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HÉNON MAPS WITH BIHOLOMORPHIC KATO SURFACES

FRANÇOIS BACHER

ABSTRACT. Let F and G be generalized Hénon maps. We show that the Kato surfaces
associated to the germs of F and G near infinity are biholomorphic if and only if F and G

are conjugate in Aut
`

C2
˘

. This answers a question raised by Favre in the survey [5].
We also show that two generalized Hénon maps are conjugate near infinity, if and only

if they are affinely conjugate.

1. INTRODUCTION

Consider a generalized Hénon map, that is F “ FN ˝ ¨ ¨ ¨ ˝ F1 P Aut pC2q, where the Fi,
i P t1, . . . , Nu, are standard Hénon maps of the form

(1.1) Fi : C2
Ñ C2, pz, wq ÞÑ pPipzq ´ aiw, zq ,

for Pi polynomials of degree at least 2 and ai P C˚. Friedland and Milnor [17] showed
that among polynomial automorphisms of C2, these are the only dynamically non-trivial
mappings. Such automorphisms have been first studied by Fornæss and Sibony [16],
Hubbard and Oberste-Vorth [18] and simultaneously by Bedford and Smillie in a long
series of articles, see for example [3, 2].

The maps F and F´1 extend to birational maps P2 99K P2 with respective indeter-
minacy points I˘. The extension of F contracts the whole line at infinity onto the
super-attractive point I´ “ r0 : 1 : 0s, in homogeneous coordinates rt : z : ws. As for
one-dimensional polynomial dynamics, it is useful to consider the dichotomy between
escaping and bounded dynamics. Denote by Ω` “ tp P C2 | F nppq ÑnÑ8 I´u. Hubbard
and Oberste-Vorth [18] gave a full analytic description of this basin of attraction, and in
particular showed that F acts properly and discontinuously on Ω`. Therefore, one can
define the quotient Ω`{F , being naturally a complex surface. Then, one can construct a
canonical minimal compactification SF of Ω`{F .

Such surfaces obtained by compactification of the quotient by a contracting germ are
known as Kato surfaces. They were introduced by Kato [19], later studied by Enoki [12,
13] and Nakamura [20, 21] and extensively by Dloussky with others [8, 7, 11, 9] (see
the memoir [6]). The classification of Kato surfaces is deeply linked to the one of rigid
germs by Favre [14]. Such a surface S satisfies b1pSq “ 1 and b2pSq ą 0. In particular, S
is non-Kähler. In Kodaira’s classification [1], they belong to the VII0-class and are to
our knowledge the only known ones of this class. Kato surfaces are characterized by the
property of having a global spherical shell [6]. In the case of Hénon maps, they were
first introduced by Dloussky and Oeljeklaus [10] and by Favre [14].
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21000 DIJON, FRANCE

E-mail address: francois.bacher@u-bourgogne.fr.
Date: October 25, 2024.

1



In the recent survey [5], Favre asked the following question. Given a generalized
Hénon map F , can one describe all the generalized Hénon maps G such that SF is bi-
holomorphic to SG? It is a straightforward consequence of [14] and [18] that if two
generalized Hénon maps are conjugate near infinity (that is, near I´), then they have bi-
holomorphic escaping set. It is also well known [6] that two conjugate germs induce the
same Kato surface. Therefore, the works of Bonnot–Radu–Tanase [4] and Pal [22] can
be seen as partial results towards a solution to this question. They investigated when two
standard Hénon maps have biholomorphic escaping sets. However, their condition is ob-
viously weaker than the one to be found for Kato surfaces. Indeed, on the one hand they
find Hénon maps having different jacobian with biholomorphic escaping sets, and on the
other hand Favre [14] showed that the germ at infinity of a Hénon map determines the
jacobian of the map. Here, we prove the following.

Theorem 1.1. Let F “ FN ˝ ¨ ¨ ¨ ˝ F1 and G be generalized Hénon maps, where the Fi,
i P t1, . . . , Nu are standard Hénon maps. Then, SF and SG are biholomorphic if and only
if G is affinely conjugate to one of the Fk ˝ ¨ ¨ ¨ ˝ F1 ˝ FN ˝ ¨ ¨ ¨ ˝ Fk`1, for k P t1, . . . , Nu.

This condition is equivalent to F and G being conjugate in Aut pC2q [17].
Let us describe briefly the method of our proof. First, we show that SF » SG if and

only if G is conjugate near infinity to one of the Fk˝¨ ¨ ¨˝F1˝FN ˝¨ ¨ ¨˝Fk`1. This is actually
a consequence of some well known properties of Kato surfaces and a basic analysis of the
Kato surface induced by a generalized Hénon map. Indeed, Dloussky [6] showed that a
Kato surface S contains n compact curves, coming with n contracting germs f1, . . . , fn,
for n “ b2pSq. These curves are somehow cyclically ordered in the sense that one curve
is obtained as the exceptional divisor of the blowing-up in one point of the previous one.
The cyclic behaviour is then a consequence of taking the quotient. Dloussky [6] proved
that two Kato surfaces inducing respectively germs f1, . . . , fn, g1, . . . , gn are biholomor-
phic if and only if one of the fi is conjugate to one of the gj. In the case of a composition
FN ˝ ¨ ¨ ¨ ˝ F1, where each map Fj induces separately a Kato surface, we show that each
Fk ˝ ¨ ¨ ¨ ˝ F1 ˝ FN ˝ ¨ ¨ ¨ ˝ Fk`1 is conjugate to one of the fj.

So, the first part of the proof reduces to showing that these are the only one which can
be conjugate to a generalized Hénon map near infinity. We prove the latter by computing
the configuration of self-intersection of the n curves mentioned above, in which there are
exactly N curves which have particular self-intersection and correspond to the germs of
the generalized Hénon maps Fk ˝ ¨ ¨ ¨ ˝ F1 ˝ FN ˝ ¨ ¨ ¨ ˝ Fk`1.

Next, we show that two generalized Hénon maps are conjugate near infinity if and only
if they are affinely conjugate. This is the most involving part of our work. We do so by
computing the normal form of the germ in the sense of Favre [14]. Such a computation
was done up to degree 6 for standard Hénon maps by Bonnot–Radu–Tanase [4]. Favre
gave an explicit procedure in three steps to conjugate a rigid germ to a normal form via
an (essentially) tangent to the identity diffeomorphism. We follow this procedure and
keep track of enough (exactly 2d ´ 1, where d is the degree of F ) of the first terms of
the intermediate maps. More precisely, the first step of this procedure consists in taking
Böttcher coordinates, and we show that the next two steps more or less consist in cutting
all the terms of degree more than 2d ´ 1.

Having computed this normal form, we show that this procedure is injective if the
right initial choices were made, namely taking monic and centered polynomials. That
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is, if two generalized Hénon maps induce the same normal form, then they are equal
(not only conjugate). In some sense, we show that these 2d ´ 1 terms contain all the
polynomials and jacobians of the standard Hénon maps in such a way that they do not
“interfere”. That is, the first terms are only determined by the polynomial PN (see (1.1))
and uniquely determines it. The other polynomials only intervene after in the develop-
ment. This property is also satisfied inductively and we recover the whole generalized
Hénon map from its germ. Finally, we use the work of Favre [14], who gives necessary
and sufficient conditions for two normal forms to be conjugate. We show in our case,
that conjugate normal forms are given by affinely conjugate generalized Hénon maps.

The article is organized as follows. In Section 2, we recall some basic constructions
of Kato surfaces. We show that if f and g induce Kato surfaces, then Sf˝g » Sg˝f . In
Section 3, we compute the self-intersection configuration of Kato surfaces induced by
generalized Hénon maps. We prove our first criterion involving germs at infinity. Fi-
nally, we compute the normal form of a germ at infinity of a generalized Hénon map in
Section 4 and prove Theorem 1.1.

Notations. Throughout the article, we denote by Jp, qK the set of integers p ď k ď q.

Acknowledgments. This work has been supported by the EIPHI Graduate school (con-
tract “ANR-17-EURE-0002”) and by the Région “Bourgogne Franche-Comté”.

2. KATO SURFACES

In this section, we recall some basic constructions of Kato surfaces. We refer the reader
to Dloussky’s memoir [6] or to Favre’s thesis [15] for more details and proofs.

Definition 2.1. A tower of blow-ups is a map Π “ Π1 ˝ ¨ ¨ ¨ ˝Πn, where Π1 : B1 Ñ pC2, 0q is
a blow-up of the origin O0 “ 0 P C2, and for each i P J2, nK, Πi : Bi Ñ Bi´1 is the blow-up
of some Oi´1 P Π´1

i´1pOi´2q. We usually denote pB “ Bn and B0 “ C2.
A contracting germ F : pC2, 0q Ñ pC2, 0q is called a Dloussky germ if it can be written

as F “ Π ˝ σ, where Π “ Π1 ˝ ¨ ¨ ¨ ˝ Πn : pB Ñ pC2, 0q is a tower of blow-ups and with
the notations above, σ : pC2, 0q Ñ

´

pB,On

¯

is a germ of biholomorphism, for some point

On P Π´1
n pOn´1q.

Let F “ Π ˝ σ be a Dloussky germ, defined on a ball B Ă C2 of radius 2r ą 0. Let
ε P p0, rq be sufficiently small and denote by Σε “ tz P C2 | }z} P pr ´ ε, r ` εqu. The map
σ ˝ Π: pB Ñ pB sends biholomorphically Π´1 pΣεq onto σ pΣεq. Denote by Bε the ball of
radius r ` ε and B´ε the ball of radius r ´ ε. One can define the Kato surface associated
to F to be

SF “ pΠ´1 pBεq zσ pB´εqq
L

„ ,

where „ is the gluing given by σ ˝ Π: Π´1 pΣεq Ñ σ pΣεq, that is z „ σ ˝ Πpzq, for
z P Π´1 pΣεq (see Figure 1). One can show that this construction only depends on the
germ F and not on the other choices made [6, Proposition 3.16]. We have the following.

Proposition 2.2 (Dloussky [6, Lemma 1.10]). With the notations above, b1pSF q “ 1 and
b2pSF q “ n is the number of blow-ups. In particular, SF is non-Kähler.
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Π´1 pΣεq

0 F “ Π ˝ σ

D1

D2

D3

σ pΣεq

σ ˝ Π

σ

Π

FIGURE 1. Construction of Kato surfaces

Moreover, the Kato surface SF comes with n compact curves D1, . . . , Dn, which are the
respective projections of the exceptional divisor of the respective blow-ups Π1, . . . ,Πn.
Each of this curve comes with a contracting germ

(2.1) Fk “ Πk`1 ˝ ¨ ¨ ¨ ˝ Πn ˝ σ ˝ Π1 ˝ ¨ ¨ ¨ ˝ Πk : pBk, Okq Ñ pBk, Okq , k P J1, nK .

By definition, Fn “ σ ˝F ˝ σ´1. Moreover, we have the following description of Dloussky
germs inducing the same Kato surface.

Theorem 2.3 (Dloussky [6, Subsection 3.11]). Let F be as above and G be a Dloussky
germ. Then, SG is biholomorphic to SF , if and only if G is conjugate to one of the Fk,
k P J1, nK.

In particular, we have the following. The first part of the lemma is due to Favre [15,
Lemma 1.2.11], but we reprove it to introduce notations.

Proposition 2.4. Let F,G be two Dloussky germs. Then, G ˝ F and F ˝ G are Dloussky
germs and SF˝G is biholomorphic to SG˝F .

Proof. Let us write F “ Π1 ˝ σ1 and G “ Π2 ˝ σ2, with Πj : Bj Ñ C2, j P t1, 2u towers of
blow-ups. Denote by O1 “ σ1p0q. Because blowing-up does not depend on the coordi-
nates, we have that σ1 lifts to a blow-up of O1. That is, there is rΠ2 : rB2 Ñ B1 a tower of
blow-ups of O1 and rσ1 : B2 Ñ rB2 such that rΠ2 ˝ rσ1 “ σ1 ˝ Π2. Let us summarize our data
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in a commutative diagram.

rB2

rΠ2

��
B1

Π1

��

B2

rσ1

::

Π2

��

B1

Π1

��
pC2, 0q

σ2

99

G
// pC2, 0q

σ1

99

F
// pC2, 0q

This already shows that F ˝ G is a Dloussky germ, and the proof is of course similar for
G ˝F . Moreover, by Theorem 2.3, the germ rΠ2 ˝ rσ1 ˝ σ2 ˝Π1 and its conjugate induce the
same Kato surface as F ˝ G. Finally, it is easily checked that

σ´1
1 ˝ rΠ2 ˝ rσ1 ˝ σ2 ˝ Π1 ˝ σ1 “ G ˝ F. □

Let us now conclude this section with some important remarks about the n curves
D1, . . . , Dn mentioned above. Consider G a Dloussky germ such that b2pSGq “ b2pSF q.
Write G “ Π1 ˝ σ1, where Π1 “ Π1

1 ˝ ¨ ¨ ¨ ˝ Π1
n is a tower of blow-ups. Denote by E1, . . . , En

the n curves in SG given by the exceptional divisors of Π1
1, . . . ,Π

1
n, and by Gk the germs

defined similarly to (2.1).

Proposition 2.5 (Dloussky [6, Remark 3.15]). Suppose there is φ : SF Ñ SG a biholomor-
phism. Then, there is a k P J1, nK such that φpDjq “ Ej`k, Fj is conjugate to Gj`k, for
j P J1, n ´ kK; φpDjq “ Ej`k´n and Fj is conjugate to Gj`k´n, for j P Jn ´ k ` 1, nK.

3. SELF-INTERSECTION PROFILE OF HÉNON MAPS KATO SURFACES

In this section, we compute the sequence of blow-ups and the biholomorphism that
make the germ of a Hénon map near I´ a Dloussky germ. The result is essentially
contained in [14, Proposition 2.2] and [15, pp. 25–27] for standard Hénon maps and
the first part of Proposition 2.4, due to Favre, gives it for generalized Hénon maps. It
was also already observed by Dloussky and Oeljeklaus [10] for degree 2 Hénon maps.
Therefore, our goal is not really this computation but the following.

Proposition 3.1. Let F “ FN ˝ ¨ ¨ ¨ ˝ F1 and G be two generalized Hénon maps, where
F1, . . . , FN are standard Hénon maps. Then, the Kato surfaces SF and SG are biholomorphic
if and only if G is conjugate near infinity to one of the Fk˝¨ ¨ ¨˝F1˝FN ˝¨ ¨ ¨˝Fk`1, k P J1, NK.

Here, we say that two generalized Hénon maps F and G are conjugate near infinity if
their germs near the indeterminacy point I´ of F´1 and G´1 are conjugate (as germs).

Let us first consider a standard Hénon map

F : C2
Ñ C2, pz, wq ÞÑ pP pzq ´ aw, zq,

for some polynomial P of degree d ě 2 and a P C˚. In affine coordinates centered at I´,
it can be written

F pt, wq “

ˆ

td

Uptq ´ awtd´1
,

td´1

Uptq ´ awtd´1

˙

,
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where Uptq “ tdP
`

1
t

˘

. So, if Π1pu, vq “ puv, vq, Π2pu, vq “ pu, ud´1vq, one can write
F “ Π1 ˝ Π2 ˝ η, for

ηpt, wq “

ˆ

t,
1

Uptq ´ awtd´1

˙

.

Now, consider Πγpu, vq “ pu, uv ` γq, for γ P C and write 1
Uptq

“
řd´2

j“0 ajt
j ` td´1Bptq,

for B a holomorphic map. Note that a0 ‰ 0, since P is a polynomial of degree d. It is
easily checked that

η “ Πa0 ˝ ¨ ¨ ¨ ˝ Πad´2
˝ σ,

for

(3.1) σpt, wq “

ˆ

t, Bptq `
aw

Uptq pUptq ´ awtd´1q

˙

.

It is clear that σ is a germ of biholomorphism, and since Π1, Π2 and the Πaj are blow-ups
in standard charts, this makes F “ Π1 ˝ Π2 ˝ Π3 ˝ σ, for Π3 “ Πa0 ˝ ¨ ¨ ¨ ˝ Πad´2

, a Dloussky
germ. Combined with Proposition 2.4, we obtain the following.

Lemma 3.2. Let F “ FN ˝ ¨ ¨ ¨ ˝ F1 be a generalized Hénon map, where the Fi are standard
Hénon maps of degree di, i P J1, NK. Then, the germ at infinity of F is a Dloussky germ
inducing a Kato surface SF with b2pSF q “

řN
k“1 p2dk ´ 1q.

Denote by n “ b2 pSF q and byD1, . . . , Dn the n compact curves which are the projection
of the exceptional divisors in SF . For i P J1, nK, denote by Di ¨ Di the number of self-
intersections of Di.

Lemma 3.3. With the notations of Lemma 3.2, the self-intersection profile of SF , that is the
n-tuple p´D1 ¨ D1, . . . ,´Dn ¨ Dnq is

pd1, 2, . . . , 2
loomoon

2d1´3 times

, 3, d2, 2, . . . , 2
loomoon

2d2´3 times

, 3, . . . , dN 2, . . . , 2
loomoon

2dN´3 times

, 3q.

Proof. This is essentially counting and following strict transforms of exceptional divisors.
Consider first a standard Hénon map and keep notations above Lemma 3.2. The map Π2

consists of blowing up d´ 1 times a point of the strict transform of D1. Indeed, the strict
transform of D1 is defined in coordinates by tv “ 0u. Next, Π3 blows up a point which
belongs to Dd, but not to any other divisor since a0 ‰ 0. All the other maps of Π3 blow
up a point that is only in the last appeared exceptional divisor. Finally, Dn “ tu “ 0u

in the last coordinates, and by (3.1) is glued with tu “ 0u via σ ˝ Π in the Kato surface.
Therefore, it will be blown up by Π1, by the first blow-up of Π2 and will be left alone
after. We obtain the result for standard Hénon maps.

We let the reader check the result for generalized Hénon maps, using Proposition 2.4
and the form of the map σ in (3.1) to follow the last exceptional divisor of each standard
Hénon map. □

Before concluding the section with the proof of Proposition 3.1, let us mention the
following consequence of the above computation, that we will use in the next section.

Lemma 3.4. Let F “ FN ˝ ¨ ¨ ¨ ˝F1 and G “ GP ˝ ¨ ¨ ¨ ˝G1 be generalized Hénon maps, with
FN , . . . , F1, GP , . . . , G1 standard Hénon maps. Suppose that F and G are conjugate near
infinity. Then, N “ P and degFk “ degGk, for each k P J1, NK.
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Proof of Proposition 3.1. Suppose that G is conjugate to Fk ˝ ¨ ¨ ¨ ˝F1 ˝FN ˝ ¨ ¨ ¨ ˝Fk`1 near
infinity. Then, Proposition 2.4 clearly implies that SF is biholomorphic to SG.

Conversely, suppose that SF and SG are biholomorphic. We apply Proposition 2.5 and
use its notations. Then, we should have Dj ¨ Dj “ Ej`k ¨ Ej`k, for j P J1, n ´ kK and
Dj ¨ Dj “ Ej`k´n ¨ Ej`k´n, for j P Jn ´ k ` 1, nK. Now, we use Lemma 3.3. Note that
the 3 which appear in our writing (that is, not the di which could also be equal to 3)
are the only one which are (cyclically) preceeded by a 2. Therefore, they are sent one to
another by φ. Since Gn is conjugate to G, we obtain the result by applying once again
Proposition 2.5. □

4. THE GERM AT INFINITY OF HÉNON MAPS

In this section, we prove the following. Combined with Proposition 3.1, we obtain
Theorem 1.1.

Theorem 4.1. Two generalized Hénon maps are conjugate near infinity if and only if they
are affinely conjugate.

Our proof involves computing the normal form of a generalized Hénon map’s germ
near infinity in the sense of Favre [14]. We follow the three steps of his proof to obtain
one particular normal form and then use his criterion to see which one are conjugate.

First, let us introduce some notations. Let F “ FN˝¨ ¨ ¨˝F1 be a generalized Hénon map,
where the Fi, i P J1, NK are standard Hénon maps. That is, Fipz, wq “ pPipzq ´ aiw, zq,
pz, wq P C2. Denote by di “ degPi and Di “

śi
j“1 dj, i P J1, NK. Note that DN “ degF .

By convention, set also D0 “ 1. We will suppose that the polynomials Pi, i P J1, NK,
are monic and centered, i.e. Pipzq “ zdi ` O

`

zdi´2
˘

. In fact, replacing F by an affine
conjugate, we can always do so [17]. Note Qipz, wq, i P J0, NK the polynomials in two
variables so that

Fi ˝ ¨ ¨ ¨ ˝ F1pz, wq “ pQipz, wq, Qi´1pz, wqq , i P J1, NK .

It is easy to see that they are defined by the induction relation

(4.1) Q0 “ z, Q1 “ P1pzq ´ a1w; Qi “ Pi ˝ Qi´1 ´ aiQi´2, i P J2, NK .

Denote by Vipt, wq “ tDiQi

`

1
t
, w

t

˘

. In affine coordinates centered at infinity, the map F is
of the form

F pt, wq “

ˆ

tDN

VNpt, wq
,
tDN´DN´1VN´1pt, wq

VNpt, wq

˙

.

To begin our way towards the normal form, we use Böttcher coordinates. Denote by
ptn, wnq “ F npt, wq and

ϕpt, wq “ pφwptq, wq , φwptq “ t
ź

nPN

pV ptn, wnqq
´1{Dn`1

N .

Here and everywhere after, we consider the principal branch of the Dn`1
N -th root.

Lemma 4.2. The map ϕ conjugates F with F p1q (that is ϕ ˝ F ˝ ϕ´1 “ F p1q) of the form

F p1q
px,wq “

ˆ

xDN ,
A

DN

wx2DN´2
p1 ` ηpx,wqq ` hpxq

˙

,

7



with A “
śN

i“1 ai, ηpx,wq “ O px2, xwq and

hpxq “ xDNφ´1
0 pxq

´DN´1VN´1

`

φ´1
0 pxq, 0

˘

.

Proof. It is well known that the expression of φw converges (see [18] for standard Hénon
maps), and tn “ O

`

tDN
˘

, wn “ O
`

tDN´DN´1
˘

, the O being uniform in n in a neighbour-
hood of 0. Hence,

(4.2) φwptq “ t pVNpt, wqq
´1{DN

`

1 ` O
`

tDN`DN´1
˘˘

.

Moreover, these coordinates are designed to have π1 ˝ϕ˝F pt, wq “ φwptqDN , π1 being the
standard projection on the first coordinate. So, the map F p1q is of the form

F p1q
px,wq “

`

xDN , λwxqp1 ` ηpx,wqq ` hpxq
˘

,

for some λ P C˚ and q P N that we need first to identify. Note that the differentials of
the Fi are given by

DFipt, wq “

ˆ

dit
di´1 p1 ` O pt2, twqq ait

2di´1 p1 ` O pt2, twqq

pdi ´ 1q tdi´2 p1 ` O pt2, twqq ait
2di´2 p1 ` O pt2, twqq

˙

.

Therefore, using (4.2) and the fact that VNpt, wq “ 1 ` O pt2, twq,

det
`

D
`

ϕ ˝ F ˝ ϕ´1
˘

px,wq
˘

“

N
ź

i“1

det pDFi pFi´1 ˝ ¨ ¨ ¨ ˝ F1px,wqqq
`

1 ` O
`

x2, xw
˘˘

“

N
ź

i“1

ai
`

xDi´1
˘3di´3 `

1 ` O
`

x2, xw
˘˘

“ Ax3DN´3
`

1 ` O
`

x2, xw
˘˘

.

Now, since det
`

DF p1qpx,wq
˘

“ λDNx
q`DN´1

`

1 ` ηpx,wq ` w Bη
Bw

px,wq
˘

, we have λ “ A
DN

,
q “ 2DN ´2 and ηpx,wq “ O px2, xwq. Finally, hpxq “ π2 ˝ϕ˝F ˝ϕ´1px, 0q, where π2 is the
standard projection on the second coordinate. Thus, remarking that φ´1

0 pxqDN

VNpφ´1
0 pxq,0q

“ xDN ,

we obtain the form wanted. □

Next, denote by

(4.3) φ0,iptq “ t pVipt, 0qq
´1{Di and ψi “ φ0,i ˝ φ´1

0,i´1, i P J1, NK .

By (4.2), we have φ0ptq “ φ0,Nptq
`

1 ` O
`

tDN`DN´1
˘˘

and by Lemma 4.2,

(4.4) hpxq “ xDN
`

ψ´1
N pxq

˘´DN´1
`

1 ` O
`

xDN`DN´1
˘˘

.

We continue our way towards the normal form.

Lemma 4.3. Keep the notations of Lemma 4.2. The germ F p1q is conjugate to the germ

F p2q
px, yq “

ˆ

xDN ,
A

DN

yx2DN´2
` rhpxq

˙

,

with rhpxq “ hpxq
`

1 ` O
`

xDN`DN´1
˘˘

.
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Proof. We use the work of Favre [14, pp.491–494]. He shows that we can find a map Ψ
of the form Ψpx,wq “ px,wp1 ` ψpx,wqqq such that Ψ ˝ F p1q “ F p2q ˝ Ψ. Moreover, he
gives an explicit expression for ψ in the form of a series. Define the operator

Tψpx,wq “ p1 ` ηpx,wqqψ ˝ F p1q
px,wq ` hpxq

ż 1

0

p1 ` η1px,wtqq
Bψ

Bw
˝ F p1q

px,wtqdt,

for η1 “ η ` w Bη
Bw

. Then, ψ “
ř

kPN T
kη. Obviously, if f “ O px2, xwq, then Tf “ O px2q.

Actually, the composition with F p1q makes degree grow far faster. Therefore, ψpx,wq is a
O px2, xwq. Now, this gives

rhpxq “ π2 ˝ F p2q
˝ Ψpx, 0q “ π2 ˝ Ψ ˝ F p1q

px, 0q “ hpxq
`

1 ` ψ
`

xDN , hpxq
˘˘

rhpxq “ hpxq
`

1 ` O
`

xDN`DN´1
˘˘

.

□

We finish the computation of the normal form with the third step of Favre [14, pp.496–
498].

Lemma 4.4. Keep the notations of Lemma 4.3 and write rhpxq “
ř

nPN˚ bnx
n. Then, F p2q is

conjugate with the normal form

F p3q
px, yq “

ˆ

xDN ,
A

DN

yx2DN´2
` gpxq

˙

,

where

gpxq “

2DN´2
ÿ

n“1

bnx
n

`
DN

A
b2DN´1x

DN ` rb2DN
x2DN ,

with rb2DN
“ 0 if A ‰ DN and rb2DN

“ b2DN
if A “ DN .

Now, we will show the following.

Proposition 4.5. The map F ÞÑ F p3q, obtained by combining Lemmas 4.2, 4.3 and 4.4, is
injective.

That is, if two generalized Hénon maps are given by monic and reduced polynomials
as in the beginning of the section, and if the process of the lemmas gives the same normal
form, then they are equal. Note that the statement is not up to conjugacy (neither for F
nor for F p3q). That’s why we have to specify from where we obtain our normal form. For
clarity’s sake, we begin the proof by some lemmas, where we still work on one map F .

Lemma 4.6. Recall the maps ψi from (4.3) and denote by Uiptq “ tdiPi

`

1
t

˘

. Then,

ψipxq
Di “

xDi

Ui pxDi´1q ´ aixDi

`

ψ´1
i´1pxq

˘´Di´2
, i P J2, NK .

Proof. This comes from the induction relation between the Vi. Note that

ψipxq
Di “

`

φ´1
0,i´1pxq

˘Di

Vi
`

φ´1
0,i´1pxq, 0

˘ “
1

Qi

ˆ

1
φ´1
0,i´1pxq

, 0

˙ ,

9



by definition of the Vi. Now, using (4.1),

ψipxq
Di “

1

Pi

ˆ

Qi´1

ˆ

1
φ´1
0,i´1pxq

, 0

˙˙

´ aiQi´2

ˆ

1
φ´1
0,i´1pxq

, 0

˙ .

Coming back from Q to V , we get

ψipxq
Di “

1

Pi

´

`

φ´1
0,i´1pxq

˘´Di´1 Vi´1

`

φ´1
0,i´1pxq, 0

˘

¯

´ ai
`

φ´1
0,i´1pxq

˘´Di´2 Vi´2

`

φ´1
0,i´1pxq, 0

˘

.

Now, in the denominator we recognize φ´Di´1

0,i´1 and φ´Di´2

0,i´2 . Therefore,

ψipxq
Di “

1

Pi

´

1

xDi´1

¯

´ ai
`

ψ´1
i´1pxq

˘´Di´2
“

xDi

Ui pxDi´1q ´ aixDi

`

ψ´1
i´1pxq

˘´Di´2
. □

Lemma 4.7. We have the following approximation of the ψi.

ψipxq “ x

ˆ

1 `
ai
Di

xDi´Di´2 ` O
`

x2Di´1
˘

˙

, i P J2, NK ,

ψ1pxq “ x
`

1 ` O
`

x2
˘˘

.

In ψi, the term aix
Di´Di´2 is of course also a O

`

x2Di´1
˘

if di ě 3.

Proof. Since ψ1pxq “ x pV1px, 0qq
´1{d1 “ x pU1pxqq

´1{d1, the expansion of ψ1 is just a conse-
quence of P1 being monic and centered. Let i be greater or equal to 2 and suppose that
the lemma is proved up to rank i ´ 1. By Lemma 4.6, since ψi is tangent to the identity,

ψipxq “ x
´

Ui

`

xDi´1
˘

´ aix
Di

`

ψ´1
i´1pxq

˘´Di´2

¯´1{Di

“ x

ˆ

1 `
ai
Di

xDi´Di´2 ` O
`

x2Di´1
˘

˙

.

Above, we used that Pi is centered and monic, so that Uipxq “ 1 ` O px2q and

Di ` Di´1 ´ Di´2 ´ Di´3 ě 2Di´1.

We conclude by induction. □

Proof of Proposition 4.5. Let F and G be two generalized Hénon maps, defined by

F “ FN ˝ ¨ ¨ ¨ ˝ F1, G “ GN ˝ ¨ ¨ ¨ ˝ G1;

Fipz, wq “

´

P
p1q

i pzq ´ a
p1q

i w, z
¯

, Gipz, wq “

´

P
p2q

i pzq ´ a
p2q

i w, z
¯

,

yielding to the same normal form px, yq ÞÑ
`

xDN , λyx2DN´2 ` gpxq
˘

by Lemmas 4.2, 4.3
and 4.4. Note that Lemma 3.4 implies that indeed F and G are the composition of the
same amount of standard Hénon maps, and that degpFiq “ degpGiq. Denote by φ

pjq

0,i ,
ψ

pjq

i , for j “ 1 (respectively j “ 2) the maps defined in (4.3) for F (respectively for G).
Denote by hp1q,rhp1q (respectively hp2q,rhp2q) the maps obtained in Lemmas 4.2 and 4.3
for F (respectively G). If rhpjqpzq “

ř

nPN b
pjq
n zn, for j P t1, 2u, we have by Lemma 4.4

gpxq “

2DN´2
ÿ

n“1

bp1q
n xn `

DN

A
b

p1q

2DN´1x
DN ` rb

p1q

2DN
x2DN

“

2DN´2
ÿ

n“1

bp2q
n xn `

DN

A
b

p2q

2DN´1x
DN ` rb

p2q

2DN
x2DN .
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Now, by (4.4) and Lemma 4.3, rhpjqpxq “ xDN

ˆ

´

ψ
pjq

N

¯´1

pxq

˙´DN´1

` O
`

x2DN
˘

. Using

Lemma 4.7, we infer that bpjq

DN
“ 0. Therefore, if

gpxq “

2DN´2
ÿ

n“1

cnx
n

` rc2DN
x2DN ,

b
p1q
n “ cn “ b

p2q
n , for n P J1, 2DN ´ 2K, n ‰ DN , and b

p1q

2DN´1 “ λcDN
“ b

p2q

2DN´1. In other
words, rhp1qpxq “ rhp2qpxq ` O

`

x2DN
˘

.

Next, recall that rhpjqpxq “ xDN

ˆ

´

ψ
pjq

N

¯´1

pxq

˙´DN´1

` O
`

x2DN
˘

. It follows that we

have ψp1q

N pxq “ ψ
p2q

N pxq
`

1 ` O
`

xDN`DN´1
˘˘

. We will show that if

(4.5) ψ
p1q

i pxq “ ψ
p2q

i pxq
`

1 ` O
`

xDi`Di´1
˘˘

,

for i ě 2, then P
p1q

i “ P
p2q

i , ap1q

i “ a
p2q

i and ψ
p1q

i´1pxq “ ψ
p2q

i´1pxq
`

1 ` O
`

xDi´1`Di´2
˘˘

. This
is a consequence of Lemmas 4.6 and 4.7. Indeed, if (4.5) holds for some i ě 2, by
Lemma 4.6,

xDi

´

ψ
pjq

i pxq

¯Di
“ U

pjq

i

`

xDi´1
˘

´ a
pjq

i xDi

ˆ

´

ψ
pjq

i´1

¯´1

pxq

˙´Di´2

.

Therefore,

U
p1q

i

`

xDi´1
˘

´ a
p1q

i xDi

ˆ

´

ψ
p1q

i´1

¯´1

pxq

˙´Di´2

“ U
p2q

i

`

xDi´1
˘

´ a
p2q

i xDi

ˆ

´

ψ
p2q

i´1

¯´1

pxq

˙´Di´2

,

up to order Di `Di´1 ´1. Since the apjq

i xDi

ˆ

´

ψ
pjq

i´1

¯´1

pxq

˙´Di´2

have no terms multiples

of Di´1 up to Di in their expansion by Lemma 4.7, we obtain U p1q

i “ U
p2q

i . Moreover, ψpjq

i´1

are tangent to the identity. Hence, ap1q

i “ a
p2q

i and ψp1q

i´1pxq “ ψ
p2q

i´1pxq
`

1 ` O
`

xDi´1`Di´2
˘˘

.
Using the above argument by induction, we obtain P

p1q

i “ P
p2q

i , ap1q

i “ a
p2q

i , for each

i P J2, NK, and ψ
p1q

1 pxq “ ψ
p2q

1 pxq
`

1 ` O
`

xd1`1
˘˘

. Since ψ
pjq

1 pxq “ x
´

U
pjq

1 pxq

¯´1{d1
, we

also get P p1q

1 “ P
p2q

1 . Finally, we have A “
śN

i“1 a
p1q

i “
śN

i“1 a
p2q

i because λ “ A
DN

, so that

a
p1q

1 “ a
p2q

1 . Hence, F “ G and the proposition is proved.
□

End of proof of Theorem 4.1. Again, we use the work of Favre. He shows [14, p. 482]
that two normal forms like in Lemma 4.4 are conjugate if and only if g2pxq “ bg1pζxq, for
some b P C˚ and ζDN´1 “ 1. Identifying the coefficients in xDN´DN´1, we get b “ ζDN´1´1

if both come from the process of the Lemmas, starting with generalized Hénon maps.
It is quite easy to see that this is equivalent to h2pxq “ ζDN´1´1h1pζxq ` O

`

x2DN
˘

. By
Proposition 4.5, it is enough to find one generalized Hénon map H, affinely conjugate
to F , that can be written as a composition of monic and centered Hénon maps, and that
yields to the normal form with g2. Consider

H “ θ ˝ F ˝ θ´1, θ : pz, wq ÞÑ
`

ζz, ζDN´1w
˘

.
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That is,
Hpz, wq “

`

ζQN

`

ζ´1z, ζ´DN´1w
˘

, ζDN´1QN´1

`

ζ´1z, ζ´DN´1w
˘˘

Hpz, wq “ pRNpz, wq, RN´1pz, wqq .

Note that
H “ θN ˝ FN ˝ θ´1

N´1 ˝ θN´1 ˝ FN´1 ˝ θ´1
N´2 ˝ ¨ ¨ ¨ ˝ θ1 ˝ F1 ˝ θ´1

0 ,

with θipz, wq “
`

ζDiz, ζDi´1w
˘

, and D´1 “ DN´1. In this form, we have

θi ˝ Fi ˝ θ´1
i´1pz, wq “

`

ζDiPi

`

ζ´Di´1z
˘

´ aiζ
Di´Di´2w, z

˘

,

which is a standard Hénon map with monic and centered polynomial. Moreover, if we
denote by Wipt, wq “ tDiRi

`

1
t
, w

t

˘

, they satisfy

WNpt, 0q “ tDNRN

ˆ

1

t
, 0

˙

“ tDN ζQN

ˆ

1

ζt
, 0

˙

“ VN pζt, 0q .

Similarly, WN´1pt, 0q “ VN´1 pζt, 0q. If we denote by φp2q

0,i , ψ
p2q

i the maps defined by (4.3)
with respect to the Wi, we obtain φ

p2q

0,i ptq “ ζ´1φ0,i pζtq, for i P tN ´ 1, Nu. Therefore,
ψ

p2q

N ptq “ ζ´1ψN pζtq. Using (4.4), the map hp2q defined by Lemma 4.2 applied to H can
be written

hp2q
pxq “ xDN ζDN´1ψ´1

N pζxq
´DN´1 `O

`

x2DN
˘

“ bh1pζxq `O
`

x2DN
˘

“ h2pxq `O
`

x2DN
˘

.

With our first remarks, this concludes the proof. □

REFERENCES

[1] Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven. Compact complex surfaces,
volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys
in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in
Mathematics]. Springer-Verlag, Berlin, second edition, 2004.

[2] Eric Bedford, Mikhail Lyubich, and John Smillie. Polynomial diffeomorphisms of C2. IV. The measure
of maximal entropy and laminar currents. Invent. Math., 112(1):77–125, 1993.

[3] Eric Bedford and John Smillie. Polynomial diffeomorphisms of C2: currents, equilibrium measure
and hyperbolicity. Invent. Math., 103(1):69–99, 1991.

[4] Sylvain Bonnot, Remus Radu, and Raluca Tanase. Hénon mappings with biholomorphic escaping
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[18] John H. Hubbard and Ralph W. Oberste-Vorth. Hénon mappings in the complex domain. I. The global
topology of dynamical space. Inst. Hautes Études Sci. Publ. Math., (79):5–46, 1994.

[19] Masahide Kato. Compact complex manifolds containing “global” spherical shells. I. In Proceedings of
the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), pages 45–84. Kinoku-
niya Book Store, Tokyo, 1978.

[20] Iku Nakamura. On surfaces of class VII0 with curves. Invent. Math., 78(3):393–443, 1984.
[21] Iku Nakamura. On surfaces of class VII0 with curves. II. Tohoku Math. J. (2), 42(4):475–516, 1990.
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