂t2

+ (a1,11 + a1,22) ∂
2u2

∂t∂x1
+ (a2,11 + a2,22) ∂

2u2
∂t∂x2

+ (a1,11a1,22 − (a1,12)2) ∂
2u2

∂x2
1

+ (a2,11a2,22 − (a2,12)2) ∂
2u2

∂x2
2

+(a1,22a2,11 − 2a1,12a2,12 + a2,22a1,11) ∂2u2
∂x2∂x1

= 0.

The symbol of this second order operator is then

−p(τ, ξ1, ξ2) = τ2 + (a1,11 + a1,22)τξ1 + (a2,11 + a2,22)τξ2 + (a1,11a1,22 − (a1,12)2)ξ2
1

+(a1,22a2,11 − 2a1,12a2,12 + a2,22a1,11)ξ1ξ2 + (a2,11a2,22 − (a2,12)2)ξ2
2 .

It writes

p(τ, ξ1, ξ2) = (τ + a1,11ξ1 + a2,11ξ2)(τ + a1,22ξ1 + a2,22ξ2)
−((a1,12)2ξ2

1 + 2a1,12a2,12ξ1ξ2 + (a2,12)2ξ2
2)

= (τ + a1,11ξ1 + a2,11ξ2)(τ + a1,22ξ1 + a2,22ξ2)− (a1,12ξ1 + a2,12ξ2)2.

One recognizes the determinant of the matrix τId+A1ξ1 +A2ξ2, hence the proof of the second item.
This yields the proof of the second item.

For the proof of the third item, we can try to apply the previous method; If P has variable coefficients,
applying P to the second equation, note that it writes

P∂tu2 + P (a1,12∂x1u1) + P (a1,22∂x1u2) + P (a2,12∂x2u1) + P (a1,22∂x2u2)) = 0

and using that ∂x1Pu1 = ∂t∂x1u1 + a1,11∂
2
x2

1
u1 + ∂x1a1,11∂x1u1 + ... (we highlight only the derivative

of the first term) we obtain that

∂x1Pu1 − P∂x1u1 = ∂x1a1,11∂x1u1 + ...

where in the right hand side appear only first order terms in u1, u2. We can thus replace Pu1 in
terms of u2 and we obtain thus an equation of the form Qu2 + L1(u1) = 0, where Q is a differential
operator (with variable coefficients) on u2 of order 2 and L1 is a differential operator of order 1 on
u1. It is not clear then that L1(u1) is a lower order operator with respect to Qu2. We notice then

that, using the Fourier identity uj(t, x1, x2)) = 1
(2π)3

∮
ei(tτ+x1ξ1+x2ξ2)ûj(τ, ξ1, ξ2)dτdξ1dξ2, that the

system on u1, u2 rewrites

1
(2π)3

∮
ei(tτ+x1ξ1+x2ξ2)(iτ + iA1(t, x1, x2)ξ1 + iA2(t, x1, x2)ξ2)

(
û1(τ, ξ1, ξ2)
û1(τ, ξ1, ξ2)

)
dτdξ1dξ2 = 0

and the high frequency approximation of this equality yields that the leading order term of

(
û1(τ, ξ1, ξ2)
û1(τ, ξ1, ξ2)

)
is in the kernel of the matrix τId+A1(t, x1, x2)ξ1 +A2(t, x1, x2)ξ2. This justifies the definition of the
characteristic manifold for this case. �
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We study now the type of the roots of the characteristic equation.

In the case of item 1, we check that l(x, t, ξ, τ + τ0) = 0 has only as root in τ0 the real −τ − a1(x,t)
a0(x,t)

ξ.

In the case of item 2, we will distinguish the quadratic form in τ and the one in ξ1, ξ2 for example.
So we have

p(τ, ξ1, ξ2) = (τ +
1

2
( Tr A1ξ1 + Tr A2ξ2))2 + det (ξ1A1 + ξ2A2)− 1

4
( Tr A1ξ1 + Tr A2ξ2)2.

The matrix ξ1A1 + ξ2A2 is symmetric and therefore diagonalizable. Its eigenvalues are real and
denoted by λ1(ξ1, ξ2) and λ2(ξ1, ξ2). It comes then

p(τ, ξ1, ξ2) = (τ +
1

2
(λ1(ξ1, ξ2) + λ2(ξ1, ξ2)))2 − 1

4
(λ1(ξ1, ξ2)− λ2(ξ1, ξ2))2.

We then check that the roots of p(τ + s, ξ1, ξ2) = 0 are of of the form

s = −τ − λ1(ξ1, ξ2), s = −τ − λ2(ξ1, ξ2).

We note that they are not automatically simple, because we can have for example A1 = A2 = Id, in
which case λ1 = λ2 = ξ1 + ξ2. We then notice that in this case, the problems on u1 and on u2 are
decoupled.

By introducing a new time variable, which could be interpreted as the propagation along the
diagonal part of A1 and A2, that is

τ ′ = τ +
1

2
(λ1(ξ1, ξ2) + λ2(ξ1, ξ2))

the associated operator writes p(τ ′, ξ1, ξ2) = (τ ′)2 − A(ξ1, ξ2), where A(ξ1, ξ2) is the symbol of an
elliptic differential operator (the coefficients depend indeed on ai,jk only and it is a polynomial; only
the positivity is more easily expressed with λ1 and λ2) in the sense that we have A(ξ1, ξ2) ≥ C(ξ2

1 +ξ2
2),

with C > 0.
The eigenvalues of the matrix τId + ξ1A1 + ξ2A2 are then τ + λ1(ξ1, ξ2), τ + λ2(ξ1, ξ2). The

hyperbolicity assumption of the definition 2.1 does not exclude multiple eigenvalues. On the other
hand, we note that Lax [60] imposes that ξ1A1 + ξ2A2 has two distinct real eigenvalues (p 628).

The definition 2.1 of a hyperbolic matrix operator implies, in the case with constant coefficients,
that the operator P of order m scalar deduced from the matrix operator τA0 +

∑j=m
j=1 ξjAj verifies

σ(P )(x, t, ξ, τ + s) = 0 has only real solutions. If, moreover, the matrix problem associated to

τA0 +
∑j=m
j=1 ξjAj satisfies the additional (restrictive) condition, then σ(P )(x, t, ξ, τ + s) = 0 has only

real solutions of multiplicity 1. In all the above cases, we will say that the operators are hyperbolic
with respect to the surfaces of time-type. This implies two distinct definitions of hyperbolicity :

Definition 10.2. We say that P , differential operator of order m on IRd, is a hyperbolic operator
with respect to N ∈ TxIRd when its principal symbol σ(P ) satisfies

σ(P )(x, ξ + sN) = 0 has only real roots.

This definition comes from chapter 12.3 of [48]. In particular an operator P (D) is hyperbolic
according to Hörmander when

P (ξ + iτN) 6= 0 pour ξ ∈ IRd et pour τ < τ0

This is equivalent, for a homogeneous polynomial, to σ(P )(x, ξ + sN) = 0 has only real roots. (The-
orem 12.4.3 and Theorem 12.4.6 of [48], volume II)

We also define a notion of strict hyperbolicity :

Definition 10.3. We say that P , differential operator of order m on IRd, is a strictly hyperbolic
operator with respect to N ∈ TxIRd when its principalsymbol σ(P ) verifies

σ(P )(x, ξ + sN) = 0 has only real roots of multiplicity 1.

which is the definition 12.4.11 of [48], Tome II.
In the case we studied earlier, the coordinates are (x, t), the dual coordinates are (ξ, τ) and

the vector N is (collinear to) (0, 1). The hyperbolic operators of Definition 2.1 are the hyperbolic
operators with respect to N = (0, 1), a vector conormal to any surface t = t0.

Hyperbolic operators are extremely important. Indeed, according to the theorem 12.5.1 of [48]
Tome II, a hyperbolic operator admits a single fundamental solution supported in the hyperspace
x.N ≥ 0.
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2. Eikonal equation and strictly hyperbolic Cauchy problem

In what follows, we study an operator P of real principal type which is strictly hyperbolic with
respect to (0, ξn) (we also say with respect to xn = 0). We want to study the asymptotic solutions
associated to P , by the same method as the one used in chapter 2 and chapter 3. This section is
inspired by the book of F. Treves [96].

The operator is strictly hyperbolic, which implies (as the roots are simple) that ∂ξp(x, ξ) 6= 0 on
a leaf of the characteristic manifold p(x, ξ) = 0. We can thus write a change of coordinates in X such
that ∂ξnp(x, ξ) 6= 0 on the leaf considered. This leaf has the equation ξn = q(x, ξ′), and there exists
a symbol e(x, ξ) (of order m− 1 when p is of order m) such that

p(x, ξ) = e(x, ξ)(ξn − q(x, ξ′)),

The symbol p (and the associated operator) is strictly Cauchy hyperbolic for the leaf ξn = q(x, ξ′)
when there exists c such that e(x, ξ′, q(x, ξ′)) ≥ c|ξ′|m−1 for ξ′ large.

We study the bicharacteristics of e(x, ξ)(ξn − q(x, ξ′)). We denote by p1(x, ξ) = ξn − q(x, ξ′). A
generic point on the bicharacteristic is denoted by ρ(s) = (x(s), ξ(s)) and we assume that ρ(0) belongs
to ξn − q(x, ξ′) = 0, ξ′ 6= 0.

The system in T ∗IRn of bicharacteristic curves is

(2.130)


dξn
ds

= e(ρ(s)) ∂q
∂xn

(x(s), ξ′(s))− ∂e
∂xn

(x(s), ξ(s))p1(ρ(s))
dxn
ds

= e(ρ(s)) + ∂e
∂ξn

(ρ(s))p1(ρ(s))
dξ′

ds
= e(ρ(s)) ∂q

∂x′ (x(s), ξ′(s))− ∂e
∂x′ (ρ(s))p1(ρ(s))

dx′

ds
= −e(ρ(s)) ∂q

∂ξ′ (x(s), ξ′(s)) + ∂e
∂ξ′ (ρ(s))p1(ρ(s)).

One checks that

e(ρ(s))p1(ρ(s)) = 0

Moreover, since ρ(0) ∈ {ξn − q(x, ξ′) = 0}, e(ρ(0)) 6= 0. There then exists s0 > 0 verifying
e(ρ(s)) 6= 0 for s ∈ [0, s0]. This indicates that, for s ∈ [0, s0], ρ(s) is in the manifold p1(ρ(s)) = 0.

For s ∈ [0, s0], the system of bicharacteristic curves (2.130) is equivalent to

(2.131)


dξn
ds

= e(ρ(s))∂xnq(x(s), ξ′(s))
dxn
ds

= e(ρ(s))
dξ′

ds
= e(ρ(s))∂x′q(x(s), ξ′(s))

dx′

ds
= −e(ρ(s))∂ξ′q(x(s), ξ′(s)).

Using the change of variable S(s) (which is a diffeomorphism of [0, s0] over [0, S(s0)] and whose inverse
diffeomorphism is denoted by s(S)) such that

S′(s) = e(ρ(s)), S(0) = 0

we verify that (2.131) is equivalent to

(2.132)


dξn
dS

= ∂xnq(x(s(S)), ξ′(s(S)))
dxn
dS

= 1
dξ′

ds
= ∂x′q(x(s), ξ′(s))

dx′

ds
= −∂ξ′q(x(s), ξ′(s)).

This is the system giving the bicharacteristic curves of the pseudodifferential operator of symbol p1.
A bicharacteristic curve of p1 is a bicharacteristic curve of p as long as ξ′(s) = 0. We consider now
the pseudo-differential operator P of symbol :

p(x, ξ) = ξn − q(x, ξ′)

where q is a homogeneous symbol of degree 1. Its bicharacteristic flow is given by (2.132). The eikonal
equation associated to this pseudodifferential operator is

∂xnφ(x′, xn) = q(xn, x
′, ∂x′φ(xn, x

′)).

We also impose the initial condition on xn = 0 ∂x′φ(0, x′) = ξ′0(x′).
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Lemma 10.1. Let φ be the solution phase of the eikonal equation ∂xnφ(x) = q1(x, ∂x′φ). We give
φ(x′, a) and ∂x′φ(x′, a) (i.e. we impose φ on the hypersurface xn = a and its normal derivative on
this hypersurface). There exists a function Ψ, determined in a neighborhood of the point (x′0, a) thanks
to the integral curves, by

φ(x′, xn) = φ(x′, a) +

∫ xn

a

q1(x′, u, ξ′(u, x′,Ψ(x′, u, ∂x′φ(x′, a)), ∂x‘φ(x′, a)))du.

Preuve. Consider the bicharacteristic from the point

x′(0) = x′, xn(0) = 0, ξ′(0) = ξ′0, ξn(0) = q(x′, 0, ξ′0(x′))

The parameter s on the bicharacteristic is equal to xn. We choose this new parameter as a
variable. A general point on the bicharacteristic is denoted by

(x′(s, x′, ξ′0), s, ξ′(s, x′, ξ′0), q(x′(s, x′, ξ′0), s, ξ′(s, x′, ξ′0))).

The result of the proposition 9.1 (inclusion of a bicharacteristic in a Lagrangian solution if a point of
this bicharacteristic is in it) allows to write

∂φ

∂x′
(x′(s, x′, ξ′0), s) = ξ′(s, x′, ξ′0).

One then deduces

(2.133)
∂φ

∂xn
(x′(s, x′, ξ′0), s) = q(x′(s, x′, ξ′0), s, ξ′(s, x′, ξ′0))

which is an equation on the behavior of the phase in xn. We assume that the neighborhood of
the considered point is totally characteristic, i.e. any point (y′, xn) is can be reached by a unique
bicharacteristic in this neighborhood.

There exists then a function Ψ(xn, y
′, ξ′0) such that the equation in x′0: y′ = x′(xn, x

′
0, ξ
′
0) admits

locally for solution:

x′0 = Ψ(xn, y
′, ξ′0).

The bicharacteristic passing through (Ψ(xn, y
′, ξ′0), 0, ξ′0, q(Ψ(xn, y

′, ξ′0), 0, ξ′0)) goes through the point
(y′, xn, ξ

′(xn,Ψ(xn, y
′, ξ′0), ξ′0), q(y′, xn, ξ

′(xn,Ψ(xn, y
′, ξ′0), ξ′0))). Equation (2.133) is equivalent to :

∂φ

∂xn
(y′, xn) = q(y′, xn, ξ

′(xn,Ψ(xn, y
′, ξ′0), ξ′0)).

We deduce the solution from φ(y′, 0). This last term is calculated by noting that

∂x′φ(y′, 0) = ξ′(0,Ψ(0, y′, ξ′0), ξ′0) = ξ′0.

It is then sufficient to express the relation giving ξ′0 as a function of x′ to deduce φ(y′, 0). We obtain
the relation of Lemma 10.1.

3. Theorem of propagation of singularities

The aim of this Section is to prove the

Theorem 10.1. Let P be a classical pseudodifferential operator of degree 1, whose principal symbol
p is of real principal type. Then

γp(ρ0) ∩WF (Pu) = ∅ → γp(ρ0) ∩WF (u) = ∅ or γp(ρ0) ⊂WF (u).

Before proving this general result, let us consider a simple case. Consider the derivation operator
in IRn with respect to the last coordinate. The coordinates in IRn are denoted (y′, yn) and the
coordinates in T ∗(IRn) are denoted (y′, yn, ξ

′, ξn), and we give y0
n ∈ IR. Let ũ0(y′) be a function of

class C∞(IRn−1). We note in the traditional way Dyn the operator 1
i

∂
∂yn

, so that the symbol of the

operator Dyn is ξn. We study the problem model in IRn as follows :{
Dyn ũ(y) = ṽ(y)
ũ(y′, y0

n) = ũ0(y′)

which solution is

ũ(y) = ũ0(y′) + i

∫ yn

y0
n

ṽ(y′, t)dt

We have
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Lemma 10.2. Let γ a bicharacteristic of Dyn (of ξn).

γ ∩WF (Dyn ũ) = ∅ ⇒ γ ∩WF (ũ) = ∅ or γ ⊂WF (ũ).

Proof. Let H be the Heaviside function, indicator function of IR+. We introduced the distri-
bution w(y′, yn) = iδ(y′) ⊗ H(yn) and the kernel operator Ẽ such that Ẽφ = w ? φ, more precisely

Ẽφ(x) =< w, φ(x− .) >. One has the equality

ũ = ũ0 + Ẽṽ.

We also check that the operator Ẽ is a parametrix of Dyn . The wavefront set of w is

WF (w) = {(0, yn, ξ′, 0), yn > 0} ∪ {(0, ξ)}.
This fact can be easily verified by performing the Fourier transform of this distribution, in the vicinity
of a point such that y′ = 0 (indeed, the points y′ 6= 0 do not contribute to the front).

Let us now search for the wavefront of the kernel K associated to the operator w?. As w?u(x) =∫
w(x− y)u(y)dy, we have K(x, y) = w(x− y).

We consider a function χ which localizes in t in the neighborhood of t0, and we give x0, y0 such
that x0 − y0 = t0. We localize y in the neighborhood of y0 through φ0, χ and φ0 are compactly
supported. We deduce WF (K) by the equality :

F(φ0χK)(ξ, η) =

∫ ∫
χ(t)w(t)e−itξdt

∫
dyφ0(y)e−iy(ξ+η).

Since χ is compactly supported, the distribution χw is of finite order, so its Fourier transform is
at most polynomial.

First, since φ0 is compactly supported and C∞, if (ξ, η) belongs to a conic neighborhood of

(ξ0, η0), with ξ2
0 + η2

0 6= 0, then the integral in y is rapidly decaying in (|ξ|2 + |η|2)
1
2 . Thus, with the

growth of the Fourier transform of w, we have rapid decay. The points of the form (x0, y0, ξ0, η0) with
ξ2
0 + η2

0 6= 0 are not in the the wavefront of K.
We are now concerned with ξ0 + η0 = 0. Then, if (x0 − y0, ξ0) is not in the wavefront of w, the

point (x0, y0, ξ0, η0) is not in the wavefront of K. We have obtained

WF (K) ⊂ {(x, ξ, y,−ξ), (x− y, ξ) ∈WF (w)}.
We deduce

WF ′(K) ⊂ {(x, ξ, y, ξ), (x− y, ξ) ∈WF (w)}.
On the other hand, the bicharacteristics of the operator Dyn , noted γ(s) = expsHxin(m0), are given,
for m0 = (y0, ξ

′
0, 0), by γ(s) = (y′0, y

0
n + s, ξ′0, 0).

We use the remark of the section 3, to obtain the wavefront of Ẽṽ. The relation WF (w ? u) =
WF (Ku) ⊂ WF ′(K)(WF (u)) ∪ WF ′X(K) and the fact that WF ′X(K) = {(x, ξ),∃y, (x, ξ, y, 0) ∈
WF ′(K)} = ∅ gives, using the notations of the equality giving ũ :

WF (Ẽṽ) ⊂WF (ṽ) ∪ {(Y, ξ), ∃(y, ξ) ∈WF (ṽ), (Y − y, ξ) ∈WF (w)}.
We prove the singularity propagation theorem in the case of the operator ∂xn .

Let γ be a bicharacteristic of ξn. We assume that γ ∩WF (ṽ) = ∅. The previous study shows

that γ ∩WF (Ẽṽ) = ∅. It remains to study the term ũ(x′, 0). The wavefront of ũ0 is included in
T ∗(IRn−1). To characterize the wavefront in IRn of ũ(x′, 0), we evaluate the Fourier transform of
χ(xn)φ0(x′)ũ(x′, 0). We find

F(χφ0ũ|xn=0)(ξ′, ξn) = χ̂(ξn)F(ũ0φ0)(ξ′).

Let ξ0
n 6= 0 and (ξ0

n)2 + ((ξ′)0)2 = 1. We consider (ξn, ξ
′) in a (small) sphere around (ξ0

n, (ξ
′)0).

Then there exists ε > 0 such that |ξn − λξ0
n| ≤ ελ for all λ, and as χ is of class C∞, its Fourier

transform is rapidly decaying in ξn so in λ. We deduce that (x′, ξ′, xn, ξn), ξn 6= 0 is not in the
wavefront of ũ(x′, 0). From this we deduce

WF (ũ(x′, 0)) ⊂ {(x′, xn, ξ′, 0)}.
Moreover, if (x′0, (ξ

′)0) ∈ WF (ũ0), we easily obtain (x′0, xn, (ξ
′)0, 0) ∈ WF (ũ(x′, 0)) for all xn. We

then assume that a bicharacteristic intersects the wavefront of ũ solution of Dxn ũ = ṽ at a point
denoted by ρ′0, but does not meet the wavefront of ṽ. This point of intersection is then equal to
((y′)0, y0

n, (η
′)0, 0). (η0

n = 0 because the bicharacteristic is included in the characteristic manifold).
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Thus, since Ẽṽ is regular, we deduce that ((y′)0, (η′)0) is in the wavefront of ũ0, and the front
wavefront of ũ(x′, 0) then contains all points of the form ((y′)0, y0

n, (η
′)0, 0). The bicharacteristic

from ((y′)0, y0
n, (η

′)0, 0) is {((y′)0, y0
n + s, (η′)0, 0), s ∈ IR}, so it is entirely contained in the wavefront

of ũ. The proof is finished and we have either γ ∩ WF (ũ) = ∅, or γ ⊂ WF (ũ). Now consider

the point γ(s0) = (y′0, yn(s0), ξ′0, 0) and we study Ũ(y) = −ũ(y′, 2yn(s0) − yn). Alors Dyn Ũ(y) =

ṽ(y′, 2yn(s0) − yn) = Ṽ (y). We verify that γ ∩ WF (Ṽ ) = ∅ and that γ(s0) ∈ WF (Ũ). Hence

γ(s), s ≥ s0 is contained WF (Ũ), which is equivalent to ” γ(s), s ≤ s0 contained in WF (ũ)”.
We just proved the result of Lemma 10.2. �

For proving theorem 10.1, consider a classical pseudo-differential operator of order 1 (∈ L1
cl)

Proof. By abuse of language, and by similarity with the strictly hyperbolic Cauchy problem,
we call this theorem the hyperbolic theorem of propagation of singularities. Indeed, the operator
ξn − e(x, ξ′), where e is homogeneous in ξ′ of degree 1, verifies dp = dξn − ∂e

∂x
dx − ∂e

∂ξ′ dξ
′, and the

coefficient 1 in front of dξn implies that p is of real principal type. This result is Theorem 6.1.4 of the
paper by Duistermaat and Hörmander [32]. When (x0, ξ0) is a point of the characteristic manifold
of p, operator of real principal type, the authors construct a Fourier integral operator A such that
the point (x0, ξ0;X0,Σ0) is not in the operator wavefront of PA−ADXn , where the Fourier integral
operators A and B characterize the canonical transformation such that BA = Id+R1, AB = Id+R2,
R1,2 ∈ S−∞ and such that the principal symbol of the operator Q := BPA is ηn. This principal
symbol is the symbol of the operator 1

i
∂
∂yn

is traditionally denoted by Dyn . There therefore exists

an operator R of order 0 such that Q = Dyn +R. From R, we construct a pseudo-differential elliptic
operator of order 0 (|C(y, η)| ≥ c > 0 for (y, η) in a neighborhood of the point χ(x0, ξ0)) such that
(Dyn +R)C = CDyn . The symbol of this operator is solution of the equations

C0(y′, η, y0
n) = 1

Cp(y
′, η, y0

n) = 0
∂ynCp(y, η) = i(RC)p(y, η), p ≥ 0

equivalent to C = 1 on yn = y0
n and [Dyn , C] +RC = 0.

Since C is elliptic, it admits an inverse C−1 such that CC−1 = Id + R3, C−1C = Id + R4,
R3,4 ∈ S−∞. Then there exists an operator R5 of L−∞ such that

(3.134) C−1BPAC = Dyn +R5.

We constructed a parametrix Ẽ of Dyn , such that

Id = ẼDyn = ẼC−1BPAC +R6

which implies (AC)−1 +R7 = ẼC−1BP or again

ACẼC−1BP = Id+R8.

A parametrix of P is then ACẼC−1B, and we can also, modulo the S−∞ terms, write

P = ACDynC
−1B.

Let γp(ρ0) be the bicharacteristic of P from ρ0. It is assumed that the bicharacteristic is not in
the wavefront of Pu.

γp(ρ0) ∩WF (Pu) = ∅ ⇒ γp(ρ0) ∩WF (ACDynC
−1Bu) = ∅.

Canonical transformations transforming P1 into P2 send bicharacteristics of operator P1 to bichar-
acteristics of operator P2. This result in the case of a symplectic transformation associated to a
change of variable in the x-space comes from the Proposition 8.4. The generalization to a general
transformation is a consequence of Theorem 9.1 and of the invariance of the principal symbol af-
ter canonical transformation: pm(y,∇yφ) = pm(∇θψ, θ) (relation (9.4.9)). We obtain χ(γp(ρ0)) ∩
WF (CDynC

−1(Bu)) = ∅. Now χ(γp(ρ0)) = γξn(χ(ρ0)), and, as C is elliptic as well as C−1,
WF (CDynC

−1(Bu)) = WF (Dyn(Bu)) (application of the proposition 7.8).
So we have γξn(χ(ρ)) ∩ WF (DynBu) = ∅. By application of the lemma 10.2, γξn(χ(ρ)) ∩

WF (Bu) = ∅ or γξn(χ(ρ)) ⊂WF (Bu).
The wave front set is preserved under the canonical transformation(in the case of a symplec-

tic transformation, it is a result of the Proposition 8.4). If B is a quantization of this canonical
transformation, WF (Bu) = χ(WF (u)). Indeed, from the relation of paragraph 9.4.1 WF (Au) ⊂
{(x,∇xφ), (∇ηφ, η) ∈ WF (u)). We have then the inclusion WF (Au) ⊂ Tχ(WF (u)) and we deduce
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WF (BAu) ⊂ T−1
χ (WF (Au)). On the other hand, BA = I + R2 so WF (BAu) = WF (u), and we

have the equality we are looking for. We deduce

γp(ρ0) ⊂WF (u) ou γp(ρ0) ∩WF (u) = ∅.

We have completed the proof for an operator of symbol p1(x, ξ) homogeneous of degree 1.
When p, of order m, is of real principal type, in the neighborhood of a strictly hyperbolic point

ρ, there exists an elliptic operator E (in the neighborhood of the point ρ) such that P = EP1 + R,
E elliptic, P1 of order 1 and R ∈ S−∞. The wavefront of Pu in the neighborhood of ρ is equal to
WF (P1u) in this neighborhood (consequence of the proposition 7.8). The bicharacteristics of P are
the same as the bicharacteristics of P1 (see the section 2), so

γp(ρ0) ∩WF (Pu) = ∅ ⇒ γp1(ρ0) ∩WF (P1u) = ∅.

One uses then

γp1(ρ0) ∩WF (P1u) = ∅ ⇒ γp1(ρ0) ∩WF (u) = ∅ ou γp1(ρ0) ⊂WF (u).

Thus we proved the theorem 10.1 for any operator. �

Duistermaat and Hörmander state this theorem (Theorem 6.1.1 of [32]) in the following way :
If P ∈ Lmcl (X) is properly supported, of real principal type and if u ∈ D′(X) and Pu = f , then
WF (u)−WF (f) ⊂ p−1(0) and this set is invariant by Hp.

The goal of the following sections is to generalize this theorem of propagation of singularities by
the Hamiltonian flow to the case with boundary, i.e. the case where the considered bicharacteristic
meets the boundary of the domain (the problem Pu = 0 is solved in M, typically xn > 0). We restrict
ourselves to the case of the application we are interested in : the waves problem.

4. Boundary problems for the wave equation.

In this section we study problems at the boundary. The typical problem that we will study is
the following :

Let P be a second order operator defined on IRn and let Ω be an open set of IRn. We want to
solve, locally near the boundary, the problem (P − ∂2

t2)u = 0 in the complementary of Ω× IRt, and a
boundary condition on the boundary ∂Ω× IRt, which can be either
• Dirichlet boundary condition (D) u|∂Ω×IRt = 0,
• Neumann boundary condition (N) ∂nu|∂Ω×IRt = 0 (this in the case where u ∈ H1

loc((IR
d −Ω)×

IRt) ∩ {Pu ∈ L2}, since we can then define the normal derivative),
• mixed boundary condition (M) ∂nu|∂Ω×IRt + z(x, t)∂tu|∂Ω×IRt = 0.
We also give the two Cauchy conditions, u|t=0 and ∂tu|t=0. Note that these two Cauchy

conditions can be interpreted as u|t<0 = ui|t<0, where the function ui is an incident
solution of the wave equation.

It is assumed that, locally in the neighborhood of y0, this boundary can be straightened, that
is, there exists a system of coordinates (x) in which the boundary is xn = 0. We will come back
to this for the problem of diffraction of waves by a convex open set. We start by showing the jump
formula, which allows us to know the solution of a problem in the exterior of an obstacle as a function
of the traces on the boundary. It is a generalization of Green’s formula and single and double layer
potentials. We apply this result, stated for a differential operator of order m, to the operator Laplacian
operator, of order 2. Let us note immediately, without demonstration, that there is no redundancy
between the Cauchy condition and the boundary condition.

4.1. Jump formula and boundary wave front set WFb. We give ourselves a differential op-
erator of order m, in the form P =

∑j=m
j=0 Pj(xn, x

′, Dx′)(Dxn)j . We define an extendible distribution
solution.

Definition 10.4. • Let V ⊂ IRn, and S be a smooth hypersurface of equation s = 0. We define,
in the vicinity of a point such that ∇xs 6= 0, the two open sets V± = {x ∈ V,±s(x) > 0}. We can also

define Ṽ+ = {x ∈ V, s(x) ≥ 0}. The set Ṽ+ is the manifold with boundary considered here. We say

that u is a extendible distribution of V+, and we denote u as a D′(Ṽ+), when there exists ũ ∈ D′(IRn)
such that

∀φ ∈ C∞0 (V+), < u, φ >=< ũ, φ > .

The space of extendible distributions is thus the dual space of C∞0 (V+), space of C∞ test functions
with compact support vanishing at any order on ∂V+ (see Melrose [75]).
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As ∇xs 6= 0, we choose a coordinate xj such that ∂s
∂xj

(x0) 6= 0. We reorder the coordinates so

that j becomes n. Let V be a neighborhood of x0 where | ∂s
∂xn

(x)| ≥ 1
2
| ∂s
∂xn

(x0)|. By the implicit

function theorem, s = 0 is equivalent to xn = ψ(x′), ψ being a function of class C∞ in V , and s > 0 is
equivalent to ∂s

∂xn
(x0)(xn − ψ(x′)) > 0. We then choose Xn = ∂s

∂xn
(x0)(xn − ψ(x′)). The application

(x′, xn)→ (x′, Xn) is a diffeomorphism of V on its image, and V± = {±Xn > 0}.
We have therefore reduced ourselves to s(x) = xn.

Proposition 10.2. Let u be an extendible distribution of D′(V+) such that Pu = 0 in V+. We
assume

p(x0, 0, 0, ..1) 6= 0.

There exists a unique distribution u, extending u by 0 in V−, such that there exists m > 0 with
xmn Pu = 0.

Proof. Let x0 be a point of ∂V and U a compact set containing an open set W containing x0.
We now restrict all distributions to W . Thus ũ, extending u, is compactly supported and therefore
of finite order. In this analysis we take any extension of u. Thus there exists M > 0 such that

(1−∆)−M ũ(x) = (2π)−n
∫
eix.ξ

û(ξ)

(1 + |ξ|2)M
dξ

and one is in the case where it is continuous on IRn. One then defines

ǔ(x) = (1−∆)M [1xn≥0(1−∆)−M ũ(x)].

This distribution satisfies ǔ(x) = 0, xn < 0, ǔ(x) = u(x), xn > 0. Moreover, Pǔ = 0 for xn 6= 0,
because u is solution of Pu = 0. The distribution Pǔ is of finite order, so there are aj , 0 ≤ j ≤ j0,
aj(x

′) ∈ D′j0(|x′| < r) such that

Pǔ =

j0∑
j=0

aj ⊗ δjxn=0.

Let D′S be the space of distributions with support in S = ∂V+ = {xn = 0}, D′S,l the subspace

of l−layer distributions with coefficients on S, of the form al ⊗ δlxn=0 (distribution defined, for φ ∈
C∞0 (IRn) through the restriction ∂lxnφ(x′, 0) := ψl(x

′), ψ ∈ C∞0 (IRn−1)), by < al ⊗ δlxn=0, φ >=

(−1)l < al, ψl >, duality of distributions in D′(IRn−1)). Since P is a differential operator

b→ P (b)

defines a linear form T on D′S . This application is injective. Moreover we verify that, for any a ∈ D′S ,
there exists a distribution b ∈ D′S such that T (b)− a ∈ D′S,m−1.

We prove this explicitly. Let P =
∑
pjα(x)∂αx′∂

j
xn . We write b =

∑j=j0
j=0 bj(x

′)⊗ δjxn=0, so

< P (b), φ > =
∑
j+|α|≤m,l≤j0(−1)j+|α| < bl ⊗ δlxn=0, ∂

α
x′∂

j
xn [pj,α(x)φ(x)] >

=
∑
j+|α|≤m,l≤j0(1−|α|+j+l < bl, ∂

α
x′∂

j+l
xn [pj,α(x)φ(x)]|xn=0 >

After applying the Leibniz formula for the derivation in xn, it remains

T (b) =

p=m+j0∑
p=0

∑
j+l≥p

(−1)j+l−pCpj+l∂
j+l−p
xn pj,α(x′, 0)∂αx′bl ⊗ δpxn=0.

We check that, for p = m + j0, the coefficient is obtained by taking j = m, l = j0, which gives
pm,0(x′, 0)bj0(x′). The coefficient pm,0 is equal to 1, so the term of order m + j0 of T (b) is equal to
the term of order j0 of b. Similarly, the term of order m + j0 − 1 is bj0−1 +

∑
|α=1 pm−1,α∂

α
x′bj0 +

pm−1,0(x′, 0)bj0 − ∂xnpm,0(x′, 0)C1
m+j0bj0 . Thus the term of order m + j0 − q will include the term

bj0−q with for coefficient 1, and all terms bj0−q′ for q′ ≤ q.
When a is given, of order r ≥ m, we can construct a sequence of distributions bj , j ≤ r−m, such

that T (b) = a. Indeed, br−m = ar, and we construct bq−m with the bq′−m for q′ ≥ q.

We return to P (ǔ). There exists (gj(u))0≤j≤m such that T (
∑m
j=0 gj(u)⊗ δ(j)

xn )−P (ǔ) ∈ D′S,m−1,

and b is unique. We then deduce that xmn [T (b)−P (ǔ)] = 0 by comparing the orders of the distributions.
We denote by u = ǔ− b. This is a solution to the problem of Proposition 10.2. If there are two

solutions, we check that u1 − u2 ∈ D
′
S and T (b) ∈ D′S,m−1. This implies b = 0 by studying the order

of T (b). The extension is therefore unique. �
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Remark 11. Extending u by 0 does not uniquely define an extended solution, and even can lead
to a distribution which is not well defined.

Proof. Indeed, the application φ →< u, φ|∂Ω > is not well defined because φ|∂Ω is not C∞

(assume for example that the support of φ contains strictly Ω, there might be a jump for φ|∂Ω. As
for the first part of the remark, let u1 and u2 be two distributions such that

u = u1 = u2 in D′(V+), 0 = u1 = u2 in D′(V−).

Then u1 − u2 is supported on xn = 0, so on a compact subset of {xn = 0}, there exist M ∈ IN

and M + 1 distributions aj of E ′(IRn−1) such that u1 − u2 =
∑M
j=0 aj ⊗ δ

(j)
xn . This idea is used in

the proof of the proposition 10.2. In particular, if D = δxn=0 is the Dirac distribution on xn = 0,
defined by < D,φ >=

∫
IRn−1 φ(x′, 0)dx′, we see that for φ = 0 on a compact subset near {xn = 0},

< D,φ >=< 0, φ > yet D 6= 0. On the other hand, we define the space C∞(0)(V+) as the space of

restrictions to V+ of functions of C∞0 (IRn), then, for χtest(x
′, xn) = χ(xn)χ(x1)...χ(xn−1), χ being a

positive function of integral 1, we have < D,χtest >= χ(0) 6=< 0, χtest > . �

When P is a differential operator of order 2, we have the following result

Lemma 10.3. Let u be an extendible distribution solution of Pu = 0 in V+. Let u be its unique
extension in the sense of the proposition 10.2. There exist two distributions g0(u) and g1(u) of D′S,
such that

Pu = g0(u)⊗ δxn=0 + g1(u)⊗ δ′xn=0.

This formula is called the jump formula at order 2.

For this, we recall that there exists a unique u, canonical extension of u, u ∈ D′(V ), u|V+ = u,

u|V− = 0, x2
nPu = 0. By writing Pu =

∑j=m
j=0 bj ⊗ δjxn , since Pu is supported on xn = 0 and is

compactly supported, we check that, for j ≥ 2, x2
nbj⊗δjxn = j(j−1)bj⊗δj−2

xn , so bj = 0 for j ≥ 2. One
has b0 = g0(u), b1 = g1(u). Finally, we define the wavefront up to the boundary, which we noteWFb(u)
for an extendible distribution u. There are several definitions see Hörmander [48], [75], Melrose-
Sjöstrand [77]. For this, we consider the canonical injection i of C∞0 (V+) into C∞(0)(V+), associated to

the dual surjection i∗ of Ḋ′(V+) onto D′(Ṽ+). The regular distributions up to the boundary D′∂(Ṽ+)
are the distributions u such that u ∈ C∞([0, ε],D′(IRn−1)). It is equivalent to say that there exists
A(x′, Dx′) ∈ L0(IRn−1) with compact support such that A(x′, Dx′)u(x′, xn) ∈ C∞([0, ε] × IRn−1).
The conormal bundle at ∂V+, denoted by N(∂V+), is by definition {(x′, 0, 0, ξn), ξn 6= 0}. We denote

then by BṼ+ = T ∗Ṽ+/N(∂V+), which is a topological space whose null section is well-defined and
denoted by {0}. This space naturally projects onto T ∗(V+) and T ∗(∂V+). (the interior projects onto
the interior and a point of T ∗(∂V+) is written (x′, ξ′), to which we associate the equivalence class

of (x′, 0, ξ′, 0) in BṼ+). The canonical projection of T ∗Ṽ+ into T ∗Ṽ+/N(∂V+) is denoted by b. The
definition of the wavefront at the boundary given by R. Melrose in [75] is the following

Definition 10.5. Let u be an extendible distribution. The wavefront at the boundary WFb(u) ⊂
BṼ+ is

WFb(u) = {ρ ∈ T ∗(Ṽ+), ρ ∈WF (i∗u) = WF (u|V+)}∪
{ρ0 ∈ T ∗(∂V+){0}, for any conic neighborhood of ρ0,
there exists ρ = (x′, 0, ξ′, ξn) such that (x′, ξ′) ∈ Γ and ρ ∈WF (u)}

.

The second part (part of WFb(u) contained in T ∗(∂V+)) is obtained in the following way, as
indicated by Melrose and Sjöstrand [77] :

Definition 10.6. If ρ ∈ T ∗∂V+ − {0}, then ρ /∈ WFb(u) if and only if only if u is regular up to
the boundary as defined above.

There is also a definition using the characteristic manifolds of operators, analogous to the defini-
tion of the wavefront :

(4.135) WF (u) = ∩CarB,Bu ∈ C∞.
This definition is more technical and involves the distributions at the boundary ∂X of the manifold X.

The reader who wants more details will usefully refer to Hörmander [48], Tome III, Definition 18.2.6 for

Im(X, ∂X, T ∗X), (183.328) to define Ȧ(X), conormal distributions with respect to Definition 18.3.18 to de-

fine Ψ0
b(X), operators locally of symbol a(x, ξ′, xnξn), ∂X being xn = 0, and in these notations WFb(u) =

∩CharB,B ∈ Ψ0
b(X), Bu ∈ Ȧ(X).
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For a differential operator of order 2 with coefficients of class C∞, we prove (see for example G.
Lebeau [68] in the case of analytical coefficients):

Proposition 10.3. Let u be a solution of Pu = 0 in xn > 0. Let U be its canonical extension,
as obtained in the proposition 10.2. We have the equality WFb(u) = b(WF (U)).

We give two results that allow us to understand a little better the wavefront at the boundary.
The first one concerns the wavefront at the boundary of a boundary layer distribution (Lemma 10.4,
thanks to Hörmander). The second one allows to link in part the wavefront at the boundary of u and
the wavefront of traces of u on this boundary (when we can define them, for example if the boundary

writes {xn = 0}, for u ∈ H
3
2

+ε(xn > 0)) when u is solution in {xn > 0} of Pu = 0, see [48]). )

Lemma 10.4.

WF (

j=m−1∑
j=0

aj(x
′)⊗ δjxn) = ∪WF (aj)× T ∗S.

Proof. Consider a point (x′0, x
0
n, ξ
′
0, ξ

0
n). In the neighborhood of a point where x0

n 6= 0, the
distribution is zero, so the front is included in x0

n = 0. On the other hand, we consider (x′0, 0, ξ
′
0, ξ

0
n)

and localize for x′ in the neighborhood of x′0. We find that the Fourier transform of each term is

χ̂aj(ξ
′)(iξn)j .

If the point (x′0, ξ
′
0) is not in the wavefront of aj , then χ̂aj(ξ

′) is rapidly decaying in a conical

neighborhood of ξ′0. We multiply by a polynomial, so the result is rapidly decaying in λ = (ξ2
n+ |ξ′|2)

1
2

âj(ξ
′)ξjn = λj âj(λ

ξ′

(|ξ′|2 + ξ2
n)

1
2

)(
ξn

(|ξ′|2 + ξ2
n)

1
2

)j .

Let (η′0, η
0
n) = 1

((ξ0n)2+|ξ′0|2)
1
2

(ξ′0, ξ
0
n). Then we know that, for (ξ′, ξn) in a conic neighborhood

of (ξ′0, ξ
0
n), ξ′

(|ξ′|2+ξ2n)
1
2

is in a conic neighborhood of ξ′0 (since a conic neighborhood of η′0 is a conic

neighborhood of ξ′0) and therefore âj(λ
ξ′

(|ξ′|2+ξ2n)
1
2

) is rapidly decaying in λ, so that λj âj(λ
ξ′

(|ξ′|2+ξ2n)
1
2

)

is rapidly decaying in λ. This shows that WF (aj ⊗ δ(j)
xn ) ⊂WF (aj)× {0} × IR∗.

Conversely, let (x′0, 0, ξ
′
0, ξ

0
n) /∈WF (aj⊗δ(j)

xn ). Then âj(ξ
′)ξjn is rapidly decaying in the cone given

by (ξ′0, ξ
0
n). From this we deduce that, for all N , there exists CN+j such that we have the rapid decay

inequality for the power N + j. We use the homogeneity of ξjn to obtain

|âj(λη′)ηjn| ≤ CN+jλ
−N .

When η0
n 6= 0, we see that this implies the rapid decay of âj in the cone generated by η′0, so ξ′0,

and so the point (x′0, ξ
′
0) is not in the wavefront of aj .

When η0
n = 0, we choose a point ηn = ε

2
, and we have (x′0, ξ

′
0) outside the wavefront of aj .

Thus WF (aj ⊗ δ(j)
xn ) = WF (aj)× ({0} × IR) .

We finally study the wavefront of the sum, using the successive orders p of of δ
(p)
xn . Indeed, we

have (for example)

xnδ
j
xn = −jδ(j−1)

xn

for j ≥ 1.
We use WF (fT ) ⊂ WF (T ) if f is a function of class C∞ and T is a tempered distribution. We

thus deduce that, for T = aMδ
(M)
xn

WF (xM−1
n T ) = (−1)MWF ((M − 1)!aMδxn) = WF (aM )× ({0} × IR).

This shows that WF (aM ) × ({0} × IR) ⊂ WF (T ). To simplify the proof, we restrict ourselves to
M = 1. We verify that

xnT = −a1 ⊗ δxn
(1 + ∂

∂xn
◦ xn)T = a0 ⊗ δxn

which gives, using the fact that (1 + ∂
∂xn
◦ xn) is a differential operator, the inclusion WF (a0) ∪

WF (a1) × ({0} × IR) ⊂ WF (T ). The inverse inclusion is immediate. We deduce the result of the
lemma 10.4. �
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Any partial differential operator of order 2 writes as:

P = ann(x)
∂2

∂x2
n

+
∑

1≤j≤n−1

bj(x)
∂2

∂xj∂xn
+

∑
k,l≤n−1

ckl(x)
∂2

∂xk∂xl
+ b(x)

∂

∂xn
+ C(x,

∂

∂x′
).

Introducing

A(xn, x
′, Dx′) = −

∑
1≤j≤n−1

1

2

bj(x)

ann(x)
Dxj +

i

2

b(x)

ann(x)
,

one finds
1

ann
P =

∂2

∂x2
n

+
2

i
A(xn, x

′, Dx′)
∂

∂xn
+B(xn, x

′, Dx′)

where the operator B is a differential operator of order 1 in the coordinates x′ whose coefficients
depend on x. Then we have the

Lemma 10.5. We consider u an extendible distribution such that Pu is an extendible distribution.
Let Pu = 0 in xn > 0 and let U be the extension of u by 0 in xn < 0 and (Pu)∗ be the extension

of Pu by 0 in xn < 0.

(1) When u is a function of class C∞,
PU = (Pu)∗ + ∂u

∂xn
(0, x′)δxn=0 + u(x′, 0)δ′xn=0 + 2

i
A(0, x′, Dx′)u(x′, 0)δxn=0.

(2) If u is an extendible solution, there exist two distributions g0(u) and g1(u) such that PU =
g0(u)⊗ δxn=0 + g1(u)⊗ δ′xn=0 where U is the extension of u.

(3) For u ∈ H1(xn > 0), Pu ∈ L2(xn > 0), then PU = ( ∂u
∂xn

(x′, 0)+ 2
i
A(0, x′, Dx′)u(x′, 0))δxn=0+

u(x′, 0)xn=0. The regularity of Pu allows to extend Pu by zero and the distribution given
by Pu on xn > 0, 0 on xn < 0 is in L2. The regularity of u allows to define the trace of u,

γu ∈ H
1
2
loc(IR

n−1), as well as the normal derivative, given in this case by

< PU, φ > +
2

i
< γu,A(0, x′, Dx′)φ > + < γu,

∂φ

∂xn
>=<

∂u

∂n
, φ > .

The first item is the particular form of the expressions (20.1.4) and (20.1.5) of [48].

Proof. We prove the jump formula for the operators ∂2

∂x2
n

and for A(xn, x
′, Dx′)

∂
∂xn

. Let φ ∈
C∞0 (IRn). Then

∫
( ∂

2u
∂x2
n

)∗(x)φ(x)dx =
∫
dx′
∫∞

0
∂2u
∂x2
n
φ(x)dxn

=
∫
dx′[− ∂u

∂xn
(x′, 0)φ(x′, 0)−

∫∞
0

∂u
∂xn

∂φ
∂xn

dxn]

=
∫
dx′[− ∂u

∂xn
(x′, 0)φ(x′, 0) + u(x′, 0) ∂φ

∂xn
(x′, 0) +

∫
u(x) ∂2

∂x2
n
φ(x)dxn]

Similarly, denoting by A⊥ the adjoint of the operator A (in variables x′), xn being a parameter, one
has ∫

(A(xn, x
′, Dx′)

∂u
∂xn

)∗φ(x)dx =
∫∞

0
dxn

∫
dx′A(xn, x

′, Dx′)
∂u
∂xn

φ(x)

=
∫∞

0
dxn

∫
dx′ ∂u

∂xn
A⊥(xn, x

′, Dx′)φ(x)

=
∫
dx′
∫∞

0
dxn

∂u
∂xn

A⊥(xn, x
′, Dx′)φ(x)

=
∫
dx′[−u(x′, 0)A⊥(0, x′, Dx′)φ(0, x′)

−
∫∞

0
dxnu(x) ∂

∂xn
◦A(xn, x

′, Dx′)φ

= −
∫
dx′A(0, x′, Dx′)u(x′, 0)φ(x′, 0)

−
∫∞

0
dxn

∫
dx′u(x) ∂

∂xn
◦A(xn, x

′, Dx′)φ

Looking at the equalities and noticing that the adjoint inD(IRn) ofA(x,Dx′)
∂
∂xn

is− ∂
∂xn
◦A⊥(xn, x

′, Dx′)

the equality of the lemma since∫ +∞

0

dxn

∫
dx′uP⊥φ =

∫
dxUP⊥φ

∫
PUφ.

This completes the proof of the first point of the lemma 10.5. The second point comes from the fact
that if u is a solution, Pu = 0 in xn > 0 so the unique extension of 0 being 0 in L2, (Pu)∗ = 0 as a
distribution in IRn. �

We then have additional information about the wavefront at the boundary of u, extendible
distribution solution of Pu = 0 in xn > 0 :
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Proposition 10.4. The wavefront at the boundary of u, extendible distribution solution of Pu = 0
in xn > 0 is

WFb(u)|xn=0 = WF (u|xn=0)× T ∗S ∪WF (∂xnu|xn=0)× T ∗S.
When u is regular enough (H1 for example), the notations used are correct. When u is not regular
enough, we replace u|xn=0 by g1(u) and ∂xnu|xn=0 by g0(u), the distributions g0(u) and g1(u) of
D′(Rn−1) being defined in the lemma 10.3.

Proof. Since, for any differential operator B, we have WF (Bu) ⊂ WF (u), we deduce that
WF (Pu) ⊂WF (u), so as WF (g0(u)⊗δxn=0+g1(u)⊗δ′xn=0) = WF (g0(u))×T ∗S∪WF (g1(u))×T ∗S,
we have the inclusion

WF (g0(u)) ∪WF (g1(u)) ⊂WFb(u).

�

4.2. Reduction of the wave operator to a normal form. We prove the following proposition
of the Laplacian representation, in the case where Ω is totally geodesic in the neighborhood of x0,
that is, any point of IRn can be put in the form M = N+Xnn(N), N ∈ ∂Ω and n(N) exterior normal
to ∂Ω at the point N .

Proposition 10.5. There exists a local coordinate system (Xn, X) in the neighborhood of x0 ∈ ∂Ω
(x0 is characterized by Xn = 0, X = 0 and ∂Ω is locally Xn = 0) and there exists a function K
identically equal to 1 on ∂Ω such that

K−1∆Kf =
∂2f

∂X2
n

+Q(Xn, X,
∂

∂X
)f.

The operator Q is differential and its restriction on ∂Ω is is the Laplacian associated to the boundary
metric.

Proof. We consider x0 ∈ ∂Ω and we associate to the boundary of Ω a local map in the neigh-
borhood of x0. This local map is characterized by the coordinates (X1, ...Xn−1) = X ′ and each point
of ∂Ω can be written M(X1...Xn−1), each coordinate being xj(X1, ...Xn−1) being xj(X1, ..Xn−1),
1 ≤ j ≤ n.

To each point M ∈ ∂Ω we associate the unit outgoing normal vector n(M), of coordinates
nj(X1...Xn−1), 1 ≤ j ≤ n. In the usual Cartesian coordinate system, we then write

xj(X1, ..Xn) = xj(X1, ..Xn−1) +Xnnj(X1, ...Xn−1).

This change of variable defines a diffeomorphism of a neighborhood of x0 ∈ IRn which transforms
a neighborhood of x0 in ∂Ω into a neighborhood of (Xn = 0, X ′ = 0) in Xn = 0. We note that
X ∈ IRn−1. The equality

df =
∑
j

∂f

∂xj
dxj =

∑
j

∂f

∂Xj
dXj

translates into, using dxj =
∑
k≥n−1(

∂xj
∂Xk

+Xn
∂nj
∂Xk

)dXk + nj(X1, ...Xn−1)dXn,

(4.136) ∇Xf =t B(Xn, X
′)∇xf.

The components of B are given, for 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 by

Bij(Xn, X) =
∂xj
∂Xk

+Xn
∂nj
∂Xk

Bin(Xn, X) = ni(X)

Let C = tB−1. One has, from (4.136)

∇xf = C(Xn, X)∇Xf.

The Laplacian operator is

∂2f

∂x2
i

=
∑
j

Cij∂Xj (
∑
p

Cip∂Xpf)

∆f =
∑
j,p

[
∑
i

CijCip]
∂2f

∂Xp∂Xj
+
∑
p

(
∑
i,j

Cij
∂Cip
∂Xj

)
∂f

∂Xp
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The coefficient of ∂2f
∂Xj∂Xp

in this sum is then (tCC)pj = (tBB)−1
pj . The resulting matrix is

symmetric. The matrix tBB verifies the following equalities :

(tBB)nn =
∑
i(ni(X,Xn))2 = 1

(tBB)ni =
∑
p(
tB)npBpi =

∑
pBpnBpi =

∑
p np(X)[

∂xp
∂Xi

+Xn
∂np
∂Xi

]

As x(X) ∈ ∂Ω, the vector ∂Xi(x(X)) is tangent to ∂Ω at x(X). As (np) is the normal vector at x(X),

the sum
∑
p np(X)

∂xp
∂Xi

is zero. The rest of the coefficient is zero because it is Xn
1
2
∂n2

∂Xi
. The matrix

tBB can be then written as form (
G−1(Xn, X) 0

0...0 1

)
,

where G is a matrix. As the inverse of tBB is the matrix(
G(Xn, X) 0

0...0 1

)
,

one has

∆f =
∂2f

∂X2
n

+
∑

j,k≤n−1

gjk(Xn, X)
∂2f

∂Xj∂Xk
+ a(Xn, X)

∂f

∂Xn
+
∑

j≤n−1

bj(Xn, X)
∂f

∂Xj

Let K be the function solution of {
K|Xn=0 = 1
2∂XnK + a(Xn, X)K = 0.

We then deduce that f → K−1∆Kf − ∂2f
∂X2

n
is a differential operator of order 2 Q in the variables X,

with coefficients depending also on Xn, such that

K−1∆Kf =
∂2f

∂X2
n

+Q(Xn, X,
∂

∂X
)f.

The principal symbol of −Q is the quadratic form associated to the matrix G(Xn, X). We can then
write

(4.137) Q(Xn, X,
∂

∂X
) =

∑
j,k

gj,k(Xn, X)
∂2

∂Xj∂Xk
+
∑
j

Vj(Xn, X)
∂

∂Xj
+ S(Xn, X),

where the indices j, k belong to {1, ..., n − 1}. This operator is constructed from the bj(Xn, X) and
K. We have S(Xn, X) = (∆K/K) and KVj(Xn, X) = ∆(XjK)−Xj∆K. This completes the proof
of the proposition 10.5.

�

We will abandon in the following the notations (Xn, X) that we used here to make the difference
between between the usual Cartesian coordinates of IRn, noted (x), and the semi-geodesic coordi-
nates introduced here (Xn, X). We now consider, in the coordinates (x′, xn), the rectified boundary

boundary xn = 0 and the Laplacian with variable coefficients ∂2

∂x2
n

+Q.

4.3. Elliptic, hyperbolic and glancing. Let P be a second-order, differential operator defined
on IRn × IRt. We study it in the half space Ω = {(x′, xn, t), xn > 0} in the neighborhood of the
hypersurface xn = 0. Here, we consider directly coordinates adapted to the boundary.

The cotangent space to the boundary T ∗(∂Ω) = T ∗(IRn−1 × IRt) can be divided into three

regions (elliptic, hyperbolic, glancing), defined as follows : Let π be the canonical projection
of T ∗IRn+1 onto IRn+1 and let π be the canonical projection of π−1(∂Ω) ∩ T ∗(IRn+1) over
T ∗(∂Ω) which associates to (x′0, 0, t0, ξ0, τ0) ∈ T ∗IRn+1 the point (x′0, t0, ξ

′
0, τ0). The equation

p(x′0, 0, t0, ξ
′
0, ξn, τ0) = 0 is an equation of degree 2 in ξn, which has 0, 1, or 2 real roots. We

introduce the classification

Definition 10.7. The elliptic region E is the set of points ρ0 ∈ T ∗(∂Ω) such that

Π−1(ρ0) ∩ Car(p) = ∅.
The hyperbolic region H is the set of points ρ0 ∈ T ∗(∂Ω) such that

Card(Π−1(ρ0) ∩ Car(p)) = 2.

Finally, the glancing region is G is T ∗∂Ω− (E ∪ H).
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The word glancing comes from the first study of Friedlander [42]. One finds in particular
p148 ”The front of disturbance in the shadow is orthogonal to diffracted rays which are glancing
rays emerging from the boundary”.

Interpretation. For the wave operator ∆ − ∂2
t2 and the ∂Ω boundary defined by xn = 0,

the points of T ∗(∂Ω× IRt) are then of the form (x′, t, ξ′, τ). The characteristic manifold of the
D’Alembertian is ξ2

n + (ξ′)2 − τ2 = 0. Then

E = {(x′, t, ξ′, τ), |ξ′| > |τ |}

H = {(x′, t, ξ′, τ), |ξ′| < |τ |}

G = {(x′, t, ξ′, τ), |ξ′|2 = τ2}.
An incident plane wave eik.x−iτt verifies necessarily (since it is a solution of the wave

equation) |k| = |τ |. Then, necessarily, |k′| ≤ |τ |, and the wave is tangent to the boundary
when k.n = 0. An incident plane wave is therefore never associated to an elliptic point, on
the other hand, hyperbolic points are those where the reflection is transverse (so k.n 6= 0),
and the glancing points are those where the wave arrives tangentially. We explain and clarify
these remarks in the next section.

5. Reflection of singularities

In this part, we prove the result of reflection of hyperbolic singularities, which is the
generalization of the result of propagation of singularities in the vacuum for generalized rays.
A generalized ray is the projection of the union of the two half bicharacteristic curves passing
through ρ whose projection is in the boundary, contained in the exterior of Ω. It comes from
the construction of two Fourier integral operators which are the two parametrix, outgoing and
incoming with respect to ∂Ω, of the considered second order operator. These Fourier integral
operators are denoted A+ and A−. They are solution of P and can be considered respectively
as outgoing and incoming (with respect to with respect to xn > 0).

5.1. Parametrix for calculate the reflection. We place ourselves in the case where

P = ∂2

∂x2
n

+ R(xn, x
′, ∂
∂x′ , ∂t), R being an operator in the variables (x′, t) with parameter xn.

When we study the wave equation, this is equivalent to considering a system of coordinates
x′ ∈ IRn−1 locally on ∂Ω, the variable normal to the boundary xn and the time t. The operator
R in this equality is obtained, for the wave equation, from the operator Q(xn, x

′, ∂x′) of the
proposition 10.5 by considering

R(xn, x
′, ∂x′ , ∂t) = Q(xn, x

′, ∂x′)− ∂2
t2 ,

since the boundary ∂Ω is assumed to be of the form ∂C × IRt, independent of time and K
commutes then with ∂t.

We prove the proposition, which describes the solution of a Cauchy problem with data on
xn = 0 :

Proposition 10.6. Let f ∈ S ′({xn = 0}) and ρ0 ∈ WF (f) ∩ H. We denote by ρ+ and
ρ− the two points of Carp which project on ρ0.

Let A+ and A− be the Fourier integral operators which describe the outgoing and incoming
parametrix of P in the neighborhood of ρ+ and ρ−.

The solution of the problem 
Pu = 0, xn > 0
u|xn=0 = 0
∂u
∂xn
|xn=0 = f(x′, t)

is described in the vicinity of ρ0 by

u(x′, xn, t) = (A+ −A−)(g)(x′, xn, t)

where g(x′, t) is a solution of the boundary problem, elliptic in the vicinity of ρ0:
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(∂xn ◦A+ − ∂xn ◦A−)|xn=0(g)(x′, t) = f(x′, t).

The two operators T± = ∂xn ◦A±|xn=0 are are pseudo-differential operators on T ∗(IRn−1×
IRt).

Construction of A±. According to the notations of the previous section, we write the
operator P in the form

P =
∂2

∂x2
n

+G(xn, x
′, ∂2

x′2)− ∂2
t2 + V (xn, x

′).∇x′ + S(xn, x
′).

This representation is the wave operator in semi-geodesic coordinates, and is less general than
the representation of a hyperbolic operator. The operator G(xn, x

′, ∂2
x′2) is written

G(xn, x
′, ∂2

x′2) =
∑

i,j=1..n−1

gij(xn, x
′)

∂2

∂xi∂xj

where (gij) is a symmetric positive definite matrix (uniformly). The principal symbol of P is
equal to

(5.138) p(xn, x
′, ξn, ξ

′, τ) = −ξ2
n + τ2 −

∑
i,j=1..n−1

gij(xn, x
′)ξiξj .

If φ(xn, x
′, t, ξ′, τ) is a homogeneous phase of degree 1 in ξ′, τ and if σ(x, t, ξ′, τ) is a

symbol of C∞(IR, S0(IRn−1 × IRt)), Lemma 1.2 leads to the eikonal equation, which expresses
the vanishing at first order of homogeneity in τ, ξ of e−iφP (σeiφ) :

(5.139) p(xn, x
′,∇xnφ,∇x′φ,∇tφ) = 0.

We write the operators of the lemma 1.2 which will intervene in the transport equations :{
P b(x, φ) = ∂2φ

∂x2
n

+
∑
j,k=1..n−1 gjk(xn, x

′) ∂2φ
∂xj∂xk

− ∂2φ
∂t2 +

∑
j=1..n−1 Vj(xn, x

′) ∂φ∂xj
L1(x, ∂x, ∂t) = −2 ∂φ

∂xn
∂
∂xn

+ 2∂φ∂t
∂
∂t − 2

∑
j(
∑
k gjk(x) ∂φ∂xk ) ∂

∂xj
+ P b(x, φ)

Eikonal equation (5.139) rewrites

(∂tφ)2 = (∂xnφ)2 +
∑
i,j

gi,j(xn, x
′)∂xiφ∂xjφ.

We want the phase φ to be the identity phase on the boundary xn = 0. This corresponds to
the condition

(5.140) φ(0, x′, t, ξ′, τ) = x′ξ′ + tτ.

The tangential derivatives of this phase are then known on the boundary through

∂tφ = τ, ∂xjφ = ξj ,

which yields

(5.141) τ2 = (∂xnφ|xn=0)2 +
∑
i,j

gi,j(0, x
′)ξiξj .

The bicharacteristic system for the operator P is (ḟ denotes the derivative with respect
to the parameter on the bicharacteristics of the function s→ f(s))

ṫ = 2τ
τ̇ = 0
ẋn = −2ξn
ξ̇n = −

∑
i,j ∂xngij(xn, x

′)ξiξj
ẋi = 2

∑
i,j gi,j(xn, x

′)ξj
ξ̇i = −2

∑
j,k ∂xigj,k(xn, x

′)ξiξj .

In particular, we deduce that τ(s) = τ(0) and t(s) = t(0) + 2τ(0)s.
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We apply the proposition 9.1 on the identity between the Lagrangian manifold Λ ⊂ Carp
and the manifold generated by the bicharacteristics of P . This theorem states that if

(x′(0), xn(0), t(0), ξ′(0), ξn(0), τ(0)) ∈ Λφ,

where the phase φ is a solution of the eikonal equation (5.141) associated with the symbol p,
then the bicharacteristic curve

{(x′(s), xn(s), t(s), ξ′(s), ξn(s), τ(s)), s ∈ [−a, b]}
is contained in the Lagrangian manifold Λφ. We choose the initial point (0, x′, t, ∂xn , ∂x′φ(0, x′, t), ∂tφ(0, x′, t))
in the Lagrangian manifold associated to the phase φ introduced above by (5.141), (5.140).
This initial point is

(0, x′, t, ∂xnφ, ξ
′, τ).

We then check that the point on the bicharacteristic curve passing through this initial point
is (xn(s), x′(s), t− 2τs, ξ′(s), τ). In particular, we verify that, identically

∂tφ(xn(s), x′(s), t(s), ξ′, τ) = τ.

There is thus a phase ψ(xn, x
′, ξ′, τ), independent of t such that

φ(x′, xn, t, ξ
′, τ) = ψ(x′, xn, ξ

′, τ) + tτ.

This phase ψ is a solution of the eikonal equation (note that it is not the same as (5.141)
is not the same as (5.141)) :

τ2 = (∂xnψ)2 +
∑
i,j

gi,j(xn, x
′)∂2

xixjψ.

Let us consider a point on the boundary ∂Ω×IRn+1 which is hyperbolic: (x′0, t0, ξ
′
0, τ0) ∈ H.

This means that
τ2
0 −

∑
i,j

gij(0, x
′
0)(ξi)0(ξj)0 > 0.

There exist two values ξ±n such that (x′0, 0, t0, ξ
′
0, ξ
±
n , τ0) are in the set Carp. Such points

are stable, so in a neighborhood of (x′0, ξ
′
0, t0, τ0) and xn = 0 we can write

−ξ2
n + τ2 −

∑
i,j

gij(x)ξiξj = −(ξn − ξ+
n (x, ξ′, τ))(ξn − ξ−n (x, ξ′, τ)).

In the case studied on symbol p, ξ−n = −ξ+
n and ξ+

n (x, ξ′, τ) = (τ2 −
∑
i,j gij(x)ξiξj)

1
2 . The

phase ψ is solution of the eikonal equation (5.141) which writes

(∂xnψ)2 = (ξ+
n (x, ∂x′ψ, τ))2.

In the neighborhood of the hyperbolic point (x′0, 0, t0, ξ
′
0, τ0) of T ∗(∂Ω × IR), thanks to

Cauchy-Lipschitz theorem there exist two phases ψ+ and ψ−, solutions in the neighborhood
of this point of

(5.142)

{
∂xnψ± = ±ξ+

n (x, ∂x′ψ, τ)
ψ±(x′, 0, ξ′, τ) = x′.ξ′.

These two phases are homogeneous with respect to (ξ′, τ). We denote by L±1 (x, ξ′, τ, ∂x, ∂t)
the transport operator associated with the phase ψ±+tτ and c±(x, ξ′, τ) the function P b(ψ±+
tτ). We obtain, for any function σ(xn, x

′, t, ξ′, τ) which admits an homogeneous asymptotic
expansion :

c±(x, ξ′, τ) = ∂2
x2
n
ψ± +

∑
j,k

gjk(x)∂2
xjxk

ψ± +
∑
j

Vj(x)∂xjψ±

L±1 σ = −2τ
∂σ

∂t
± 2ξ+

n (x, ∂x′ψ±, τ)
∂σ

∂xn
+ 2

∑
j,k

gjk(x)
∂ψ±
∂xj

∂σ

∂xk
+ c±.σ.

Assume, on the other side, that

σ(0, x′, t, ξ, τ) = 1
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(this condition is the counterpart of the condition on the phase which allows to obtain the
Fourier transform on xn = 0). We write σ(x, t, ξ′, τ) as an asymptotic sum of homogeneous
symbols σj of degree −j in (ξ′, τ). We check

σj(0, x
′, t, ξ′, τ) = δj0

and the homogeneous transport equation on σ0 is L±1 σ0 = 0. As L±1 commutes with ∂t
and as ∂tσ0(0, x′, t, ξ′, τ) = 0, the Cauchy problem on ∂tσ has a unique solution, which is
zero. We deduce that σ0(x, t, ξ′, τ) does not depend on t. For each j ≥ 1, we proceed by
induction, the source term being independent on t and the coefficients being independent on t
in L±1 σj = iP (σj−1), so ∂tσj = 0. We omit the dependence in t and we can write the transport
operator

R±1 = ±2ξ+
n (x, ∂x′ψ±, τ)

∂

∂xn
+ 2

∑
j,k

gjk(x)
∂ψ±
∂xj

∂

∂xk
+ c±.

Since ξ±n is nonzero in a neighborhood of the hyperbolic point considered, the transport equa-
tions

R±1 (σ±(x, ξ′, τ)) = iP (σ±(x, ξ′, τ))

with initial condition σ±(0, x′, ξ′, τ) = 1 have a unique solution. We have the

Proposition 10.7. Let (x′0, t0, ξ
′
0, τ0) ∈ Tx′0,t0IRn−1 × T ∗IRt ∩H.

• There are two symbols σ+ and σ− and two phases ψ+(x, ξ′, τ) and ψ−(x, ξ′, τ) such that
ψ±|xn=0 = x′.ξ′
∂ψ±
∂xn

= ±ξ+
n (x, ∂x′ψ±, τ)

σ±(0, x′, ξ′, τ) = 1
R±1 (σ±)− iPσ± = 0.

• The functions

uξ′,τ (x, t) = σ±(x, ξ′, τ)eitτ+iψ±(x,ξ′,τ) = σ±(x, ξ′, τ)eiτ(t+ψ±(x, ξ
′
τ ,1))

are two solutions of (P − ∂2
t2)u = 0 satisfying u(x′, 0, t) = eiτ(t+ ξ′

τ x
′). We define them mi-

crolocally in a conical neighborhood of ρ±0 = (x′0, 0, t0, ξ
′
0,±ξ+

n (x′0, ξ
′
0, τ0), τ0) in T(x′0,0,t0)IR

n+1.

From these two solutions, we introduce the Fourier integral operators defined on the
functions f ∈ S ′(IRn−1 × IRτ ) whose wavefront is located in the vicinity of the point ρ±0 :

(5.143) A±(f)(x, t) = (2π)−n
∫
eiφ±(x,t,ξ′,τ)σ±(x, ξ′, τ)F(f)(ξ′, τ)dξ′dτ

which rewrite

A±(f)(x, t) = (2π)−n
∫
eiφ±(x,t,ξ′,τ)−iτs−iy′ξ′σ±(x, ξ′, τ)f(y′, x)dξ′dτdy′ds.

We recognize here the notation of the Fourier integral operators of the Section 6, and in
particular Definition 6.4. We verify that the operators A± yield solutions of P . In xn > 0, if
we introduce two elements of S ′(IRn−1 × IR), denoted by f+ et f− :

P (A±(f±)) = 0, xn > 0

We also notice that, when f ∈ S ′(IRn−1×IR), then the Fourier integral operators A± construct
very regular distributions in xn in a neighborhood of the boundary :

A±(f) ∈ C∞([0, ε],D′(IRn−1 × IR).

This allows us to verify that the distributions g0(u) and g1(u) of the jump formula (Lemma
10.5) are therefore the trace and the normal derivative of the solution u, which are the pseudo-
differential operators

g1(A+(f)) = A+(f)(x′, 0, t) =
1

(2π)n

∫
ei(x

′ξ′+tτ)σ+(x′, 0, ξ′, τ)F(f)(ξ′, τ)dξ′dτ,
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g0(A+(f)) = ∂xn(A+(f))(x′, 0, t) =
1

(2π)n

∫
ei(x

′ξ′+tτ)[i∂xnφ+(x′, 0, ξ′)σ++∂xnσ+](x′, 0, ξ′, τ)F(f)(ξ′, τ)dξ′dτ.

We deduce, thanks to the jump formula

P (A+(f+)+A−(f−)) = (A+(f+)+A−(f−))|xn=0δ
′
xn=0+(

∂

∂xn
(A+(f+)+A−(f−)))|xn=0δxn=0.

Let us define the operators

T± = [
∂

∂xn
◦A±]|xn=0.

One checks that

∂xn◦A+(f)(x, t) =
1

(2π)n

∫
eiφ±(x,t,ξ′,τ)[i∂xnφ+(x, ξ′)σ+(x, ξ′, τ)+∂xnσ+(x, ξ′, τ)]F(f)(ξ′, τ)dξ′dτ.

The operator A+ has been constructed so that its restriction à xn = 0 is the identity, the
phase φ+ restricted to xn = 0 is x′.ξ′ + tτ and the symbol σ+|xn=0 being identically 1. Then
one has

T+f(x′, t) =
1

(2π)n

∫
eix
′.ξ′+tτ [iξ+

n (x, ∂x′ψ+(x′, ξ′)) + ∂xnσ+(x′, 0, t, ξ′, τ)]F(f)(ξ′, τ)dξ′dτ.

The operators T+ and T− are classical operators with respective principal sym-
bols ±iξ+

n (x, ∂x′ψ(x′, ξ′)). We notice that these are operators of order 1, elliptic at
hyperbolic points.

We introduce V = A+(f+) + A−(f−). According to Hörmander, U is in C∞([0, ε],D′)
(with the order for the variables xn, (x

′, t)). It is a solution of the equation in S ′:

PU =
∂u

∂xn
(x′, 0, t)δxn=0.

The equality PU = PV implies{
A+(f+)(x′, 0, t) +A−(f−)(x′, 0, t) = 0
T+(f+)(x′, 0, t) + T−(f−)(x′, 0, t) = ∂xnu(x′, 0, t).

The coefficient of the δxn=0 is characterized by the symbol

ξ+
n (x′, 0, ξ′, τ)(F(f+)−F(f−))(ξ′, τ).

This yields the system, equivalent to P (U − V ) = 0 :

(5.144)

{
f− = −f+

[ ∂
∂xn
◦A+ − ∂

∂xn
◦A−](f+) = ∂u

∂xn
(x′, 0, t).

The point (x′0, ξ
′
0) is a hyperbolic point. Thus r2(0, x′, ξ′) ≥ c > 0 for |ξ′| = 1 in a

neighborhood of (x′0, ξ
′
0/|ξ′0|), the hyperbolicity property being stable, and the homogeneity of

order 1 of
√
r2 implies the ellipticity of

√
r2(0, x′, ξ′) in a neighborhood of the point (x′0, ξ

′
0) ∈

H. It follows that the principal symbol of the operator T+ − T− is elliptic.
The second equation of (5.144) is an elliptic equation in the neighborhood of the hyper-

bolic points of P . Assuming that ∂u
∂xn

(x′, 0) has its wavefront included in a small conical

neighborhood of (x′0, ξ
′
0), there exists a solution f+(x′) whose wavefront is included in a small

conical neighborhood of (x′0, ξ
′
0). We have thus determined f+(x′) = (T+ − T−)−1( ∂u

∂xn
(x′, 0))

modulo C∞.
It remains to show that if u and v are two distributions solution in xn < 0 and that

PU = PV , then u and v coincide microlocally in the vicinity of the hyperbolic points. It
is equivalent to show that if W = v1xn>0 if it is possible, PW = 0 implies w = 0 in the
neighborhood of the hyperbolic points.

The wavefront of W does not intersect xn < 0 because w is zero on xn < 0. As the point
ρ0 = (x′0, t0, ξ

′
0, τ0) is in the hyperbolic region, the two bicharacteristics γ+ and γ− which

pass through the point (x′0, 0, t0, ξ
0,±ξ+

n (x′0, 0, ξ
′
0), τ0) enter or exit the domain {xn < 0}.
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By construction, they do not meet the wavefront of W . Thus W is microlocally zero in a
neighborhood of the boundary. Finally U = A+(f+)− A−(f+) +W , where WF (W ) ∩ (γ+ ∪
γ−) = ∅.

Proposition 10.6 is therefore proven. Recall that this proposition allows us to know the
solution of a Dirichlet problem for which the normal derivative is known on the boundary,
microlocally, and such that its wavefront contains only hyperbolic points.

We now intend to solve the Dirichlet problem with Cauchy data u0 and u1 at t = 0 :

(5.145)


Pu = 0, xn > 0
u|xn=0 = 0
u(x, 0) = u0(x)
∂tu(x, 0) = u1(x).

This problem is locally well posed. Let K−1∆K = ∂2

∂x2
n

+Q(xn, x,
∂
∂x ) and P = ∆− ∂2

∂t2 .

One then introduces Q̃(xn, x,
∂
∂xn

, ∂∂x ) = ∂2

∂x2
n

+Q(xn, x,
∂
∂x ). Using more traditional notation,

we change Xn and xn and X to x′. The coordinates (x′, xn) are denoted x. Let p0 ∈
WF (u0) ∪WF (u1) ⊂ T ∗(IRn)(' T ∗(IRn+1 ∩ {t = 0}). We construct the bicharacteristic of p

passing through (p0, t = 0, τ = (σ(Q̃)(p0)).
Let us start with the solution of the Cauchy problem. To the Cauchy data are associated

two Fourier integral operators, noted B±, whose construction is similar to the one of the
Fourier integral operators A+ and A−. We introduce

B±g(x, t) =
1

(2π)n

∫
eiφ±(x,ξ,t)−iy.ξs±(x, ξ, t)g(y)dydξ

where φ± and s± are solutions of the eikonal and transport equations generated by the time
variable, i.e. {

∂φ±
∂t = ±(σ(Q̃)(x,∇xφ±(x, ξ, t))

1
2

φ±(x, ξ, 0) = x.ξ.

The two problems for φ̃± are Hamilton-Jacobi problems. To simplify the notations, we intro-

duce q̃(x, ξ) = σ(Q̃)(x, ξ).
We write, in the neighborhood of p0, the solution u of (5.145) under the form

u = B+g+ +B−g−.

We have to determine g+ and g− as a function of u0 and u1 (microlocally of course). The
system obtained is then

(5.146)


u0 = g+ + g−
u1 = 1

(2π)n

∫
[i(q̃(x, ξ))

1
2 + ∂ts+(x, ξ, 0)]ĝ+(ξ)dξ

+ 1
(2π)n

∫
[−i(q̃(x, ξ)) 1

2 + ∂ts−(x, ξ, 0)]ĝ−(ξ)dξ

As τ is constant on the bicharacteristic, equal to −(q̃(p0))
1
2 , we deduce that on the bichar-

acteristic, the symbol q̃(x(s), ξ(s)) is also constant, so that in a tubular neighborhood of this
bicharacteristic, this symbol remains bounded below, which leads to the ellipticity of the sys-
tem (5.146). More precisely, let R be the inverse of the pseudodifferential operator of symbol

2i(p(x, ξ))
1
2 + ∂ts+(x, ξ, 0) + ∂ts−(x, ξ, 0), and T̃ the pseudodifferential operator of symbol

i(p(x, ξ))
1
2 − ∂ts−(x, ξ, 0). On a

g+ = R(u1 + T̃ u0), g− = (I −RT̃ )u0 −Ru1.

One obtains the solution of problem (5.145)

(5.147) u = (B+R−B−R)u1 + (B+RT̃ +B−(I −RT̃ ))u0.

This solution is valid only in a neighborhood of t = 0, or, more precisely, as long as the
bicharacteristics γ and γ̃ (the second one passing through the point (p0, 0, (q̃(p0))

1
2 ) do not do

not meet the boundary.
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From equality (5.147), we deduce the solution of the Dirichlet problem. Indeed, we know

that the operator B+ propagates on the bicharacteristic included in τ = (q̃(x, ξ))
1
2 and the

operator B− propagates on the bicharacteristic included in τ = −(q̃(x, ξ))
1
2 . These two

bicharacteristics are projected on the same ray on IRn
x , the main difference coming from the

direction of propagation on the ray. To calculate the solution of (5.145), we use the previous
notations, considering p0 ∈WF (u0) ∩WF (u1), u0 and u1 being the data at the boundary of
the problem (5.145). The bicharacteristic γ, corresponding to B−, meets the boundary at ρ̃0,
if it exists. The projection of ρ̃0 on T ∗(∂Ω× IRt) is denoted by ρ0. We have p0 = (x0, ξ0), we

associate to it p̃0 = (x0, ξ0, 0, τ0 = [((ξ0)n)2+σ(Q)(x0, ξ
′
0)]

1
2 ), then ρ̃0 = (x(s0), ξ(s0), 2τ0s0, τ0)

with xn(s0) = 0, and ρ0 = (x′(s0), 2τ0s0, ξ
′(s0), τ0).1 We assume that the point ρ0 is an

element of H. Microlocally in the neighborhood of ρ0, we know that the two traces generated,
namely u|xn=0 and ∂u

∂xn
|xn=0 are known. For t > t0, u is not the solution of the Dirichlet

problem, because the trace on the boundary exists and is nonzero. On the other hand, as long
as the ray has not met the boundary, microlocally u is the solution of the Dirichlet problem
since u is C∞ in the neighborhood of the boundary, the ray has not yet touched the boundary.
The solution of the Dirichlet problem problem is written

(5.148) ũ = A+(h)−A−(h)

which verifies the Dirichlet condition. On the other hand, we verify that the reentrant microlo-
cal contribution is given by A−(h), and we know that h|xn=0 = u|xn=0, and T−(h) = ∂u

∂xn
|xn=0.

Considering, microlocally in the neighborhood of ρ0 hyperbolic point2

Since h is known, the microlocal contribution of u, in the neighborhood of a ray re-
flected by the boundary {xn = 0} in the neighborhood of ρ0, is given by the equality (5.148).
We have thus solved the Dirichlet problem problem with Cauchy data in t = 0, under the
assumption that the rays intersect transversely the boundary (this is exactly the condition

(x′0, t0, ξ
′
0, (q̃(p0))

1
2 ) ∈ H). Note that the complete expression of the solution is rather com-

plicated, and depends on whether the rays meet the boundary or not. A simple and intrinsic
translation of these ideas is presented in the following section, and is called the propagation
theorem for reflected singularities.

Remark 12. One knows that P (A+(f)) ' 0. On the other hand, we check that P =
∂2
x2
n
− (−R(xn, x

′, ∂x′ , ∂t)). The principal symbol of R is denoted by r2(xn, x
′, ξ′, τ). Tra-

ditionally we introduce the strictly hyperbolic operators of order 1 equal to P± = ∂xn ∓
Op(−r2(xn, x

′, ξ′, τ))
1
2 . There are two operators S− of order 1 such that

P+ ◦ P− = P + S+, P− ◦ P+ = P + S−.

It follows that P+[P−(A−)] = S+(A−) et P−[P+(A+)] = S−(A+), which proves that A+

does not give a solution of P+f = 0 because A+ is a solution of Pf = 0. The approach we
have used here is not the one usually used for the Cauchy problem (as in Taylor [94]).

5.2. Theorem of transverse reflection of singularities. We want to show the fol-
lowing theorem, which is the theorem of propagation of singularities on reflected rays.

Theorem 10.2. Let u be a solution, when it exists of the problem (5.145). Let γ be a
bicharacteristic of p, passing through a point of Car p ∩ {t = 0} projecting on p0 element of
WF (u0) ∪WF (u1). Let ρ0 be the projection on T ∗({xn = 0}) of an intersection point of and
T ∗X ∩ {xn = 0} .

1We note that we sometimes note the coordinates in T ∗(X × Y ) in the two equivalent forms T ∗X × T ∗Y
and X × Y × TxX × TyY .

2In fact, we have assumed that the point is hyperbolic, so the ray associated to B− comes from xn < 0”,

which implies that B−(I − RT̃ )u0 − B−Ru1 is not a part of the solution generated by the reflection on the

boundary. This reason is heuristic; one should rather say that the solution u of the Cauchy problem in vacuum

does not include a term in B− if the associated ray has already traveled, in time, a part of the interior of the
reflecting object.



188 10. PROPAGATION AND TRANSVERSE REFLECTIONS OF SINGULARITIES.

If ρ0 ∈ H, we construct the two bicharacteristics γ+ and γ− passing through the two points
of (Π−1(ρ0) ∩ Car(p)). The following equivalences are true:

ρ0 ∈WFb(u)⇔ γ+ ⊂WF (u) or γ− ⊂WF (u)⇔ γ+ ⊂WF (u) and γ− ⊂WF (u).

Proof. Let us consider the two points of Carp which project on ρ0 (one of them is ρ̃0).
These two points are then
ρ+ = (x′0, 0, 2τ0s0ξ

′
0, [σ(R)(x′0, 0, ξ

′
0, τ0)]

1
2 ) and ρ− = (x′0, 0, ξ

′
0,−[σ(R)(x′0, 0, ξ

′
0, τ0)]

1
2 ). We

denote by γ+ the bicharacteristic for q+(x, ξ) = ξn − [σ(R)(x, ξ′0, τ0)]
1
2 from ρ+ and γ− the

bicharacteristic of q−(x, ξ) = ξn + [σ(R)(x, ξ′0, τ0)]
1
2 from ρ−.

Thanks to the study on the strictly hyperbolic Cauchy problem (Section 2), γ+ and γ−
are the bicharacteristics of P passing through ρ+ and ρ− (we have to check the sign of the
elliptic coefficient to be sure of the sign of the parameter of the bicharacteristic to see if the
bicharacteristic escapes the domain).
• Denote by A+ and A− constructing respectively two solutions of P , associated respec-

tively to q+ and to q− (without being solutions of q+ or q−). When u ∈ H1(xn > 0), ∂u
∂xn

is well

defined. Since u verifies the Dirichlet condition, we deduce the equality PU = ∂u
∂xn
|xn=0δxn=0.

• Assume that γ+ and WF (A+(f+)) (it is sufficient, according to the propagation theo-
rem, to assume that γ+∩WF (A+(f+)) 6= ∅). Then γ+∩{xn = 0}×TxIRn+1 ⊂WF (A+(f+))∩
{xn = 0}. Let π be the projection of an element of T ∗(IRn) onto T ∗(IRn). We know that
WF (f+) ⊂ π(WF (A+(f+) ∩ {xn = 0})) because A+(f+)|xn=0 = f+. On the other hand,
thanks to rapid decay in a cone around (x′0, ξ

′
0), ξ′0 6= 0, if (x′0, ξ

′
0) /∈WF (f+), then a Taylor for-

mula in the neighborhood of xn = 0 shows that F [θ(xn)ψ(x′)A+(f+)(x′, xn)](ξ′, ξn) is rapidly
decaying in any (small) cone constructed around (x′0, 0, ξ

′
0, ξ

0
n) because ξ′0 6= 0 and therefore

|ξ′|2 + |ξn|2 is equivalent to |ξ′|2 in this case. Thus π(WF (A+(f+) ∩ {xn = 0}) = WF (f+).
As γ+ ∩ {xn = 0} = ∅, the point ρ0 is in WF (f+). Any point (ρ0, 0, ξn) is then in WF (PU),
and of WF (PU) ⊂WF (U), we deduce that ρ0 ∈WFb(u) = b(WF (U)). We also deduce that
ρ0 ∈WF (f−) so γ− ⊂WF (A−(f−)), and thus γ− ⊂WF (U).

Conversely, let ρ0 /∈WF ( ∂u
∂xn
|xn=0). Then, for all ξn, (ρ0, 0, ξn) /∈WF ( ∂u

∂xn
|xn=0⊗δxn=0).

In particular, if (ρ0, 0, ξ
±
n ) are the two antecedents by Π of ρ0, we know that these two points

are not in WF (PU) nor in WF (u|xn=0). By the theorem of propagation of singularities on
U , the two bicharacteristics γ+ and γ− do not meet WF (U) because they are not included in
WF (U), since the intersection is empty on a half-bicharacteristic (U |xn>0 = u|xn>0). Thus,
microlocally in the neighborhood of γ+ and of γ−, U is regular.

Consider a point ρ1
+ /∈ WF (A+(f+)). Let ρ1 be the point of intersection between the

bicharacteristic of P passing through ρ1
+ and {xn = 0}. By application of the propagation

theorem of singularities for a strictly hyperbolic Cauchy operator, the projection ρ̃1 of ρ1 into
T ∗(IRn−1 × IRt) is not in WF (f+). As

∂u

∂xn
|xn=0 = (− ∂

∂xn
◦A+|xn=0 +

∂

∂xn
◦A−|xn=0)(f+)

one finds ρ̃1 /∈ WF ( ∂u
∂xn
|xn=0) and that ∂u

∂xn
= (T+ − T−)(f+), and T+ − T− is an elliptic

operator in the neighborhood of the hyperbolic points. This proves Theorem 10.2. �

Let us finally state a more powerful theorem than the one 10.2, since it allows to take into
account the case of glancing in part. Let u be an extendible distribution solution of Pu = 0
in xn > 0, of extended U , and let g0(u) and g1(u) be the two distributions of D′S obtained by
the lemma 10.5 such that

PU = g0(u)⊗ δxn=0 + g1(u)⊗ δ′xn=0.

Theorem 10.3. (Hörmander [48]) Let ρ be in the characteristic manifold, such that
exp(sHp(ρ)) meets xn < 0. We note ρ0 the point of intersection of exp(sHp(ρ)) and xn = 0.
We have the equivalence

ρ0 ∈WFb(u)⇔ ρ0 ∈WF (g0(u)) ∪WF (g1(u)).
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A reader interested by such results can refer to Melrose and Sjöstrand [77] which is a
theorem of propagation of singularites : Let Σb be the projection on T ∗∂Ω of Car (∂2

t2 −∆),

and let Σ∞b be the set of points such that ∂lxln
r(0, x′, t, ξ′, τ) = 0 for all l when the wave operator

in semi-geodesic coordinates is written ∂2
x2
n

+ R(xn, x
′, Dx′ , Dt). We have the propagation

theorem on the generalized flow :

Theorem 10.4. Let u ∈ D′(Ωc), (∂2
t2 − ∆)u ∈ C∞(Ωc) et u|∂Ω ∈ C∞(∂Ω). Then

WFb(u) ⊂ Σb et WFb(u) is invariant under the Hamiltonian generalized flow defined in [77].

5.3. Construction of the solution of the Dirichlet problem. We are inspired by
R.Taylor for this construction. First, we consider a solution of the Cauchy problem associated
to u0 and u1, denoted by ũ. This solution is defined microlocally in the neighborhood of the
bicharacteristics γ passing through a point of WF (u0)∪WF (u1). It is assumed to be defined
for xn]−ε, ε[ in a neighborhood of the rays passing at points of WF (u0)∪WF (u1). We denote
it by ũ. We consider the point ρ̃0 = (x′0, 0, t0, ξ

′
0, ξ

0
n, τ0) of the intersection of γ and xn = 0, by

noting that the point (x′0, t0, ξ
′
0, τ0) is hyperbolic, that ξ0

n < 0 and that the other point of the
characteristic manifold is ρ̌0 = (x′0, 0, t0, ξ

′
0,−ξ0

n, τ0). We define the reflected bicharacteristic,
denoted by γ̃ passing through the point ρ̌0. We then consider the mixed problem{

Pv = 0
v|xn=0 = −ũ|xn=0

where v is defined in a conic neighborhood of the bicharacteristics γ̃. This mixed problem has a
solution (modulo C∞) denoted v. Then the wavefront of v is concentrated in a neighborhood of
the reflected rays γ̃ generated by the intersection of the incident rays and of WF (u0)∪WF (u1).
The solution v is microlocally zero in the neighborhood of WF (u0) ∪WF (u1) at t = 0.

The distribution ũ+v is a solution, modulo C∞, of P (ũ+v) = 0 in xn > 0, ũ+v|t=0 = u0,
∂t(ũ+ v) = u1 (modulo C∞), checking (ũ+ v)|xn=0 = 0.

5.4. Analysis of the mixed problem. We call here (unlike the classical terminology
of the literature of microlocal analysis where the mixed condition links ∂nu and u on the
boundary) the mixed condition a condition mixing ∂tu(x′, 0, t) and ∂xnu(x′, 0, t). We want to
solve the problem {

Pu = 0
z(x′)∂tu(x′, 0, t) + ∂xnu(x′, 0, t) = 0.

Using the representation with the operators A+ and A−, we write a general solution as
A+(f+) +A−(f−) = u. Thus, the equality on the boundary leads to

(5.149) T+(f+) + T−(f−) + z(x′)[∂t ◦A+|xn=0(f+) + ∂t ◦A−|xn=0(f−)] = 0.

We notice that the symbol of the operator ∂t ◦ A+|xn=0, which is a pseudo-differential
operator, is equal to iτ , because the phase and symbol do not depend on time. The equality
(5.149) becomes

Op(iξ+
n (x′, ∂x′ψ+(x′, ξ′)) + ∂xnσ+ + iτz(x′))(f+) = −[T−(f−) + z(x′)Op(iτ)(f−)]

If the mixed condition verifies the Lopatinskii condition, for example if Re z > 0, the operator
Op(iξ+

n (x′, ∂x′ψ+(x′, ξ′)) + ∂xnσ+ + iτz(x′)) is an elliptic operator and f+ is known in terms
of f−, which allows to identify the two traces u and ∂xnu in terms of f−. The result of
propagation of singularities applies then as before.

In the next section, we present applications of the parametrix of the wave equation. We
will focus in particular on the rigorous proof, in terms of propagation of singularities, of the
of Snell-Descartes laws (transverse reflection of an incident scalar wave).

We first analyze the notion of wavefront, and we introduce functions adapted to this
notion functions adapted to this notion : the conormal waves. We use this representation to
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construct explicitly the wavefront of the wavefront of the reflected wave, using the operators
A+ and A−, for a Dirichlet condition.

6. The reflection coefficient

Here we want to calculate the reflection coefficient. To calculate it more easily, we intro-
duce a representation of the incident wave which generalizes the notion of plane wave. This
is the conormal wave. It is characterized by a symbol and a phase t − θi(x′, xn). This phase
is zero on the front studied (generalization of the hyperplane in the case of a plane wave).

6.1. Onde conormale. The right tool to study the propagation of a wave associated to
a wavefront put in the form t = θi(x) is a conormal wave. We give its definition and study its
properties :

Definition 10.8. A wave u(x, t) is a conormal distribution with respect to the surface

i(x, t) = t− θi(x′, xn) when there is a symbol σ(x, τ) ∈ Sm+n−1
4 (IRn × IR,C| ) such that

u(x, t) =

∫ +∞

0

eiτ(t−θi(x))σ(x, τ)dτ.

with

σ(x, τ) ' τα
∑
j

σj(x)τ−j .

This definition is an application of definition 18.2.6 and of theorem 18.2.8 of [48].
Remark : the wave is said to be analytic conormal when the symbol σ(x, τ) is holomorphic

in =τ < 0 and that it verifies

sups≥0

∫ ∞
0

(1 + |τ |2)−β/2|σ(x, τ − is)|2dτ <∞.

We can represent them in an imaged way in the following figure, the function θi(x) can

then be calculated and it is equal to −5 + ((x + 5)2 + y2)
1
2 (we check that its gradient is of

norm 1) :
We verify that the conormal waves are C∞ outside the front Σ. For this purpose, separate

the integral in τ into a fixed neighborhood of τ = 0 and its complement. In its complement,
the bound |σ(τ)| ≤ τ−1−ε leads to an absolutely convergent integral.

Let N be an integer, order of truncation of the asymptotic series, satisfying α−N < −1.
Then we can write, on any compact K in x, the estimate

|σ(x, τ)− σN (x, τ)| ≤ CN,Kτ−N

which leads to the following integral being absolutely convergent∫
eiτ(t−θ(x))(σ(x, τ)− σN (x, τ))dτ.

If we consider a derivative of order m of
∫
eiτ(t−θ(x))(σ(x, τ)− σN+m(x, τ))dτ , this derivative

is also associated to an absolutely convergent integral. For this, we fix an order of derivation
m. We then verify by integrations by parts the relation, valid outside t = θ(x) :

uN+m(x, t) =

∫
eiτ(t−θ(x))σN+m(x, τ)d = (

i

t− θ(x)
)p
∫
eiτ(t−θ(x))∂pτp(σN+m(s, τ))dτ.

This relation indicates, by choosing p > α + 1, that the integral defining uN+m is absolutely
convergent outside t = θ(x). We also notice that

∂ltl∂
|β|
xβ
uN+m(x, t) =

∫
eiτ(t−θ(x))τ l+|β|Sα,β(σN+m)(x, τ)dτ,

and the choice p > l + α+ |β|+ 1 allows to conclude that the integral defining the derivative
of uN+m is a function in C0. The function u is sum of two functions element of Cm out of
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t = θ(x). Moreover, as σ(x, τ) is holomorphic in τ , we can rewrite the integral by deforming
the contour in the complex plane, on {τ − is, s > 0}. We then check that

u(x, t) = es(t−θi(x))

∫ ∞
0

eiτ(t−is)σ(x, τ − is)dτ.

The uniform growth of σ(x, τ − is) and the fact that e−s(θi(x)−t) tends to 0 when s tends
to +∞ for θi(x) − t > 0 allows us to obtain that u(x, t) is zero for t < θi(x). The function
u(x, t0) is supported in the half space characterized by the boundary t0 = θi(x) not containing
∇xθi(x0), θi(x0) = t0.

We give two examples
Dirac sum. We suppose that α is a positive integer N0. We check that, for φ compactly

supported in IRd × IR∫ ∫
eiτ(t−θ(x))τ ldτφ(x, t)dxdt = i−l

∫
dxdτ

∫
dt∂ltl(e

iτ(t−θ(x)))φ(x, t)
= il

∫
dx
∫
dteiτ(t−θ(x))∂ltlphi(x, t)

= 2πil
∫
dx∂ltlφ(x, θ(x))

The distribution
∫
eiτ(t−θ(x))τ l is thus the distribution 2πilδ

(l)
t=θ(x) when l is positive or zero.

The case l = 0 gives what is called a single layer potential, the case l = 1 gives a double layer
potential.

To fix the ideas and simplify the notations, we suppose that θi(0) = 0 and that the point
(0,∇x′θi(0),−1) is a hyperbolic point of Rd−1 × IRt.

Wave front set. We decompose σi into σNi and rNi . The m-th derivative in t (or in x) of uNi
corresponds to a symbol in τa+m. We then perform sufficient integrations by parts (possible
on t = θi(x)) so that the integral in τ is absolutely convergent in τ = +∞. The term rNi is
treated in the same way. From this we deduces that ui(x, t) is C∞ outside t = θi(x).

The wavefront of the distribution ui is then concentrated on t = θi(x). We localize ui
thanks to χ(x, t) in the neighborhood of a point (x0, t0) such that t0 = θi(x0). The Fourier
transform of χui is :

û(ξ, k) =

∫
ei(τ(t−θi(x))−kt−ξx)σi(x, τ)χ(x, t)dxdtdτ

We verify that the derivative in (x, t, τ) of the phase in this integral is −ξ− τ∇xθi(x) = 0,
τ − k = 0, t − θi(x) = 0. The phase has a critical point at t = θi(x), ξ = −k∇xθi(x). This
implies that

WF (ui) ⊂ {(x, θi(x),−k∇xθi(x), k), k ∈ R∗}.
Solution. We consider the operator P studied previously

P = P0 − ∂2
t2 =

∂2

∂x2
n

+R2(xn, x
′,
∂

∂x′
) +R1(xn, x

′,
∂

∂x′
) +R0(xn, x

′)− ∂2

∂t2
.

We verify the equality

P (

∫
eiτ(t−θi(x))) =

∫
dτeiτt(P0 + τ2)(e−iτθi(x)σi(x, τ)).

This corresponds to the application of the Fourier transform in time to v = Pu.
We then use the section 5. We find explicitly (R2 is a bilinear form on the tangent bundle

Tx′IR
n−1 with parameter xn and R1 is a vector of this same tangent bundle) :

(6.150)
eiτθi(x)P0(e−iτθi(x)σi(x, τ)) = −τ2[( ∂θi∂xn

)2 +R2(∇x′θi∇x′θi)]σi(x, τ)− iτ [2 ∂θi
∂xn

∂σi
∂xn

+ 2R2(∇x′θi,∇x′σi)
+(P0 −R0)(θi)σi] + P0σi.

There exists θi solution of the eikonal equation with ∂θi
∂xn

> 0:

(
∂θi
∂xn

)2 +R2(xn, x
′)(
∂θi
∂x′

,
∂θi
∂x′

) = 1
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and σi solution of the transport equations

2
∂θi
∂xn

∂σli
∂xn

+
∑
j

∂xjR∂xjσ
l
i + ∂τR∂tσ

l
i + (P0 −R0)(θi)σ

l
i = iP0(σl−1

i ).

We have thus constructed a solution of Pu = 0.

6.2. Amplitude and phase after reflection of a conormal wave. Consider a wave
ui(x, t), conormal analytic with respect to the surface of equation t = θi(x), supported for
t = −T in the part of IR3 not containing the open set Ω. Under these conditions, by finite
speed propagation for the wave equation, there exists a point of ∂Ω, denoted by x0, such that
(x0, θi(x0),∇θi(x0),−1) is in the wavefront of ui and that WF (ui) ∪ ∂Ω × IR3 is empty for
t < θi(x0). Let ui be a solution of (P0 − ∂2

t2)ui = 0:

ui(x, t) =
1

2π

∫
IR

eiτ(t−θi(x))σi(x, τ)dτ.

We prove in this paragraph the proposition :

Proposition 10.8. There exists a function θr on IRn and a function σr on IRn×C| , such
that the problem on u = ui + ur  (P0 − ∂2

t2)u = 0
u|t<0 = ui|t<0

(D), (N), (M)

(where the condition (D), (N), or (M) is written on u) has a unique solution such that
ur(x, t) = 1

2π

∫
IR
eiτ(t−θr(x))σr(x, τ)dτ. where θr is the unique solution of

( ∂θr∂xn
)2 +R2(xn, x

′)(∂θr∂x′ ,
∂θr
∂x′ ) = 1

θr(x
′, 0) = θi(x

′, 0)
∂θr
∂xn

(x′, 0) = − ∂θi
∂xn

(x′, 0).

This function θr(x) is equal to θr(x) = θi(y
′
c, 0) + y′cη

′
c − ψ+(x, η′c), where y′c, η

′
c are solution

of the system {
y′c = ∇ξ′ψ+(x, η′c)
η′c = −∂y′θi(y′c, 0).

The leading order term of the symbol σr satisfies

σ0
r(x′, 0) = R(D),(N),(M)σ

0
i (x′, 0).

In this equality

R(D) = −1
R(N) = 1

R(M)(x
′) =

∂φ+
∂xn

(x′,0)−z(x′)
∂φ+
∂xn

(x′,0)−z(x′)
=

ξ+
n (x′,

∂ψ+
∂x′ (x′,0))−z(x′)

ξ+
n (x′,

∂ψ+
∂x′ (x′,0))−z(x′)

.

We represent in the following set of figures the reflection of a front by an ellipse. These
drawings come from the application of the laws of of geometric optics.

Figure 8

Proof. We perform a semi-geodesic coordinate change, which corresponds to this point
x0 and we perform a translation in time, so that the time t′ is t′ = t − θi(x0). The point x0

will then be associated to the point (0, 0) in semi-geodesic coordinates.
We suppose that the wavefront of ui contains the point

ρ−0 = (0, 0,∇x′θi(0),∇xnθi(0),−1)

and that, to fix the ideas, this point is the first of the boundary reached by the support of ui.
We look for the solution of the problem
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(6.151)

 Pu = 0, xn > 0
u|xn=0 = 0
u− ui ∈ C∞, t < −T

Consider then A+ and A− and apply A+ to ui(., 0, .) A− to obtain the solution. Write the
solution of this problem in the form u = ui + ur. The problem becomes : Pur = 0, xn > 0

ur|xn=0 = −ui|xn=0

ur ∈ C∞, t < −T

The set of points of T ∗(IR3× IRt)∩∂Ω× IR3× IR that project onto ρ0 = (0,∇x′θi(0, 0),−1)
is characterized by ξ2

n = (∇xnθi(0, 0))2. When ∇xnθi(0, 0) is non zero, ρ0 is a hyperbolic point
for p, which will be our assumption. Note that we have used here the fact that τ(t−θi(x′, xn))
is a solution of the eikonal equation. Let us also note that WF (ui − A−(ui|xn=0)) = ∅ in a
neighborhood of all points of γ−(ρ−0 ) = {exp(sHp(ρ

−
0 )), s < 0}. The bicharacteristic for P of

principal symbol
p = τ2 − ξ2

n −R2(xn, x
′)(ξ′, ξ′)

outgoing from ρ−0 is characterized by the system of equations

ṫ = 2τ
τ̇ = 0
ẋn = −2ξn
ξ̇n = ∂xnR2(ξ′, ξ′)
ẋ′ = −2R2(ξ′)

ξ̇′ = ∂x′R2(ξ′, ξ′)

with initial condition

(6.152) t(0) = 0, τ(0) = −1, xn(0) = 0, ξn(0) = ∇xnθi(0, 0), x′(0) = 0, ξ′(0) = −∇x′θi(0, 0).

In particular τ(s) = −1, t(s) = −2s. We thus verify that the last relation of the system, which
is ur ∈ C∞, t < −T implies

WF (ur) ∩ {−2s < −T, exp(sH−p(ρ
−
0 ))} = ∅

or
WF (ur) ∩ {s ≥ 0, exp(sHp(ρ

−
0 )), s > T/2} = ∅.

In an imaged way, ur has no wavefront on the reentrant bicharacteristic of P arriving at the
point ρ−0 .

This translates into the fact that, microlocally in the neighborhood of this reentrant
bicharacteristic, ur is zero. We define the bicharacteristic associated to the point

ρ+
0 = (0,∇x′θi(0),−1)

By the analysis on the operators A+ and A−, when the point (0,∇x′θi(0),−1) is in the
wavefront of f , the wavefront of f , then the bicharacteristic γ+ is contained in the wavefront
of A+(f).

Microlocally in the neighborhood of γ+, we proved that ur = −A+(ui|xn=0).
We check that ur can be determined in two ways: a stationary phase theorem and a

stationary phase on one side and a calculation of the reflected solution using the eikonal and
transport eikonal and transport equations on the other side. The second point of view is
immediate.

We prove in particular that the reflected wave is characterized by the phase θr given by

Lemma 10.6. Let θi(x
′, xn) be the function characterizing the front of the wavefront. Let

ψ+(x, η′) be the characteristic phase of the outgoing Fourier integral operator A+. Let (y′c, η
′
c)

be the unique solution of {
−η′c −∇y′θi(y′c, 0) = 0
∇ξ′ψ+(x, η′c)− y′c = 0
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Then

θr(x) = θi(y
′
c, 0) + y′cη

′
c − ψ+(x, η′c).

For the first method, we recall the existence of σ+ and ψ+ such that

A+(f)(x) =

∫ ∫
eiψ+(x,ξ′)−iy′ξ′σ+(x, ξ′)f(y′)dy′dξ′

We replace f(y′) by −e−iτθi(y′,0)σi(y
′, 0, τ). We obtain

ur(x, τ) =

∫ ∫
eiψ+(x,ξ′)−iy′ξ′−τθi(y′,0)σ+(x, ξ′)σi(y

′, 0, τ)dy′dξ′.

Write first, for τ > 0, η′τ = ξ′. The stationary phase theorem in (y′, η′) gives{
−η′c −∇y′θi(y′c, 0) = 0
∇ξ′ψ+(x, η′c)− y′c = 0

For xn small, there exists a smooth function g such that ψ+(x, η′) = x′η′ + xn∇η′g(x, η′) so
∇η′ψ+(x, η′) = x′ + xng(x, η′). The critical point satisfies{

y′c = x′ + xn∇η′g(x, η′c)
η′c = −∇y′θi(y′c, 0.)

For xn = 0, we find y′c = x′ and η′c = −∇y′θi(x′, 0). The critical value of the phase thus
obtained is x′.η′ − x′η′ − θi(x′, 0) = −θi(x′, 0).

For xn > 0, the equation giving y′c is

y′c = x′ + xn∇y′g(x,−∇y′θi(y′c, xn), η′c).

In a neighborhood of xn = 0, as the differential in y′c is Id+xnHessy′gHessy′θi, invertible if xn
is small enough, one can find y′c in terms in . This system has a unique solution (y′c(x), η′c(x)).
The critical value is denoted by −θ(x) with

θ(x) = θi(y
′
c(x), 0) + y′c(x).η′c(x)− ψ+(x, η′c(x)).

One deduces

∇xθ(x) = [∇y′(θi(y′, 0)) + η′c(x)].
dy′c
dx + [y′c(x)−∇η′ψ+(x, η′c(x))]

dη′c
dx −∇xψ+(x, η′c(x))

= −∇xψ+(x, η′c(x)).

The phase θ(x) is thus a solution of the eikonal equation, and is associated to associated
to A+. We have therefore constructed the phase θr that was expected for the wave reflected
by xn = 0. This proves Lemma 10.6. The reflection coefficient is identified by writing the
equalities

ui(x, t) = A−(ui|xn=0), ur = −A+(h(x′, t)).

The Dirichlet boundary condition is written ui + ur = 0. We thus obtain

A−(ui|xn=0)|xn=0 −A+(h(x′, t))|xn=0 = 0.

The operators A− and A+ are equal to identity on xn = 0, so h(x′, t) = ui(x
′, t). We

immediately deduce

R(D)(x
′, τ) = −1.

The Neumann boundary condition is ∂xn(ui + ur)|xn=0. It is therefore expressed as

∂

∂xn
◦A−(ui|xn=0)|xn=0 −

∂

∂xn
◦A+(h)|xn=0.

We then use ∂xnφ+ = −∂xnφ−. As we are in the vicinity of a hyperbolic point, this quantity
is non-zero. It comes then, by considering the asymptotic in τ , that

∂φ+

∂xn
(x′, 0)[σ0

i (x′, 0) + h̃(x′)] = 0.
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As σr is obtained by calculating A+(h̃e−iτθr(x′,0)) and as A+ is the identity on xn = 0, we
find

R(N) = 1.

Finally, the mixed boundary condition is written ∂xn(ui+ur)|xn=0 +z(x′)∂t(ui+ur)|xn=0.

We then replace ∂t by iτ , ∂xnA+|xn=0 by −iτ ∂+

∂xn
(x′, 0) and ∂xnA− by iτ ∂+

∂xn
(x′, 0). We obtain

−iτ ∂φ+

∂xn
(x′, 0)σ0

i (x′, 0)− iσ
0
i (x′, 0)

∂xn
(x′, 0)h(x′) + iτz(x′)[σi(x

′, 0)− h(x′)] = 0

We thus obtain

σ0
i (x′, 0) =

z(x′) + ∂φ+

∂xn
(x′, 0)

z(x′)− ∂φ+

∂xn
(x′, 0)

h(x′).

The reflection coefficient is immediately deduced

R(M)(x
′) =

∂φ+

∂xn
(x′, 0)− z(x′).

�





CHAPTER 11

Les valeurs propres du Laplacien (C. Bardos)

The determination of the eigenvalues of the Laplacian, or more generally of an elliptic op-
erator on a compact manifold with or without boundary is a ”pure” mathematical a problem
of ”pure” mathematics which has many applications in fundamental mathematics in funda-
mental mathematics, number theory or geometry, as well as in physics geometry, as well as in
physics (as it is explained in the introduction of the of the article by Balian and Bloch (1970)
[7]), nuclear physics and electromagnetism, and finally in the engineering sciences (acoustics
of a concert hall for example).

The first results date from 1911 and are due to Hermann Weyl, they they give an equivalent
of the asymptotic behavior of these eigenvalues.

Several ideas appeared afterwards; the heat kernel proved to be a useful a convenient tool
(Minakshisundaram and Pleijel (1949) [79]) and the connection with Riemannian geometry
became apparent (Mac Kean and Singer (1967) [72]).

But as observed by Keller and Rubinow (1960) [54] and Balian and Bloch [7], the eigen-
value distribution presents oscillations which the heat kernel cannot account for. These os-
cillations are due to the contribution of the closed geodesics. It It is therefore a question of
global effects. Thus, the Fourier integral operators have been proved to be the most suitable
tool for the rigorous shaping of these observations.

Without claiming to be new, we propose in this chapter to illustrate these ideas and to
illustrate these ideas and to show how the sophistication of the tools goes of with the precision
of the results. At the same time, we try to be to be ”economical” in this presentation and
to introduce the tools only when they become At the same time, an attempt is made to be
”economical” in this presentation and to introduce the tools only when they become essential
for improving the results.

1. Introduction

This chapter is devoted to the evaluation of the eigenvalues of an elliptic operator of the
second order elliptic operator, either in a bounded domain of IRn, with to to fix the ideas the
Dirichlet condition:

u = 0 on ∂Ω .

be on a compact manifold without boundary.
The most elementary information about this behavior can be obtained by a direct be

obtained by a direct calculation (maximum principle) and then thanks to a Lévy series (which
is interpreted as a pseudo-differential calculation). To access the ”optimal” results it is neces-
sary to take into account the global geometry of the problem and thus to use Fourier Integral
Operators. Fourier Integral Operators. It is this approach that we propose to illustrate in this
chapter. We therefore denote by L a second order operator which is written in the form form:

(1.153) Lu = −
∑
ij

∂i(a
ij(x)∂ju) +

∑
i

bi∂j + c = −∇x ·(A(x)∇xu) +B(x)∇xu+ c(x)u

where A denotes a symmetric real positive definite matrix, B.∇x a vector field and c a scalar
function.

197
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We suppose that there exists on Ω a density 0 < Y (x) ∈ C∞(Ω̄) which symmetrizes L,
i.e. for any pair of functions (u, v) ∈ D(L)×D(L) we have:

(1.154)

∫
Ω

Lu(x)v(x)Y (x)dx =

∫
Ω

u(x)Lv(x)Y (x)dx,

∫
Ω

Lu(x)u(x)Y (x)dx ≥ 0

In this case there are Hilbertian bases of L2(Ω) formed by eigenfunctions wk(x) of the
operator L:

Lwk(x) = λkwk(x) in Ω, wk(x) = 0 on ∂Ω if Ω is not a boundaryless manifold

We therefore denote by

0, λ0, λ1, λ2, λ3.....λk

the sequence of these eigenvalues counted with their multiplicity. This sequence tends towards
infinity with k and we want to obtain information about its behavior asymptotic behavior when
k tends to infinity.

It is therefore a high frequency analysis (which fits well in the the asymptotic theory).
Moreover, in many physical applications we will have to consider will be led to consider not
too large” values and so the precision of the asymptotic behavior becomes an important issue.

To simplify the presentation and to emphasize even more the role of of of geometry,
we limit ourselves the case where L is identified with the Laplacian on Ω provided with the
Riemannian structure. In fact, because of the high frequency aspect, only the main part of the
operator is involved. We can therefore always reduce ourselves to to the case of the Laplacian
which contains the geometrical aspects of the of the IFO theory, so we assume that in a local
coordinate system this operator is written in the form (invariant by change of of Riemannian
coordinates):

(1.155) Lu = −∆u = − 1√
detg

∑
ij

∂i(a
ij(x)

√
detg∂ju)

In (1.155) intervenes the symmetric positive definite matrix: A(x) = {aij(x)} associated
to the main symbol of the operator (A(x)ξ, ξ), g(x) is the matrix which defines the Riemannian
structure, it is related to A(x) by the formula (deduced from the variational variational calculus

via Legendre transformation) g(x) = (A(x))−
1
2 . The element of volume element (cf (1.154) )

is therefore

dv(x) = Y (x)dx =
√

detg(x)dx

formula which identifies the densities of order 1
2 and the functions according to the isomor-

phism:

f 7→ f
√

detg(x)dx

To evaluate the asymptotic behavior of the eigenvalues it is convenient to to introduce several
objects:

(1) The enumeration function:

N(λ) = Card{λk ≤ λ}
(2) The trace of the heat operator

(1.156) Trace e−tL =
∑
k

e−tλk

(3) The frequency enumeration function:

Ñ(τ) = N(τ2)
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(4) The trace of the wave operator

(1.157) Trace cos t
√
L =

∑
k

e±it
√
λk .

The term 1 in the second member of (1.157) corresponds to the eigenvalue 0 which is present
(and simple) in the case of an open set without boundary, it disappears in the case of an open
set with boundary and does not influence the asymptotic behavior of the eigenvalues. The
enumeration function is the inverse of the function k 7→ λk; it is not obvious and this will be
proved below that the expressions in the right hand side of of (1.156) and (1.157) are well
defined but it should be noted that, at least formally the trace of the heat operator is the
Laplace transform of the distribution∑

k

δ(λ− λk) =
d

dλ
N(λ)

while the trace of the wave operator is the Fourier transform of the distribution∑
k

δ(τ ±
√
λk)

and that we finally have:

Ñ(τ) =
1

2π

∫ τ

0

dτ

∫ ∞
−∞

eitτTrace(cos t
√
Ldt) .

The easiest object to study is the heat core and we will prove below we have for t > 0 and
close to zero an asymptotic expansion of the following form

(1.158)
∑
k

e−tλk = (4πt)−n/2
∑

0≤k≤n

akt
k
2 +O(1).

The terms of this expansion have an interpretation geometric interpretation. In particular
in the case of the ”flat” Laplacian on a bounded open set of IRn, the first coefficient is none
other than the volume of Ω, the second is proportional to the surface of the boundary etc...
Moreover for a manifold without boundary only are present in (1.158) the even powers of k.

The formula (1.158) is obtained by very direct calculations (cf MacKean and Singer [72])
which can also be interpreted as the use of pseudo-differential operators (cf. Taylor [T] para-
graph 8.3 ).

The Tauberian theorem of Karamata, [88], [53] (Theorem 11.2) then allows to obtain the
Weyl estimate

N(λ) ∼ a0

Γ(n2 + 1)(4π)n/2
, .

If the enumeration function N(λ) had for λ→∞ a expansion in powers:

(1.159) N(λ) = b0λ
s0 + b1λ

s1 ....+ bpλ
sp + λsp(1 + o(λ)), s0 > s1 > .... > 0

then it would be the same for its Laplace transform, (it is the object of a very simple theorem
called abelian theorem (Theorem 11.1) the proof of which is given below), for t→ 0+ and the
coefficients bl are deduced from the coefficients al of the expansion of the Laplace transform
by a simple identification according to the formula:

(1.160)
∑
k≥0

e−λk =
∑

0≤l≤(p−1)

blΓ(sl−1)
tsl +O(

1

tsl
) .

The pathologies of the asymptotics come from the the fact that the function N(λ) is in general
not, up to a suitable order, a sum of powers, it contains oscillating terms which are due to
geometric effects geometrical effects non local effects. This is why the trace of the wave
operator is necessary. wave operator is necessary.
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To finish this introduction we prove the abelian theorem and the Tauberian theorem of
Karamata’s Tauberian theorem and we give two results allowing to use the Fourier transform
of the distribution ∑

k

δ(τ ±
√
λk) .

It is worth noting that the last of these statements contains information more precise infor-
mation than those which use only the Laplace transform.

Theorem 11.1. (Abelian theorem) Let dµ be a Borel measure on [0,∞) having the fol-
lowing following asymptotic behavior:

(1.161) lim
λ→∞

λ−γµ[0, λ) = C, with γ ≥ 0 .

Then we have

limt→0+tγ
∫ ∞

0

e−λdµ(λ) = CΓ(γ + 1) .

Demonstration. We introduce the function

G(λ) = (λ+ 1)−γ
∫ λ

0

dµ ≡ (λ+ 1)−γF (λ)

By hypothesis G(λ) is a uniformly bounded function on [0,∞) which tends to C when λ tends
to infinity. An integration by parts in the sense of Stieltjes then gives

tγ
∫∞

0
e−tλdµ(λ) = tγ+1

∫∞
0
e−tλF (λ)dλ

= tγ+1
∫∞

0
e−tλ(λ+ 1)γG(λ)dλ

=
∫∞

0
e−y(y + t)γG(yt )dy .

For t1,

e−y(y + t)γG(
y

t
)

is uniformly bounded in L1(IR+
y ) and for t tending to zero, (y + t)γG(yt ) converges simply to

Cyγ . Thus (1.161) can be deduced from the dominated dominated convergence.
We notice that the theorem 11.1 can be applied to the second member of (1.159) and

that it leads to the identification of the terms of this second member according to the power
behavior of the Laplace transform. But as the Laplace transform smoothes the functions, the
reciprocal theorem reciprocal theorem is much less precise, in the absence of the hypothesis
concerning the expansion in powers. It is a little less trivial and it is the famous

Theorem 11.2. (Tauberian theorem). For any µ measure on [0,∞) the relation

(1.162)

∫ ∞
0

e−tλdµ(λ) ∼ t−s, s ≥ 0, t→ 0+

implies for λ→∞ the relation:

(1.163)

∫ λ

0

dµ(k) ∼ λs

Γ(s+ 1)
.

Demonstration.
We use the transformation which, to any measure σ, associates the measure σt defined by

the formula

σt(A) = tσ(t−1A) .

This transformation leaves invariant the measure dν = ks−1dk and the conclusion (1.163) is
reformulated according to the relation:

limt→0µt[0, 1) =
1

Γ(s)
ν([0, 1)) .
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It is therefore sufficient to prove the stronger relationship:

limt→0+

∫
f(x)dµt(x) =

1

Γ(s)

∫
f(x)dν(x) ∀f ∈ C∞0 [0,∞) .

The assumption (1.162 (positivity plays an important role) implies that the family of measures
e−t of µt is uniformly bounded. Thus it suffices to prove (1.160) for f belonging to a dense
subspace of continuous functions tending to zero at infinity. Finally, we use the density
of polynomials in e−x (Stone Weierstrass!) for for which an exact calculation is immediate.
Finally, here are the two statements involving not the Laplace transform but a Fourier analysis.

Proposition 11.1. Let S(t) be a uniformly finite order distribution on Rt. We assume
that zero is a point isolated from its singular support and that after localization (by a function
θ equal to 1 in the neighborhood of zero and not not meeting the singular support support of
S(t) outside zero) we have:

(θ̂S)(τ) ' (
1

2π
)n|τ |(n−1)

∑
k≥0

pk||τ |−k .

Then for t→ 0 we have

(1.164) < e−tτ
2 ˆS(τ) >' (

1

2πt
)
n
2

∑
0≤k≤n

akt
k
2 +O(1) .

with

(1.165) ak = ( 1
2 )
n
2 Γ(n− k)pk .

Demonstration. So we introduce the function θ(t) and we decompose S(t). and we
decompose S(t) into the sum of two distributions S1(t) = θ(t)S(t) and S2(t) = (1− θ(t))S(t),
the first one is located in the the first is localized in the neighborhood of zero, its Fourier
transform transform is therefore a regular function which, for τ tending to infinity, has an
asymptotic behavior asymptotic behavior given by

(θ̂S)(τ) ' (
1

2π
)n−1|τ |n−1

∑
k≥0

pk|τ |−k

Its contribution:

(
1

2π
)n
∫ ∞

0

e−τ
2t|τ |

∑
k≥0

pk|τ |−kdτ

provides by an obvious calculation (of the abelian theorem type) the relation (1.164) provided
that it is established that the contribution of S2(t) in the first member of (1.164) is negligible;
and indeed indeed we have according to Plancherel∫ ∞

−∞
e−τ

2t ˆS2(τ)dτ =
√

2π <
1

4t
e−

s2

4t , S2(s) >, .

Now, since S2(s) is uniformly of finite order (derivative at most m times of a continuous
bounded function) and since its support does not meet 0, we have

<
1

4t
e−

s2

4t , S2(t) >≤ e− c
2

t ,

which completes the proof of the theorem 11.1. The following statement allows to specify the
asymptotic behavior of a measure dµ whose Fourier transform is known in a neighborhood I
of zero. To filter we introduce a truncation function (in Fourier) φ constructed in the following

way. in the following way. We choose ψ̂ ∈ C∞0 (− 1
2 ,

1
2 ) of norm L2 equal to 1 and we pose

φ = |ψ|2 ? |ψ|2, φa(τ) =
1

a
φ(
τ

a
) .
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Of course the support of ψ̂ is contained in the interval ]−1, 1[ and the one of φ̂a in the interval
−] 1

a ,
1
a [. Finally φ is a function strictly positive on all IR. We have the theorem (Lemma 17.5.6

volume III. p 50 of Hörmander [48])

Theorem 11.3. Let µ be a function with tempered growth verifying µ(0) = 0. Let on the
other hand ν be a function locally with bounded variation with ν(0) = 0.

We suppose that these two functions verify the following estimates

(1.166)
|dν(τ)| ≤M0(|τ |+ a0)n−1dτ
|(dµ− dν) ? φa(τ)| ≤M1(|τ |+ a1)κ

with κin[0, n− 1] and a ≤ a0, a ≤ a1. Then

|µ(τ)− ν(τ)| ≤ C
(
aM0(|τ |+ a0)n−1 +M1(|τ |+ a1)κ

)
where C is a constant that depends only on κ and n.

Demonstration Since φ(τ) is strictly positive on R, there exists a constant c0 > 0 such
that, on the interval ]− 1

2 ,
1
2 [ we have φ > c0 and so it comes:

(1.167) c0a
−1

∫ τ+ 1
2a

τ− 1
2a

dµ ≤ dµ ? φa(τ) ≤ C
(
aM0(|τ |+ a0)n−1 +M1(|τ |+ a1)κ

)
indeed it is enough to increase appropriately |dµ ? φa(τ)| which which, with (1.166), results
from the relations:

|dµ ? φa(τ)|(dµ− dν) ? φa(τ)|+ |dν ? φa(τ)| ≤ C
(
aM0(|τ |+ a0)n−1 +M1(|τ |+ a1)κ

)
.

By dividing the interval (0, s) into |s|+1 intervals of length less than 1 we deduce from (1.167)
the relation

(1.168) |µ(τ)− µ(τ − as)|C
(
a(|s|+ 1)M0(|τ |+ a0 + a|s|)n−1 +M1(|τ |+ a1 + a|s|)κ

)
Multiplying (1.168) by φ(s) and integrating we obtain the essential relationship:

|µ(τ)− µ ? φa(τ)| ≤ C
(
aM0(|τ |+ a0)n−1 +M1(|τ |+ a1)κ

)
and the demonstration ends by using again the second relation of (1.166).

2. Trace of the heat kernel.

The operator L is (with a suitable definition of its domain) the generator of a strongly
continuous semigroup in L2(Ω) and by the kernel theorem we have kernels we have:

e−tLf(x) =

∫
Ω

K(t, x, y)f(y)dy .

It also follows from the regularity of the solutions of the heat equation heat that, for all
t > 0, this kernel is a bounded function. On the other hand the decomposition spectral
decomposition of L (with boundary conditions if it is a bounded domain with boundary) leads
to the formula:

(e−tLf)(x) =

∫
Ω

K(t, x, y)f(y)dv(y) =
∑
k

e−tλkwk(x)

∫
Ω

wk(y)f(y)dv(y)

From the classical theorems on the regularity of solutions of elliptic problems, it follows that
the series ∑

k

e−tλk |wk(x)|2, x ∈ Ω̄

(2.169)
∑
k

e−tλk =
∑
k

e−tλk
∫

Ω

|wk(x)|2dv(x) =

∫
Ω

K(t, x, x)dx = Trace e−tL

are (for all t > 0, are but not for t = 0) convergent and in particular the kernel of the heat
operator is a with trace.

We start by treating an elementary case.
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2.1. The Weyl asymptotics for the Dirichlet problem with constant constant
coefficients. We consider the eigenfunctions and eigenvalues of the Laplacian flat” We con-
sider the eigenfunctions and eigenvalues of the “flat Laplacian” in a bounded open set Ω with
Dirichlet conditions:

−∆wk = λkwk, , , wk(x)∂Ω = 0, .

We introduce the heat kernel in the whole space:

E0(t, x, y) =
1

(4πt)
n
2
e−
|x−y|2

4t .

For t ≥ 0, x and y in Ω this distribution is (with respect to the variables x, t) solution of
the heat equation; it verifies the same initial conditions but of moreover on the boundary it
is strictly positive so, according to the principle of the maximum, it majors the kernel of the
heat semigroup with Dirichlet condition according to the formula

0 < K(t, x, y) < E0(t, x, y), ∀(t, x, y) ∈ IR+ × Ω× Ω, .

From this equation we immediately deduce the relation:∫
Ω

K(t, x, x)dx ≤ 1

(4πt)
n
2
vol(Ω) .

Then for any fixed ε > 0 we introduce an open set O which approximates Ω to within ε > 0
by the interior:

Ω ⊂ Ω̄ ⊂ Ω, vol(Ω− Ω) ≤ ε
Let δ(y) be the distance from a point y to ∂Ω and δ = δO the distance from O to Ω and

we observe that we have (always according to the principle of the maximum):

(2.170) 0 < E0(t, x, y)−K(t, x, y) ≤ 1

(4πt)
n
2
e−

δ(y)2

4t .

By studying the behavior of the function

s→ 1

(4t)
n
2
e
−δ2
4s

and by choosing t > 0 small enough (O and δ fixed, t ≤ δ2

2n ) we derive the formula

0 <

∫
O
E0(t, x, x)dx−

∫
O
K(t, x, x)dx ≤ 1

(4πt)
n
2
e−

δ2

4t

This gives

lim
t→0+

(4πt)
n
2

∫
O
K(t, x, x)dx = lim

t→0+

(4πt)
n
2

∫
O
E0(t, x, x)dx

Reusing (2.170 we conclude that we have:

Vol(Ω) ≥ (4πt)
n
2 lim
t→0+

∫
K(t, x, x)dx ≥ Vol(Ω)− ε

With the relation (2.169) and the Theorem 11.2 (Theorem tauberian) we obtain the Weyl
estimate:

Theorem 11.4. (Weyl estimate) The asymptotic behavior of the eigenvalue enumeration
function eigenvalues of the “flat” Laplacian in a bounded open set is “to first order”. given by
the formulas:

(2.171) N(λ) = ]{(λk ≤ λ} ' Vol(O)

Γ(n2 +1)(4π)
n
2
λ
n
2 , , λk ∼ 4π

(Vol(Ω))
2
n
k

2
n , .
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Note 1 The volume of the unit ball in IRn is given by the formula (cf. Schwartz Mathe-
matical Methods of Physics page 350)

Cn = π
n
2

Γ(
n
2 +1)

so the Weyl asymptotic also takes the form:

(2.172) N(λ) ∼ Vol(Ω) Cn
(2π)nλ

n
2 = 1

(2π)n

∫
Ω

∫
(|ξ|2≤λ)

dxdξ

formula which will be generalized in the following paragraphs.

2.2. The method of frozen coefficients and Lévy sums. To systematize the results
on the trace of the heat kernel we proceed in two steps.

First, we generalize to a problem with variable coefficients variable on a manifold without
boundary,

then we treat the influence of the boundary.
The calculations made in Mac Kean and Singer [72] and that we reproduce here are

essentially explicit. They can be well be interpreted in terms of of pseudodifferential operators
which the reader will find in Taylor [94](volume 2 page 55). We notice that as the heat kernel
is regularizing heat is regularizing the analysis is local and therefore the recourse to Fourier
integral operators is not contrary to what will be explained in the section 3 necessary.

Following the notations of the introduction we consider the kernel of heat operator for a
compact manifold without boundary. In local coordinates it is written as

(2.173) etLf =

∫
Ω

K(t, x, y)f(y)dv(y)

Of course the kernel K(t, x, y) is symmetric in (x, y) and positive.
Finally, as this is both a step in the demonstration and a tool for the continuation (thanks

to the Theorem 11.3) we study the series:

(2.174)
∑
k

e−λkt|wk(x)|2 = K(t, x, x), x ∈ Ω

keeping in mind that it is a convergent series and that we have:

(2.175)
∑
k

e−λkt =

∫
Ω

K(t, x, x)dv(x).

For x 6= y, K(t, x, y) is exponentially decreasing in 1
t for t tending to zero. Thus for the

asymptotics of the second member of (2.174) we use local coordinates and the formula (1.155):

Lu = −∆u = − 1√
detg

∑
ij

∂i(a
ij(x)

√
detg∂ju)

We can extend the operator to IRn by assuming that outside a ball of suitable size it coincides
with the usual Laplacian, then we then ”freeze” the coefficients at the point y which leads to
the equation parabolic equation with constant coefficients:

∂tu = divx(A(y)gradxu) = Lyu, u(x, 0) = f(x)

whose elementary solution is given (make a change of variables) by

u(t, x) = (4πt)−n/2
∫
e−

(g(y)(x−z),(x−z))
4t

√
detg(y)f(z)dz .

So we pose

(2.176) Ky(t, x, z) = (4πt)−n/2e−
(g(y)(x−z),(x−z))

4t

On the one hand we have:
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∫
K(t, x, z)

√
detg(z)Ky(0, z, y)

√
detg(y)dz

= K(t, x, y)
√

detg(y)
∫
Ky(t, x, z)

√
detg(y)K(0, z, y)

√
detg(z)dz

= Ky(t, x, y)
√

detg(y)

and on the other hand we also have:

(2.177)
K(t, x, y)

√
detg(y)−Ky(t, x, y)

√
detg(y)

=
∫ t

0
ds
∫

IRn
K(s, x, z)

√
detg(z)Ky((t− s), z, y)

√
detg(y)dz

By simplifying (2.177) by
√

detg(y) and using the properties of elementary solutions we
finally get

(2.178)
K(t, x, y)−Ky(t, x, y) =

∫ t
0
ds
∫

IRn
L(K(s, x, z))

√
detg(z)Ky((t− s), z, y)dz

−
∫ t

0
ds
∫

IRn
K(s, x, z)

√
detg(z)LyKy((t− s), z, y)dz

The Laplace Beltrami operator being self-adjoint for the volume form
√

detg(z)dz we can
rewrite the equation 2.178 in the form:

(2.179) K(t, x, y)−Ky(t, x, y) =

∫ t

0

ds

∫
IRn

K(s, x, z))(L−Ly)(Ky((t−s), z, y))
√

detg(z)dz .

We introduce the following notations:

f(t, x, y) = (L− Ly)Ky(t, x, y)

and

(g#h)(t, x, y) =

∫
IRn

∫ t

0

g(s, x, z)h(t− s, z, y)
√

detg(z)dzds

which allow us to rewrite (2.177) in the following form

K(t, x, y) = Ky(t, x, y) +K#f

We denote by f#k(t, x, y) the sequence of functions defined by the recurrence: fk(t, x, y).

f#1 = f, f#(k+1) = K#f#k .

In the remainder of this construction we denote by c and d different constants independent of
(t, x, y) and we observe that f verifies the estimate:

(2.180) |f(t, x, y)| ≤ c
( |x−y|3

t2 +
|x− y|
t

)
t−n/2exp(−d |x−y|

2

t )

and we deduce the markup:

|f#k(t, x, y)| ≤ ck

Γ(n2 + 1)
t
k−n

2 exp
(
− d |x− y|

2

t

)
The series (called Lévy’s Sum)

(2.181) S(t, x, y) =
∑
k≥1

f ]k(t, x, y)

converges uniformly on any compact of IR+
t × IR2n and SN (t), its sum at order N verifies the

relation:

K = Ky + SN +Kf ](N+1),

i.e. by making N tend to infinity, we obtain the uniqueness of the obtain the uniqueness of
the kernel for the solution of the heat equation. We finally the relation:

K(t, x, y) = Ky(t, x, y)
∑
k≥1

Ky#f#f#...#f#, k times

We summarize the above calculation in the
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Proposition 11.2. Let L be the Beltrami Laplace operator associated to a to an bound-
aryless manifold Ω then the kernel of the elementary solution is in local coordinates given by
the series:
(2.182)

K(t, x, y) = (4πt)−
n
2 e−(g(y)(x−z),(x−z))(1 + t

1
2 p1(t, x, y) + tp2(t, x, y) + ...+ t

k
2 pk(t, x, y)...

)
avec

|pk(t, x, y)| ≤ ck

Γ[
n
2 +1]

Explaining the asymptotic expansion of the second member of (2.182) we obtain (cf.
Minakshisundaram and Pleijel [79] for a complete demonstration) the formula

(2.183)
∑
k≥0

e−λkt|wk(x)|2 = K(t, x, x) = (4πt)−
n
2 ak(x)t

k
2

The following steps of the analysis are then on the one hand the calculation of coefficients

ak =

∫
Ω

ak(x)dv(x)

intervening in the expansion of the trace of the Laplacian and on the other hand the general-
ization of this formula to an open set without boundary.

An essential remark due to Mac Kean and Singer is that these coefficients depend only
on intrinsic geometric objects intrinsic geometric objects and therefore that we have means
of calculation which are also intrinsic. More precisely, p2k(g) is a homogeneous polynomial in
the metric g and in its covariant derivatives derivatives, associated to a 2k−form differential
form. As the computation is local it is done in the neighborhood of a point x chosen to
simplify equal to zero. With geodesic coordinates, we see that the matrix g(x) develops as a
polynomial function of the curvature tensor curvature tensor R and its covariant derivatives.
covariant derivatives. This tensor is defined by the first order expansion according to the
Taylor formula:

(2.184) gij(x) = δij + 1
3R

kl
ijxkxl +O(|x|3)

We then observe that ak is a homogeneous polynomial of degree k in R and in its covariant
derivatives, it follows, with the symmetries of the Laplacian that the odd order coefficients
are zero.

We then introduce the functions (which are intrinsic on Ω i.e. i.e. invariant by change of
Riemannian coordinates):

K = −
∑
i<j

Rijij

and

(2.185)

A = (
∑
i<j R

ij
ij)

2 = K2

B =
∑
j,k(
∑
iR

ik
ij )2

C =
∑
ijkl(R

kl
ij )

2

We note, for a manifold with or without boundary (in the framework of a manifold without
boundary we do not define S) and J ):

V =
∫

Ω
dv(x) the Riemannian volume of Ω

S =
∫
∂Ω
dσ the Riemannian surface of ∂Ω

K =
∫
∂∂Ω

K(x)dv(x) the integral curvature of Ω
J =

∫
∂∂Ω

J(σ)dσ the average curvature integrated of∂Ω

and we have the

Theorem 11.5. Let Ω be a compact Riemannian manifold without boundary, of dimension
n and L the corresponding Beltrami Laplace operator then we have the following trace formula:

(2.186)

∑
k e
−λkt =

∫
Ω
Kd(t, x, x)dv(x)

=
(4πt)−

n
2 {V+ t

3K+t2

180
∫
Ω

(10A−B+2C)dv(x)+0(t3}
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Corollary 11.1. If Ω is a compact manifold of dimension 2 the formula (2.186) is
rewritten:

(2.187)
∑
k

e−λkt =

∫
Ω

Kd(t, x, x)dVg(x) =
The surface

4πt + E
6 + πt

60

∫
Ω

K2dVg(x)

where E denotes the Euler characteristic [26], equal to 1
2π

∫
M
K.

Comments and Demonstration The formula (2.187) is deduced from the formula
(2.186) with changes of notation and arguments of geometry arguments. First we speak of
surface instead of volume, then we use the Gauss-Bonnet formula:

E =
1

2π

∫
Ω

KdVg(x)

and the relation (specific to the 2 dimension):

10A−B + 2C = 12K2

The zero order term is calculated directly from the first term of the Lévy series (2.182). We
will indicate the calculation of the term in t and for the term in t2 we refer to [72]. If we
change g into C2, the operator L is changed into the operator C−2L, so the series∑

k≥0

e−λkt|wk(x)|2

is changed into the series ∑
k≥0

e−λk
t
C2 |wk(x)|2.

Thus the coefficients a2k (the only non-zero ones) are multiplied by C2k. On the other hand
any covariant derivative of order l of R(C2)g is a multiple of C22 + l. Consequently, a2k is a
homogeneous polynomial of degree 2k in R and its derivatives covariant, if we agree to assign
to a covariant derivative of order l the degree 2 + l . In in particular a2 is a form of degree 1
in IR while a4 is a form of degree 2 in IR plus a form of degree 1 in the covariant derivatives
of order 2 of IR. The coefficients of these expressions depend on Ω only through through the
dimension.

Then we use the fact that the Laplacian commutes with transformations. It is therefore
the same for of the coefficients of the trace formulas and it follows that a2 forms invariant
form of degree 1 is proportional (H. Weyl [99]) to

K(x) = −
∑
i<j

Rijij(x) .

The calculation of the coefficients is done by looking at the sphere Ω = S2 and product
manifolds.

2.3. The calculation of the first terms in the Dirichlet problem.

Theorem 11.6. Let Ω be a compact Riemannian manifold with boundary, of dimension
n and L the corresponding Beltrami Laplace operator with Dirichlet condition u = O on ∂Ω.
Then we have the the following trace formula:∑

k

e−λkt =

∫
Ω

Kd(t, x, x)dv(x) = (4πt)−
n
2 {V − 1

4

√
4πtS +

t

3
K − t

6
J + o(t

3
2 )

Remark 2 As in dimension 2 we have:∫
∂Ω

Jdσ = 2(1− h)

with h designating the number of “holes” of the open set (connected but possibly not simply
connected) Ω. Thus the asymptotic behavior of the eigenvalues λk for k →∞ contain all the
information (use the Abelian theorem) about the asymptotic asymptotic behavior for t → 0
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of k → e−λkt and thus allows to know the size of the domain, the surface of its boundary and
in dimension 2 the number of “holes”.

Remark 3 In all cases we find for the first term the expression

(4πt)−
n
2 V

Which with the Tauberian theorem gives:

(2.188) N(λ) ∼ λn/2

(4π)n/2Γ(n/2+1))
V

or, by introducing in the calculation the volume Cn−1 of the unit ball of IRn−1,

(2.189) N(λ) ∼ (
1

2π
)n
∫

(A(x)ξ,ξ)λ

dxdξ

This formula will be found in the section 3. The structure will be explained.
Scheme of the proof of the Theorem 11.6
We start by computing Kd(t, x, x) for x ∈ Ω′ (Ω̄′ ⊂ Ω). The influence of the boundary is

for t tending to zero in exp(−c/t) and so the methods of theorem 11.5 apply and we have:

(4t)

∫
Ω′
K(t, x, x)

√
det g(x)dx =

∫
Ω′

[1 +
t

3
K] +O(t2)

Then we use in the neighborhood of each point of ∂Ω a system of local maps local maps which
transforms the open set Ω into the open xn > 0 and we introduce a covering of ∂Ω by open
set Uj of IRn and we propose to estimate:

(4πt)

∫
Ω∩U

K(t, x, x)
√

det g(x) .dx

On U we introduce an involution I : U → U which keeps the Riemannian structure and leaves
∂Ω invariant. We observe that the heat kernel with Dirichlet conditions on ∂Ω∩U is given by

Kd(t, x, y) = K̃(t, x, y)− K̃(t, x, Iy)

where K̃(t, x, y) denotes the restriction to U × U of the kernel of the heat. We have in the
neighborhood of the boundary:

(2.190) Kd(t, x, x) = K̃(t, x, x)− K̃(t, x, Ix)

The two terms of the second member of (2.190) are computed by Lévy sum (2.182) in power

of t
1
2 . We again use the Taylor expansion of g(x) in terms of the Ricci tensor and its covariant

derivatives, this allows us to improve the estimate (2.180) and to prove that we have:

(2.191) |f(t, x, y)| ≤ c
( |x||x−y|3

t2 + |x||x−y|
t + 1

)
t−n/2exp(−d |x−y|

2

t )

and we deduce the markup:

(2.192) |K#
∑
k≥2

f#k(t, x, y)| ≤ ct2−n2

Thus to have the asymptotic behavior up to and including order inclusive, it is sufficient to
consider the following terms extracted from (2.192) by sums of Lévy sums:

(4πt)n/2
∫

Ω∩U e
0(t, x, Ix)dv(x)

and
(4πt)n/2

∫
Ω∩U e

0f(t, x, Ix)dVg(x)

We use of course the change of semi-geodesic variable by noting ∂n the derivative along the
exterior normal to Ω. The calculations are done in a difficult but completely explicit way by
replacing g by by its Taylor expansion in terms of the Ricci tensor R.

(4πt)n/2
∫
U∩Ω

e0(t, x, Ix)dv(x) =
1

4

√
4πt

∫
U∩∂Ω

∂
∂n{gnnn det g}

det g
dx′ + o(t)volume of U
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(4πt)n/2
∫
U∩Ω

e0(t, x, Ix)dVg(x) = − t
6

∫
U∩Ω

∂
∂n{g

nn det g}
det g

√
gnn + o(t× volU)

and

(4πt)n/2
∫
U∩Ω

e0#f(t, x, Ix)dVg(x) + o(t× volU) .

Note 4 To conclude this section we can recall again the meaning” of the results obtained;
the information on the eigenvalues provides by the Laplace transform of their enumeration
function, precise information about the geometry of the domain: volume, surface, number of
holes, geodesic curvature, but inversely the asymptotic behavior asymptotic behavior of the
trace of the heat operator allows us to know the first term of the of the asymptotic expansion
of the function N(λ); it would allow to know other terms if we knew that terms if we knew
that this function has an expansion in power of but as it will be illustrated below illustrated
below this is generally not the case and so the most accurate most accurate results that we
can hope for in the be expected in the general case for this enumeration function are limited
to the limited to the first or at best to the first two terms as according to the statements of
the corollary 11.2, theorem 11.8, corollary 11.3 and Theorem 11.9 which follow.

3. Influence of closed geodesics and of Fourier integral operators.

3.1. Poisson’s formula and pathologies of the circle and the sphere. The exis-
tence of a expansion of the form (1.159) up to the second term is by no means obvious, and
even false in simple cases. Its non-existence is related to the accumulation of closed geodesics

which as we will see below contribute to its non-rational character (in λn−k

2 ). The first example
is constructed in dimension 1 and is none other than the interpretation in this framework of
Poisson’s formula.

(3.193)
∑
k∈ZZ

eikt = 2π
∑
k∈Z

δ(t− 2πk) .

Indeed with Ω = T = IR/(2πZ), the eigenfunctions of the Laplacian are the complex expo-
nentials e±ikx and the corresponding eigenvalues are the numbers λk = k2, (of multiplicity 2
for k 6= 0). We find the relation:

N(λ) ∼ 2λ
1
2

in perfect agreement with (1.161). But, as at the passage of each eigenvalue, N(λ) increases
by 2, this function cannot admit an expansion of the form:

N(λ) = 2λ
1
2 + a1 + o(1).

On the other hand for the function Ñ(τ) = N(τ2) whose derivative is the distribution:

S(t) =
∑

δ(τ −
√
λk)

we have an even more explicit formula (denoting by Ñ(x) = N(x2)):

(3.194) N(τ) = 2τ + 2(E(τ)− τ) .

Thus we observe that the second member of (3.194) is the sum of a linear function and a
function (E(τ) being the integer part of τ). The presence of this periodic function periodic

function results in singularities in Ñ(τ) or in its derivative: Ñ(τ) is the or its derivative:

d

dτ
Ñ(τ) = δ + 2

∑
k>0

δk .

Extending by parity, to use the Fourier transformation, we have, according to the ”Poisson
formula” (3.193):

(3.195) F
(+∞∑
−∞

δτ−k)
)

=

+∞∑
−∞

eikt = 2π

+∞∑
−∞

δτ−2πk
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It is then important to notice that the second term of (3.195) coincides with the distribution

(3.196) Trace cos t
√
−∆ .

And the formula (3.196) says in particular that the singular support of the Fourier transform
of the distribution

d

dτ
Ñ(τ)

coincides with the lengths of the closed geodesics drawn on the circle (in this case it is not circle
(in this case there is only one that we go through several times either in the positive direction
or in the negative direction. the retrograde direction). This singular support translates the

presence of oscillations in the asymptotic behavior of the function Ñ(τ).

The second example is the sphere, to fix the ideas we consider it in dimension 3, (the
observation being however valid in any any dimension) the Laplace Beltrami operator is then

Lu = −[
1

sin θ
∂θ(sin θ∂θu) +

1

sin2 θ
∂2
φu]

whose eigenfunctions are the spherical harmonics:

Yk,l(θ, φ) = e±ikφP kl (cos θ), 0 ≤ l ≤ k.
corresponding to the eigenvalues

λk = k(k + 1)

so each eigenvalue has multiplicity 2k + 1 . Because of this multiplicity we have:

N(λk) =

l=k∑
l=1

(2l + 1) = k(k + 1) + k = (k + 1)2

Here again we find the relation
N(λ) ∼ λ

which is no other than (2.188) in dimension 2.
On the other hand at the passage of each eigenvalue N(λk) jumps from (2k + 1)

N(λk+0)− k(k + 1) = k + 1, N(λk−0)− k(k + 1) = −k,
and it is impossible to have a expansion of the form:

N(λ) = (λ) + a1

√
(λ) + o(

√
(λ))

Note 5 The circle is indeed on the sphere of IR2, the calculation made above extends to the
sphere of IRn for all n. Nevertheless we prefer here to separate the two cases because it is the 2
dimension which gives back the original Poisson formula. The IRn-sphere is a manifold where
all the closed geodesics have the same primitive length. We then say that the Hamiltonian is
periodic and in this framework we can exhibit behaviors of the same nature. This is beyond
the scope of this presentation and the reader can refer to the article by Duistermaat and
Guillemin [33] or to volume III of Hörmander [48].

3.2. Closed geodesics and singularities of the trace of of the wave operator.
. Generalizing these observations is an important application of operators integral Fourier
operators in particular in particular because the contributions of closed geodesics require the
use of global parametrix. This is the subject of the present paragraph where, for simplicity,
we always consider the spectrum of the spectrum of the Laplace Beltrami operator, written
in local coordinates in the following form:

Lu = 1√
det A−1(x)

divx
(
A(x)

√
det A−1(x)gradxu

)
on a compact manifold in general without boundary Ω.
Since the main symbol of the operator is (A(x)ξ, ξ), the characteristic manifold of the

wave operator
u 7→ ∂2

t u− Lu
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is defined by the relation: C = {τ2 = (A(x)ξ, ξ) ⊂ T ∗(IR × Ω)\0, the Riemannian metric is
defined by the matrix A−1 and the bicaracteristics are the applications

s 7→ (t(s), τ(s); y(s), η(s)) ∈ C
solutions of the differential system ṫ = 2τ, =̇0

ẏ = −2A(x)ξ, η̇ = gradx(A(x)ξ, ξ)
(t, τ ; y, η)|s=0 = (0, τ0;x, ξ) ∈ C

We have of course
τ = τ0 = ±

√
(A(y)η, η) = ±

√
(A(x)ξ, ξ)

and we say that a bicaracteristic is periodic if its projection s 7→ (x(s), y(s)) is a periodic ap-
plication. The running times of one or more loops are called the periods of the bicharacteristic.
Let L+ be the set of positive periods and let

L = L+ ∪ −L+ ∪ 0, .

With the parameterization by s and the metric given by A−1, the length of a closed geodesic
of period t > 0 is given by:

l =

∫ t
2τ0

0

(A−1ẋ(s), ẋ(s))ds =

∫ t
2τ0

0

4(A(x(s)ξ(s), ξ(s))ds = l =

∫ t
2τ0

0

4τ2
0 ds = t .

As in the case of the heat kernel it is natural to consider both the sums both the sums

(3.197) S(t, x) = 1 +
1

2

∑
k

e±i
√
λkt|wk(x)|2

and

(3.198) S(t) =

∫
Ω

S(t, x)dv(x) .

Proposition 11.3. The formulas (3.197) and (3.198) where the eigenvalues are counted
with their multiplicity do define uniformly finite order distributions.

Demonstration: We use the relationship,

dp

dtp
(

1

(i
√
λk)p

ei
√
λkt)|wk(x)|2 = ei

√
λkt|wk(x)|2 ,

the fact that the norm in L∞(Ω) of |wk(x)| is increased by CλMk with M suitable results from
Sobolev’s theorem and the relation:

−Lwk(x) = λkwk(x).

The convergence (uniform in t and x ), for p large enough of the series∑
k

ei
√
λk t

(i
√
λk)p

is therefore a consequence of the Weyl estimate (2.171) obtained previously.
To take into account the influence of the lengths of the closed geodesics we will need the

Fourier operators operators and a generalization of the phase theorem stationary adapted to
the evaluation of integrals whose phase oscillates on submanifold. Thus we introduce the:

Proposition 11.4. Theorem of the stationary phase on a sub manifold (Colin de Verdière
[27]). Let Z be a Riemannian manifold of dimension d, let a ∈ C∞0 (Z) be a real-valued phase
Z and let a ∈ C∞0 (Z) be a real-valued phase Z. and let be a real-valued phase Φ ∈ C∞(Z).
We assume that the critical points of Phi located in the support of a constitute a related
submanifold W of Z whose we note ν the dimension. We further assume that W is a non-
degenerate critical manifold for Φ, i.e. that the Hessian Φ”(z) induces on the normal space

N = TzZ/TzW

a non-degenerate quadratic form Φ”(z)|N whose signature we note σ the signature.
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Then we have an asymptotic behavior of the following form:

(3.199) J(τ) =

∫
Z

eiτΦ(z)a(z)dz = ( 2π
τ )

d−ν
2 ei

π
4 σ(W )eiτΦ(W )p(τ)

with

(3.200) p(τ) ∼
∑
k≥0

akτ
−k for τ →∞

Finally in (3.200) the principal coefficient is given by

(3.201) a0 =

∫
W

a(z)|detΦ”(z)|N |−
1
2 dvw(z)

with in (3.201) dvw(z) denoting the volume element defined by the metric induced by that of
Z on W .

The proof of the proposition 11.4 is given at the end of this paragraph and we will observe
in the course of this demonstration that the value of Φ(z) and the signature of the matrix
Φ”(z) are constant on W .

3.3. The nonsingular support of the trace of the wave operator and its singu-
larity in 0. To introduce the tools and although the extension to the case of an open set with
boundary is a fundamental issue, we concentrate in this paragraph on the case of an open set
without boundary.

Theorem 11.7. i) For x ∈ Ω the singular support of S(t, x) is contained in calL(x) the
set of lengths of the closed geodesics passing through x and that of S(t) in calL.

ii) The point 0 is isolated in L and in its neighborhood (with the introduction of function
θ which localizes around zero, the Fourier transform of Fourier transform of S(t, x) admits an
asymptotic expansion of the following form:

(3.202) (θ̂S)(τ, x)) ' (
1

2π
)n−1|τ |

∑
k≥0

pk(x)|τ |−k

and similarly we have:

(θ̂S)(τ) ' (
1

2π
)n−1|τ |

∑
k≥0

pk(x)|τ |−k

iii) The coefficients pk(x) appearing in the formula (3.199) are (for k < n) related to the
coefficients ak of the asymptotic expansion of Minakshisundaram and Pleijel (formula (2.183))
by the relation

(3.203) ak(x) = (2pi)1−n2 Γ(
n− k

2
)pk(x)

The relation (3.203) is integrated to give, with the notations of section 2,

ak = (2π)1−n2 Γ(
n− k

2
)pk

This implies in particular that these coefficients are zero for k odd.
Demonstration We use the asymptotics by integral Fourier operators and more precisely

the precisely the

Proposition 11.5. (Representation theorem) There exists an integral integral Fourier

operator F̃ : Ω 7→ ×Ω belonging to the class I−
1
4 (IR × Ω,Ω;C) which solves the Cauchy

problem:

(3.204) ∂2
t F̃ − LF̃ = 0, F̃|t=0 = Identity of Ω, F̃|t=0 = 0

where C is the canonical relation: (t, τ ; y, η) is on the bicharacteristic that passes through one

of the points (0, τ0 = ±
√

(A(x)ξ, ξ);x, ξ).
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The exhibited canonical manifold is then, if we note Φt the bicaracteristic flow bicarac-
teristic of the studied operator i−1∂t +

√
(A(x)ξ.ξ),

(3.205) (t, τ); (x, ξ); (y, η), τ + q(x, ξ) = 0, (x, ξ) = Φt(y, η)}.

We denote by F (t, x, y) ∈ D(IR××O) the kernel distribution of F . Its wavefront is therefore
contained in

{(t, τ ; y, η;x, ξ) ∈ C × C\(t, τ ; y, η;x,−ξ) ∈ C.
By introducing the spectral decomposition of the operator L we have

1x ⊗ 1y +
∑
k

cos(
√
λkt)wk(x)⊗ wk(y) = F (t, x, y) modulo C∞ .

Moreover we can define the restriction of this distribution to the manifold IR×D ⊂ IR×Ω×Ω
where D denotes the diagonal of Ω× Ω and we obtain:∑

k

cos(
√
λkt)|wk(x)|2 −

∫
Ω

F (t, x, x) ∈ Cinfty .

Therefore the singular support of S(t, x) verifies the relation:

supp. sing S(t, x) ⊂ {t\∃(ξ, 0, τ) ∈ C, (t, τ, x; ξ, x, ξ) ∈ C}

which proves point i).
To prove that the point 0 is isolated in C (thus in L(x) for all x ∈ Ω) we use the Hamiltonian

equation and the fact that Ω is compact.
The singularity of S(t, x) in the neighborhood of zero is thus characterized by the asymp-

totic asymptotic behavior for τ → ±∞ of the expression

I(τ, x) = (θ̂S)(τ, x) =

∫
×Ω

e−iτtθ(t)F (t, x, x)dt .

Since S is real and even it suffices to study the case τ > 0
In the neighborhood of t = 0 we can solve in a classical way (there is no of caustic) the

eikonal equation

(3.206) dtφ
2 = (A(x)gradxφ, gradxφ)

and the equations of transport. The kernel F (t, x, y) is written in the form:

(3.207) F (t, x, y) = (2pi)−n
∫

IRnη

expi(φ(t, x, η)− y · η)a(t, x, y, η)dη

where a(t, x, y, η) is a symbol of order zero.
We use the homogeneity of degree 1 of the phase φ and of degree 0 of the symbol to

rewrite, by changing η into τη, (3.207) as

(3.208) I(τ, x) = ( τ2π )n
∫

IRnη

∫ ∞
−∞

θ(t)a(t, x, x, η)dtηdt .

The phase stops at most for t = 0 where we have:

(3.209) φ(0, x, η) = x · η, and a(t, x, x, η) = 1

and

(3.210)
φ′t(t, x, η) = 1,
φ′x = η,
φ′η = x .

Thus the sub-manifold of IRt × IRn
η where the phase stations is characterized by the relations:

(3.211) t = 0, (A(x)ξ, ξ) = 1



214 11. COMPTAGE DES VALEURS PROPRES

It is thus a submanifold of dimension (n− 1) in a space of dimension (n+ 1) it is therefore of
codimension 2. Moreover in the neighborhood of zero the corresponding phase is written (use
the eikonal equation of (3.206) ) in the form:

(3.212) φ(t, x, η) = x · η + t
√

(A(x)η, η) +O(t2)

We deduce from (3.212) that the sub-manifold defined by (3.211) is indeed non-degenerate in
the sense of the phase theorem stationing on a submanifold. The existence of a expansion of
the type (3.202) is therefore a consequence of this last theorem. To finish the demonstration
of point (ii) it is enough to observe that 0 is an isolated point of the spectrum spectrum of
S(t, x) and apply the proposition 11.1 in conjunction with the with the results of the section
2.

Corollary 11.2. Let N(λ) be the enumeration function of the eigenvalues of the Lapla-
cian on a compact manifold Ω of dimension n (with Dirichlet condition condition if there is
there is an boundary) then we have:

N(λ) = (2π)−nCnV ol(Ω)λ
n
2 +O((λ)n−1)

Demonstration: From (i) and (ii) of Theorem RefIII.4, the distribution S(t, x) is regular
on the open set 0 < t < l(x) = 1

a(x) (with l(x) denoting the length of the smallest length of

the smallest closed geodesic of non-zero length passing through x, moreover always by the
theorem 11.7 (point iii)), for t = 0 it admits an asymptotic expansion asymptotic expansion
of the following form:

(3.213) ˆθ(t)S(t, x, x)(τ) = A(x)|τ |(n−1) +O(|τ |(n−2)) .

Thus we can apply the localization theorem (Theorem 11.3) with the following notations:

dν(τ, x) = A(x)τn−1

and
dµ(τ, x) = 2

2π

∫
eiτtF (t, x, x) .

We get:

µ(τ, x) =
1

n
A(x)τn + Ca(x)(τn−1)

The relation (3.213) is deduced by integration.
In fact it is possible to improve this theorem significantly by microlocalizing the operator

F (t, x, x) and in particular which leads to the relevant result of Ivrii for the boundary problem.
To do this we introduce two objects.
On the one hand for any pair (x, ξ) ∈ T ∗(X)\0 we denote by l(x, ξ) the length of the

smallest closed geodesic passing through this point and then we pose (as above)

l(x) = inf
ξ 6=0

l(x, ξ)

of course if there is no closed geodesic passing through this point l(x) is taken equal to +∞.
Thus defined l(x, ξ) is a semi continuous function below and the infimum in the definition of
l(x) can be taken on the unit sphere.

On the other hand we introduce a covering of T ∗(X)\0 by an arbitrary but finite number
arbitrary but finite of open cônes Γj and a family Bj of pseudo homogeneous differential
operators of order zero (cf. Hörmander [48] tome IV page 258 for the details) which realize a
resolution (modulo C∞) of the identity and whose wavefront is contained in Γj . Let us just
note that this result was first established in 1968 by Hörmander [46]. This is the Hadamard
parametrix.

With these tools we will prove the

Theorem 11.8. The enumeration function of the Laplace Beltrami operator on the man-
ifold without boundary Ω verifies the following estimate:

(3.214) |N(λ)− CnV ol(Ω)λ
n
2 |Cλ

(n−1)
2 (A(x)ξ, ξ) < 1

1

l(x, ξ)
dxdξ
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Before making the demonstration it is advisable to notice that from this theorem we
immediately deduce the

Corollary 11.3. We suppose that the set of points (x, ξ) through which through which
a closed geodesic passes is of measure zero in T ∗(X)\0 (which is much weaker than assuming
that the set of points x ∈ Ω through which a closed geodesic passes is of measure zero in Ω)
then we have, for the enumeration function of the Laplace Beltrami operator, the formula:

N(λ) = CnV ol(Ω)λ
n
2 + o(λ

(n−1)
2 )

Proof of the Theorem 11.8. We use the overlay Γj and the operators Bj introduced above
by posing in particular

lj = inf
(x,ξ)∈Γj

l(x, ξ) .

With the function Ñ(τ) = N(τ2) the formula (3.214) is written

Ñ(τ) = CnV ol(Ω)λ
n
2 + C(τ)

|C(τ)| = C(τ)(n−1)int(A(x)ξ,ξ)<1
1

l(x,ξ)dxdξ, .

On the other hand we have

tildeN(τ) =

∫ τ

0

∫
Ω

dµ(τ ′, x)dx .

We introduce the resolution of the identity:

I =

N∑
1

BjB
∗
j = I +R, with R indefinitely regularizing

and so modulo τ−∞, we have:

Ñ(τ) =
∑
j

∫ τ

0

∫
Ω

dµj(τ
′, x)dx

with

(3.215) dµj(τ
′, x) =

1

π

∫
eitτ Trace{cos(t

√
−∆BjB

∗
j )}dt ;

in (3.215) the traces and Fourier transforms are understood in the sense of the distributions.
Finally, we denote by Fj(t, x, y) any approximation (modulo C∞) of the kernel of of the
operator:

cos(t
√
−∆BjB

∗
j )

and, as we have:

Trace{cos(t
√
−∆BjB

∗
j )} = Trace{B∗j cos(t

√
−∆Bj)}

we deduce from the singularity propagation theorem that the function:

Sj(t, x) : t 7→ Fj(t, x, x)

is regular for 0 < t < lj . We assume (which is also possible) that the main symbols bj of the
operators Bj verify the relation: ∑

j

|bj |2 = 1 .

To apply the localization theorem, we introduce the measures:

(3.216) dνj(τ) =
1

π

∫
e−itτθ(t) Trace{cos(t

√
−∆BjB

∗
j )}dt

In (3.216) θ(t) denotes a regular function, with support in support in a small enough neigh-
borhood of 0. (no caustics formed for t ∈supportθ) and equal to 1 in an (even smaller)
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neighborhood of zero. Thus as in the formula (3.207), the principal term of the kernel of a
parametrix of the operator cos(t

√
−∆BjB

∗
j ) is written:

Fj(t, x, y) = (1
2 )−n

∫
IRnη

ei{φ(t,x,η)−y·η}a(t, x, y, η)|bj(η)|2dη

This allows to explain the measures νj(τ, x) and νj(τ) according to the formulas:

dνj(τ) =
∫
dνj(τ, x)dx

dνj(τ, x) = ( 1
2π )−n

∫
IRnη

ei{φ(t,x,η)−x·η}a(t, x, x, η)|bj(η)|2dη

from which we deduce as above and by the phase theorem stationary on a sub-manifold
that dνj(τ, x) has an asymptotic expansion of the form

(3.217) dνj(τ, x) = Cj(x)τ (n−1) +Dj(x)τ (n−2) + o(τ (n−2))

with

|Cj(x)| ≤ C
∫

(A(x)ξ,ξ)≤1

|bj(ξ)|2dxdξ.

It remains then to apply the localization theorem 11.3 and to sum with respect to j to obtain
the relation:

(3.218)
|Ñ(τ)− τn

∑
j

∫
Ω
Cj(x)dx− τ (n−1)

∑
j

∫
Ω
Dj(x)dx| ≤

C
∑
j

1
lj

∫
(A(x)ξ,ξ)≤1

|bj(ξ)|2dxdξ, .

We use the point ii) for the identification of the coefficients, in particular the term in τ (n−1)

in the first member of (3.218) is zero in the case, in the the case, considered here, of the open
set without boundary. Finally for the second member of (3.218) we have the bound:∑

j
1
lj

∫
(A(x)ξ,ξ)≤1

|bj(ξ)|2dxdξ ≤
∫

(A(x)ξ,ξ)≤1

∑
j
|bj(ξ)|2
lj(x,ξ)

dxdξ ≤
C
∫

(A(x)ξ,ξ)≤1
1

lj(x,ξ)
dxdξ,

which ends the demonstration.

Inspection of the above demonstration reveals the ingredients the following ingredients:
i) The fact that Sj(t, x) is regular on the interval 0 < t < lj ,
ii) The calculation (it is enough to know that we have a power expansion and that we

have a suitable majorization of the first term) of the singularity in t = 0 of this distribution.
These two steps can be generalized for a problem with problem. In particular for point i)

we speak (cf. Hörmander [48] Tome III) of generalized bicaracteristics (including any inter-
action physical” interaction with the boundary) and thus we obtain the following statement
from Ivrii which we quote without demonstration.

Theorem 11.9. The enumeration function of the Laplace operator on an open set Ω with
Dirichlet condition on the boundary verifies the following estimate following:

|N(λ)− Cn
(2π)n

Vλn2 +
1

4
Cn−1

(2pi)n−1Sλ
(n−1)

2 | ≤ Cλ
(n−1)

2

∫
(A(x)ξ,ξ)≤1)

1

l(x, ξ)
dxdξ

and in particular if the closed geodesics form a set of measure zero, we have:

N(λ) =
Cn

(2π)n
Vλn2 − 1

4
Cn−1

(2pi)n−1Sλ
(n−1)

2 + o(λ
(n−1)

2 )
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3.4. Contribution of geodesics to the spectrum of the trace. Thanks to the local-
ization theorem the previous results are, by with respect to the Riemannian structure global
structure of a negative nature: it has been proved that if we do not have too many closed
geodesics one can improve (a little) the Weyl asymptotics. To prove “positive” results, that is
i.e. involving closed geodesics geodesics it is necessary to have more precise global parametrix.
One can no longer (because of the passage of caustics) represent the the passage of the caus-
tics) represent the integral Fourier operator F (x, y, t) of the formula (3.204) by a single On
the other hand, we have the following statement:

In the neighborhood of any point l ∈ IRt the operator θ(t)F (t, x, y) can be expressed as
into a finite sum of oscillating integrals.

To do this we define an overlay of the canonical relation C by domains Cα of Tα maps
associated to phase functions of the form

(3.219) φα(t, x, η, y) = φα(t, x, η, y)− y · η
More precisely the open set Cα is diffeomorphic to a conic Zα of ]l− ε, l+ ε[×Ω×Γα with

Γα cône open from IRn\0 by means of the application:

(t, x, η) ∈ Zα
Tα→ (t, φ′αt, x, φ

′
αx; y = φ′αη, η) ;

so we represent locally modulo C∞, (for t in a neighborhood of T ) the kernel K(t, x, y) as a
finite sum of oscillating integrals:

(3.220) Fα(t, x, y) =
∑
α∈A

(2π)−n
∫

Γα

ei{φα(t,x,η)−y·η}aα(t, x, η)dη

where aα(t, x, η) is a zero-order symbol whose support is a conic part with compact base
included in Zα. With this representation we have the:

Theorem 11.10. We suppose that (l > 0) ∈ L is a point isolated in calL and that,
assumption (Hl), the set W+

l of closed bicaracteristics admitting l for period is a finite meeting
of related related non-degenerate submanifold Wl,j of dimension νj:

(3.221) W+
l = ∩j∈jlWl,j ,

then in the neighborhood of point l the singularity of S(t) is given (in the sense of the wavefront,
i.e. by localizing and taking the Fourier transformation) by an asymptotic expansion of the
following form:

(3.222) (θ̂S)(τ) =
∑
j∈Jl

e−iτl
(2π

τ

)(1−νj)/2
ei
π
4 σjpkj τ

−k

with

p0
j =

∑
α

(1over2)n
∫
T−1
α (Wl,j∩Cα

|a0
α(l, x, η)|| detΦ”α|N |−

1
2 dv(x)dη

Demonstration
Let l ∈ L and θ be an indefinitely differentiable function locating in the neighborhood of

l. The singularity of S at point l is characterized by the asymptotic asymptotic behavior for
τ → ±∞ of the expression

(3.223) I(τ) = (θ̂S)(τ) =

∫
IR×Ω

e−iτtθ(t)F (t, x, x)dtdv(x) .

Since S is real, it is sufficient to to study the case τ > 0, the other being deduced by conju-
gation, of même it is enough to limit ourselves by parity to l ∈ L ∪O .

According to the classical theory of integral Fourier operators, we explicit θF into a finite
sum (the integral of the second member of (3.223) is on a compact in (x, t)) of oscillating
integrals using (3.220). The first member of (3.223) is therefore, modulo a fast decaying term
in τ , a finite sum of oscillating integrals of the following type

(3.224)

∫
θ(t)

∫
Γα

exp{i{φα(t, x, η)− x · η − τt}} aα(t, x, η)dxdt;
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we use (as in the passage from (3.207) to (3.208) the homogeneity of degree 1 of the phase φα
and of degree 0 of the symbol aα(t, x, η) to obtain
(3.225)

Iα(τ) = (
τ

2π
)n
∫
θ(t)aα(t, x, ı) = (aα(t, x, ı)) = (aα(t, x, ı)) = (aα(t, x, ı)) = (aα(t, x, ı)), aα(t, x, τ, η)dxdt .

Henceforth we will omit the index α in the calculations. The critical points of the phase of
the integral (3.225) are given by (3.235), which implies, given the canonical relation C, that
these critical points coincide with the points of the form:

(t, 1;x, ξ;x, ξ), ξ, ξ = φ′x(t, x, ξ)

Moreover the phase φ verifies the “eikonal” equation

φ′2t = (A(x)∇xφ, φ) = 1

We denote by W+
l , the part of C constituted by all points

(l, 1;x, ξ;x, ξ)

which are obtained as images by the various Tα maps of the critical points of the various
phases Φα and we introduce the fibered conormal sphere sphere fibric S∗Ω of Ω:

We now consider l ∈ L,, with to fix the ideas l > 0 and one assumes that the set W+
l is

a finite union of related compact compact manifolds according to the formula (3.221) given
below:

W+
l = ∩j∈jlWl,j ,

Let νj = dim Wl,j .
By a partition of the unit Cα, rα subordinated to the applications Tα defined by the phases

φα (in finite number) we come back to evaluate (cf Chazarain [23] for the details), modulo of
fast decaying terms in τ

(θ̂S)(τ) = (
τ

2π
)n
∑
j

∑
α

Ij,α(τ)

where Ij,α(τ) corresponds to a card Cα that meets Wl,j . The oscillating integral Ij,α(τ) is
written as:

(3.226) Ij,α =
∑
α

∫
Zα

exp(iτ [φα(t, x, η)− x · η − t])aαdtdv(x)dη

In (3.226) the main symbol a0
α is the main part of the symbol rαa by the map Tα, the phase

stations on the manifold T−1(Wl,j ∩Cα), on this manifold it is constant, and according to the
eikonal equation equal to −τ l; thus we have (stationary phase with parameter)

Ij,α(τ) = e−iτl(
2π

τ
)

1−νj
2 ei

π
4 σj,αpj,α(τ)

with
pj,α ∼

∑
k>0

pkj,ατ
−k

and

p0
j,α = (

1

2π
)n
∫
T−1
α (Wl,j∩Cα∩supp(rαa)

a0
α(l, x, η)|det (Φ”α|N )|− 1

2 dv(x)dη

To finish the demonstration, it remains to prove that we have:

a0
α(l, x, η) = ei

π
4 σj |a0

α(l, x, η)|
with σj independent of the order map α and |a0

α(l, x, η)| > 0. This results from the following
two lemmas explained in the article of Chazarain [23] and which we recall here:

Lemma 11.1 ([23] Lemma 5.2). There exists an integer nα such that we have on T−1
α (Wl,j∩

Cα)

aα(l, x, η) = einα
π
2 |a0

α(l, x, η)| 6= 0 .

and
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Lemma 11.2 ([23] Lemma 5.3). Let two indices α , β be such that that

(supp rα) ∩ (supp rβ) ∩ (Wl,j) 6= ∅
then we have:

e( iπ4 σj,α+inα
π
2 ) = e( iπ4 σj,β+inβ

π
2 ), .

The first lemma can be proved by noticing that the main symbol is on C. solution of the
transport equation

(3.227) {H, a} = 0,

that the initial conditions imply that the restriction a|{0,1}D∗ is identical to 1 and that
a(|l,1}×D∗)∩C is a constant section of this restriction.

The second lemma is proved by microlocalizing the integral Fourier operator operator
F (t, x, x) on the intersection of the two maps and computing the asymptotic behavior of these
two mth terms by the theorem 11.2.

The most intuitive case of a sub-manifold formed by two closed features closed bi-features
corresponds to a single bicaracteristic γ of primitive length T passing through through the
point (x, ξ). The application:

(x, ξ) 7→ (x(s), ξ(s)) = exp sH(x, ξ)

is symplectic so its differential D(exp sH) is a is an application de IR2n in itself whose spectrum
is invariant by the transformation λ 7→ λ−1.

As the trajectory is periodic, at the point t = s = T the vector (ẋ(0), ξ̇(0)) is invariant so
1 is an eigenvalue of multiplicity at least equal to 2 of the application D(expTH). According
to the tradition we said that γ is non-degenerate if the multiplicity of this eigenvalue is exactly
equal to 2. We denote by K the corresponding subspace and by P the application defined

on R2n modulo K, it is identified to an application of IR2(n−1) in itself called a Poincaré
application and denoted by Pγ for which 1 is not an eigenvalue. Thus det(I − P ) is nonzero.

We then have the

Theorem 11.11. (Duistermaat Guillemin [33])
We assume that mT is an isolated point in L which corresponds to a non-degenerate γ

geodesic then in the neighborhood of t = mT the singularity of the distribution trace cos t
√
−∆

is described, with θ a function localizing in the neighborhood of t = mT and τ tending towards
infinity, by the formula:

inteitτ
∑
k

ei
√
λkθ(t)dt = i−mσ

T

2π
e−imTτ |I − Pm|− 1

2 +O(τ−1) .

with σ the Morse index of the γ curve.

Since the point mT is isolated, the manifold WmT of the theorem 11.9 is reduced to
the bicaracteristic γ traversed m times. Moreover the fact that the Poincaré application is
non-degenerate is equivalent to the fact that this manifold is also non-degenerate.

Thus from the formula (3.222) and with the notations of the theorem 11.9 we have:

(3.228) Im(τ) = ei
π
4 σe−iτmT cm +O(τ−1)

And it remains to observe that σ is identified with the Morse index of the curve and that cm
is given by the formula:

(3.229) cm =
T

2π
| det(I − Pm)|− 1

2

which is the subject of section 3.5.
By introducing an even θ(t) function which localizes near the points mT and by using

parity and the reality of the distribution Trace cos t
√
−∆, we deduce from the formula (3.228)

and under the assumptions of the theorem ??, the relation

(3.230)

∫
e−iτt Trace cos t

√
−∆θ(t)dt = (−1)σ

′m T

2π
| det(I − Pm)|− 1

2 cos(τmT ) +O(τ−1)
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From this statement one comes very close to an explicit generalization of the of the formula
of Poisson formula, as shown by the

Corollary 11.4. We denote by U a bounded open interval of ]0,∞[ and we assume that

Ū ∩ L = ∪{mTj |mTj ∈ L}

is a finite union of lengths of isolated non-degenerate geodesics degenerate geodesics, then for
any regular even function φ with support in U ∪ (−U) we have:

(3.231)

<
∑
k cos t

√
λk, φ(t) >

=< Trace cos t
√
−∆, φ(t) >

=<
∑
j,m(−1)σ

′
jm Tj

2π | det(I − Pmj )|− 1
2 δ(t−mTj), φ(t) > + < h(t), φ(t) >

with h(t) ∈ L∞(IR)

The demonstration is done simply by taking the inverse Fourier transform of the Fourier
transform of the formula (3.230) observing that only a finite number of terms are involved.

Remark 6 The above statements have been described in the framework of an open set
of an open set without boundary, but since they only use the microlocal analysis along an
isolated bicaracteristic they fit here they can be adapted here without too much difficulty to
the case of closed bifeatures, after a finite number of reflections reflections on the boundary,
and not degenerated.

3.5. Relation with the Poincaré first return application. The object of this sec-
tion is therefore the calculation of coefficient cm and of exponent cm and their geometrical
interpretation. Recall that, in the adapted local map, there exists a phase φ(t, x, η) such that
(according to the equality (3.220)

F (t, x, y) =
1

(2π)n

∫
Γ

ei(φ(t,x,η)−y.η)a(t, x, η)dη.

We put the wave operator in the form of its Cauchy term strictly hyperbolic i−1∂t+q(x, i
−1∂x),

of principal symbol τ + q(x, η). We are led to calculate the action of Q on F . The theorem of
the stationary phase in (z, xi) on∫

dzdζei(x−z).ζ+iφ(t,z,η)−iy.ηQ(x, ζ)a(t, z, η)dη

leads to the critical point (zc, ζc) = (x, ∂xφ(t, zc, η), the Jacobian of the phase being

J =

(
∂2
x2φ −I
−I 0

)
, ofinverse J−1 =

(
0 −I
−I −∂2

x2φ

)
.

The first two terms of the asymptotic expansion of Op(q)F are

(∂tφ+ q(x, ∂xφ(t, x, η)))(a0 + i−1a1) + i−1∂ta0 +
1

2i
[q1a0 + 2

∑
j

∂2

∂zj∂ζj
+
∑
j,k

∂2
xjxk

φ
∂2

ζj
]a0

Then the phase φ is solution of the eikonal equation:

(3.232) ∂tφ(t, x, η) + q0(x, ∂xφ(t, x, η)) = 0.

The symbol a0 is solution of the transport equation:

(3.233) ∂ta0 +
∑
j

∂

∂ηj
Q(x, ∂xφ)

∂a0

∂xj
+

1

2
(
∑
j,k

∂2
ηjηk

Q(x, ∂xφ)∂2
xjxk

)a0 = 0.

Let us also note that

∑
j

∂

∂xj
(∂etajq0(x, ∂xφ)) =

∑
j,l

∂2
ηjQ∂

2
xjxl

φ+
∑
j

∂2
xjηjQ
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which makes the coefficient term of a0 in (??) closely related to the closely related to the
subprincipal symbol of Op(Q) which is q1 −

∑
j ∂

2
xjηjQ, and which is invariant by change of

symplectic coordinates. In the case of the wave operator, the main sub-symbol is null1.
The canonical relation associated with the representation of F is thus characterized by

(y, η)↔ (x, η)

with y = ∂ηφ(t, x, η) and ζ = ∂xφ(t, x, η). Then the graph of the transformation canonical
transformation Φt0 associated to the operator eit0P is equal to

Phit0
(
∂ηφ(t0, x, η)

)
=

(
x

∂xφ(t0, x, η)

)
=

(
Φt0x

(
∂ηφ(t0, x, η)

)
Φt0ξ

(
∂ηφ(t0, x, η)

) ) .
From this relation, we deduce the Jacobian matrix of Φt0 , which is called Poincaré’s first
return application, thanks to the relations obtained by deriving with respect to x and with
respect to η the two equalities:{

Φt0x
(
∂ηφ(t0, x, η)

)
= x

Φt0ξ
(
∂ηφ(t0, x, η)

)
= ∂xφ(t0, x, η)

or


∇yΦt0x

(
∂ηφ(t0, x, η)

)
∂2
xηφ(t0, x, η) = Id

∇yΦt0x
(
∂ηφ(t0, x, η)

)
∂2
η2φ(t0, x, η) +∇ηΦt0x

(
∂ηφ(t0, x, η)

η

)
= 0

∇yΦt0ξ
(
∂ηφ(t0, x, η)

)
∂2
xηφ(t0, x, η) = ∂2

x2φ(t0, x, η)

∇yΦt0ξ
(
∂ηφ(t0, x, η)

)
∂2
η2φ(t0, x, η) +∇ηΦt0ξ

(
∂ηφ(t0, x, η)

)
= ∂2

xηφ(t0, x, η).

Omitting the set of variables (t0, x, η), we obtain

P =

(
∇yΦt0x ∇ηΦt0x
∇yΦt0ξ ∇ηΦt0ξ

)
=

(
(∂2
xηφ)−1 −(∂2

xηφ)−1∂2
η2φ

(∂2
xηφ)−1∂2

x2φ ∂2
xηφ− (∂2

xηφ)−1∂2
x2φ∂2

η2φ

)
.

This equality is legitimate since the Poincaré first return application is well defined when this
Jacobian matrix is nonsingular, which implies that ∂2

xηφ is invertible.
We deduce that

I − P =

(
I − (∂2

xηφ)−1 (∂2
xηφ)−1∂2

η2φ

−(∂2
xηφ)−1∂2

x2φ I − ∂2
xηφ+ (∂2

xηφ)−1∂2
x2φ∂2

η2φ

)
.

By elementary algebraic manipulations, we find that

−(I − P )

(
∂2
xηφ 0
0 ∂2

xηφ

)(
∂2
η2φ I

I 0

)
= −

(
∂2
η2φ I − ∂2

xηφ

I − ∂2
xηφ ∂2

x2φ

)(
∂2
xηφ 0
0 I

)
,

from which the relation, in any symplectic coordinate system

(3.234) det(I − P )det(∂2
xηφ) = det(Hessx,η(φ(t0, x, η)− x.η)).

We found that the critical points of (3.225) were the points (tc, xc, ηc) solution of (3.235)

(3.235)
∂tφ(tc, xc, ηc) = 1∂xφ(tc, xc, ηc) = ηc
∂ηφ(tc, xc, ηc) = xc

1Note that we find what was done previously previously, when Q = ξ2, where we find the term Deltaφ.

The solution is proposed by Nirenberg and Treves [81] p 491-493 for example for example, and we see that

a0(t, x(t), η) = a0(0, x(0), η)e
− 1

2

∫ t
0

∑
j

∂
∂xj

(∂etaj q0(x,∂xφ))|x=x(s),t=sds
.

We will see below a direct method
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The relation ∂η(φ(t, x, η) − x.η)|(tc,xc,ηc) = 0 implies that (t, ∂tφ); (x, ∂xφ); (x, ξ) is in C,
that is, according to the definition of calC given by (3.205), the relation (x, ∂xφ(t, x, η)) =
Φt(x, ξ), the other relation τ + q(x, ∂xφ) = 0 being already verified because φ is solution of
the eikonal equation.

The third relation of (??) allows to have

(xc, ∂xφ(tc, xc, ηc)) = Φtc(xc, ηc).

From the first two relations, we deduce that

q(xc, ξc) = 1, (xc, ηc) = Phitc(xc, ηc).

We thus verify that the points (tc, xc, ηc) where the phase stations in (3.225) are the points
tc = T , period of the characteristic characteristic flow, and (xc, ηc) fixed point of Φtc with the
normalizing relation q(xc, ηc) = 1. It is a critical manifold in the sense of sense of integrals
with parameter.

Let us consider (x, η) a point of the cotangent fibered, and (x(s), ξ(s)) the solution of the
Hamilton solution of the Hamilton equations associated to q0: (x(s), ξ(s)) the solution of the
Hamilton equations associated to q0: (x(s), ξ(s)), (x(s), ξ(s)), (x(s), ξ(s)), (x(s), ξ(s)),

(3.236)


dx
ds = ∂ηq0(x(s), ξ(s))
dξ
ds = −∂xq0(x(s), ξ(s))
x(0) = x, ξ(0) = η

We verify that, from (??)

(3.237) [
∂

∂t
+
∑
p

∂q0

∂ηp
(x, ∂xφ(t, x, η))

∂

∂xp
][
∂φ

∂ηj
(t, x, η)] = 0,

(3.238)
∂q0

∂t
+
∑
p

∂q0

∂ηp
(x, ∂xφ(t, x, η))

∂

∂xp
][
∂φ

∂xj
(t, x, η)] = − ∂q0

∂xj
(x, ∂xφ(t, x, η)).

The equation (??) is the one allowing to obtain ξ(t), which is justified by what follows. Since
φ is a solution of the eikonal equation, the Lagrangian manifold Λφ is decomposed laminarly

by the bicaracteristics. Now (x, ∂∂x (φ(0, x(0), η))) = (x, η), and we verify that

d

ds
(
∂φ

∂xj
(s, x(s), η)) = [

∂

∂t
+
∑
p

∂q0

∂ηp
(x, ∂xφ(s, x(s), η))

∂

∂xp
](
∂φ

∂xj
(s, x(s), η)).

The initial point corresponds to s = 0 on the two-characteristic (??), so ∂φ
∂x (t, x(t), η) = ξ(t).

We deduce from (3.237) that

d

ds
[
∂φ

∂ηj
(s, x(s), η)] = 0⇒ ∂φ

∂ηj
(s, x(s), η) =

∂φ

∂ηj
(0, x(0), η) = xj .

It comes

∂

∂xp
(
∂φ

∂ηj
(s, x(s), η)) = δjp

and by developing the term on the left, it remains

∑
m

∂2φ

∂xm∂ηj
(z, x(s), η)

∂

∂xp
(xm(s)) = δjp.

The two matrices thus exhibited are inverses of each other, which which implies that their
determinants are inverses of each other. Thus

a0(s, x(s), η)

(det(∂2
xmηjφ(s, x(s), η)))

1
2

= a0(s, x(s), η)| ∂
xp

(xm(s))| 12 .
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The last term is the Jacobian of the change of variable, and we know that a0(s, x(s), η)| ∂∂xp (xm(s))
1
2

is constant, equal to a0(0, x, η)× 1 = 1. We take s = tc and η = ηc, in which case x(tc) = xc.
To apply the stationary phase theorem with parameter to the integral the integral (3.226),

one must represent the phase in a system where the variable on the characteristic manifold
is isolated. We thus consider a point (x0, η0) of the closed bicaracteristic of length T = tc.
Then the hypersurface H = {(x− x0).η0 = 0} of T ∗IRn is transverse to the geodesic, and it is
parametrized by (y, η). We introduce

(x(s, y, η), η(s, y, η)) = Φs(y, η).

The considered phase is then

ψ(t, s, y, η) = φ(t, x(s, y, η), η)− x(s, y, η).η − t.
It stations in (tc, yc, ηc) ' (T, x0, η0) for all s by the relations of (??).

The gradient of this phase is (t, s, yi, ηi).
∂tφ(t, x(s, y, η), η)− 1∑
j [∂xjφ(t, x(s, y, η), η)− ηj ]∂xj∂s∑
j [∂xjφ(t, x(s, y, η), η)− ηj ]∂xj∂yi∑
j [∂xjφ(t, x(s, y, η), η)− ηj ]∂xj∂ηi

+ ∂ηiφ(t, x(s, y, η), η)− xi(s, y,


The Jacobian in (t, y, η) is then

∂2
t2φ(t, x(s, y, η), η)

∑
j ∂

2
txjφ

∂xj
∂yi

∑
j ∂

2
txjφ

∂xj
∂ηi

+ ∂2
tηiφ∑

j ∂
2
txjφ

∂xj
∂yi

∑
j,l ∂

2
xjxlphi

∂xj
∂yi

∂xl
∂yk

∑
j,l ∂

2
xjxlφ

∂xj
∂yi

∂xl
∂ηk

+ [
∑
j ∂

2
xjηkφ− δjk]

∂xj
∂yi∑

j ∂
2
txjφ

∂xj
∂ηi

+ ∂2
tηiφ

∑
j,l ∂

2
xjxlφ

∂xj
∂yi

∂xl
∂ηk

+[
∑
j ∂

2
xjηkφ− δjk]

∂xj
∂yi

∑
j,l ∂

2
xjxlφ

∂xl
∂ηk

∂xj
∂ηi

+[
∑
j ∂

2
xjηkφ− δjk]

∂xj
∂ηi

 .

We use a canonical transformation2 The first line of the hessian matrix is

(
∑
j

∂q0

∂xj
.
∂xj

∂s
+
∑
j,l

∂2φ

∂xi∂xl

∂xi

∂s

∂xl

∂l
,−

∑
j

∂q0

∂xj

∂xj

∂yi
−
∑
j,l

∂
2
xjxl

φ∂xj
∂yi

∂xl

∂s
,−

∑
j

∂q0

∂xj

∂xj

∂ηi
−
∑
j,l

∂
2
xjxl

φ
∂xj

∂ηi

∂xl

∂s
−
∑
p

∂
2
xpηi

∂xp

∂s
).

The Hessian matrix is equal to (note the two extra terms)

t

 ∂sx 0
∂yx 0
∂x I

 ∂2φ

∂x2
∂2φ
∂xη − I

∂2φ
∂xη − I

∂2φ

∂η2

 ∂sx 0
∂yx 0
∂x I

 +M1
∂q0

∂x1

+M2
∂q0

∂x2

.

in which the operator is written q0(x, η) = η1. Then we obtain, from the eikonal equation
∂2
t2φ+ ∂2

tx1
φ = 0

∂2
tx1
φ+ ∂2

x2
1
φ = 0

∂2
tx′φ+ ∂2

x1x′
φ = 0

∂2
tηφ+ ∂2

x1ηφ = 0

which allows to rewrite, noting that ∂sxj = δj1 and ∂ηxj = 0, that the determinant of this
hessian matrix is equal to the determinant of the Hessian matrix of φ(t, x, η) − x.η in the
variables (x, η).

Finally, the phase φ is constant on the critical manifold, and so we find φ(tc, xc, ηc) −
xc.ηc − tc = −tc = −T . This completes the proof of the relation

I(µ) ' (det(I − P ))−
1
2 (2π)−1−n(

2π

µ
)2n+1− 1

2µn
∫
Z∩q(x,ξ)=1

dωZ∩q(x,ξ)=1e
−iµT ρ̂(T ) a(T,x,ξ)

(det(∂2
xη)

1
2
.

2The eikonal equation ∂tφ(t, x, η) + q0(x, ∂xφ(t, x, η)) = 0 implies the relations

∂2
t2
φ(t, x(s, y, η), η) =

∑
j

∂q0

∂xj
.
∂xj

∂s
+
∑
j,l

∂2φ

∂xi∂xl

∂xi

∂s

∂xl

∂s
∂2
txj

φ = −
∂q0

∂xj
−
∑
k

∂2φ

∂xk∂xj

∂xk

∂s
∂2
tηj

= −
∑
p

∂2φ

∂xp∂ηj

∂xp

∂s
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or

I(µ) ' (det(I − P ))−
1
2
T

2π
e−iµThatρ(T )

a(T, x, x, µξ)

(det(∂2
xηφ))

1
2

= (det(I − P ))−
1
2
T

2π
e−iµThatρ(T ).

3.6. Proof of the stationary phase theorem on a submanifold. We denote by Z
a manifold of dimension n and by φ(z) a phase stationing on

W = {z ∈ Z,∇zφ = 0}

We suppose that W ⊂ Z is a connected submanifold of dimension d. There exists then an
application calW : IRd 7→ X such that

W = {z ∈ IRn, z = calW (y), y ∈ IRd}

so y 7→ W(y) is a diffeomorphism of Rd on W and there is a set of exists a set of coordinates
(zj1 , zj2 , ..., zj1) such that the matrix (

Zjp
dyl
)

is invertible. We then reorder the coordinates on X so that the d last coordinates are
(zj1 , zj2 , ..., zj1) and we note Ξ the inverse diffeomorphism of the application

y 7→ (zj1(y), zj2(y), ..., zj1(y)) = (z̃n−d+1(y), z̃n−d+1(y), ...z̃n−d+1(y)) = z̃” = ξ−1(y)

We verify that W is written in the following form:

W = (tldez′(tldez”)tldez”)}, with z̃” = Xi−1(y), z̃′(z̃”) = z̃′(Ξ(y))

Thus we construct a representation of Z under the form Z = (z̃′, z̃”′) in which we have
W = {(z̃′(z̃”), z̃”)}. Of course for all p, 1, 1thep ≤ n we have

(3.239) ∂z̃pφ(z̃′(z̃”), z̃”) = 0

which implies that the phase is constant on W and that we have, by deriving (91) with respect
to to l, for n− d+ 1 ≤ l ≤ n

(3.240)

q=n−d∑
q=1

∂2
z̃pz̃qφ(z̃′(z̃”), z̃”)

∂z̃q
∂z̃l

+ ∂2
z̃pz̃l

φ(z̃′(z̃”), z̃”) = 0

The hessian of φ is thus solution of d independent equations and is at most of rank n− d.
We say that the submanifold W is nondegenerate if this hessian is exactly of rank n−d. Then
there exists at least one at least one invertible sub-matrix of size (n − d)times(n − d). The
equations (92) also show that for l ≥ n− d+ 1 we have:

∂2
tildezpz̃l

φ(z̃′(z̃”), z̃”) = −
q=n−d∑
q=1

∂2
tildezpz̃qφ(z̃′(z̃”), z̃”)”z” = ”z”, ”z” = ”z”, ”z” = ”z”, ”z” = ”z”

so the invertible matrix (n− d)× (n− d) is extracted from the matrix(
∂2
tildezpz̃q

)
1≤p≤n,1≤q≤n−d.

From now on we write tildez” = y and tildez′(z̃”) = x(y). The critical manifold W is the set
of points of the form (x(y), y) and the equations of the critical point are

(3.241)
gradxφ(x(y), y) = 0,
∇yφ(x(y), y) = 0

By deriving with respect to y these two equalities it comes:

(3.242)
Hessxφ(x(y), y) · ∂x∂y + ∂2φ(x(y),y)

∂x∂y = 0,
∂2φ
∂y∂x ·

∂x
∂y + Hessyφ(x(y), y) = 0

This allows us to write that we have:
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Hess(x,y)φ =

(
llHessxφ −Hessxφ

dx
dy

tHessxφ
dx
dy +t

(
Hessxφ

dx
dy

)
dx
dy

)
It follows that if Hessx is of rank strictly less than than n − d, the same is true for the the
matrix Hess(x,y)φ. So impose that the matrix matrix Hess(x,y)φ be of rank n−d (which is the
non-degeneracy hypothesis) is equivalent to imposing that the matrix matrix Hess(x,y) is also
of rank n−d which is the necessary hypothesis necessary to be able to apply the the stationary
phase theorem with parameter. We observe moreover that if W is connected φ(x(y), y) and
the signature of Hessx are both constant on W , these constant on W , these two numbers are
thus noted φ(W ) and σ(W ).

According to the stationary phase theorem with parameter for a(z) an indefinitely differ-
entiable function and by using the changes of variables and variables and notations above:

(3.243)∫
eikφ(z)a(z)dz = ( 2π

k )
n−d

2

∫
IRdy

eikφ(x(y),y)ei
φ
4 σ(Hessxφ(x(y),y))(|Hessxφ(x(y), y)|− 1

2

×{
∑
j≥0 k

−jLj(a)(x(y), y)}dy
= ( 2π

k )
n−d

2 eikφ(w)ei
φ
4 σ(w) {

∑
j≥0

∫
IRdy
|Hessxφ(x(y), y)|− 1

2Lj(a)(x(y), y)}dy .

Of course in (3.243) the equalities are to be taken in the sense of asymptotic expansions
with respect to parameter k and the Lj designate differential operators of order differential
operators of order j with respect to the ”normal” variables y ∈ IRn−d. We have completed
the proof of the stationary phase theorem on a submanifold.

4. Conclusion

We have tried to show in this section the necessity to use precise and adapted tools to
tools to prove fine properties concerning the distribution of the eigenvalues of the distribution
of the eigenvalues of the Laplacian.

The reader will observe that there is still a rather important gap between the intuitive
results provided by physicists (Balian and Bloch [7] for example) and those rigorously demon-
strated. One of the main reasons is that, at the level of the wave equation, we use a double
passage to the the limit.

The parametrix (obtained by Fourier integral operators) are in general only valid for a
finite time. valid only for a finite time (the stability of closed geodesics allows to bypass
geodesics allows to get around this handicap in some cases), while the eigenvalues are eigen-
values are naturally manifested in the ”large” time behavior of the solutions. time behavior
of the solutions.

More geometrically complex situations (chaotic trajectories) lead to the chaotic trajecto-
ries) lead to the quantum chaos or scar theory.

Conversely, one may wonder if the knowledge of the eigenvalues determines the domain
and the Riemannian geometry. This is moreover the title of an title of an essential contribution
of Kac [52] on the subject (Can we hear the shape of a drum?). Lax and Phillips [61] have
thus contributed to to study the answer to this question.

As we saw in section 2, many geometric quantities are already determined by the distri-
bution or the asymptotic behavior of asymptotic behavior of the eigenvalues, nevertheless the
answer to the question of Kac’s question is negative (even with an isometry).

To know the object, one would need to have not only the eigenvalues but the trace on the
boundary of the corresponding eigenfunctions (or what amounts to to the Dirichlet-Neumann
operator) Belyshev [10], Sylvester and Ulhmann [87]. This is already true in dimension 1 for
the Hill operator (Mc Kean [71]).

In more than one dimension of space, an explicit geometric example where the answer to
Kac’s question is negative is provided by Buser and Bérard [20].
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In the case of an unbounded open set (for example the complementary of a compact
(obstacle)) the spectrum of the wave operator (with to fix the ideas a ideas a Dirichlet condition
on the boundary):

A =

(
0 I
∆ 0

)
,D(A) = (H1

0 (Ω)× L2(Ω))

becomes continuous and equal to iIR. The resolvent (µI − A)−1, defined for Re µ > 0, can -
provided that we localize it (i.e. we multiply it on the left and on the right) - be used as a
multiplied on the left and on the right by regular functions with support) - be extended to
the whole complex plane in a meromorphic function meromorphic function whose poles

µk = αk + iβk,Re αk < 0

are called radiation frequencies. Under suitable assumptions, these pôles allow to represent
the near field (i.e. the solution in the vicinity of the obstacle) in the form

(4.244) u(t, x) =
∑

Re µk≥−σ,|x|≤R

eµktwk(x) +O(e−σt).

Thus the imaginary part of the poles translates the oscillations of the waves and their real
part corresponds to the local decay due to the dispersion.

The resonances play for the external problem the role of the eigenvalues for the eigenval-
ues for the interior problem. Their ”applied” meaning is even much more explicit (a plane
illuminated by a radar does not fly in a bounded a bounded domain; when listening to music
one does not place one’s ear inside the instrument but outside it). Without developing this
subject it seems good to point out that, progressively of their obtaining, the results concerning
the eigenvalues have been transposed to the radiation frequencies.

Weyl’s estimation finds its analog first in the estimation of real frequencies (Lax and
Phillips [62]) and then in a first estimate of the estimate of the number N(R) of frequencies
of modulus less than R (Melrose [62]) (Melrose [76]). The calculation of asymptotics with a
stationary phase or an asymptotic series has allowed to treat ”pathological” examples showing
the contributions of captive geodesics (Ralston [85], Bardos-Guillot-Ralston [8] Ikawa [49],
[50]).

The introduction of the analytical wavefront and the Gevrey regularity has allowed to
systematize the first results of V. B. Filippov [38], V. M. Babic and N.S. Grigoreva [4]. One
can thus evaluate the contribution of the geodesics crawling on the obstacle (Bardos-Lebeau-
Rauch [9], Sjostrand-Zworski [90]). Finally, the use of inequalities or the h−pseudo-differential
calculus leads to some optimal results on how the radiation frequencies (which are, recall the
µk = αk + iβk, αk < 0) can approach the imaginary axis when βk → ∞ (Burq [19]). As it
was said in the introduction, the analysis of the spectrum of the Laplacian also appears in
arithmetic and group theory. For start, we can extend Poisson’s formula to n (or to simplify
to 2) dimensions of space. We denote by L the network of points

L = {(ma, nb), (m,n) ∈ ZZ2, a, b ∈ IR2}
and the group of translations generated by the vector (a, b). From similarly, we denote by
L′ the dual network of 2(ma ,

n
b ). As the translations commute with the Laplacian, by passing

to the quotient, this one becomes the Laplace-Beltrami operator on the compact compact
manifold Ω = IR2/L. The eigenvalues are the squares of the moduli of the elements of the

dual group ω′ = 2π(ma ,
n
b ), |ω′|2 = 4π2(m

2

a2 + n2

b2 ), while while the lengths of the closed geodesics

are the moduli of the elements of L: ω = (ma, nb), ω = (ma, nb), |ω|2 = m2a2 + n2b2. One
find by Poisson’s formula an exact version of (3.80):∑

ω′∈L′
eit|ω

′| =
ab

4πt

∑
ω∈L

δ(t− |ω′|).

By inverse Fourier and Laplace transforms it gives back the famous formula of Jacobi
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∑
L′

e−4π2|ω|2t =
ab

4πt
(
∑
L

e−
|ω|2
4t )

which corresponds to the asymptotic behavior of the heat kernel trace. Of course, the as-
ymptotic behavior of the counting function N(λ) can be interpreted as the calculation of the
number of points with integer coordinates located in the ellipse

x2

a2
+
y2

b2
=

λ

4π2

According to Lax and Phillips [63], Gauss had, in the case of the circle, given the optimal”
formula

N(λ) = M(λ2) +O(λ).

We immediately notice that the above approach can be generalized to the case where gen-
eralized to the case where M is any Riemannian manifold and where Γ is a subgroup of
the transformations of M which preserve the Riemannian structure. Then the spectrum of
the Laplacian will contain intrinsic information about the manifold M and the subgroup Γ.
The case that has been studied the most is probably the one where M is identified with the

Poincaré half-plane H = {(x, y), y > 0} equipped with the Riemannian metric ds2 = dx2+dy2

y2 .

The group which preserves this metric is identified with SL(2, IR) = G and the operator

operator of Laplace-Beltrami operator is y2(∂
2u
∂x2 + ∂2u

∂y2 ) + 1
4u.

For any subgroup Γ of G, we can therefore consider the Riemannian manifold Riemannian
manifold H/Γ and study the spectrum of the Laplace-Beltrami operator in relation to Γ. The
case where H/Γ is compact has been developed among others by Mc Kean [74]. But the most
most fascinating is the one corresponding to the modular group given by

z → az + b

cz + d
, ad− bc = 1, (a, b, c, d) ∈ ZZ4.

In this situation, H/Γ is no longer compact (although of finite volume). The use of an adapta-
tion of the scattering theory mentioned above is necessary to to get around this difficulty and
as in the case of the bounded obstacle the bounded obstacle, we introduce a semi-group Z(t)
corresponding to a expansion of the type (4.244). An explicit calculation of the representation
of groups shows that the spectrum of B corresponds to the poles of the function

−(
1− 2µ

1 + 2µ
)2 Γ(−µ)ζ(−2µ)

Γ( 1
2 − µ)ζ(1− 2µ)

where ζ denotes the Riemann zeta function. Thus an analysis of asymptotic behavior of Z(t)
would give the answer to the Riemann conjecture. Riemann’s conjecture. More precisely it
would suffice to prove the estimate

(4.245) l̄im
1

t
log ||(B + i)Z(t)|| ≤ −1

4
.

Unfortunately the authors [62] continuing the calculation show that the proof of (4.245)
is in fact based on the Riemann hypothesis, and so the problem remains open. These last
remarks end this chapter of presentation of an application of Fourier integral operators.





CHAPTER 12

Reflection of electromagnetic waves

In this chapter, we calculate the local expression of a relation at the boundary between
electric and magnetic fields (called the impedance boundary condition). We introduce an
intrinsic formulation of Maxwell’s equations, which we will derive in an elementary way from
identities on the divergence and the rotational. We then write the Maxwell equations in a
system of coordinates adapted to the boundary.

We extend the notion of wavefront set for a distribution (E,H). We consider an analytic
conormal incident electromagnetic field with respect to a wave surface.

From this form of the electromagnetic field, we will deduce (under certain assumptions
on the reflecting object Ω) a relation between the tangential electric and magnetic fields. The
external problem obtained by imposing this condition on ∂Ω is then a problem of reflection
of singularities like the one we have studied for the scalar waves. We willprove the reflection
result in the general case.

1. Geometry and Maxwell’s equations

1.1. Differential formalism for the system of Maxwell equations. In this section,
we describe the intrinsic representation of the system of Maxwell equations. For this purpose,
we introduce the notion of exterior derivative d

Definition 12.1. Consider a system of (cartesian) coordinates (X1, X2, X3) on IR3, and
consider a C∞ change of variable x := x(X). Denote by

(1.246) Mij(x) =
∂Xj

∂xi
(x),

(1.247) N = (detM)(tM)−1,

respectively Jacobian matrix of the change of variables and cofactor matrix of N . The exterior
derivative d which transforms a C1 function to a 1−differential form, a 1-differential form to
a 2−differential form and a 2−differential form to a determinant) is intrinsic.

It writes:
i) differential of a function df =

∑
j ∂XjfdXj =

∑
j ∂xjfdxj where (∂xjf)j = M(∂Xjf)j ,

ii) differential of a vector field V =
∑
VjdXj =

∑
vjdxj :

dV = (∂X2
V3 − ∂X3

V2)dX2 ∧ dX3 + (∂X3
V1 − ∂X1

V3)dX3 ∧ dX1 + (∂X1
V2 − ∂X2

V1)dX1 ∧ dX2

iii) differential of a 2−differential form ω = Ω1dX2 ∧ dX3 + Ω2dX3 ∧ dX1 + Ω3dX1 ∧ dX2 =∑
{i,j,k} ωjdxk ∧ dxl:

dω = (∂X1
Ω1 + ∂X2

Ω2 + ∂X3
Ω3)dX1 ∧ dX2 ∧ dX3.

Remark that ii) comes from i) and iii) comes from ii) using the rule of differentiation

(1.248) d(fT ) = df ∧ T

when dT = 0 (which is the case when T = dφ).

229
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It writes on the bases adapted to the coordinates (x1, x2, x3) and (X1, X2, X3) of Λ1,Λ2,Λ3

(of 1-differential forms, 2−differential forms and determinants respectively) using the corre-
spondence between fields of vectors and differential forms: df → ∇xf = M∇Xf

dV → rotxv = NrotXM
−1V

dω → divxω = divX(N−1Ω).

The pull-back d∗ is characterized by
∫
df.gds = −

∫
f.d∗gdτ for all f and g compactly sup-

ported.

Lemma 12.1. Associating to E = (E1, E2, E3) in Cartesian coordinates the 1− differential
form E = E1dX1 +E2dX2 +E3dX3 and to H = (H1, H2, H3) in this same coordinate system
the 2−differential H = H1dX2∧dX3+H2dx3∧dX1+H3dX1∧dX2. Definition 12.1 translates,
in the case of the electromagnetic theory, into df → ∇xf = M∇Xf

de→ rotxe = NrotXM
−1E

dh→ divxh = divX(N−1H).

Maxwell’s equations are written intrinsically in any time independent coordinate system as

(1.249)


dE = −µ∂tH
d∗H = +ε∂tE
d∗E = 0
dH = 0.

Introduce for later purposes the following positive definite matrix

(1.250) g(x) = (M tM)−1.

Let us recall some explicit formulas of differential calculus. Let be two coordinate systems
in IR3, the system (x1, x2, x3) and the system (X1, X2, X3). We assume that the coordinate
system (X1, X2, X3) is the Cartesian coordinate system, in which the Maxwell equations have
the form known in the literature.

We use the following identity: if F1(X), F2(X), F3(X) are three functions in C∞(IR3, IR)
and if we introduce

(1.251)

 f1(x)
f2(x)
f3(x)

 = M(x)

 F1(X(x))
F2(X(x))
F3(X(x))


one gets

(1.252)

 ∂x3
f2(x)− ∂x2

f3(x)
∂x1

f3(x)− ∂x3
f1(x)

∂x1f2(x)− ∂x2f1(x)

 = N(x)

 ∂X3
F2(X(x))− ∂X2

F3(X(x))
∂X1

F3(X(x))− ∂X3
F1(X(x))

∂X1F2(X(x))− ∂X2F1(X(x))

 .

If one defines rotx

 e1

e2

e3

 =

 ∂x3
e2(x)− ∂x2

e3(x)
∂x1

e3(x)− ∂x3
e1(x)

∂x1e2(x)− ∂x2e1(x)

, and

 e1(x)
e2(x)
e3(x)

 = M(x)

 E1(X(x))
E2(X(x))
E3(X(x))

,

this equality allows to get the equivalence

rotxe = iωµh⇔ rotXE = iωµH.

From the duality equality∫
IR3 divX(Hu)(X)dX = −

∫
IR3 divx(hu)(x)dx = −

∫
IR3 H.∇Xu(X)dX

= −
∫

IR3 H.M−1∇xu(X(x))(detM)(x)dx
= −

∫
IR3 H.(detM)−1tN∇xu(X(x))(detM)dx

= −
∫

IR3(NH).∇xudx
=

∫
IR3 divx(N(x)H(X(x)))u(x)dx

we deduce the expression of a divergence of a vector field h associated with H
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divxh = divXH.

The two equations divXH = 0 and rotXE = iωµH are therefore preserved by the simulta-
neous change of variable and functions. We verify that the transformation ME = e is a trans-
formation which characterizes the 1−-differential forms (by writing the 1-differential form asso-
ciated to e as e1dx1+e2dx2+e3dx3 and the one associated to E as E1dX1+E2dX2+E3dX3. In
the same way, the matrix N being the cofactor matrix of tM , it characterizes the 2−differential
forms (expressed for example as h1dx2 ∧ dx3 + h2dx3 ∧ dx1 + h3dx1 ∧ dx2).

This leads to the evaluation of rotXH and divXE as functions of E,H and of the change
of variable. For example, in the equality (1.252), we consider F = H. Then we find, defining
f = MH as in (1.251), that

NrotXH = rotxMH,

As h = NH, one gets NrotXH = rotx(MN−1h). From the definition of N and of g, one
has MN−1 = (detM)−1M tM = (detM)−1g−1. Finally, detg = (det(M tM))−1 = (detM)−2,
which yields

(1.253) rotXH = (detg)
1
2 tM [rotx((detg)

1
2 g−1h)].

Finally, after integration by parts∫
R3

divXEu(X)dX = −
∫
R3

E.∇XudX = −
∫

(M−1e).M−1∇xu(detM)dx,

which yields

(1.254) divXE = (detg)
1
2 divx((detg)−

1
2 g(e)).

The two Maxwell equations divXE = 0 et rotXH = −iωεE become

(1.255)
(detg)

1
2 divx((detg)−

1
2 g(e)) = 0

(detg)
1
2 tM [rotx((detg)

1
2 g−1h)] = −iωεE,

which rewrites

(1.256) (detg)
1
2 g−1[rotx((detg)

1
2 g−1h)] = −iωεe.

Equalities (1.254) on the 1−differential forms and (1.256) on the 2−differential forms define
the action of the operator d∗. This result is well known (see Bossavit [14], Buldyrev [5]), and
it is summarized in Lemma 12.1.

The form of the operators d and d∗ and the simultaneous change of unknowns (from
E to e = ME) allows to write in a simpler way the differential system verified by linear
combinations of Ej (like En = E1n1 + E2n2 + E3n3 if n is the normal vector to a surface).
This representation allows to simplify and to rewrite the system associated to the reflection
of the electromagnetic singularities.

1.2. Calderòn operators. We now consider a Ω object (whose boundary we assume to
be regular enough for convenience) and regular boundary) and we suppose that the material
contained in Ω is characterized by its dielectric constants ε and µ. We write IR3 = Ω ∪ Ω′ ∪
∂Ω. The stationary electromagnetic fields, solution of the Maxwell’s equations in Ω and in a
neighborhood of the boundary ∂Ω in Ω′, verify the conditions of transmission at the boundary
of Ω, that is, denoting by n(x) the normal outside Ω at the point x ∈ ∂Ω:{

limy→x,y∈Ωn(x) ∧ E(y) = limy→x,y∈Ω′n(x) ∧ E(y)
limy→x,y∈Ωn(x) ∧H(y) = limy→x,y∈Ω′n(x) ∧H(y).

Traditionally, when one studies reflection or diffraction by Ω, one would like to replace the
calculation or the analysis of the solution in Ω by a relation linking limy∈Ω,y→x∈∂Ω f and
limy∈Ω′,y→x∈∂Ω f for any function f . The theoretical answer has been given by M. Cessenat
([22]) but also by many authors, thanks to Calderòn operators. When the incident wave is a
plane wave, of given frequency, and when the wave vector is normal or close to normal to the
boundary, (or when the material contained in Ω is of high index), Léontovich introduced in
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1948 the notion of impedance coefficient Z =
√

µ
ε and deduced an approximate local relation

between E and H, which is n ∧ E = Z(n ∧ n ∧ H). We show here that, modulo certain
assumptions on the coefficients E and H, the Calderòn operator obtained by M. Cessenat,
when expressed as a relation between n ∧ E and n ∧ n ∧ H is locally a pseudodifferential
operator. We give its principal symbol in the high frequency asymptotic regime. This pseudo-
differential operator is the generalization of the impedance coefficient obtained by Léontovich
in the case of the high index medium. We have the

Theorem 12.1. Assume that εµω2 is a real or complex number which is not eigenvalue
of the operator u → Au = −rotrotu, u ∈ H0(rot,Ω), rotrotu ∈ (L2(Ω))3 (this means that the
domain of the operator is D(A) = {u ∈ H0(rot,Ω), Au ∈ L2(Ω)}).

• Let S be a function of H−
1
2 (div, ∂Ω). The system of equations

(1.257)


rotE = iωµH
rotH = −iωεE
n ∧ E|∂Ω = S
(E,H, rotE, rotH) ∈ (L2(Ω))3

has a unique solution
• If ω ∈ IR and εµ is complex, the condition on εµω2 is always verified, which ensures the

existence and uniqueness of the solution of the system of equations (1.257).

In particular, the assumptions of Theorem 12.1 are satisfied when (Fourier transform in
time characterized by −iω)

(1.258) =ε > 0,=µ > 0,=(εµ) > 0.

Proof. Under these conditions, the problem in Ω is an elliptic problem. The result
of Proposition 2.4 allows then to prove the existence of an asymptotic expansion of the
solution inside Ω when the tangential field n ∧ E is given on the boundary by its asymp-
totic expansion. On the other hand, we recall the result given by M. Cessenat of the ex-
istence and uniqueness of the solution of the problem of harmonic Maxwell’s equations in
an open set Ω. For this purpose, let us introduce the space H0(rot,Ω) of distributions u
of (L2(Ω))3 such that rotu ∈ (L2(Ω))3 and that n ∧ u|∂Ω = 0, and the boundary space

H−
1
2 (div, ∂Ω) = {v ∈ (H−

1
2 (∂Ω))3, n.v = 0,div∂Ωv ∈ H−

1
2 (∂Ω)}. When we study the solu-

tion of the system of equations (using div(rot) = 0, divE = divH = 0), we come back to the
Helmholtz equation (where k2 = εµω2)

(∆ + k2)E = 0, n ∧ E|∂Ω = S, divE = 0,

whose variational formulation is

∀φ ∈ C∞, a(E, φ) =

∫
Ω

(−∇E∇φ̄+ k2Eφ̄)dx+

∫
∂Ω

φ(n ∧ S)dσ = 0

The sesquilinear form a is coercive, because k2 is complex. Indeed, we find, thanks to

|a(E,E)|2 = (Re a(E,E))2 + (=a(E,E))2

and on respective controls on each term, that

|a(E,E)|2 ≥ C(||E||2 + ||∇E||2).

The system has a unique solution for S given. This ends the proof. �

The operator giving (n∧H)|∂Ω as a function of S exists and is called the Calderòn operator.
We study in what follows an asymptotic expansion of this operator in a coordinate system
adapted to the boundary.

At the end of this paragraph, we define, after M. Cessenat, the Calderòn operators for
the stationary Maxwell problem in the case of dielectric constants ε > 0, µ > 0. We show how
this definition is related to the definition of the Dirichlet to Neumann (DTN) operator used
for the Helmholtz problem. We do not define the spaces in which these equalities are true;
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we refer the reader to chapter 4.2 of [22]. We rely on two existence and uniqueness theorems
(respectively Theorem 5 and Theorem 6 of [22] pp 106-107). These theorems are valid when
Ω is a regular bounded open set of simply connected complement Ωc:

Theorem 12.2. Let Ω be an openset of IR3. There exists a unique u ∈ H1
loc(∆, CΩ)

satisfying 
(∆ + k2)u = 0

u|∂Ω = u0 ∈ H
1
2 (∂Ω)

outgoing Sommerfeld condition:∇u.~rr − iku = o( 1
r ).

Theorem 12.3. Let ε, µ > 0. Define c = 1√
εµ . There exists a unique pair (E,H) such

that that (the o in the Silver-Muller condition is uniform as a function of the direction ~r
r on

the unit sphere)
rotH + ikcεE = 0, rotE − ikcµH = 0 dans CΩ

n ∧ E|∂Ω = m ∈ H− 1
2 (div, ∂Ω)

(E,H) ∈ (L2
loc(CΩ))6, ( rotE, rotH) ∈ (L2

loc(C(Ω))6

Silver-Muller conditions : kcεE − kH = o( 1
r ), kcµ~rr ∧H + kE = o( 1

r ).

The Dirichlet to Neumann operator for the Helmholtz problem is then the application
u0 → ∂nu|∂Ω, where u is the solution of the theorem 12.2 problem.

The outer Calderòn operator Ce is the application m → n ∧ H|∂Ω, where (E,H) is the
solution of the problem treated in the theorem 12.3.

1.3. Maxwell equations in semi-geodesic coordinates. This paragraph reproduces
the construction of the coordinates adapted to the boundary already seen in the section 4.2.
This part can be read independently from the rest of the book. We consider a point x0 ∈ ∂Ω.
There exists a neighborhood V of x0 such that, all points in V can be represented in a
coordinate system (x1, x2, l), x1, x2 on ∂Ω and l the distance along n(x1, x2), n unit normal
outgoing vector from the point (x1, x2) on ∂Ω. In other words, any point of V is characterized
by the change of variable

Xi(x1, x2, l) = Yi(x1, x2) + lni(x1, x2)

where (n1(x1, x2), n2(x1, x2), n3(x1, x2)) is the normal vector to ∂Ω at point

(Y1(x1, x2), Y2(x1, x2), Y3(x1, x2)).

Lemma 12.2. Let us define four functions Cij , i, j = 1..2 (see below) and two operators
Aj and a vector field vector B, defined by

Ajf = (detg)
1
2 [g1j∂x1

((detg)
1
2 f) + g2j∂x2

((detg)
1
2 f)]

B(h1, h2) = (detg)
1
2 [∂x1

((detg)−
1
2 (−g12h1 + g11h2) + ∂x2

((detg)−
1
2 (−g22h1 + g12h2)]

The system of Maxwell equations writes

(1.259)

{
(detg)

1
2 g−1[rotx((detg)

1
2 g−1h)] = −iωεe

rotxe = iωµh.

It rewrites 

−∂lh2 +A1h3 + C11h1 + C12h2 = −iωεe1

∂lh1 −A2h3 + C21h1 + C22h2 = −iωεe2

−∂le2 + ∂x2
e3 = iωµh1

∂le1 − ∂x1
e3 = iωµh2

B(h1, h2) = −iωεe3

∂x1e2 − ∂x2e1 = iωµh3.
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Proof. The change of basis matrix M (where x3 is denoted by l) is given by

Mij(x1, x2, l) = ∂xiYj(x1, x2) + l∂xinj(x1, x2), i, j = 1, 2
M3j(x1, x2, l) = nj(x1, x2)

We note that, since n is a unit vector and Y (x1, x2) describes ∂Ω ∩ V , the vector n is
orthogonal to ∂xin as well as to ∂xiY , this second vector being tangent to ∂Ω. The third line
of M is therefore orthogonal to the two others. The matrix M tM is therefore of the form g11(x1, x2, l) g12(x1, x2, l) 0

g12(x1, x2, l) g22(x1, x2, l) 0
0 0 1

 .

Using the relation N = (detg)−
1
2 gM , the last line of N is (detg)−

1
2ni and it is orthogonal

to the two other lines of N .
This allows us to verify that, for l = 0, e = ME and h = MH verify e3 = E.n, h3 =

(detg)−
1
2H.n, and (e1, e2), (h1, h2) act on the tangent plane of ∂Ω. This change of unknowns

allows us to have a simple system of equations (since it only depends on the metric at the
boundary) where one decompose e and h in their tangential and normal components.

We are interested in these components. In particular, there are four functions Cij , i, j =
1..2 and two operators Aj and a vector field vector B, defined by

Ajf = (detg)
1
2 [g1j∂x1

((detg)
1
2 f) + g2j∂x2

((detg)
1
2 f)]

B(h1, h2) = (detg)
1
2 [∂x1

((detg)−
1
2 (−g12h1 + g11h2) + ∂x2

((detg)−
1
2 (−g22h1 + g12h2)]

such that (this defines the functions Cij)

(detg)
1
2 g−1[rotx((detg)

1
2 g−1h)] =

 −∂lh2

∂lh1

B(h1, h2)

+

 A1h3

−A2h3

0

+

 ∑
j C1jhj∑
j C2jhj

0

 .

This ends the proof of Lemma 12.2. �

We deduce

Lemma 12.3. There exist three operators P0, P1, P2 such that the system of Maxwell equa-
tions is equivalent to

(1.260)


(P0 + 1

iωP1 + 1
(iω)2P2)(x1, x2, l, ∂x1

, ∂x2
)


e1

e2

h1

h2

 = (iω)−1∂l


e1

e2

h1

h2


−(iω)−1B(h1, h2) = εe3

(iω)−1(∂x1e2 − ∂x2e1) = µh3,

Proof. By replacing e3 and h3 in the first four equations by their expression as a function
of h1, h2, e1, e2, we obtain the equivalent system, where P0, P1, P2 are the following differential
operators

(1.261)

P0 =


0 0 0 µ
0 0 −µ 0
0 −ε 0 0
ε 0 0 0

 , P1 =


0 0 0 0
0 0 0 0
−C21 −C22 0 0
C11 C12 0 0

 ,

P2 =


(

0 0
0 0

) (
∂x1
◦ ε−1B

∂x2
◦ ε−1B

)
(
A1 ◦ µ−1∂x2 −A1 ◦ µ−1∂x1

A2 ◦ µ−1∂x2 −A2 ◦ µ−1∂x1

) (
0 0
0 0

)
 .

We have thus decomposed the Maxwell equations accordingly. �
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Lemma 12.4. Maxwell’s equations are written as an ~-pseudo-differential problem, and
the operators used are develop in ~ = ω−1. The system (1.260), with boundary conditions on
l = 0

e1(x1, x2, 0, ω) = e0
1(x1, x2, ω), e2(x1, x2, 0, ω) = e0

2(x1, x2, ω)

and the conditions of decay at infinity e1, e2 bounded in L2 when l tends to −∞ is a h-
pseudodifferential system.

We solve the system at the boundary using the techniques introduced by Hörmander
and Levitan. However, it is necessary to modify the proof on the boundary conditions to be
imposed on the unknowns because the open set is bounded hence we have no way of letting
l go to +∞. We have to add some additional conditions on the solution for the proof to be

possible. In particular, to an incident wave of wave vector ~ki which arrives on the object Ω,

in classical optics there is a transmitted wave of wave vector ~k// complex. The continuity

of the tangential components of the transmitted wave vector implies the equality of ~k// and

−~ki ∧ n ∧ n. From the relation ||~k//||2 + k2
n = εµc2, one deduces

kn = ±(εµc2 − ||~ki ∧ n||2)
1
2 .

The classical hypothesis Re ε > 0,Re µ > 0 and the fact that the imaginary parts are small
in front of the real parts allows to to write kn = ±(a + ib), a and b being of same sign. We
notice that the transmitted wave (the one corresponding to −a− ib) is thus characterized by
the phase, when l negative

eiωl(−a−ib) = e−iaωle−bω|l|.

The transmitted wave (which propagates in the material) is the damped wave (which justifies
the name ”dissipative” given to this material). In what follows, we will interpret these remarks
by using micro-local analysis.

2. Hörmander-Levitan calculus

The aim of this section is to prove

Proposition 12.1. Under the hypothesis

=ε > 0,=µ > 0,=εµ > 0

on the dielectric constants, the inner Calderòn operator linking the tangential traces of E
and H on ∂Ω admits an asymptotic expansion in k in the k−pseudodifferential calculus. The
principal symbol of the local pseudo-differential operator which represents C is Z0 given below
by (2.267).

Let (x1, x2, l, η1, η2, ξ3) be an element of T ∗(Ω). Using geometry, we associate then (ξ1, ξ2)
through ξi = gi1(x1, x2, l)η1 + gi2(x1, x2, l)η2 and the norm of |η| in the metric through

(2.262) |η|2g = g11η
2
1 + 2g12η1η2 −+g22η

2
2 = ξ.η.

We verify that, in the ω−1−pseudo-differential calculus, the principal symbol of the system
on e1, e2, h1, h2 written above is

ξ3Id4 −


(

0 0
0 0

)
ε−1M1

ε(εµ− |η|2g)M−1
1

(
0 0
0 0

)


where M1 is

M1 =

(
η1ξ2 εµ− |η|2g + η2ξ2

εµ− |η|2g + η1ξ1 −η2ξ1

)
.

Its determinant is thus (εµ − |η|2g − ξ2
3)2, and as =εµ < 0, this determinant is bounded

below by |=εµ|2. In the ω−1-pseudo-differential calculus, as it is an operator of order 0, it is
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elliptic. The Hörmander-Levitan ([64], [65], [46]) calculation for the representation in terms
of integral Fourier operators of eilH can be applied in this case. The operator

P = P0 + (iω)−1P1 + (iω)−2P2 has two eigenvalues λ± = ±
√
εµ− |η|2g of multiplicity 2,

(±=λ± ≥ |=εµ|
1
2 > 0). Note that we are not exactly in the classical framework developed by

Levitan and then Hörmander, since the eigenvalues are not simple, but as the eigenspace is of
dimension equal to the multiplicity, the arguments are identical to their case. We denote by
ψ± the two phases defined on IR− × T ∗(∂Ω), equal to zero on l = 0, respective solutions of

∂lψ±(x1, x2, l, η1, η2) = λ±(x1, x2, l, η1, η2), ψ±(x1, x2, 0, η1, η2) = 0.

Introducing the Fourier integral operators Fψ± of phase ψ± and of symbol 1, we write a
decomposition of the matricial Fourier integral operator K solution of (2.263):

(2.263) (iω)−1∂lK = P ◦ K,K|l=0 = IdC∞(∂Ω)

under the form

K = Op(M+) ◦Op(Fψ+
) +Op(M−) ◦Op(Fψ−).

The symbolsM±,ii are elliptic in a neighborhood of l = 0. As we assumed that±ψ±(x1, x2, 0, η1, η2)
are of positive imaginary part, we see that ∂lψ±(x1, x2, 0, η1, η2) = ±ν, where ν is the root of
positive imaginary part of

εµ− (g11(x1, x2, 0)η2
1 + 2g12(x1, x2, 0)η1η2 + g22(x1, x2, 0)η2

2).

For (x1, x2) in a neighborhood of (x0
1, x

0
2), there exists two strictly positive constants c1

and c2 such that for −l ≤ ε0 < 0 one has{
|eiωψ+(x1,x2,η1,η2,l)| ≥ e−ωc1l
|eiωψ−(x1,x2,η1,η2,l)| ≤ eωlc2 .

It follows that only the Fourier Integral operator Fψ− is bounded when ωl tends to −∞. When
e1, e2, h1, h2 is given on l = 0 one deduces e1, e2, h1, h2 in a neighborhood of l = 0. We thus
find


e1

e2

h1

h2

 (x1, x2, l, ω) = [Op(M+) ◦Op(Fψ+
) +Op(M−) ◦Op(Fψ−)]


e0

1

e0
2

h0
1

h0
2

 (x1, x2, l).

Thanks to the composition calculus of a pseudodifferential operator and a Fourier integral
operator, there are two operators Q+ and Q− (deduced from ψ± and M±) such that

e1

e2

h1

h2

 (x1, x2, l, ω) =
∫ ∫

eiωψ+(x1,x2,η1,η2,l)−iωy.ηQ+


e0

1

e0
2

h0
1

h0
2

 (y, ω)dydη

+
∫ ∫

eiωψ−(x1,x2,η1,η2,l)−iωy.ηQ−


e0

1

e0
2

h0
1

h0
2

 (y, ω)dydη.

We observe that, for all τ compactly supported

|τ(x1, x2, l)


e1

e2

h1

h2

 (x1, x2, l, ω)−τ(x1, x2, l)

∫ ∫
eiωψ−(x1,x2,η1,η2,l)−iωy.ηQ−


e0

1

e0
2

h0
1

h0
2

 (y, ω)dydη| = |τ(x1, x2, l)

∫ ∫
eiωψ+(x1,x2,η1,η2,l)−iωy.ηQ+


e0

1

e0
2

h0
1

h0
2

 (y, ω)dydη|



2. HÖRMANDER-LEVITAN CALCULUS 237

If one has, in the neighborhood V0 of y0, Q+


e0

1

e0
2

h0
1

h0
2

 (y, ω) 6= 0, then

|τ(x1, x2, l)

∫ ∫
eiωψ+(x1,x2,η1,η2,l)−iωy.ηQ+


e0

1

e0
2

h0
1

h0
2

 (y, ω)dydη|

is going to +∞ in ω on the set of points (x1, x2, l) such that there exists y ∈ V0 and η =
∇yψ+(x1, x2, η1, η2, l). As the solution is bounded when ωl → −∞ we deduce, at each point
y of V0, the relation

Q+


e0

1

e0
2

h0
1

h0
2

 (y, ω) = 0.

This pseudo-differential relation between e0 and h0 on the boundary is the one we are looking
for. We give the principal symbol of the operator that computes (e0

1, e
0
2) as a function of

(h0
1, h

0
2) (and more precisely (−e0

2, e
0
1) as a function of (h0

1, h
0
2)). From the inequality =ν > 0

and the relation ∂lψ±|l=0 = ±ν, we deduce ∓=ψ±(x1, x2, η1, η2, l) ≥ −c1l for l < 0 small
enough thanks to ψ±|∂Ω = 0 and the continuity of |η|g as a function of x (if the boundary
is regular enough). As Re (iωψ−) = −ω=ψ−, the only phase which leads to an exponential
decay in ω is ψ− (more precisely, ψ+ leads to an exponential growth in ω of the associated
solution).

As one has
(2.264)

e1

e2

h1

h2

 (x1, x2, l, ω) =

∫
dy1dy2dη1dη2


e0

1

e0
2

h0
1

h0
2

 (y1, y2, ω)eiω(ψ−(x1,x2,l,η1,η2)−y1η1−y2η2),

applying (iω)−1∂l − P to this solution, we get the system

∫
dydη[∂lψ−(x1, x2, l, η1, η2)Id4−Op(P )][


e0

1

e0
2

h0
1

h0
2

 (y1, y2, ω)]eiω(ψ−(x1,x2,l,η1,η2)−y1η1−y2η2) = 0

which gives the relation on the principal symbol of the trace on l = 0 thanks to ψ−(x, η, 0) =
x1η1 + x2η2), and this relation defines the matrix M1(x, η, ω):

(2.265) −ν
(
e0

1(x1, x2, 0, ω)
e0

2(x1, x2, 0, ω)

)
− ε−1M1

(
h0

1(x1, x2, 0, ω)
h0

2(x1, x2, 0, ω)

)
=

(
0
0

)
.

One checks that

M1

(
−η2

η1

)
= ν2

(
η1

η2

)
M1

(
ξ1
ξ2

)
= εµ

(
ξ2
−ξ1

)
.

Introduce the matrix Z0 such that

Z0

(
−η2

η1

)
= ν

ε

(
−η2

η1

)
Z0

(
ξ1
ξ2

)
= µ

ν

(
ξ1
ξ2

)
.

Relation (2.265) is equivalent to the pseudodifferential equality where Op(Z) is a pseudo-
differential operator such that

(2.266)

(
−e2

e1

)
|l=0 = −Op(Z)

(
h1

h2

)
|l=0.
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If u =


e1

e2

h1

h2

 is a solution, bounded in ω, of [(iω)−1∂l−P ]u = 0, then the principal term of

the pseudodifferential operator Op(Z) is Z0. We represent the two eigenvectors of M1 in the
figure:

We assume that the conormal analytic wavefront set of the incident wave (which is under-
lying our study) is contained in t−θ(x, y, l) = 0. We know that |∇θ| = 1, so Re (εµ−|η|2g) > 0
(the medium is of index greater than 1). As =εµ > 0, we deduce that Re ν > 0 when =ν > 0.

Remark that, when =ν → 0 (weak losses), ν → √εµ.
The incident wave is assumed to be given by

Ẽ(x, t) =

∫
eik(θ(x)−t)E(x, k)dx.

We denote by (x1, x2, η1, η2) the element of T ∗(∂Ω) where we compute the pseudodifferential
tangential operators. The impedance matrix Z0 is the matrix whose eigenvectors are respec-

tively

 −η2

η1

0

 and (M tM)−1

 η1

η2

0

 in the system of semi-geodesic coordinates and whose

eigenvalues are ν/ε et µ/ν.

Let Ω′ be the complementary set of Ω̄. Let k = ω(ε0µ0)
1
2 .

Proposition 12.2. The system of Maxwell’s equations in Ω′

rotXE = iωµ0H, rotXH = −iωε0E,
radiation condition at infinity,

finite local energy

is equivalent to the system of Helmholtz equations on each component of E, the radiation
condition, the relation H = (iωµ0)−1rotXE and the relation divXE|∂Ω′ = 0.

Proof. We replace H by its value (iωµ0)−1rotXE in the equation on E. We obtain, in
D′

rotXrotXE − ω2ε0µ0E = 0.

This equation implies that divXE = 0, and therefore (∆ + (ω/c)2)E = 0 and of course implies
divXE|∂Ω′ = 0.

Now, let us consider the equations (in which R.C designates the radiation conditions at
infinity)

(∆ + k2)E = 0, H = (iωµ0)−1rotXE,divXE|∂Ω′ = 0, R.C.

The distribution u(X, k) = divXE(X, k) is a solution of the scalar Helmholtz equation

(∆ + k2)u(X, k) = 0

with the boundary condition u(X, k)|∂Ω′ = 0 and an outgoing condition at infinity. The
boundary ∂Ω is non characteristic for the wave operator, so by application of the Holmgren’s
theorem, the solution of this problem is unique, and u(X, k) = 0 in Ω′. This completes the
proof of the reciprocal. The same result holds for H.

�

We write the divergence condition on e in semi-geodesic coordinates. Using the expression
(1.254) we obtain

(detg)
1
2 ∂l((detg)−

1
2 e3) + (detg)

1
2 (∂x1(g11e1 + g12e2) + ∂x2(g21e1 + g22e2)) = 0

We then use relations h1 = (iωµ0)−1(∂x2
e3 − ∂le2), h2 = (iωµ0)−1(−∂x1

e3 + ∂le1) that
we replace in the equality (2.266){

−e2 = −Op(Z11)h1 −Op(Z12)h2

e1 = −Op(Z21)h1 −Op(Z22)h2
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to obtain, after using the notation µ0c = Z0 (impedance of the vacuum),

(2.267) ikZ0

(
e1

e2

)
= −

(
Op(Z22) −Op(Z21)
−Op(Z12) Op(Z11)

)(
∂le1 − ∂x1

e3

∂le2 − ∂x2
e3

)
.

Noting that the determinant of the principal symbol

(
Z0

11 Z0
12

Z0
21 Z0

22

)
of the matrix operator

written in the right hand side of this equality is µ
ν ×

ν
ε = µ

ε , the matricial operator is thus
invertible and we can calculate the principal symbol of the inverse which is

ε

µ

(
Z0

11 Z0
12

Z0
21 Z0

22

)
.

We deduce then two boundary conditions that the solutions of the system of Maxwell’s equa-
tion must fulfill: { 1

ik∂le1 = ∂x1
e3 − Z0

ε
µ (Z0

11e1 + Z0
12e2) + L1

0(e1, e2)
1
ik∂le2 = ∂x2

e3 − Z0
ε
µ (Z0

21e1 + Z0
22e2) + L2

0(e1, e2)

the operators L1
0(e1, e2) and L2

0(e1, e2) being pseudo-differential operators of order 0.
The third boundary condition is given by the divergence relation restricted to the bound-
ary (Proposition 12.2), that is, by applying the relation (1.254) recalled above, 1

ik∂le3|l=0 +
D(e1, e2)|l=0 = 0, where D is a differential operator of principal symbol ξ1e1 + ξ2e2. The
resulting boundary condition that follows is

(2.268)

 ∂le1

∂le2

∂le3

− ikTE
 e1

e2

e3

 = 0

where the operator TE is a pseudo-differential matricial tangential operator. We verify that

T 0
E

 −η2

η1

0

 = −Z−1
0

ν
µ

 −η2

η1

0

+

 0
0
η1


T 0
E

 ξ1
ξ2
0

 = −Z−1
0

ε
ν

 ξ1
ξ2
0

+

 0
0
η2


T 0
E

 0
0
1

 =

 ξ1
ξ2
0

 .

As e(x1, x2, l, k) = M(x1, x2, l)E(X(x, l)), relation between the cartesian and semi-geodesic
components of the electric field, expressed in the system of semi-geodesic variables, we deduce

∂le(x, 0, k) = (∂lM)(x, 0)E(X(x, 0)) +M(x, 0)∂lE(X(x, 0)).

This implies

(∂lM)E +M(x, 0)∂lE − TE(ME) = 0

equivalent to

∂lE(X(x, 0))− [M−1(x, 0)TE(M(x, 0).))−M−1(x, 0)∂lM(x, 0)]E(x, 0) = 0.

Let B be the tangential matricial pseudodifferential operator equal toM−1(x, 0)TE◦M(x, 0)Id−
M−1(x, 0)(∂lM(x, 0))Id. We have

Proposition 12.3. The electromagnetic equations in Ω with dielectric coefficients + the
equations in Ω′, complement of Ω̄, is equivalent to
• the equality H = (iωµ0)−1rotXE in Ω′,
• the three scalar Helmholtz equations with radiation condition at infinity

(∆ + k2)Ej = 0,

• the boundary condition coupling these three components
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(2.269) ∂nE − B(E|∂Ω′) = 0.

Remark that one can replace this boundary condition by what is called the impedance
boundary condition

(2.270) n ∧ E|∂Ω + Z[(n ∧ n ∧H|∂Ω] = 0

where Z is deduced from B and is called the impedance operator.
To this system of equations, we can apply the theory allowing the reflection of transverse
singularities. This is the the object of the next section.

3. Reflection of transverse singularities for Maxwell’s equations

We prove in this section the following general theorem

Theorem 12.4. The reflection of transverse singularities for Maxwell equations holds
true.

The following proposition, that follows describes an explicit case. Let us assume that
there exists j such that WF (Ej) contains the point ρ−. Through this point ρ− passes a
bicharacteristic γ−(−s) such that π(γ−) meets ∂Ω at a point x0, the corresponding point on
γ− being ρ−0 ∈ T ∗IR

n∩π−1(∂Ω). Assume that the projection on T ∗(∂Ω) of ρ−0 is an hyperbolic
point ρ0. Denote by ρ+

0 the point such that ρ±0 are the two points ρ+
0 , ρ

−
0 . More precisely,

ρ−0 = (x0 = π(ρ−0 ), ζ), ζ ∈ Tx0
IRn ' Tx0

∂Ω × IR, so that ζ = (ζ ′, ζn), and ρ0 = (x0, ζ
′),

ρ+
0 = (x0, 0, ζ

′,−ηn). We denote by γ+ the bicharacteristic which passes through ρ+
0 .

Proposition 12.4. There exists p ∈ {1, 2, 3} such that γ+ ∩ T ∗(Ω′) ⊂ WF (Ep), for all
q ∈ {1, 2, 3} with ρ0 ∈WFb(Eq).

Proof. It is a matricial generalization of the proof for a condition in the scalar case. We
construct the operators A+ and A− from the chapter 10. The solutions of the three Helmholtz
equations are written as

(3.271) (E1, E2, E3) = (A−(f−1 ), A−(f−2 ), A−(f−3 )) + (A+(f+
1 ), A+(f+

2 ), A+(f+
3 )).

We write the general jump formula for each component (where P is the conjugate wave
operator in coordinates (l, x1, x2))

PEj = ∂lEj(x, 0, k)δl=0 + Ej(x, 0, k)δ′l=0.

Applying this equality to (3.271), we find

A+(f+
j ) +A−(f−j )|l=0 = Ej , T+(f+

j ) + T−(f−j ) = ∂lEj

By replacing these equalities in the boundary condition, we find (the pseudo-differential op-
erators T± were introduced in the chapter in the proposition 10.6 and they are are elliptic at
hyperbolic points)

Bf+ + Bf− − (T+Id3f
+ + T−Id3f

−) = 0

We check that B − T±Id3 is an invertible operator. From this we deduce the equality

f+ = (B − T+Id3)−1(T−Id3 − B)(f−)

and the equality
E|∂Ω = (B − T+Id3)−1(T− − T+)Id3(f−).

We then conclude that, if ρ− ∈ WF (Ej), then ρ0 ∈ WF (f−j ). The equality on E allows
us to assert that there is at least one coordinate of E whose wavefront set contains ρ0. Thus
there is at least one coordinate of f+, of index p. The properties of the operator A+ allow
to state that ρ+ is in the wavefront set of A+(f+

p ). Since ρ+ is not in the wavefront set of

A−(f−p ), then ρ+ is in the wavefront set of Ep = A+(f+
p ) +A−(f−p ). This completes the proof

of the proposition. �
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Note that we cannot deduce that all components of E have a wavefront set containing
ρ+, because it could happen that (B− T+Id3)−1(T−Id3−B)(f−) has one component at least
which is zero. In particular, if the wave vector happens to coincide at a given ’moment’ s
with one of the axis of coordinates, the relation divE = 0 (which is verified everywhere) would
imply that the component along this axis is zero, and therefore does not contain a point of
the wavefront set.

We can overcome this difficulty by noticing that the wavefront set of the 1-differential Ẽ
associated to E, which is Ẽ = E1dX1 + E2dX2 + E3dX3 is

WF (Ẽ) = ∪pWF (Ẽp).

We have the proposition on the differential forms, identical to the Theorem 10.2:

Proposition 12.5. Let Ẽ, H̃ be solution of
ε∂tẼ = d∗H̃

dẼ = µ∂tH̃

dH̃ = 0

d∗Ẽ = 0

n ∧ Ẽ = Z(H̃tan).

(1) This system is equivalent to a Helmholtz equation (−dd∗ − d∗d− εµ∂2
t2)Ẽ = 0 and a

system of boundary conditions including d∗E|∂Ω = 0. then ρ0 /∈WFb(Ẽ),

(2) For ρ̃0 ∈ E for the operator P = −dd∗ − d∗d− εµ∂2
t2 , ρ0 /∈WFb(Ẽ).

(3) For ρ0 ∈ H, we construct the two bicharacteristics γ+ and γ− passing through the
two points of (Π−1(ρ0) ∩ Car(p)). The following equivalence is true

ρ0 ∈WFb(Ẽ)⇔ γ+ ⊂WF (Ẽ) or γ− ⊂WF (Ẽ)

.

From the proof of Theorem 10.2, one deduces the proposition 12.5, which is the general-
ization of the proposition 10.6 obtained for waves with mixed boundary conditions

Proposition 12.6. The matrix of reflection coefficients associated with a hyperbolic point
is a pseudodifferential matricial operator Rε,µ such that that

Er(x1, x2, 0, k) = Rε,µ(Ei|l=0)(x1, x2, k).

Its principal symbol is the matrix

(ξ+
n (x′, 0, ∂x′ψ+(x′, 0, ξ′))Id3 − B0(x′, ξ′))−1(ξ+

n (x′, 0, ∂x′ψ+(x′, 0, ξ′))Id3 + B0(x′, ξ′)).

This matrix is diagonalizable in the image by M−1 of the basis which diagonalizes Z0.
The two reflection coefficients are respectively R1(x1, x2, η1, η2) on the vector M−1(−η2, η1, 0)
and R2(x1, x2, η1, η2) on the vector M−1(ξ1, ξ2, 0):

R1 = (ξ+
n (x′, 0, ∂x′ψ+(x′, 0, ξ′)) + Z−1

0

µ

ν(x, η)
)−1(ξ+

n (x′, 0, ∂x′ψ+(x′, 0, ξ′))− Z−1
0

µ

ν(x, η)
)

R2 = (ξ+
n (x′, 0, ∂x′ψ+(x′, 0, ξ′)) + Z−1

0

ν(x, η)

ε
)−1(ξ+

n (x′, 0, ∂x′ψ+(x′, 0, ξ′))− Z−1
0

ν(x, η)

ε
).

We have only two reflection coefficients for the components which are tangent to the plane
because the divergence condition is naturally true for Er as well as for Ei which imply that
the vectors Er and Ei are orthogonal to the wave vector thanks to the divergence condition.
We thus find the third row of the matrix Rε,µ.





CHAPTER 13

Diffraction

1. The model problem of Friedlander

1.1. End of the study of the model problem of Friedlander. Recall that this
problem was presented in section 3.
We state the first result of propagation of singularities in the case of a strictly diffractive
point. It is the result obtained by Friedlander in the case of the model operator, which we
have studied in studied in detail in this work. The last steps before the end of the proof
are questions 9), 10), 11) of the exercise 3. To make the result and its demonstration more
understandable, we give the whole text of this exercise

Introduce the operator on IR+ × IR2

Pu(x, y1, y2) =
∂2u

∂x2
− (1 + x)

∂2u

∂y2
1

+
∂2u

∂y2
2

.

Consider  Pu = 0, u ∈ D′(IR+ × IR2)
u(0, y) = f(y), f ∈ E ′(IR2)
u(x, y1, y2) = 0, y1 < 0.1

1) Let f ∈ S(IR2). Prove that the solution of (3.85) writes

u(x, y) =
1

(2π)2

∫
IR2

K̂x(θ1, θ2)f̂(θ1, θ2)eiy1θ1+iy2θ2dθ1dθ2

(Fourier oscillatory integral as an inverse Fourier transform of a function belonging to S ′(IR2)),
where Kx is solution of

PKx = 0
K0(y) = δy=0

Kx(y1, y2) = 0, y1 < 0.

In =θ1 < 0, one has

K̂x(θ1, θ2) =
Ai(θ

− 4
3

1 θ2
2 − (1 + x)θ

2
3
1 )

Ai(θ
− 4

3
1 θ2

2 − θ
2
3
1 )

=
Ai(ξ)

Ai(ξ0)
.

One identifies θ
− 4

3
1 by writing

θ1 = |θ1|ei(
3π
2 +λ),−π

2
≤ λ ≤ π

2

and θ
2
3
1 = −|θ1|

2
3 e

2i
3 λ, θ

− 4
3

1 = |θ1|−
4
3 e−

4i
3 λ.

For the sequel, denote by

|θ| = (θ2
1 + θ2

2)
1
2

Z = |θ1|
2
3 − (1 + x)θ2

2|θ1|−
4
3

Z0 = |θ1|
2
3 − θ2

2|θ1|−
4
3 .

2) Prove that Φ, equal to

u
1
4 Ai(u)exp(

2

3
u

3
2 ) = Φ(u)

243
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admits, as well as its inverse, an asymptotic expansion for u ∈ IR+ large, in inverse powers

of u
3
2 , expansion valid uniformly in arg u ∈ [−π + ε, π − ε].
3) Let σ0 be a C∞ function, equal to 0 for t ≤ 1, equal to 1 for t ≥ 2. Let σ2(t) = σ0(δ2t),

0 < δ2 < 1/2. On introduit

a2(x, θ1, θ2) = σ0(|θ|)σ2(Z0)
Φ(ξ)

Φ(ξ0)
.

a) Prove by induction that there exist functions Qk,αj (x, θ) of class C∞, homogeneous in

θ of homogeneity degree 2
3 (j + k)− |α|, such that

∂kxk∂
α
θα [G(Z)] =

j=|α|∑
j=0

G(k+j)(Z)Qk,αj (x, θ)

b) Prove σ2(Z0) ∈ S0
1/3,0(IR2).

c) Using the inclusion S0
1/3,0 ⊂ S

0
1/3,2/3, prove that a2 ∈ S0

1/3,2/3.

4) a) Prove that

(1− σ0(|θ|)) Ai(ξ)

Ai(ξ0)
∈ S−∞.

Let σ1 be an even function, equal to 0 on [1− δ1,+∞[, equal to 1 on [0, 1− 2δ1] (for example
σ1(u) = 1− σ0(δ1|u|+ 1− 3δ1)).

Let h(s) =

{
(s2 + 1)−

1
2 (s2 − 1)

3
2 s ∈ [1, (1 + x)

1
2 ]

(s2 + 1)−
1
2 [(s2 − 1)

3
2 − (s2 − 1− x)

3
2 ] s ∈ [(1 + x)

1
2 ,+∞[

. It is bounded be-

low by γ(x), that one can compute, for s ≥ (1− δ1)−1.
b) Prove

|σ0(|θ|)σ1(
θ1

|θ2|
)exp(−2

3
(ξ

3
2 − ξ

3
2
0 ))| ≤ exp(−2

3
γ(x)|θ|).

c) Prove, for all n, that there exists Cn such that

|∂nxn(σ0(|θ|)σ1(
θ1

|θ2|
)

Ai(ξ)

Ai(ξ0)
)| ≤ Cnexp(−1

3
γ(x)|θ|).

d) Deduce values of m, ρ, δ such that a1(x, θ) = σ0(|θ|)σ1( θ1
|θ2| )

Ai(ξ)
Ai(ξ0) .

5) Denote by

a3(x, θ) = [K̂x(θ)− (1− σ0(|θ|)) Ai(ξ)
Ai(ξ0) − σ0(|θ|)σ1( θ1

|θ2| )
Ai(ξ)
Ai(ξ0)

−a2(x, θ)exp(− 2
3 (ξ

3
2 − ξ

3
2
0 ))]exp( 2i

3 Z
3
2 signθ1)1x>δ.

a) Prove that the support S of a3 is given by the set of points

|θ| ≥ 1, |θ2| ≤ (1− 2δ1)−1|θ1|, Z0 ≤ 2δ2.

b) Find the smallest cone containing S.
c) Prove that Z has a strictly positive lower bound on {(x, θ), x > δ, |θ1| ≥ (1− 2δ1)|θ2|}.
d) Prove that a3 ∈ S0

1/3,2/3.

6) Let ρ0 = (0, 0, 0, ξ0, η0
1 , η

0
2) ∈ T ∗(IR+ × IR2) ∩ Car(p). What is the bicharacteristic of

operator P defined by (3.84) passing through ρ0? It is useful to define

q(x, η1, η2) = (1 + x)η2
1 − η2

2

and to define

S(x, η1, η2) =

∫ x

0

(q(u, η1, η2))
1
2 du.

7) Let the function, defined on IR+ × IR2 × IR2, given by

φ(x, y1, y2, θ1, θ2) = y1θ1 + y2θ2 − S(x, θ1, θ2)sign(θ1).
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Prove that the two bicharacteristics from the origin in y1 > 0 form the set

Σ = {(x, y, ξ, η) ∈ T ∗(IR+ × IR2), x > 0, |θ1| ≥ |θ2|,
ξ = ∂xφ(x, y, θ)
η = ∇yφ(x, y, θ)
∇θφ(x, y, θ) = 0

}

8) Show that the singular support of the Fourier integral operator K(2) of symbol a2(x, θ)

and phase l(x, y, Y, θ) = (y−Y )θ− 2
3 (ξ

3
2 − ξ

3
2
0 ) is included in the union of the bicharacteristics

coming from the origin in y1 > 0.
9) Find for the operator (3.84) the elliptic, hyperbolic, and glancing zones.

10) Let Xδ = {(x, y), x > δ}. We consider the restriction of the operator of symbol a3exp(− 2
3 isign(θ1)Z

3
2
0 )

à Xδ, que l’on note K
(3)
δ . One considers the phase

φ̃(x, y, θ) = y.θ − 2

3
sign(θ1)Z

3
2

Under the condition

(1 + δ)−
1
2 < 1− 2δ1

prove that the wave front of K
(3)
δ is included in

Λδ = {(x, y, ξ, η), x > δ, θ ∈ S3, ξ = ∂xφ̃, η = ∇yφ̃,∇θφ̃ = 0}.
11) Prove the theorem of propagation of singularities for any ray, in other words

Theorem 13.1. • The wave front set of the fundamental solution K is contained in the
union of the outgoing bicharacteristics (in the direction y1 > 0) from the point (0, 0, 0).
• The wave front set of the solution of (3.85) is contained in the set of bicaracteristics of P
coming from a point (0, z, 0, η) belonging to the wavefront set of f .

Proof. 9) We check that

p(x, ξ, θ1, θ2) = −ξ2 + (1 + x)θ2
1 − θ2

2.

The elliptic manifold E is the set of points (y, θ1, θ2) such that p(0, ξ, θ1, θ2) = 0 has no
real root, that is |θ2| > |θ1|.

The hyperbolic manifold is H = {|θ2| < |θ1|}.
The equation of the glancing manifold G is |θ1| = |θ2|.

Let us write P = ∂2

∂x2 + R(x, y, ∂y). On the glancing manifold, the principal symbol r of R

satisfies r = 0 and ∂xr(0, θ1, θ2) > 0. Indeed, ∂xr(0, θ1, θ2) = θ2
1 and as θ 6= 0 and θ1 = θ2,

θ1 6= 0. One says that the points of G for the operator P defined by (3.84) are strictly
diffractive points.
10) Let us introduce

K
(3)
δ (x, θ) = a3(x, θ) exp(−2

3
ξ

3
2 )1x>δ.

One knows already that a3 ∈ S0
1
3 ,

2
3

(IR2) thanks to question 5) of Chapter 3. Moreover,

when x > δ and

(1.272) 0 < δ1 <
1

2
(1− (1 + δ)−

1
2 )

we know, in a same way, that Z ≥ D > 0, hence K
(3)
δ (x, θ) = a3(x, θ) exp(− 2

3 iZ
3
2 signθ1). The

action of the operator K
(3)
δ is computed through the oscillatory integral

< K
(3)
δ , χ >=

∫
dxdydθ1x>δa3(x, θ)χ(x, y)ei(y.θ−

2
3Z

3
2 signθ1),

because the function

(1.273) φ̃(x, y, θ) = y.θ − 2

3
Z

3
2 signθ1
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is an admissible phase in the sense of Lemma 6.1. The wavefront set of the distribution is then
contained in the intersection Λδ of {x > δ} and of the Lagrangian manifold Λφ̃, by immediate

application of Proposition 6.2. 11) One checks that

K̂x(θ)1x>δ = (1− σ0(|θ|))1x>δ Ai(ξ)Ai(ξ0) + a1(x, θ)1x>δ

+a2(x, θ)1x>δexp(− 2i
3 (ξ

3
2 − ξ

3
2
0 ))

+a3(x, θ)exp(− 2i
3 ξ

3
2 )1x>δ

Assume δ1 and δ2 satisfy

(1.274) 0 < δ2 <
1

2
, 0 < δ1 <

1

2
(1− 1√

1 + δ
),

and denote by Lδ1,δ2,δ the subspace of T ∗(IR3) equal to

Lδ1,δ2,δ = Λδ ∩ {(x, y, ξ, θ), (1− 2δ1)|θ2| ≤ |θ1| ≤ (1 + κ(δ2))|θ2|}.

Let Kδ be the inverse Fourier transform of K̂x(θ)1x>δ. One has

(1.275) WF (Kδ) ⊂ (Σ ∩ {x > δ}) ∪ Lδ1,δ2,δ.

One knows that WF (Kδ) is a set independent on δ1 and δ2 satisfying (1.274). Hence

WF (Kδ) ⊂ Σ ∩ {x > δ} ∩ (∩(δ1,δ2)∈(1.274)Lδ1,δ2,δ).

Note that κ(δ2) tends to 0 when δ2 tends to 0, hence this intersection is included in

Λ̃δ ∩ {|θ1| = |θ2|}. As ∂y,θ,x( 2
3Z

3
2
0 ) = Z

1
2
0 ∂y,θ,xZ0 et que Z0 = 0 sur |θ1| = |θ2|, one concludes

that

Λ̃δ ∩ {|θ1| = |θ2|} ⊂ Σ ∩ {x > δ}.
Hence WF (Kδ) ⊂ Σ ∩ {x > δ}, from which one has WF (K) ⊂ Σ. The first item of

Theorem 13.1 is proven.
To prove the second relation, consider the bicharacteristics from a point (0, z). We can

then define in the same way Σz. The result then comes from the equality ux = Kx ? f . We
define the application from IR+ × IR2 × IR2 to IR+ × IR2 by µ(x, y, z) = (x, y − z). One has
µ∗F = F (x, y − z), and u = µ∗Kf . The wave front set of the operator µ∗K is the subset of
T ∗(IR+ × IR2 × IR2) defined through

WF
′
(µ∗K) = {(x, y, z, ξ, η, ζ), (x, y, z, ξ, η,−ζ) ∈WF (µ∗K)},

thanks to the relations between the wavefront set of the convolution operator and the wavefront
set of its kernel. We know moreover that

WF (µ∗K) = {(x, y, z, ξ, η, ζ) ∈ T ∗(IR+ × IR2 × IR2), (x, y − z, ξ, η) ∈WF (K)}.

By definition of the bicharacteristics passing through a point of WF (f) ∩ {|θ1| ≥ |θ2|}, and
thanks to the inclusion

WF (u) ⊂WF
′
(µ∗K)WF (f),

(applying the relation proven for WF
′

to WF (f)), one has proven the second item of Theorem
13.1. �

2. The wave equation outside a convex smooth open set of IR2

We present a calculation that uses all the notions introduced in the previous chapters.
It is the calculation of the solution diffracted by Ω, a strictly convex open set of boundary
the closed smooth curve C in IR2. The interior open set is denoted by Ω, it is bounded. The
exterior open set is denoted Ωc. This calculation has already been done by Filippov [38],
[100]. It is a difficult generalization of the Friedlander model presented in Section 3. This
work has been done in collaboration with D. Bouche [16] for the explicit part in dimension
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2 and is issued from G. Lebeau for the Dirichlet boundary condition [66] for the theoretical
part.

After partial Fourier transformation in time, the problem writes

(2.276)

 (∆ + k2)u = 0 in Ωc

Lu = 0 on ∂Ω
u− ui = 0 for =k < 0,

L being a differential operator of order 1.

2.1. Laplace operator in Euler coordinates. Let us define the coordinates used. Let
A be a point of C, fixed. A point of C is characterized by its curvilinear abscissa s, counted
from A, and choosing an orientation for it. The length of C being L, we have s ∈ [0, L], with
condition u|s=L = u|s=0. We replace then the problem with a boundary condition on ∂Ω by
a problem with a boundary condition on IR using periodization. The curve C is characterized
by the function R(s), radius of curvature at the point point M(s), supposed to be strictly
positive and finite, which corresponds to a strictly convex open set.

From a point M(s) of C, we consider in Ωc the distance to M(s) on the normal unit vector,
and denote it by n. Thus, a point M(s, n) in a neighborhood of C is given by

~AM(s, n) = ~AM(s) + n~n(s).

It is assumed that there exists a neighborhood of C which is completely geodesic, which means
that all points of this neighborhood are on a unique normal line.

Let P be the operator ∆ + k2, expressed in coordinates (s, n). We have

(2.277) Pu = (1 +
n

R(s)
)−1 ∂

∂s
(1 +

n

R(s)
)−1 ∂u

∂s
) + (1 +

n

R(s)
)−1 ∂

∂n
(1 +

n

R(s)
)
∂u

∂n
) + k2u.

In the k−1−pseudodifferential calculus, its principal symbol is written

p(s, n, σ, ξ2) = 1− ξ2
2 − (1 +

n

R(s)
)−2σ2.

The space T ∗(]0, L[) is decomposed into elliptic, hyperbolic and glancing as follows:

E = {(s, σ), |σ| > 1}

H = {(s, σ), |σ| < 1}

G = {(s, σ), |σ| = 1}
Note that for n = ξ2 = 0, we find propagation on the boundary at constant speed 1 ( given
by σ2 = 1), and we recognize here the equation of the classical light cone in dimension 1. The
relation σ2 = 1 entails σ = ±1, which implies that the solution contains a factor e±iks. We
study the solution diffracted around the point σ = 1. To do so, perform a translation in the
variable σ to σ = 0 by a conjugation technique. Introduce then the operator P1 defined by

(2.278) P1(U)(n, s, k) = e−iksP (eiksU(n, s, k)).

This operator P1 is given by:

(2.279)
P1(U) = (1 + n

R(s) )−1[ ∂∂n ((1 + n
R(s) )∂U∂n ) + ∂

∂s ((1 + n
R(s) )−1 ∂U

∂s )

+ik[(1 + n
R(s) )−1 ∂U

∂s + ∂
∂s ((1 + n

R(s) )−1U)]] + k2U(1− (1 + n
R(s) )−2).

The principal symbol of P1 is p1(n, s, ξ2, σ) = 1− ξ2
2 − (1 + n

R(s) )−2(σ+ 1)2, and p1 vanish

in the neighborhood of σ = 0 for

(2.280) n =
R(s)σ

(1− ξ2
2)

1
2

+R(s)((1− ξ2
2)−

1
2 − 1).

We note that the calculation of the principal symbol can also be done by applying the result
of the exercise 7.3, by introducing the function S(s, n, k) = ks, which satisfies ∂sS = k.
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Let us introduce the dual change of variable, deduced from (2.280) by the restriction to
ξ2 = 0 of the equation of the characteristic manifold, i.e. τ = R(s)σ. It corresponds formally
to the equality ∂

∂s = R−1(s) ∂∂θ . We define the function θ by

θ(s) =

∫ s

0

du

R(u)
.

This angle θ is then the angle between a fixed direction and the tangent line to the boundary
(with the precaution of restricting this angle to (0, π)), called the Euler angle of the curve C.
The change of variable s → θ is a diffeomorphism, which allows to write the operator P1 in
the system of variables (θ, n). Denoting by s = s(θ) this diffeomorphism, we obtain:

(2.281)

P1(U) = k2U(1− (1 + n
R(s) )−2) + (1 + n

R(s) )−1[ ∂∂n ((1 + n
R(s) )∂U∂n )]

+(R(s) + n)−1 ∂
∂θ ((n+R(s))−1 ∂U

∂θ )

+ik(n+R(s))−1[(1 + n
R(s) )−1 ∂U

∂θ + ∂
∂θ ((1 + n

R(s) )−1U)].

The principal symbol of this operator is:

(2.282) p̂1(n, θ, ξ2, τ) = 1− ξ2
2 − (1 +

n

R(s)
)−2(

τ

R(s(θ))
+ 1)2.

The equation of the characteristic manifold is

(2.283) 1− ξ2
2 = (1 +

n

R(s(θ))
)−2(

τ

R(s(θ))
+ 1)2,

and this yields

(2.284) n = τ +
1

2
ξ2
2(R(s(θ)) + τ) +O(ξ4

2).

In a first part, we write an asymptotic outgoing solution uk (in the sense that it is de-
fined for =k < 0 and uniformly bounded in this region) using the phase analysis techniques
constructed in Chapter 9, in particular in Lemma 9.3. We compute then the trace Luk on the
boundary of this asymptotic outgoing solution.

In the Friedlander model problem, the relation uk|n=0 = 1 previously allowed us to obtain
the fundamental solution. Here, this method cannot be used any more; indeed, the trace on
the boundary is defined as an integral which is a non local operator. Lafitte [57] and Lebeau
[66] have developed techniques allowing to invert this equality on the boundary, and to make
the calculation explicit. This method corresponds to the boundary layer method used by
Bouche and Molinet [15].

2.2. Another asymptotically outgoing solution. The method we present in this
paragraph is directly inspired by Lebeau’s work [67], [66] where outgoing asymptotic solutions
of operators having a strictly diffractive point are studied. It is in particular different from
the construction of the solution shown in the chapter 10 which uses the two Fourier integral
operators A+ and A−. It is related to the calculations of D. Ludwig presented in the chapter
9 in the section 4.
Let (n, ξ2, θ, τ) ∈ T ∗(Ωc), β ∈]0, θ(L)[ in a neighborhood of an boundary point. We give
ourselves a symbol a(n, ξ2, θ, β, τ, k) and a phase φ(θ, τ, ξ2) and we construct J(f), a function
defined in a neighborhood of the boundary n = 0 depending on f defined on the boundary by

(2.285) J(f)(n, θ, k) =

∫
eik[(θ−β).τ+nξ2+φ(θ,τ,ξ2)]a(n, ξ2, θ, β, τ, k)f(β, k)dβdτdξ2

We construct here a phase φ and a symbol a providing a general solution of P1.
In all this Section, we simplify notations and denote by R the function R(s(θ)).
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We introduce the operators T0, T1, T2 of order 0, 1, and 2 equal to:

T0(n, θ, ξ2, τ) = ξ2
n+R

+ ∂θ(
τ+∂θφ
(n+R)2

) + R′

R
n

n+R
− [(1− ξ2

2)
∂2
ξ22
φ

R
+ 4(1− ∂ξ2φ

R
)ξ2](n+R)−1,

T1(n, θ, ξ2, τ, ∂n, ∂θ, ∂ξ2) = ξ2
∂
∂n

+ (1− ξ2
2)(1− ∂ξ2φ

R
) ∂
∂ξ2

+ τ+∂θφ+n+R
(n+R)2

∂
∂θ
,

T2 = (n+R)−2[(1− ξ2
2) ∂

2

∂ξ22
− 4ξ2

∂
∂ξ2
− 2]− [ ∂

2

∂n2 + (n+R)−1 ∂
∂n

+ (n+R)−1 ∂
∂θ

((n+R)−1 ∂
∂θ

)].

Proposition 13.1. Let

J(f)(n, θ, k) =

∫
eik[(θ−β)τ+nξ2+φ(θ,τ,ξ2)]a(n, ξ2, θ, β, τ, k)f(β, k)dβdτdξ2.

For all M integer, P1(J(f)) = O(k−M ) if and only if
• the function φ is solution of

p̂1(− ∂φ
∂ξ2

, θ, τ +
∂φ

∂θ
, ξ2) = 0

(eikonal equation),
• the classical symbol a, developed in inverse powers of ik, verifies,

2T1a0 + T0a0 = 0,

and, for all M :
2T1aj + T0aj = −T2aj−1, 1 ≤ j ≤M.

This representation differs from the one used to study transverse reflection, where the
behavior in variables (n, θ) was computed by a function φ(θ, n, τ) such that φ(θ, 0, τ) = θτ .
Here, we consider a different phase in n because we want to take into account the singularity
in
√
n which appears in the equation of the characteristic manifold.

Proof. We consider this problem as an initial value problem associated with a differential
equation in ξ2, for using a representation of the Lagrangian manifold in coordinates (ξ2, θ),
the initial condition being φ(θ, τ, 0) = 0. We look for conditions on a and φ such that J(f) is
an asymptotic solution of P1 for all f defined on the boundary. More precisely, we compute
P1(J(f)) and reorder its expression according to the powers of k−1.

The principal term of P1(J(f)), which is of order k2, is written:

k2

∫
p̂1(n, θ, ξ2, τ +

∂φ

∂θ
)a(n, ξ2, θ, β, τ, k)f(β, k)eik[(θ−β).τ+nξ2+φ(θ,τ,ξ2)]dβdτdξ2

If we were to use the traditional approach used for asymptotic expansions, we would look
for φ solution of

p̂1(n, θ, ξ2, τ +
∂φ

∂θ
) = 0.

But, since the principal symbol depends on n, one cannot find a φ phase independent of n
verifying this partial differential equation. To get rid in part of the dependence in n of the
main symbol principal symbol, we use the two integration by parts equalities written below,
valid for any function A(n, ξ2, θ, β, τ, k) (by discarding the boundary terms):

(2.286)

∫
nAeik[(θ−β).τ+nξ2+φ(θ,τ,ξ2)]dβdτdξ2

=

−
∫

[− ∂φ
∂ξ2

A+ ik−1 ∂A
∂ξ2

]eik[(θ−β).τ+nξ2+φ(θ,τ,ξ2)]dβdτdξ2

(2.287)

∫
n2Aeik[(θ−β).τ+nξ2+φ(θ,τ,ξ2)]dβdτdξ2

=∫
[( ∂φ∂ξ2 )2A− ik−1(∂

2φ
∂ξ2

A+ 2 ∂φ
∂ξ2

∂A
∂ξ2

)− k−2 ∂2A
∂ξ2

2
]eik[(θ−β).τ+nξ2+φ(θ,τ,ξ2)]dβdτdξ2.

For this, we notice that

p̂1(n, θ, ξ2, τ +
∂φ

∂θ
) = (1 +

n

R
)−2[(1− ξ2

2)(1 + 2R−1n+R−2n2)− (R−1τ + 1)2].
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Considering A = A1 in the relation (2.286), with A1 given by:

A1(n, ξ2, θ, β, τ, k) =
2

R
(1 +

n

R
)−2(1− ξ2

2)a(n, ξ2, θ, β, τ, k)f(β, k),

and considering A = A2 in (2.287), with A2 given by

A2(n, ξ2, θ, β, τ, k) = R−2(1 +
n

R
)−2(1− ξ2

2)a(n, ξ2, θ, β, τ, k)f(β, k),

the principal term in k of P1(J(f)) becomes:

k2

∫ 3

dβdτdξ2
a

(1 + n
R

)2
[(1−ξ2

2)(1− 2

R
∂ξ2φ+(

∂ξ2φ

R
)2)−(1+

τ + ∂θφ

R
)2]f(β, k)eik[(θ−β).τ+nξ2+φ(θ,τ,ξ2)].

The new eikonal equation (obtained by cancellation of the principal term in k2 for any

function f and for any symbol a) amounts to replacing n by − ∂φ
∂ξ2

and τ by τ + ∂φ
∂θ in the

characteristic equation (2.283) :

(2.288) − ∂φ
∂ξ2

=
τ + ∂φ

∂θ

(1− ξ2
2)

1
2

+R((1− ξ2
2)−

1
2 − 1).

The Taylor expansion (2.284) leads thus to the relation

(2.289) − ∂φ
∂ξ2

= τ +
∂φ

∂θ
+

1

2
(R(s(θ)) + τ +

∂φ

∂θ
)ξ2

2 +O(ξ4
2)((1− ξ2

2)−
1
2 − 1).

Assume φ(θ, τ, ξ2) = φ0(θ, τ)+ξ2φ1(θ, τ)+ 1
2ξ

2
2φ2(θ, τ)+ 1

3φ3(θ, τ)ξ3
2 +O(ξ4

2). By replacing
this expansion in the relation (2.289), we verify that the phase φ admits the following expansion
in the neighborhood of ξ2 = 0:

(2.290) φ(θ, τ, ξ2) = −τξ2 −
1

6
(R(s(θ)) + τ)ξ3

2 +O(ξ4
2)

The symbol a, on the other hand, verifies the explicit transport equations obtained by can-
celling the term of magnitude k1 term and the term of magniture k0 in the form of the operator
obtained after the integrations by parts using A1 and A2. We thus identify in the last equality
of Proposition 13.1 the vector field T1, the function T0 and the remainder term T2 of the
Laplace operator (which in fact represents the operator P1 applied to the symbol a).

This completes the proof of the proposition 13.1. �

3. Expression of the parametrix through Fourier-Airy integral operators

3.1. Symbols for the parametrix. The parametrix written in (2.285) rewrites using
the modified Airy functions:

(3.291) w1(ξ) = Ai(e
2iπ
3 ξ), w2(ξ) = Ai′(e

2iπ
3 ξ)

as stated in the following Proposition:

Proposition 13.2. There are two functions φ0(n, θ, τ) and α(n, θ, τ), holomorphic in the
neighborhood of the strictly diffractive point (0, 0, 0), as well as two classical symbols s0 and
s1 such that

J(f)(n, θ, k) =

∫
eik((θ−β)τ+φ0(n,θ,τ))f(β, k)S(n, θ, β, τ, k)dβdτ,

where the symbol S(n, θ, β, τ, k) is given by

S(n, θ, β, τ, k) = s0(n, k
2
3α, θ, β, τ, k)ω1(k

2
3α) + k−

1
3 s1(n, k

2
3α, θ, β, τ, k)ω′1(k

2
3α) +R.

This result is based on the representation lemma for the phase φ solution of the eikonal
equation:
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Lemma 13.1. There exist two functions γ(θ, τ) and ρ(θ, τ), holomorphic in a neighborhood
of (θ, τ) = (0, 0), such that φ0(0, θ, τ) = τ2γ(θ, τ) and α(0, θ, τ) = −τρ(θ, τ), with, in addition

ρ(θ, 0) = ( 2
R(s(θ)) )

1
3 .

Proof. We note that the phase φ(θ, τ, ξ2)+nξ2 has two critical points (i.e. two values of ξ2
such that ∂ξ2(φ(θ, τ, ξ2)+nξ2) = 0 in a neighborhood of (τ, ξ2) = (0, 0)). These critical points,
denoted by (ξ2

c)+ and (ξ2
c)−, are solution of n− τ − 1

2 (R(s(θ)) + τ)(ξc2)2 +O((ξc2)3) = 0. The
phase considered here has thus two critical values that we denote respectively by φ+(n, θ, τ)
and φ−(n, θ, τ). There are two functions φ0(n, θ, τ) and α(n, θ, τ) and a holomorphic change
of variable z ↔ ξ2 (already obtained in the section 4) such that we have

(3.292) φ(θ, τ, ξ2) + nξ2 = φ0(n, θ, τ)− 1

3
z3 − α(n, θ, τ)z.

The two critical values of the phase in z written in (3.292) are equal to φ0(n, θ, τ)± 2
3α

3
2 . By

invariance of the critical values during a change of variable, we find:{
φ0(n, θ, τ) = 1

2 (φ+ + φ−)

α(n, θ, τ) = (− 3
4 (φ+ − φ−))

2
3

Using the result already used for the study of fold singularities for the Lagrangian manifold
(Proposition 9.7), the exact change of variable ξ2 ↔ z in (2.285) yields

(3.293)

J(f)(n, θ, k) =

∫
eik[(θ−β).τ+φ0(n,θ,τ)− 1

3 z
3−α(n,θ,τ)z]a(n, ξ2(z), θ, β, τ, k)

dξ2
dz

f(β, k)dβdτdz.

Using Boutet de Monvel’s division lemma [18], we obtain the existence of s0, s1, h such
that:

(3.294)
a(n, ξ2(z), θ, β, τ, k)dξ2dz =

s0(n, k
2
3α, θ, β, τ, k) + zs1(n, k

2
3α, θ, β, τ, k) + [∂zh+ ikh(−z2 − α(n, θ, τ))].

We notice that the previous integral splits into three terms.
The last term is exactly zero (we integrate a differential).

The first term involves the integral
∫
dze−ik( 1

3 z
3+α(n,θ,τ)z), which is an Airy function

because it is the inverse Fourier transform of ei
1
3 t

3

.
Remark that we do not consider the usual Airy function, w1 is one of the (complex)

oscillating solutions of the Airy equation which is used for considering incoming waves once a
direction is fixed (see [58] for an explanation).

The second term is the derivative with respect to argument of the previous Airy function.
We end up with:

(3.295)
J(f)(n, θ, k) =

∫
eik[(θ−β).τ+φ0(n,θ,τ)]k−

1
3 [s0(n, k

2
3α, θ, β, τ, k)w1(k

2
3α)

+k−
1
3 s1(n, k

2
3α, θ, β, τ, k)w′1(k

2
3α)]f(β, k)dβdτ +R

The definition of critical points yields ξc2 = ±(( 2
R(s(θ))+τ )(n − τ))

1
2 + O(n − τ), hence

φ± = O((n− τ)2)± 2
3 ( 2
R(s(θ))+τ )

1
2 (n− τ)

3
2 .

One deduces φ0(n, θ, τ) = O((n− τ)2) et α(n, θ, τ) = ( 2
ρ )

1
3 (n− τ) +O(τ) +O((n− τ)

3
2 ).

We check that φ0(0, θ, τ) is of the form O(τ2) and that α(0, θ, τ) = O(τ). This completes the
proof of the lemma. �

The rest R that we wrote in Proposition 13.2 comes from the fact that the Airy functions
are obtained when computing the integral on (−∞,+∞), while the integral considered here

is a local integral in ξ2, on a contour connecting −δ0 − iδ2
0δ2 to iδ0 + δ1δ

3
2
0 . Proposition 3.1

p 1451 of [66] allows to verify that the remainder is controlled when 0 < δ0 < D1 and when
|δ1|, δ2 are smaller than D0.

We deduce then
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Corollary 13.1. Let ξ0 = k
2
3 k

2
3 ( 2
R(s(θ)) )

1
3 and let ν = k

2
3 ( 2
R(s(θ)) )

1
3n (which is therefore

the variable n stretched according to the frequency as in Ludwig [70]). We verify that

(3.296)
k

2
3α(n, τ, θ) = k

2
3 ( 2
R(s(θ)) )

1
3n− k 2

3 ( 2
R(s(θ)) )

1
3 τ + β(n, θ, τ, k)

= ν − ξ0 + β(n, θ, τ, k).

3.2. Boundary Fourier-Airy operator associated with the Dirichlet boundary
condition. The symbol of the Fourier integral operator (3.295) is expressed through the
function w1, which is divergent at infinity. We introduce in this paragraph the domain of the
plane C| M complementary of

{z, |z −Me
iπ
3 | < ε, |=(e−

iπ
3 z)| ≤ ε(Re (e−

iπ
3 z)−M)}.

We introduce the functions, denoted wM1 and wM2 , bounded in C| M, equal to

(3.297)

{
wM1 (θ) = (e

2iπ
3 θ +M)

1
4 e−

2
3 (e

2iπ
3 θ+M)

1
2 (e

2iπ
3 θ−M/2)w1(θ)

wM2 (θ) = (e
2iπ
3 θ +M)−

1
4 e−

2iπ
3 e−

2
3 (e

2iπ
3 θ+M)

1
2 (e

2iπ
3 θ−M/2)w′1(θ).

These functions are the functions AM1 and AM2 calculated at e
2iπ
3 θ introduced in [66].

Canonical manifold associated with the boundary operator and Sjöstrand spaces
The notations and spaces introduced in this paragraph are written in detail in [89], to

which we refer the reader. We introduce the subharmonic functions on C| :{
ψ0(θ) = 1

2 (=θ)2

ψr(θ) = ψ0(θ)− 1
4 (sup|Re θ| − r, 0)2

Using the phase φ0 we define a special special subharmonic function l0 as in [66]. By
application of the theorem 8.1, we know that the canonical manifold Λl0 = {(β, 2

i
dl0
dβ )} allowing

to compute it is

{(∂τφ(θ, τ, ξ∗2), τ)},
with following conditions on ξ∗2 : {

∂ξ2φ(θ, τ, ξ∗2) = 0
∂θφ(θ, τ, ξ∗2) = −=θ.

Thanks to the change of variable, we can see that this system is equivalent to{
z2(θ, τ, ξ∗2) = −α(0, θ, τ)
τ2∂θγ(θ, τ) = z(θ, τ, ξ∗2)∂θα(0, θ, τ)−=θ.

The canonical manifold is written

{(∂τ (τ2γ)− ∂ταz, τ)} = {(∂τ (τ2γ)− ∂τα/∂θα[τ2∂θγ(θ, τ) + =θ], τ)}.
G. Lebeau used the Taylor expansion of the phase to give the proof of the existence of the
function l0. We limit ourselves here to giving an explicit method of construction, but which
cannot be applied as is. This subharmonic phase defines the Sjöstrand space on which the
Fourier integral operator given by (3.295) extends naturally. We recall then (Lebeau [66] p
1439-1440), that Hl0(|θ| < a) is the set of holomorphic functions θ → f(θ, k), θ ∈ C| on |θ| < a
such that

∀K ⊂ {|θ| < a},∀ε, ∃Cε,K suchthat, ∀x ∈ K,∀k ≥ 1, |f(θ, k)| ≤ Cε,kek(l0(θ)+ε).

Similarly, H+,κ
φ0

(|θ| < a) is the set of functions f(n, θ, k), holomorphic for θ ∈ X = {|θ| <
a} and for n in a neighborhood U in C| of [0, κ], such that f is uniformly bounded by ekC on
(n, θ) ∈ U × X, k ≥ 1 and whose p-th derivative in n is bounded on any compact K in X
and on n ∈ [0, κ[ by Cε,p,Ke

k(ε+φ0(θ)). The analytical spectrum of f in T ∗(]0, κ[×Λφ0
) is then

denoted by SSw,κδ,φ0
.

Symbol of the non local operator Let us introduce the symbol

σM (θ, t, k) = (M − k 2
3 t2ρ(θ, t2))

1
4 e

2
3kt

3ρ
3
2 (θ,t2)+ 2

3 (M−k
2
3 t2ρ(θ,t2))

1
2 (k

2
3 t2ρ(θ,t2)+M/2)
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and the phase F (θ, t) = t4γ(θ, t2) + 2
3 t

3ρ
3
2 (θ, t2).

The non-local operator that defines the parametrix is

I(h)(θ, k) =

∫
dβ

∫
2tdteik[(θ−β)t2+F (θ,t)]σM (θ, t, k)h(β, k).

We write the result of Proposition 3.2 of [66]:

Lemma 13.2. If X defines the disk of radius D2r
2 and if the integral defining I is on the

disk of radius r/D2, then h ∈ Hψr (Bd)⇒ I(h) ∈ Hl0(X).

This lemma allows to define the parametrix that we use which is J ◦ I. We then have the
Proposition ([66], propositions 3.1 et 3.2).

Proposition 13.3. Let h ∈ Hψr (Bd). Then I(h) ∈ Hl0(X), and we can calculate J(h)
for Dr2 ≤ d0.

i) The distribution J ◦ I(h) belongs to H+,κ
φ0

(|θ| < d2) for d2 and κ small enough.

ii) J ◦ I(h) is an asymptotic solution of P , that is

SSw,κ∂,φ0
(P (J ◦ I(h))) = ∅.

Proof. We obtain a solution depending on a Fourier integral operator of symbol bounded
in the variables (ν, ξ0). This imposes that we restricted to the region where ξ0 is controlled;
more precisely, the mathematical analysis of [66] imposes the majoration =ξ0 ≤ c+ δ|Re ξ0|,
this majoration will be specified hereafter. On the other hand, we keep the variable ν as
a notation for the stretching of the variable n from the previous section. The result is
an expression in ν, which gives the size of the transition zone. The majorations of the
Airy functions functions allow to give a uniform, but oscillating in the neighborhood of
V = {(n, θ, τ), |k 2

3α(n, θ, τ)| ≤ C}, representation. The calculation, φ0 and α being known, of
the solution J(f)(n, θ, k) is exact. The operator J is the classical Fourier integral operator of
symbol

[s0(n, k
2
3α, θ, β, τ, k)w1(k

2
3α) + k−

1
3 s1(n, k

2
3α, θ, β, τ, k)w′1(k

2
3α)]

and of phase (θ − β).τ + φ0(n, θ, τ). �

3.3. Fourier integral operator for the impedance boundary condition. Inspired
by the section 2, we introduce the impedance operator L. It is of

(3.298) Lu(θ, k) = ∂nu(0, θ, k) + ikZ(θ)u(0, θ, k).

The application of (3.298) to (2.285) leads to:

(3.299) L(J(f))(θ, k) =

∫
eik[(θ−β).τ+φ(θ,τ,ξ2)][∂na+ ikξ2a+ ikZa]|n=0f(β, k)dβdτdξ2

This integral is treated in the same way as the integral giving J , in particular it is expressed
with the same changes of variable. We have to calculate the symbol

sZ(ξ2, θ, β, τ, k) = ∂na(0, ξ2, θ, β, τ, k) + ikξ2a(0, ξ2, θ, β, τ, k) + ikZa(0, ξ2, θ, β, τ, k).

One performs the change of variable ξ2(z) and we express sZ(ξ2(z), θ, β, τ, k)dξ2/dz(z) using
Boutet de Monvel division theorem which writes

s
dξ2
dz

= ik(sL0 + zsL1 + (∂zh
L + ikhL(−z2 − α))).

The two terms sL0 and sL1 associated to this new symbol can be evaluated using the Taylor
expansion of ξ2(z), and we thus take up the expansion of pages 479-481 of [56]. Lemma 16 of
[56] indicates that, for n = 0 (which is the only condition we are interested in when we study
the operator at boundary):

ξ2(z) = ã(θ, τ) + bz + c
z2

2
+ d

z3

6
+O(z4),

with functions ã, b, c satisfying
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φ(θ, τ, ã) = τ2γ(θ, τ)
b∂ξ2φ(θ, τ, ã) = −τρ(θ, τ)
c∂ξ2φ(θ, τ, ã) = −b2∂2

ξ2
2
φ(θ, τ, ã).

Note then σjZ(θ, τ, k) = ∂j
ξj2

(sZ
dξ2
dz )(θ, τ, ã, k) et ξ0 = k

2
3α(0, θ, τ) = k

2
3 τρ(θ, τ). One can

express in a simple way the symbol sL0w1(ξ0) + k−
1
3 sL1w

′
1(ξ0), and one gets

2πe
iπ
3 k−

1
3 [(bσ0

Z −k−
2
3 ξ0(dσ0

Z + bcσ1
Z +

1

2
b3σ2

Z))w1(ξ0) + ik−
1
3 [σ0

Zc+ b2σ1
Z +O(k−

2
3 ξ0)]w′1(ξ0)].

One checks that the principal term of the symbol is

2πe
iπ
3 k−

1
3 a(0, 0, θ, β, 0, k)[ρ(θ, 0)ω1(ξ0)+k−

1
3 e−

iπ
6 e−

2iπ
3 ρ2(θ, 0)[Z(θ)+

1

2

∂θρ

ρ
(θ, 0)

∂ξ2a

a
|β=θ,τ=0]ω′1(ξ0)].

This principal term vanishes for all ξ0 such that ω1(ξ0) = 0.

4. 2-microlocal calculation of the diffracted wave

4.1. Roots of the symbol of the boundary operator. This section is not ”self
contained” and is rather a summary of the methods and results of G. Lebeau [66] who set
up the algebra of the unilateral operators and who constructed the pseudo-differential 2-
microlocal calculus allowing the calculation of the inverse of a unilateral operator and the
article of the author of this book [56] who explicitly constructed the inverse of the unilateral
operator at the boundary obtained here. The complete presentation goes beyond the aim of
this book. It gives a flavor of what is needed for the proof.

We introduce the open set Ω(r, δ, γ1, k) included in (C| ∩B(0, r))2 of points (θ, τ) satisfying

=τ − γ1k
− 2

3 < δ|Re τ |. Soit
We verify that, for all M , there exists γ1(M, δ, r) such that the two functions wM1 and wM2

are bounded in Ω(r, δ, γ1(M, δ, r), k). Let us introduce the open set VM,ε0 , complementary of

{|=(e
2iπ
3 z)| < −ε0(Re (e

2iπ
3 z) +M)} ∪ {|e 2iπ

3 z +M | ≤ ε0}. We have:

Lemma 13.3. There exist two constants C and α0 such that if P is the number of zeros
of w1 in VM,ε0 , there exist P analytical functions analytic functions ξ1, ..., ξp verifying:

∀α′ ≤ α, |wm1 (ξ0)| ≤ α′, ξ0 ∈ VM,ε0 ⇒ ∃p ≤ P tel que |ξ0 − ξp| ≤ Cα′.
The zeroes of sL0 ω1(ξ0) + k−

1
3 sL1 ω

′
1(ξ0) are approximated by the zeroes of w1.

Proof. This is the result of lemma 4 of [56] p 433. We enunciate the results of [56].
Phase reduction

We verify by a stationary phase calculation that the operator I introduces a phase term
equal to −ikτ2γ(θ, τ) + f(M, ξ0), and that the operator J already has a term of the form

ikτ2γ(β, τ)− f(M,k
2
3 ρ(β, τ)), where f is the function 2

3 (x+M)
1
2 (x−M/2) + 1/4 ln(x+M).

Let W (θ, β, τ, k) be the function defined by

(θ − β)τW = τ2[γ(β, τ)− γ(θ, τ)] + (ik)−1[f(M,k
2
3 τρ(θ, τ))− f(M,k

2
3 τρ(β, τ))].

The change of variable η = τ(1−W ) allows to obtain in the definition integral of L(J◦I(h))
a phase equal to ik(θ − β)η without changing significantly significantly the symbol. This is
demonstrated rigorously in any dimension in Lemma 7 p 448 of [56]. Then there exists a
symbol E(θ, β, η, k) such that

L(J ◦ I(f))(θ, k) =

∫
ei(θ−β)ηE(θ, β, η, k)f(β, k)dβdη.

Symbol E writes

E(θ, β, η, k) = E1(θ, β, η, k)ωM1 (k
2
3α(0, θ, τ(θ, β, η))) + k−

1
3E2(θ, β, η, k)ωM2 (k

2
3α(0, θ, τ(θ, β, η))).
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Conjugation by the Gevrey 3 exponential operator The roots of symbol E are
given through the relation

(4.300) τ = k−
2
3 e−

2iπ
3 ξp(

R(s(θ))

2
)

1
3 +O(k−1).

Solving k
2
3 τρ(θ, τ) = ξp is equivalent to finding g telle que τ = k−

2
3 g(θ, k). One has

then g(θ, k)ρ(θ, k−
2
3 g(θ, k)) = ξp. Assuming g bounded for k ≥ 1, one gets ρ(θ, k−

2
3 g) =

ρ(θ, 0) +O(k−
2
3 ). Heuristically, the phase factor obtained then ”looks like”:

ikτθ = ikk−
2
3 θe−

2iπ
3 ξp(

R

2
)

1
3 = k

1
3 [e−

iπ
6 θξp(

R

2
)

1
3 ].

This gives the idea to conjugate the operator L(J ◦I) by an operator of the form eik
1
3H(θ),

to obtain a power k
1
3 . Let Op(T ) be the operator

(4.301) Op(T )(f)(θ, k) = Op(eik
1
3H(θ))L[e−ik

1
3H(β)f(β, k)].

By application of the lemma 7.7 (Kuranishi’s trick), this corresponds to change of dual
variable given by:

(4.302) Σ = η + k−
2
3H ′(θ).

We consider from this point on the function H associated to the first zero of
the function ω1. Using the first zero of the Airy function ω (such that Ai(−ω) = 0 and

Ai(x) 6= 0 for x > −ω), we see that ξ1 = e
iπ
3 ω. Let us choose then H ′(θ) = −e iπ3 ξ1(R(s(θ))

2 )
1
3

and H(0) = 0. The symbol E vanish for η = −k− 2
3H ′(θ). The principal symbol of the

operator Op(T ) cancels2 for Σ = 0. The change of variable (4.302) corresponds to ξ0 =

ξ1 + e
2iπ
3 k

2
3 ( 2
R(s(θ)) )

1
3 Σ, which gives:

Op(T )(f)(θ, k) =

∫ ∫
eik(θ−β).ΣS1(θ, β,Σ, k)f(β, k)dβdΣ

where

S1(θ, β,Σ, k) = 2πk−
1
3 (

2

R(s(θ))
)

1
3 (
kR(s(θ))

2
)−

1
3w′1(ξ1)[Z(ikΣ)e

iπ
6 − 1 + k−

1
3 r1].

�

4.2. Algebra of unilateral operators. Recall that we have introduced the open sets
Ω(r, δ, γ1, k) and that the symbols wM1 and wM2 are bounded on these open sets. Let us notice
that the behavior of wM1 is the same as the behavior of wM1 (ξ0) in τ provided that we chose
M sufficiently large compared to ξ1, and that we modify the constant γ1 such that the symbol
wM1 (ξ0) is bounded in Ω(..., γ1) in the variable τ , and be bounded in Ω(..., γ2), 0 < γ2 < γ1 in
the variable Σ.

We define a space of symbols associated to these open sets, which must be provided with
an algebraic structure. This space is E+

γ2
, the set of symbol sequences pn(Σ, θ, k) such that

supΩ(r,δ,γ2,k)|(Σ− iγ2k
− 2

3 )npn(Σ, θ, k)| ≤ ABnn!

with the composition law associated to the formal representation

p(Σ, θ, k) =
∑
n

pn(Σ, θ, k)(Σ− iγ2k
− 2

3 )−n(ik)−n.

In particular

(p ◦ q)n(Σ, θ, k) =
∑

m+m′+j=n

∂jΣpm(Σ, θ, k)∂jθqm′(Σ, θ, k).

We verify that an elliptic element (whose principal symbol is bounded on Ω(r, δ, γ2, k)) is
invertible in this space (Proposition 4.1.3 of [66] p 1465). We define the operator

2This approach, which is facilitated by the fact that the boundary is of dimension 1, is the same as Lemma
8 of [56] p 449-450.
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(4.303) D−nγ2
v(θ) =

∫ θ

−A
e−γ2k

1
3 (θ−β) (θ − β)n−1

(n− 1)!
v(β, k)dβ,

and the operator associated to a symbol p of the space is

Op(p)(u) =
∑
n

Opc(pn)(D−nγ2
(u)).

the sign c designating the action of a classical symbol in variable (θ,Σ). We have shown that

S1(θ, β,Σ, k) = ik2π(
kR

2
)−

2
3 e

iπ
6 ω′1(ξ1)[ikZΣ− e− iπ6 + k−

1
3 r1(θ, β,Σ, k)].

The reduction lemma 7.3 allows to write

Op(S1) = Op(S2)

with

S2(θ,Σ, k) = ik2π(
kR(s(θ))

2
)−

2
3 e

iπ
6 ω′1(ξ1)[ikZΣ− e− iπ6 + k−

1
3 r2(θ,Σ, k)].

Lemma 13.4. Let e0(θ, k) = k−
2
3 2π(ik)2(kR(s(θ))

2 )−
2
3Z(θ)e

iπ
6 ω′1(ξ1). There exists a symbol

r2 such that

r(θ,Σ, k) = Z−1(θ)[−e−
iπ
6 + k−

1
3 r2(θ,Σ, k)]

and

S2(θ,Σ, k) = k
2
3 e0(θ,Σ, k)[Σ1 + (ik)−1r(θ,Σ, k)].

Proof. Let us introduce ẽγ2

0 (θ, k) = e0(θ,Σ, k)(Σ − iγ2k
− 2

3 ). Symbol ẽγ2

0 is elliptic in
E+
γ′ , γ

′ < 0. We have the relation

(Σ− iγ2k
− 2

3 )(ẽγ2

0 )−1 ◦ S2 = Σ + (ik)−1r̃(θ,Σ, k),

the symbol r̃ satisfying r̃(θ, 0, k) − r(θ, 0, k) = O(k−
1
3 ). We introduce the symbol h(θ, σ, k)

defined by the system (we find a method used for example for the inversion of an elliptic
operator) {

∂θh(θ,Σ.k) = (h ◦ r̃)(θ,Σ, k)
h(θ0,Σ, k) = 0.

One gets

(4.304) h0(θ,Σ, k) = exp(

∫ θ

θ0

r̃(u,Σ, k)du) = (1 +O(k−
1
3 ))exp(

∫ θ

θ0

r(u,Σ, k)du).

�

Let R0
0(θ,Σ, k) the symbol equal to

∫ 1

0
∂Σh0(θ, uΣ, k)du.

Lemma 13.5. • The inverse of the operator

Σ

Σ− iγ2k−
2
3

+
1

ik

r̃(θ,Σ, k)

Σ− iγ2k−
2
3

in E+
γ′ , γ

′ < 0, writes

(Σ− iγ2k
− 2

3 ) ◦ h−1 ◦ [R0
0(θ,Σ, k) + ikD−1

0 ◦ h0(θ, 0, k) +R0(θ,Σ, k)],

where R0 is a symbol of order k−
2
3 .

• The equality Op(S2)f = g is equivalent to

f = (Σ− iγ2k
− 2

3 ) ◦ h−1 ◦ [R0
0 + ikD−1

0 ◦ h0 +R0] ◦Op((ẽγ2

0 )−1)(k−
2
3 g).

The proof of this lemma is a consequence of proposition 6 pp 443 of [56].
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4.3. Calculation of the trace of the normal derivative of the diffracted wave.
We use the following consequence of the previous lemma:

Corollary 13.2. Let g ∈ Hφ0 Let f defined by Op(T )f = g. Then

f(θ, k) =
1

2πik
1
3ω′1(ξ1)× e iπ6 Z(θ))

∫ θ

−A
(
R(s(β))

2
)

2
3 exp(e−

iπ
6

∫ θ

β

du

Z(u)
)g0(β, k)dβ.

Proof. One checks the equality, in E+
γ′ , γ

′ < 0:

Op((ẽγ2

0 )−1)(k
2
3 g) = e−1

0 (θ, 0, k)(−iγ2k
− 2

3 )−1(1 +O(k−
1
3 ))g(θ, k)

that is

Op((ẽγ2

0 )−1)g = [2π(ik)2Z(θ)e
iπ
6 ω′1(ξ1)(−iγ2k

− 2
3 )]−1(

kR(s(θ))

2
)

2
3 g0(θ, k)(1 +O(k−

1
3 )).

Applying (4.303), one finds

ikD−1
0 h0(ẽγ2

0 )−1g =
(1 +O(k−

1
3 ))

2π(ik)2e
iπ
6 ω′1(ξ1)(−iγ2k−

2
3 )

∫ θ

−A
(
kR(s(β))

2
)

2
3 (Z(β))−1g0(β, k)h0(β, k)dβ.

The second relation of Lemma 13.5 gives

f(θ, k) = Op(Σ− iγ2k
− 2

3 )[
(1 +O(k−

1
3 ))

2π(ik)2e
iπ
6 ω′1(ξ1)(−iγ2k

− 2
3 )

∫ θ

−A
(
kR(s(β))

2
)

2
3
g0(β, k)

Z(β)

h0(β, k)

h0(θ, k)
dβ].

The symbol Σ − iγ2k
− 2

3 is a classical symbol, that we compute at Σ = 0. We replace h0 by
the expression (4.304) and the terms −iγ2k

− 2
3 simplify:

f(θ, k) =
(1 +O(k−

1
3 ))

2π(ik)2e
iπ
6 ω′1(ξ1)

∫ θ

−A
(
kR(s(β))

2
)

2
3
g0(β, k)

Z(β)
e
∫ β
θ
r(u,0,k)dudβ.

The term γ2, which indicates in which symbol space the operator S1 is elliptic, has been
simplified in the expression. This is natural since the result should not depend on the space
in which the calculation is performed. The definition of r in the lemma 13.4 gives

exp(

∫ β

θ

r(u, 0, k)du) = exp(e−
iπ
6

∫ θ

β

du

Z(u)
)(1 +O(k−

1
3 )).

This completes the proof of the corollary. �

We obtain the Theorem:

Theorem 13.2. The exact solution, in a neighborhood of the shadow zone, defined for
θ > θ0 and 0 ≤ n ≤ g(θ), g strictly increasing, is given by

ud(n, θ, k) = ai(0,θ0,k)eikφ(0,θ0)e
iπ
3

2π(Ai′(−ω))2

∫
eik[(θ−β)τ+φ0(n,θ,τ)]+ik

1
3 (H(θ0)−H(β))

×(kR(s(θ0))
2 )

1
3 e

∫ β
θ0

du

e
iπ
6 Z(u)S(θ, β, n, τ, k)dτdβ.

where S is given in the proposition 13.2. Obtaining the solution of P is obtained by multiplying
by the factor eik(s−s(θ0)). The wave obtained propagates at speed 1 on the boundary.

Proof. Notice that the relation between Op(T ) and L(J ◦ I) is (4.301). One defines

F (θ, k) = [(Op(e−ik
1
3H(β)))−1f ](θ, k). Then

f(θ, k) = [Op(e−ik
1
3H(β))F ](θ, k).

Equation (3.298) is equivalent to

Op(eik
1
3H(θ))[L(J ◦ I)[Op(e−ik

1
3H(β)F ] = −[Op(eik

1
3H(θ))Lui](θ, k).
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The function ui is a solution of the wave equation in the vacuum. We know that its
wavefront set meets the boundary C at a strictly diffractive point, characterized by its Euler
angle θ0. All the points of the boundary that intersect with a tangent ray are strictly diffractive
because the boundary is strictly convex. Then we write

ui(θ, n, k) = eikφ(n,θ)ai(n, θ, k)

where the phase φ, solution of the eikonal equation, verifies ∂nφ(0, θ0) = 0.
Thus (Y denotes the Heaviside function 1IR+)

Lui(θ, k) = ik[Z(θ)ai(0, θ, k) + ∂nφ(0, θ)ai(0, θ, k) +
1

ik

∂ai
∂n

(0, θ, k)]eikφ(0,θ)(1− Y (θ − θ0)).

The application of the corollary 13.2 allows to obtain

F (θ, k) =
−k

2πe
iπ
6 k

1
3ω′1(ξ1)

∫ θ

−A
(
R(s(β))

2
)

2
3 e

∫ θ
β
e
− iπ

6 du
Z(u)

+ikφ(0,β)−ik
1
3H(β)

ai(0, β, k)[1+
∂nφ(0, β)

Z(β)
](1−Y (β−θ0))dβ.

Noting that, by the following relation allowing to calculate φ (lemma 10 p 463 of [56])

φ(0, β) = φ(0, θ0) +
1

6
R(s(θ0))(β − θ0)3 +O(β − θ0)4

and that

H(β) = H(θ0)− e iπ3 ξ1(
R(s(θ0))

2
)

1
3 (β − θ0) +O((β − θ0)2)

one is left with, m = k
1
3 (β − θ0)(R(s(θ0))

2 )
1
3

eikφ(0,β)+ik
1
3H(β) = eikφ(0,θ0)+ik

1
3H(θ0)ei

m3

3 −e
iπ
3 ξ1m+k−

1
3 ψ(m,k−

1
3 ).

We note that the integration in β will allow, for any θ > θ0, to assign a value to F (θ, k).
Indeed, the interval of integration [−A, θ] contains θ0. Performing the change of variable

β → m, we verify that the new bounds of the integral are k
1
3 (θ− θ0)(R(s(θ0))

2 )
1
3 and k

1
3 (−A−

θ0)(R(s(θ0))
2 )

1
3 . When k tends to +∞, these respective bounds tend to ±∞, which implies

that the difference term between the integral on IR and the integral studied is uniformly
decreasing in k, of the form e−ck for θ − θ0 bounded. After using the change of variable and
the approximations l(β, k) = (1 +O(k−

1
3 ))l(θ0, k) for the terms of the symbol, we find

F (θ, k)−O(e−ck) = −k 1
3

(1 +O(k−
1
3 ))

e
iπ
6

(
2

R(s(θ0))
)

1
3 ai(0, θ0)exp(

∫ θ

θ0

du

e
iπ
6 Z(u)

)
ω1(e−

2iπ
3 ξ1)

ω′1(ξ1)
.

Using 2πAi(ωe−
iπ
3 ) = e

iπ
6

Ai′(−ω) et ξ1 = e
iπ
3 ω, one deduces

ω1(e
−2iπ

3 ξ1)

ω′1(ξ1)
=

1

2πi
(Ai′(−ω))−2.

One has then

F (θ, k) = (
kR(s(θ0))

2
)

1
3 e

iπ
3 ai(0, θ0)exp(e

−iπ
6

∫ θ

θ0

du

Z(u)
)eikφ(0,θ0)+ik

1
3H(θ0) (1 +O(k−

1
3 ))

2π(Ai′(−ω))21
.

One deduces easily f(θ, k) = e−ik
1
3H(θ)F (θ, k)(1 +O(k−

1
3 )). Finally, we can calculate the

solution at any point by the relation

(J ◦ I)(f) = ud(n, θ, k).

We have thus demonstrated Theorem 13.2. �
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We see, in the expression of this solution in the shadow region, that the curve n = g(θ)
is the expression in coordinates (n, θ) of the half line coming from the point M(s(θ0)) which
direction is ~t(s(θ0)) = ∇φ(0, θ0). Indeed, the bicharacteristics of the classical wave operator
are straight lines, and the change of variable does not transform these geometrical objects.

Then, we can note that Re (−iH(θ)) = (Re ie
2iπ
3 ω)(R(s(θ))

2 )
1
3 . Comme Re (ie

2iπ
3 ) =

−Re e
iπ
6 = − cos π6 , we can verify that, for θ0 + 2δ0 > θ > θ0 + δ0, there exists a constant

C(δ0), which can be taken equal to

δ0minθ∈[θ0+δ0,θ0+2δ0](
R(s(θ))

2
)

1
3ω cos

π

6

such that, for n > g(θ)− c′δ0,

|ud(n, θ, k)| ≤ Ce−k
1
3C(δ0).

This indicates that, in the region n > g(θ), the calculated wave decays faster than any inverse
power of k. It is therefore C∞ in this region. We demonstrate (see [66] or [56]) that there is
propagation of analytic singularities.

This generalizes Friedlander’s result (Theorem 13.1) for the singularity propagation C∞

for glancing rays at an analytic propagation of singularities on generalized analytic rays which
are the union of a bicaracteristic of the vacuum wave operator operator up to the point
M(s(θ0)), which are then an integral curve of the wave operator reduced on the boundary (on
C) and finally again a bicaracteristic curve of the wave operator in vacuum.

The generalized ray of the operator P − ∂2
t2 , P = ∂2

n2 +R(n, s, ∂s) writes

γ− ∪ γ̃ ∪ γ̃+

where γ− is a bicharacteristic of P − ∂2
t2 in T ∗(IR2 × IRt), γ− ∩ γ̃ = {ρ0} ⊂ G, γ̃ is the

bicharacteristic, in T ∗(IR × IRt), of the operator R(0, s, ∂s) − ∂2
t2 , passing through ρ0, and

γ+ is the bicharacteristic, in T ∗(IR2 × IRt), of the operator P − ∂2
t2 , passing through γ̃ ∩ γ−.

Il thus exists an infinite number of generalized bicharacteristics passing through ρ0. Let us
finally note that we have constantly used the hypothesis R 6= 0, which is exactly equivalent
to the strict convexity of C. The points of G are then called strictly diffractive points. The
singularity propagation theorem is written, in in this case:

Theorem 13.3. Let P be a hyperbolic differential operator of order 2. Let Ω be be a
regular open. We suppose that the manifold glancing of P with respect to to Ωc, G, has only
strictly diffractive points, that is, if ψ is an equation of ∂Ω such that Ωc = {ψ > 0}, then

{{ψ, p}, p}
{ψ, p}, ψ}

|p=ψ=0 > 0

There is propagation of analytic singularities on generalized bicaracteristics. The above calcu-
lation proves that the transfer operator is explicit in the case of a differential operator of order
2 admitting in the glancing manifold only strictly diffractive points.

5. Conclusion on the rays

There are three types of generalized bicaracteristics of the operator P0 − ∂2
t2 studied in

this work:
• ”elliptic” bicaracteristics, which coincide with the usual bicaracteristics in IR2 × IRt of

P0 − ∂2
t2 . The calculation of the propagated wave is the subject of the chapter 3, the proof of

the propagation theorem of singularities (Theorem 10.1) in the chapter 10.
• the hyperbolic bicaracteristics, which are the union of a ray which intersects the bound-

ary in a transverse way and the reflected ray generated by this point of intersection (we
consider the other solution of the problem ξ2

n = r(0, x′, ξ′)). The calculation of the coefficient
of 10.6, and the theorem of reflection of singularities is the theorem 10.2.
• the diffractive bicharacteristics, which are the union of a bicaracteristic bicharacteris-

tic meeting the boundary at a diffractive point, of a segment of length on the boundary in
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dimension 2, and then a bicomponent which diffracts which diffracts (i.e. tangent) from the
boundary at the end of the segment the end of the segment, which was the subject of this
chapter. We have seen that all generalized bicharacteristics carry information. This
principle is called diffraction (what is happens for the incident wave at one point is reflected
on an infinite number of rays for the diffracted wave). The segments of the boundary are
called rays.
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Let’s finish with the figures representing the front that take into account the propagation,
transverse reflection, and diffraction:

Figure 12
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[32] J. J. Duistermaat and L. Hörmander: Fourier Integral Operators II Acta Math. 128 (1972) p 183-269

[33] J. J. Duistermaat and V. Guillemin : The spectrum of positive elliptic operators and periodic bicharac-

teristics Invent. Math. 29 (1975), pp 39-79
[34] Yu.V. Egorov : On canonical transformations of pseudodifferential operators Uspekhi Mat. Nauk 25

(1969), 235-236
[35] R.K. Ellis, An introduction to the QCD Parton Model, FERMILAB-CONF-88/60-T, May 1988

[36] R.K. Ellis and W.J. Stirling, QCD and Collider Physics, 1990-1991 CERN Academic Training Program.

[37] A. Erdelyi: Asymptotic Expansions Dover Publ. Co., New York, 1956
[38] V. Filippov, Sur une asymptotique correcte pour la solution de la diffraction de la zone d’ombre (en russe)
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Appendix: Application à la physique des particules

0. Introduction

Nous présentons ici, sur une idée d’E. Pilon, un exemple simple d’application du théorème
de la phase stationnaire tel que les physiciens des particules peuvent l’utiliser. La section 1
est due à E. Pilon, s’inspirant de [83]. Dans un premier paragraphe, nous définissons la
quantité physique que nous étudions; il s’agit en l’occurence de la distribution de gluons dans
un proton. Dans un deuxième paragraphe, nous obtenons la forme intégrale d’un équivalent
de la densité de probabilité. La section 3 est consacrée à une généralisation du théorème de
la phase stationnaire énoncé plus haut, en insistant sur quelques difficultés dues au fait que le
point de phase stationnaire n’est pas sur le contour. Nous donnons alors une interprétation
physique du résultat.

1. Le contexte physique

Comme le neutron, avec lequel il constitue les noyaux des atomes, le proton n’est pas une
particule élémentaire : c’est un état lié de sous-constituents, des quarks ( quanta de matière )
et des gluons ( quanta du champ de rayonnement associé à l’interaction considérée; ils sont à
l’interaction forte au niveau élémentaire ce que les photons sont à l’électromagnétisme ). Ces
sous-constituents sont très fortement liés - quarks et gluons sont astreints à se “confiner” en
états liés (appelés génériquement hadrons) : pour des raisons énergétiques, il leur est interdit
de s’échapper librement les uns des autres à des distances supérieures au femtomètre, typique-
ment le rayon d’un proton.

Néanmoins, lorsqu’un proton subit une collision à haute énergie devant son énergie de
masse, et mettant en jeu un transfert d’énergie-impulsion grand devant l’énergie de liaison
de ses sous-constituents, ce proton se comporte, de facon la plus probable, non pas comme
un tout cohérent réagissant “d’un seul tenant”, mais comme un faisceau de quarks et gluons
collimés, quantiquement incohérents et quasi-libres ( appelés génériquement partons ). Un
seul parton participe activement à la collision à grand transfert; les autres n’interviennent
qu’ultérieurement lors de la recombinaison des divers quarks et gluons produits en hadrons
dans l’état final de la collision.

Parmi les quantités physiquement pertinentes lors de l’étude de ces collisions figurent les
“densités partoniques” dans le proton, notées Ga(x,Q2), qui fournissent la densité de proba-
bilité xGa(x,Q2) pour qu’un parton d’espèce a, ( quark ou antiquark de tel ou tel type, ou
gluon ) ayant dans le hadron une “épaisseur transverse” ~/Q ( perpendiculairement à l’axe
de la collision; Q est de l’ordre de grandeur du transfert d’énergie-impulsion de la collision ),
porte la fraction x ( entre 0 et 1 ) d’énergie-impulsion du proton incident dont il fait partie.
Le lecteur intéressé par les détails se reportera utilement à [83], [35], [36].

La ChromoDynamique Quantique, théorie de l’interaction forte au niveau élémentaire des
quarks et des gluons, permet en principe de calculer ces quantités; toutefois en pratique leur
calcul complet est actuellement inextricable.
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2. Equation régissant Ga.

Lorsque Q2 est grand devant le carré de l’énergie de masse du proton, et lorsque x n’est,
ni très petit devant 1, ni voisin de 1, la dépendance en Q2 des densités partoniques Ga(x,Q2)
est contrôlée par l’équation linéaire de la forme :

(2.305) Q2 ∂
∂Q2Ga(x,Q2) = ᾱ(Q2)

∑
b

∫ 1

0

dy dz δ(x− yz)Pab(y)Gb(z,Q
2)

appelées “équations de Dokshitzer-Gribov-Lipatov-Altarelli-Parisi” [31], du nom de leurs in-
venteurs ( voir aussi les cours [35], [36], [83] ), où

• le paramètre de couplage ᾱ(Q2) est une fonction connue ( inversement proportionnelle
au logarithme de Q2 );

• les Pab(z) sont des distributions connues.

Une méthode de résolution standard consiste à effectuer une transformation de Mellin sur
x :

(2.306) Ḡa(n,Q2) =

∫ 1

0

dxxn−1Ga(x,Q2).

En introduisant la variable dite “d’évolution naturelle” ξ définie par

(2.307) ξ =

∫ Q2

Q2
0

dQ2

Q2 ᾱ(Q2),

on obtient une équation différentielle lin’eaire du premier ordre pour chaque Ḡa(n,Q2), ex-
plicitée en (3.309). Les “conditions initiales”, pour un Q2

o de l’ordre de grandeur du carré
de l’énergie de masse du proton, sont incalculables à l’heure actuelle à partir des premiers
principes. Il s’agit plutôt de ce que l’on “mesure” dans ces collisions. Dans cet exemple, nous
les paramètrerons sous une forme simple. Dans la “représentation des x”, ce paramétrage est
de la forme :

(2.308) Ga(x,Q2
o) ' Naxαa−1(1− x)βa Pa(x)

où

• N est une normalisation;
• αa > −1 contrôle le profil à petit x;
• βa > 0 contrôle le profil à x voisin de 1;
• Pa(x) est une fonction simple contrôlant le profil aux x intermédiaires,

auquel correspond, par transformation de Mellin (2.306), la forme en “représentation des n”
des conditions initiales Ḡa(n,Q2

0).
La solution recherchée en “représentation des x” s’obtient alors par transformée de Mellin

inverse. Le traitement usuel de cette transformée de Mellin inverse s’effectue par l’intermédiaire
d’un calcul numérique, ou, dans certains cas, grâce à une application du théorème de la phase
stationnaire. Rigoureusement parlant, ces équations sont obtenues dans le régime où

ᾱ(Q2) << 1, ᾱ(Q2)|Logx| << 1, ᾱ(Q2)|Log(1− x)| << 1

et elles sont physiquement incorrectes hors de ce domaine. Il est malgré tout intéressant de
l’étudier dans le cas où x << 1, ce qui sera un cas d’application du théorème de la phase
stationnaire.

3. Formulation du problème lorsque x << 1

La fonction ( écrite pour le gluon ) H̃g(n, ξ) = Ḡg(n,Q
2(ξ)) est solution d’une équation

de forme :

(3.309)
∂H̃g
∂ξ (n, ξ) =

(
c

n−1 − b+ o(n− 1)
)
H̃g(n, ξ)
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où b et c sont des constantes positives connues. En supprimant le terme o(n − 1) et en con-
sidérant la nouvelle équation ainsi obtenue, la nouvelle fonction inconnue étant notée Hg(n, ξ),
on trouve la solution en “représentation des n” :

(3.310) Hg(n, ξ) = e
cξ
n−1−bξHg(n, 0)

Utilisant la transformée de Mellin inverse, on trouve son expression en “représentation des x”
après changement de variable ω = n− 1 :

(3.311) xM−1(Hg)(x, ξ) = e−bξ
∫
Cω

dω
2πix

−ωe
cξ
ω Hg(1 + ω, 0)

Cω est un contour parallèle à l’axe imaginaire pur, et passant à droite de 0, singularité domi-
nante de l’intégrand.

Avec ζ = Log 1
x , u =

√
c ξ ζ, ω = t

√
c ξ
ζ et f(t) = t+ 1

t , ceci se réécrit :

(3.312) xM−1(Hg)(x, ξ) ' e−b ξ
√

c ξ
ζ

∫
Ct

dt
2πie

uf(t)Hg

(
1 + t

√
c ξ
ζ , 0

)
Ct est un contour parallèle à l’axe imaginaire pur, et passant à droite de 0.

Nous souhaitons démontrer dans cette partie l’approximation suivante, lorsque u >> 1 :
(3.313)

xM−1(Hg)(x, ξ) '
√

c ξ
ζ

[
4π
√
c ξ ζ

]− 1
2
Ḡg

(
1 +

√
c ξ
ζ , 0

)
e−b ξ+2

√
c ξ ζ

[
1 +O

(
1√
c ξ ζ

)]
.

Remarques.

(i) L’intégrale
∫
C̃t

dt
2πie

u f(t) est la représentation intégrale d’une fonction de Bessel.

(ii) En “représentation des x”, l’équation (3.309) s’écrit

∂
∂ξ [xHg(x, ξ)] =

∫ 1

x

dz
(
c
z − b

)
[z Hg(z, ξ)] .

En posant xHg(x, ξ) = e−b ξg(ζ, ξ), on voit que la fonction g satisfait une “équation
d’onde avec masse imaginaire pure” [35] :

∂2

∂ζ ∂ξ g(ζ, ξ) = c g(ζ, ξ)

dont une solution pertinente est la fonction de Bessel ci-dessus.

2 - A priori, cette expression n’est pertinente que si
√
c ξ/ ζ << 1. En effet, elle résulte de

la résolution de l’equation (3.309) où intervient l’approximation P̄gg(n) ∼ c
n−1 − b+ o(n− 1)

, qui n’est valable que lorsque n → 1. Le “col en n”, donné par l’expression 1 +
√
c ξ/ ζ doit

donc être voisin de 1. On constate néanmoins que ce comportement lorsque
√
c ξ/ ζ ≥ 1 est,

au moins qualitativement, similaire à celui de la solution exacte.

3 - Un mot encore sur la validité physique de ce résultat. On constate que, à ξ i.e. Q2

fixés, celui-ci croit avec ζ plus rapidement que toute puissance de ζ du fait du facteur expo-
nentiel. Ceci contredit une conséquence de l’unitarité imposée par la mécanique quantique,
qui contraint Gg(x, ξ) à ne pas crôıtre plus vite que ζ2. Cette contradiction est due au fait

que l’équation étudiée est obtenue dans le régime ¯α(Q2) ζ << 1, où sont négligés des termes
associés à des mécanismes physiques qui deviennent essentiels lorsque ζ → ∞ : les partons
portant une fraction x infime de l’énergie-impulsion du proton ont une densité si élevée qu’ils
ne sont pas quasi libres et indépendants, mais au contraire interagissent, et ces interactions
limitent leurs densités. Le phénomène non linéaire qui conduirait à cette saturation est ignoré
ici.
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4. Application du théorème de la phase stationnaire complexe.

L’application du théorème 4.2 à la fonction f(t) = t + 1
t , pour peu que la condition que

Ω ne contienne pas le point singulier 0, donne tout de suite la contribution du point de phase
stationnaire t = 1, qui correspond à la valeur critique 2. On a ainsi démontré (3.313). Ceci
permet donc de retrouver l’approximation de la fonction de répartition.

Bien sûr, cet exemple est élémentaire. D’autres exemples de théorie des champs, beau-
coup plus compliqués, tiennent compte de la méthode du col pour leur résolution. Ceci est
par exemple à rapprocher des résultats de G. Benarous pour l’évaluation des intégrales de
Feynmann [13].


