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HENON MAPS WITH BIHOLOMORPHIC KATO SURFACES
FRANCOIS BACHER

ABSTRACT. Let F' and G be generalized Hénon maps. We show that the Kato surfaces
associated to the germs of F' and G near infinity are biholomorphic if and only if 7' and G
are conjugate in Aut (C?). This answers a question raised by Favre in the survey [5].

We also show that two generalized Hénon maps are conjugate near infinity, if and only
if they are affinely conjugate.

1. INTRODUCTION

Consider a generalized Hénon map, thatis F' = Fy o ---o F| € Aut (C?), where the F},
ie{l,..., N}, are standard Hénon maps of the form

(1.1) Fy: C* - C?, (z,w) = (Pi(z) — a;w, 2),

for P, polynomials of degree at least 2 and a; € C*. Friedland and Milnor [[17] showed
that among polynomial automorphisms of C?, these are the only dynamically non-trivial
mappings. Such automorphisms have been first studied by Fornass and Sibony [16],
Hubbard and Oberste-Vorth [[18]] and simultaneously by Bedford and Smillie in a long
series of articles, see for example [3], 2]].

The maps F and F~! extend to birational maps P? --» P? with respective indeter-
minacy points I=. The extension of F contracts the whole line at infinity onto the
super-attractive point /- = [0 : 1 : 0], in homogeneous coordinates [t : z : w]|. As for
one-dimensional polynomial dynamics, it is useful to consider the dichotomy between
escaping and bounded dynamics. Denote by Q" = {p € C* | F"(p) —, .o I~ }. Hubbard
and Oberste-Vorth [[18] gave a full analytic description of this basin of attraction, and in
particular showed that F' acts properly and discontinuously on 2*. Therefore, one can
define the quotient Q2 /F, being naturally a complex surface. Then, one can construct a
canonical minimal compactification Sz of Q*/F.

Such surfaces obtained by compactification of the quotient by a contracting germ are
known as Kato surfaces. They were introduced by Kato [19], later studied by Enoki [[12]
13] and Nakamura [20, 21]] and extensively by Dloussky with others [8] [7, [11], (9] (see
the memoir [|6]). The classification of Kato surfaces is deeply linked to the one of rigid
germs by Favre [14]. Such a surface S satisfies b,(S) = 1 and b,(S) > 0. In particular, S
is non-Kahler. In Kodaira’s classification [1]], they belong to the VIIj-class and are to
our knowledge the only known ones of this class. Kato surfaces are characterized by the
property of having a global spherical shell [6]. In the case of Hénon maps, they were
first introduced by Dloussky and Oeljeklaus [10] and by Favre [14].
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In the recent survey [5], Favre asked the following question. Given a generalized
Hénon map F, can one describe all the generalized Hénon maps G such that Sg is bi-
holomorphic to S;? It is a straightforward consequence of [[14] and [18] that if two
generalized Hénon maps are conjugate near infinity (that is, near /), then they have bi-
holomorphic escaping set. It is also well known [|6] that two conjugate germs induce the
same Kato surface. Therefore, the works of Bonnot-Radu-Tanase [4] and Pal [22] can
be seen as partial results towards a solution to this question. They investigated when two
standard Hénon maps have biholomorphic escaping sets. However, their condition is ob-
viously weaker than the one to be found for Kato surfaces. Indeed, on the one hand they
find Hénon maps having different jacobian with biholomorphic escaping sets, and on the
other hand Favre [14] showed that the germ at infinity of a Hénon map determines the
jacobian of the map. Here, we prove the following.

Theorem 1.1. Let FF = Fy o --- o F; and G be generalized Hénon maps, where the F;,
i€ {l,..., N} are standard Hénon maps. Then, Sr and S¢ are biholomorphic if and only
if G is affinely conjugate to one of the Fj,0-- o Fyio Fyo---0Fy,y, forke{l,... N}

This condition is equivalent to F' and G being conjugate in Aut (C?) [17].

Let us describe briefly the method of our proof. First, we show that Sp ~ S if and
only if G is conjugate near infinity to one of the Fyo---oFjoFyo---0F} . Thisis actually
a consequence of some well known properties of Kato surfaces and a basic analysis of the
Kato surface induced by a generalized Hénon map. Indeed, Dloussky [6] showed that a
Kato surface S contains n compact curves, coming with n contracting germs fi,..., f,
for n = by(.S). These curves are somehow cyclically ordered in the sense that one curve
is obtained as the exceptional divisor of the blowing-up in one point of the previous one.
The cyclic behaviour is then a consequence of taking the quotient. Dloussky [6] proved
that two Kato surfaces inducing respectively germs fi,..., f., g1, .., 9, are biholomor-
phic if and only if one of the f; is conjugate to one of the g;. In the case of a composition
Fy o--- o F;, where each map F; induces separately a Kato surface, we show that each
Fyo---0Fy0Fyo---0Fg is conjugate to one of the f;.

So, the first part of the proof reduces to showing that these are the only one which can
be conjugate to a generalized Hénon map near infinity. We prove the latter by computing
the configuration of self-intersection of the n curves mentioned above, in which there are
exactly N curves which have particular self-intersection and correspond to the germs of
the generalized Hénon maps Fo---o Fyo Fyo---0 Fjyq.

Next, we show that two generalized Hénon maps are conjugate near infinity if and only
if they are affinely conjugate. This is the most involving part of our work. We do so by
computing the normal form of the germ in the sense of Favre [14]. Such a computation
was done up to degree 6 for standard Hénon maps by Bonnot—-Radu-Tanase [4]. Favre
gave an explicit procedure in three steps to conjugate a rigid germ to a normal form via
an (essentially) tangent to the identity diffeomorphism. We follow this procedure and
keep track of enough (exactly 2d — 1, where d is the degree of F') of the first terms of
the intermediate maps. More precisely, the first step of this procedure consists in taking
Bottcher coordinates, and we show that the next two steps more or less consist in cutting
all the terms of degree more than 2d — 1.

Having computed this normal form, we show that this procedure is injective if the
right initial choices were made, namely taking monic and centered polynomials. That



is, if two generalized Hénon maps induce the same normal form, then they are equal
(not only conjugate). In some sense, we show that these 2d — 1 terms contain all the
polynomials and jacobians of the standard Hénon maps in such a way that they do not
“interfere”. That is, the first terms are only determined by the polynomial Py (see (1.1))
and uniquely determines it. The other polynomials only intervene after in the develop-
ment. This property is also satisfied inductively and we recover the whole generalized
Hénon map from its germ. Finally, we use the work of Favre [[14], who gives necessary
and sufficient conditions for two normal forms to be conjugate. We show in our case,
that conjugate normal forms are given by affinely conjugate generalized Hénon maps.

The article is organized as follows. In Section |2 we recall some basic constructions
of Kato surfaces. We show that if f and ¢ induce Kato surfaces, then Sy, ~ Syr. In
Section (3, we compute the self-intersection configuration of Kato surfaces induced by
generalized Hénon maps. We prove our first criterion involving germs at infinity. Fi-
nally, we compute the normal form of a germ at infinity of a generalized Hénon map in
Section 4/ and prove Theorem

Notations. Throughout the article, we denote by [p, ¢] the set of integers p < k < g.
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2. KATO SURFACES

In this section, we recall some basic constructions of Kato surfaces. We refer the reader
to Dloussky’s memoir [6] or to Favre’s thesis [15] for more details and proofs.

Definition 2.1. A tower of blow-ups isamap Il = 1, 0- - - o I1,,, where IT; : B; — (C?,0) is
a blow-up of the origin Oy = 0 € C?, and for each i € [2,n], I1;: B; — B;_; is the blow-up
of some O;_; € 1T, (O;_5). We usually denote B= B,, and B, = C>.

A contracting germ F': (C?,0) — (C?,0) is called a Dloussky germ if it can be written
as F = IToo, where Il = I, 0---o1l,: B — (C%,0) is a tower of blow-ups and with
the notations above, o: (C%,0) — (3, On> is a germ of biholomorphism, for some point

On € H;Ll(On_l).

Let I' = Il o o be a Dloussky germ, defined on a ball B = C? of radius 2r > 0. Let
e € (0,7) be sufficiently small and denote by ¥. = {z € C?| |z| € (r —&,r + €)}. The map
ooll: B — B sends biholomorphically IT~ 1(%.) onto o (3.). Denote by B. the ball of
radius r + ¢ and B_. the ball of radius » — €. One can define the Kato surface associated
to F to be

Sp = (H_l (BE> \0 (B—a))/w’

where ~ is the gluing given by o o II: IT"!} (X,) — o (%.), that is z ~ ¢ o II(z), for
z € II"1 (X.) (see Figure[1)). One can show that this construction only depends on the
germ [’ and not on the other choices made [6, Proposition 3.16]. We have the following.

Proposition 2.2 (Dloussky [6, Lemma 1.10]). With the notations above, b, (Sr) = 1 and
bo(Sr) = n is the number of blow-ups. In particular, Sg is non-Kdhler.



FIGURE 1. Construction of Kato surfaces

Moreover, the Kato surface S comes with n compact curves Dy, ..., D,, which are the
respective projections of the exceptional divisor of the respective blow-ups IIy, ..., II,.
Each of this curve comes with a contracting germ

(2.1) Fy=1Ix10---olloc0lljo---olly: (Bg,Or) — (Bk, Ok), kell,n].

By definition, F,, = o o ' o 0~1. Moreover, we have the following description of Dloussky
germs inducing the same Kato surface.

Theorem 2.3 (Dloussky [6, Subsection 3.11]). Let F' be as above and G be a Dloussky
germ. Then, S is biholomorphic to Sr, if and only if G is conjugate to one of the F,
ke [1,n].

In particular, we have the following. The first part of the lemma is due to Favre [15]
Lemma 1.2.11], but we reprove it to introduce notations.

Proposition 2.4. Let F,G be two Dloussky germs. Then, G o F' and F o G are Dloussky
germs and Sp.q is biholomorphic to Sg.p.

Proof. Let us write F' = II; o q and G = Il o 09, with II;: B; — C?, j € {1, 2} towers of
blow-ups. Denote by O; = 01(0). Because blowing-up does not depend on the coordi-
nates, we have that o, lifts to a blow-up of 01 That is, there is H2 32 — B; a tower of
blow-ups of O; and 7,: B, — B2 such that H2 o0, = o0y oIl,. Let us summarize our data



in a commutative diagram.

By By By

o 2] o

(C,0) —~ (C*,0) — (C2,0)

This already shows that F' o G is a Dloussky germ, and the proof is of course similar for
G o F'. Moreover, by Theorem the germ II, 0 5, o 05 o I1; and its conjugate induce the
same Kato surface as F' o GG. Finally, it is easily checked that

afloﬂgoﬁloagoﬂloolzGoF O

Let us now conclude this section with some important remarks about the n curves
Dy, ..., D, mentioned above. Consider G a Dloussky germ such that b,(Sg) = b2(SF).
Write G = II' o ¢/, where II' = II} o - - - o [T/, is a tower of blow-ups. Denote by F, ..., E,
the n curves in S¢ given by the exceptional divisors of 11}, ..., II’ , and by G}, the germs
defined similarly to (2.1).

Proposition 2.5 (Dloussky [6, Remark 3.15]). Suppose there is ¢: Sp — Sg a biholomor-
phism. Then, there is a k € [1,n] such that ¢(D;) = E,, Fj is conjugate to Gy, for
je[l,n—k]; o(D;) = Ej1y—, and Fj is conjugate to G y—, for j € [n — k + 1,n].

3. SELF-INTERSECTION PROFILE OF HENON MAPS KATO SURFACES

In this section, we compute the sequence of blow-ups and the biholomorphism that
make the germ of a Hénon map near I~ a Dloussky germ. The result is essentially
contained in [[14, Proposition 2.2] and [[15, pp. 25-27] for standard Hénon maps and
the first part of Proposition due to Favre, gives it for generalized Hénon maps. It
was also already observed by Dloussky and Oeljeklaus [10] for degree 2 Hénon maps.
Therefore, our goal is not really this computation but the following.

Proposition 3.1. Let ' = Fy o---o I} and G be two generalized Hénon maps, where
Fi,..., Fy are standard Hénon maps. Then, the Kato surfaces Sy and S¢ are biholomorphic
if and only if G is conjugate near infinity to one of the Fy,o---oFjoFyo---0Fy 1, k € [1, N].

Here, we say that two generalized Hénon maps F' and G are conjugate near infinity if
their germs near the indeterminacy point /~ of F~! and G~! are conjugate (as germs).
Let us first consider a standard Hénon map

F:C*—C% (z,w)— (P(2)—aw,z),

for some polynomial P of degree d > 2 and a € C*. In affine coordinates centered at /-,
it can be written

td td—l
F(t =
(tw) <U(t) —awt?1" U(t) — awtd1> ’



where U(t) = t’P (1). So, if II;(u,v) = (wv,v), Iy(u,v) = (u,u’"'v), one can write
F =11, oll; o, for

)= (=)
d—2

Now, consider IL,(u,v) = (u,uv + ), for v € C and write 5 = " a;t/ + t'B(t),
for B a holomorphic map. Note that ay # 0, since P is a polynomial of degree d. It is

easily checked that

n Hao © © Had—Q ©a,
for
aw

It is clear that o is a germ of biholomorphism, and since I, II, and the II,; are blow-ups
in standard charts, this makes F' =II; o[l o Il3o 0, for II3 = 11, 0 - - - o II a Dloussky
germ. Combined with Proposition 2.4, we obtain the following.

aq—27

Lemma 3.2. Let F' = Fy o---o I} be a generalized Hénon map, where the F; are standard
Hénon maps of degree d;, i € [1, N]. Then, the germ at infinity of F is a Dloussky germ
inducing a Kato surface Sg with by(Sp) = Zgzl (2dy, — 1).

Denote by n = by (Sr) and by Dy, ..., D,, the n compact curves which are the projection
of the exceptional divisors in Sr. For i € [1,n], denote by D, - D; the number of self-
intersections of D;.

Lemma 3.3. With the notations of Lemma the self-intersection profile of S, that is the
n-tuple (—Dy - Dy,...,—D, - D,)is

(di, 2,...,2,3,dy, 2,...,2.,3,....dy 2,...,2,3).
—~— —~— S
2dy1—3 times 2do—3 times 2dy —3 times

Proof. This is essentially counting and following strict transforms of exceptional divisors.
Consider first a standard Hénon map and keep notations above Lemma The map I,
consists of blowing up d — 1 times a point of the strict transform of D,. Indeed, the strict
transform of D, is defined in coordinates by {v = 0}. Next, II; blows up a point which
belongs to Dy, but not to any other divisor since ay # 0. All the other maps of I3 blow
up a point that is only in the last appeared exceptional divisor. Finally, D, = {u = 0}
in the last coordinates, and by is glued with {u = 0} via ¢ o II in the Kato surface.
Therefore, it will be blown up by II;, by the first blow-up of II, and will be left alone
after. We obtain the result for standard Hénon maps.

We let the reader check the result for generalized Hénon maps, using Proposition
and the form of the map o in to follow the last exceptional divisor of each standard
Hénon map. O

Before concluding the section with the proof of Proposition let us mention the
following consequence of the above computation, that we will use in the next section.

Lemma 3.4. Let ' = Fiyo---oFyand G = Gpo---oGy be generalized Hénon maps, with
Fy,...,F1,Gp,...,G; standard Hénon maps. Suppose that F' and G are conjugate near
infinity. Then, N = P and deg F}, = deg Gy, for each k € [1, N].



Proof of Proposition Suppose that G is conjugate to Fj,o---o Fj o Fyyo---o Fj,1 near
infinity. Then, Proposition 2.4 clearly implies that Sr is biholomorphic to Sg.
Conversely, suppose that Sr and S¢ are biholomorphic. We apply Proposition [2.5]and
use its notations. Then, we should have D; - D; = E;.j - Ej, for j € [1,n— k] and
D;-D; = Ejik—p - Ejij—n, for j € [n —k + 1,n]. Now, we use Lemma Note that
the 3 which appear in our writing (that is, not the d; which could also be equal to 3)
are the only one which are (cyclically) preceeded by a 2. Therefore, they are sent one to

another by . Since G,, is conjugate to G, we obtain the result by applying once again
Proposition O

4. THE GERM AT INFINITY OF HENON MAPS

In this section, we prove the following. Combined with Proposition [3.1, we obtain
Theorem [L.11

Theorem 4.1. Two generalized Hénon maps are conjugate near infinity if and only if they
are affinely conjugate.

Our proof involves computing the normal form of a generalized Hénon map’s germ
near infinity in the sense of Favre [14]. We follow the three steps of his proof to obtain
one particular normal form and then use his criterion to see which one are conjugate.

First, let us introduce some notations. Let F' = Fyo---oF} be a generalized Hénon map,
where the F;, ¢ € [1, N] are standard Hénon maps. That is, F;(z,w) = (Pi(z) — a;w, 2),
(z,w) € C2. Denote by d; = deg P; and D; = ]_[221 dj, i € [1, N]. Note that Dy = deg F.
By convention, set also Dy = 1. We will suppose that the polynomials P;, i € 1, N],
are monic and centered, i.e. P;(z) = 2% + O (2%7?). In fact, replacing F by an affine
conjugate, we can always do so [17]. Note Q;(z,w), i € [0, N] the polynomials in two
variables so that

E -0 F1(27w) = (Ql(zaw)a Qi—l(z7w>) ’ L€ [[17 N]] :
It is easy to see that they are defined by the induction relation
(4.1) Qo =2 Q1= P(z)— aw; Qi=PioQi1—a;Qi 9, i€[2,N].

Denote by V;(t,w) = t”*Q; (1,%). In affine coordinates centered at infinity, the map F is
of the form

v PPNy (i
F(t,w) = , LRIGA,
VN(t,w) VN(t,U})
To begin our way towards the normal form, we use Bottcher coordinates. Denote by
(tn,wy,) = F™(t,w) and

ot w) = (pult),w), pult) =t [ (V(taw)) V.

neN

Here and everywhere after, we consider the principal branch of the D’;!-th root.

Lemma 4.2. The map ¢ conjugates F with F(V) (thatis ¢ o F o ¢~ = F) of the form

A
FY(z,w) = (J:DN, D—wxzDN_Q(l +n(z,w)) + h(.ﬂ:)) :
N



with A = [T, ai, n(z,w) = O (¢2, zw) and
hiw) = &g (@)Y Vv (90 (2),0) -

Proof. It is well known that the expression of ¢,, converges (see [[18] for standard Hénon
maps), and ¢, = O (t"~), w, = O (tP¥~P~v-1), the O being uniform in n in a neighbour-
hood of 0. Hence,

(4.2) pult) =t (Vi (t,w)) " (14O (tP¥+Pv-1))

Moreover, these coordinates are designed to have 7 oo F(t,w) = ¢, (t)P~, m being the
standard projection on the first coordinate. So, the map F() is of the form

F(l)(w,w) = (;pDN,)\w:Eq(l +n(x,w)) + h(w)) )

for some A € C* and ¢ € N that we need first to identify. Note that the differentials of
the F; are given by

dit% =1 (14 O (£, tw)) a;t?*% =1 (1 + O (8%, tw))
DF(t,w) = ((di —Dta=2 (1 + O (%, tw)) a;it* =2 (1+ O (t2,tw))> '

Therefore, using (4.2) and the fact that Vy(t,w) = 1 + O (¢?, tw),

det (D (po Fog™) (z,w)) = Hdet (DF; (Fi—y 00 Fy(z,w))) (1 + O (2%, zw))

a; (:EDi‘l)ngS (1+0 (2 zw))

[
.:2

-
I
—

= Ag3Pn—3 (1 +0 (x2,a:w)) .

Now, since det (DF®(z,w)) = ADya4™Pv= (1 + n(z, w) + wil(z,w)), we have A = £

Dy’
q=2Dy—2and n(z,w) = O (2%, zw). Finally, h(z) = mopo Fop~'(z,0), where m, is the
-1
standard projection on the second coordinate. Thus, remarking that % = gPn,
N o (Z),
we obtain the form wanted. O

Next, denote by

(4.3) woi(t) =t (Vi(t,0))"""" and v; = o, 0 Poi1, i€[L,N].
By (@.2)), we have p(t) = o n(t) (1 + O (tP¥+P~-1)) and by Lemma
(4.4) h(z) = 2P (3 (x)) "7 (14 O (xPr+Pr-1))

We continue our way towards the normal form.

Lemma 4.3. Keep the notations of Lemma The germ F() is conjugate to the germ

A -
F(z)(x7y) = (xDNa _yx2DN_2 + h(l’)) ’
Dy

with h(z) = h(z) (1 + O (aPv+Pr-)).



Proof. We use the work of Favre [14, pp.491-494]. He shows that we can find a map ¥
of the form ¥(z,w) = (z,w(l + ¥(x,w))) such that ¥ o FY) = F® o ¥, Moreover, he
gives an explicit expression for ¢ in the form of a series. Define the operator

1

To(,w) = (1 + (e, w) o FO(a, w) + hiz) f (1 + i (, wt)) §—¢ o FO(z, wt)dt,
0 w
for m = n+wil. Then, ¢ = 3, T*n. Obviously, if f = O (22, zw), then T'f = O (2?).
Actually, the composition with F() makes degree grow far faster. Therefore, 1(x, w) is a
O (2%, zw). Now, this gives

h(z) =m0 F® o W(z,0) = o Wo FV(z,0) = h(z) (14 (2", h(z)))
h(z) = h(z) (1 + O (aP¥+Pr-1)) |
U

We finish the computation of the normal form with the third step of Favre [14, pp.496—
498].

Lemma 4.4. Keep the notations of Lemma 4.3 and write h(z) = 3. _. byz™. Then, F® is
conjugate with the normal form

A
F(g)($ay) = (:EDNv D_yx2DN 2 + g($>) )
N
where
2DN—2
g(x) = Z bpa™ + P bapy—1T +b2DN1;2DN,
n=1

with gQDN =0 lfA #* DN and ZQDN = bQDN lfA = DN.

Now, we will show the following.

Proposition 4.5. The map I — F®), obtained by combining Lemmas 4.2} 4.3|and 4.4} is
injective.

That is, if two generalized Hénon maps are given by monic and reduced polynomials
as in the beginning of the section, and if the process of the lemmas gives the same normal
form, then they are equal. Note that the statement is not up to conjugacy (neither for F
nor for F®). That’s why we have to specify from where we obtain our normal form. For
clarity’s sake, we begin the proof by some lemmas, where we still work on one map F'.

Lemma 4.6. Recall the maps 1; from @.3) and denote by U;(t) = t*%P; (). Then,

) D; _ xPi . )y
wz(x) Uz (l’Difl) — aiIDi (lzji—ill(l,))*DifQ’ Le [[ ) ]] .

Proof. This comes from the induction relation between the V;. Note that

o S -

—1
Soo,ifl(x) ’




by definition of the V;. Now, using (4.1)),

i)™ = 1

: , 1 —a:0. N S
PZ (Qll (‘Po,%l(x) 9 0) ) alQ’L*Q <(’00’le(1) 9 0)

Coming back from @) to V', we get

Pi(z)P =

1
P (251 () ™77 Vit (p010(2),0)) = i (5.1 (0) ™77 Vica (14 (2),0).

. . . —D;_ —D,_
Now, in the denominator we recognize ¢, ;"' and ¢,,5°. Therefore,

1 xPi
@le(ﬂf)Dz = , = D, 5" [l
P (o) (@) P U — e ()

3

Lemma 4.7. We have the following approximation of the ;.
vi(r) =2 (1 + %xDi_DH + 0 (:E2D”)) , i1e€[2,N],

(@) =z (1+0(2?)).
In ¢;, the term ;27 =P is of course also a O (2*P-1) if d; > 3.
Proof. Since ¢y () = x (Vi(z,0))" " = 2 (Uy(z)) Y™, the expansion of 1, is just a conse-

quence of P, being monic and centered. Let i be greater or equal to 2 and suppose that
the lemma is proved up to rank ; — 1. By Lemma [4.6], since 1); is tangent to the identity,

vi(z) =z <U¢ (LEDH) — a;z" (wi__ll(x))Diz’)l/Di =z (1 + %ID"_DH + 0 (:EQD“)> )
Above, we used that P; is centered and monic, so that U;(z) = 1 + O (z?) and
Di+ D;_y —D;_9— D;_3>2D;_;.
We conclude by induction. O
Proof of Proposition Let I’ and G be two generalized Hénon maps, defined by
F=Fyo---oF, G=Gyo- oG

Fi(z,w) = (P(l)(z) — M, z> . Gi(z,w) = (Pi(z)(z) - agz)w, z) :

yielding to the same normal form (z,y) — (27~ Ayz?’¥~2 + g(z)) by Lemmas

and Note that Lemma [3.4] implies that indeed F' and G are the composition of the

same amount of standard Hénon maps, and that deg(F;) = deg(G;). Denote by goé’z) ,

wi(j ) forj =1 (respectively j = 2) the maps defined in for F' (respectively for G).

Denote by AV, h() (respectively h®, h(?) the maps obtained in Lemmas and

for F (respectively G). If hU)(z) = 3. _ b 2", for j € {1,2}, we have by Lemma
2DN—2

D ~
oo = Y, oan+ DN aov 3 g0
n=1
2Dn—2

D o
= Z b 4 TNbgD)N_lxDN + béQD)N:L‘QDN.
n=1
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~, . A\ —1
Now, by (@.4) and Lemma 4.3, hU)(z) = 2P~ ((1&5{2) (9:)) + O (2?Pv). Using

Lemma |4.7, we infer that bg?v = 0. Therefore, if

2Dn—2
g(x) = 2 ™ + Cop w2V
n=1
by = Cn = bg), f~or n € [1,2Dy — 2], n # Dy, and bg[)) = XCpy = b(Q) ;. In other
words, hV)(z) = P (z) + O (22Pv).
~ . . —1 _DN—I
Next, recall that hV)(z) = 2P~ (( 5{2) (x)) + O (22P~). 1t follows that we

have ¢y (z) = ¢ (x) (1 + O (zP~¥*+Px-1)). We will show that if
(

(4.5) v @) = w“< ) (1+0 (@7P),
for i > 2, then P = P, 1(1) al® and ¢ (z) = ¥, (x) (1 + O (zP=1+P=2)). This

K3 2

is a consequence of Lemmas [4.6] and Indeed, if (4.5) holds for some : > 2, by
Lemma [4.6],
T~ () (D D)
, 5 = Ui (#77) = ((1/} ) (m)) .
x

Therefore,
—D;_»o

U (591 — gDy <<¢§i)1)1 (x)> T @ (Do) — o (@(2)) 1(95)) |

: -1 ~Di2
up to order D; + D;_; — 1. Since the o\’ 22 ((%DZ(] )1> (z) have no terms multiples

of D;_, up to D; in their expansion by Lemma we obtain Ui(l) = Ui(Q). Moreover, wz(i )1
are tangent to the identity. Hence, a\" = a\” and 4", (z) = ¥ (z) (1 + O (aP1+Pi=2)).
Using the above argument by induction, we obtain Pi( ) = p®), a(l) = ( , for each

. ! 1/d1
i € [2.N], and v{"(x) = v{?(x) (1 +0(@“».$mewW> x (U )
also get Pl(l) = P( Finally, we have 4 = [ =11V, q 2 because \ = Di

agl) = a§2). Hence, F' = (G and the proposition is proved.

=1 z

End of proof of Theorem [4.1] Again, we use the work of Favre. He shows [14, p. 482]
that two normal forms like in Lemma [4.4] are conjugate if and only if g»(z) = by, ((z), for
some b € C* and (P~¥~1 = 1. Identifying the coefficients in 2P~ ~P~v-1 we get b = (Pv-1-1
if both come from the process of the Lemmas, starting with generalized Hénon maps.
It is quite easy to see that this is equivalent to hy(z) = (P¥-17'hy(Cz) + O (2?P~). By
Proposition 4.5, it is enough to find one generalized Hénon map H, affinely conjugate
to F, that can be written as a composition of monic and centered Hénon maps, and that
yields to the normal form with g,. Consider

H=00Fo0™* 0:(z,w)— (CZ,CDN*U)).

11



That is,
H(z,w) = (CQn (C'2, PV w) , PV Qnoy (CThe, (TP 1w))
H(z,w) = (Ry(z,w), Ry _1(z,w)).

Note that
H=0yoFyoby 00y 10Fy 1004 ,0---00,0F 0f,
with 6;(z, w) = (¢Pz,(P—w), and D_; = Dy_;. In this form, we have
0i0 Fo 0 (z,w) = (C7P (CTP12) — aiPPi2w, 2)

which is a standard Hénon map with monic and centered polynomial. Moreover, if we
denote by W;(t,w) = tP'R; (7,%), they satisfy
! 0
Ct’
Similarly, Wy _1(¢,0) = Viy_1 ((t,0). If we denote by 4,0822 s %@) the maps defined by (4.3)
with respect to the W;, we obtain go(()zf (t) = (Yo, (Ct), for i € {N — 1, N}. Therefore,

@) = Yy (¢t). Using (@4), the map h? defined by Lemma [4.2| applied to H can

N
be written
h(x) = PPyt (Co) TP+ O (02PY) = bl (Cx) + O (22PY) = hyo(2) + O (27PV) .

With our first remarks, this concludes the proof. O

Wy (t,0) = t”V Ry G,o) = tP¥(Qn < ) = Vy (¢t,0).
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