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HYPERBOLIC ENTROPY FOR HARMONIC MEASURES ON SINGULAR
HOLOMORPHIC FOLIATIONS

FRANÇOIS BACHER

ABSTRACT. Let F “ pM,L , Eq be a Brody-hyperbolic singular holomorphic foliation on
a compact complex manifold M . Suppose that F has isolated singularities and that its
Poincaré metric is complete. This is the case for a very large class of singularities, namely,
non-degenerate and saddle-nodes in dimension 2. Let µ be an ergodic harmonic measure
on F . We show that the upper and lower local hyperbolic entropies of µ are leafwise
constant almost everywhere. Moreover, we show that the entropy of µ is at least 2.

1. INTRODUCTION

The dynamical theory for laminations by Riemann surfaces has recently received much
attention. In particular, a lot of progress have been focused on the case of hyperbolic
leaves. For singular holomorphic foliations on Pn, this is a typical setup. Indeed, ev-
ery polynomial vector field on Cn induces a singular holomorphic foliation that can be
compactified onto Pn. This foliation is always singular. For d, n P N with n ě 2, denote
by FdpPnq the space of singular holomorphic foliations of degree d on Pn. As is shown
by Lins Neto and Soares [15], a generic foliation F P FdpPnq has only non-degenerate
singularities. This result is based on a previous analysis of the Jouanolou foliations [12].
By the results of Lins Neto [13, 14] and Glutsyuk [11], such a foliation is hyperbolic if
d ě 2 and even Brody-hyperbolic in the sense of [7]. In the case n “ 2, Nguyên also uses
the integrability of the holonomy cocycle [19] to compute the Lyapunov exponent [20]
of a generic foliation in FdpP2q. We refer the reader to the survey articles [8, 9, 17, 18]
for more details about these questions.

Solving heat equations with respect to a harmonic current, Dinh, Nguyên and Sibony
prove in [5] ergodic theorems for laminations. In particular, they obtain an effective and
geometric analog of Birkhoff’s Theorem. Somehow, the comparison relies on considering
the time to be the hyperbolic distance in a uniformization of a leaf by the Poincaré disk D.
Therefore, in a series of two articles [6, 7], the three authors study the modulus of
continuity of the Poincaré metric of compact laminations and of singular holomorphic
foliations with linearizable singularities. They also introduce various notions of entropy
for hyperbolic laminations. These concepts, together with Lyapunov exponents [16],
could bring a fruitful bridge between the dynamics of foliations and the dynamics of
maps. Our works [1, 2, 3] are devoted to generalize some of their results about the
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Poincaré metric, the heat diffusions and the topological entropy to foliations with non-
degenerate singularities. Here, we are interested in the measure-theoretic hyperbolic
entropy.

Let us introduce some notations to state our results. Let F “ pM,L , Eq be a singular
holomorphic foliation. Here, M is a compact complex manifold, L is a foliated atlas
of MzE and E is the singular set of F . Suppose that the leaves of F are hyperbolic
Riemann surfaces and for x P MzE, fix ϕx : D Ñ Lx a uniformization of the leaf Lx. Such
a map is unique up to precomposing by a rotation. Let gM be a Hermitian metric on M
and denote by d the induced distance on M . Since we consider the hyperbolic distance
in D to be a time parametrizing Lx,

dRpx, yq “ inf
θPR

sup
ξPDR

dpϕxpξq, ϕypeiθξqq, x, y P MzE,

for R ą 0, can be thought as a Bowen distance up to time R [6, pp. 581–582]. Here, DR

denotes the disk of center 0 and hyperbolic radius R. The infimum over θ means that
we consider distances between the two closest parametrizations of the leaves Lx and Ly.
That is, we consider the distance up to reparametrization. Therefore, we obtain a no-
tion of Bowen balls and of topological entropy hpF q, which is a number that measures
heuristically the exponential growth with R of the amount of Bowen balls needed to
cover MzE. The more precise definition of hpF q will be given in Section 2. There are
some cases for which it is known the topological entropy is finite. Namely, for smooth
compact laminations without singularities [6] and foliations with only non-degenerate
singularities on compact complex surfaces [7, 3]. Here, we show a lower bound for the
entropy.

If moreover F is endowed with a harmonic measure µ, one can ask more weakly how
many balls are needed to cover a subset of measure at least 1´δ, for δ Ñ 0, and we obtain
a measure-theoretic entropy hpµq. It is clear that hpµq ď hpF q. To study these numbers,
Dinh, Nguyên and Sibony [6] introduce other notions of entropy, and in particular local
upper and lower entropies h˘pµ, xq, that measure the exponential decay with R of the
µ-measure of the Bowen balls centered in x. In the case without singularities, they can
show the following.

Theorem 1.1 (Dinh–Nguyên–Sibony [6, Theorem 4.2]). Let F “ pM,L q be a smooth
compact lamination by hyperbolic Riemann surfaces and µ be a harmonic measure on F .
Then, the local upper and lower entropies x ÞÑ h˘pµ, xq are leafwise constant. In particu-
lar, if µ is ergodic, they are constant µ-almost everywhere and we denote them by h˘pµq.
Moreover, hpµq ě 2.

Here, we improve their results for singular holomorphic foliations.

Theorem 1.2. Let F “ pM,L , Eq be a Brody-hyperbolic singular holomorphic foliation
on a compact complex manifold M . Let µ be an ergodic harmonic measure on F . Suppose
that the singularities of F are isolated and that the Poincaré metric of F is complete. Then,
x ÞÑ h˘pµ, xq are constant µ-almost everywhere. Moreover, hpµq ě 2.

As we show in Section 2, if F is Brody-hyperbolic, the assumption on the Poincaré
metric is only local near the singularities. Therefore, by local works of Canille Martins
and Lins Neto [4], our result can be applied to a large class of singularities.
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Corollary 1.3. Let F “ pM,L , Eq be a Brody-hyperbolic singular holomorphic foliation
on a compact complex manifold M . Let µ be an ergodic harmonic measure on F . Suppose
that all the singularities p P E of F are of one of the following type.

(1) In a chart centered at p, F is generated by a vector field X “
ř`8

j“k Xj, with the
Xj homogeneous vector fields of degree j, for j ě k, and Xk admitting an isolated
singularity. In particular, if k “ 1, p is a non-degenerate singularity.

(2) The point p is a saddle-node singularity of F (in ambient dimension 2).

Then, the conclusions of Theorem 1.2 hold.

Let us explain the method of our proof. First, we follow the idea of Dinh, Nguyên and
Sibony of considering transversal entropies rh˘pµ, xq. The main advantage is that it is not
so difficult to show that they are leafwise constant using the quasi-invariance of µ. As in
the non-singular case, we reduce our problem to proving h˘ “ rh˘ ` 2. Somehow, this
means showing that the plaquewise entropy is always 2. That is, we have to determine
the size of the intersection of a Bowen ball with a plaque. In the non-singular case,
estimates on the distance between the identity and τ P AutpDq on DR show that this
intersection is essentially a disk of radius » e´R. Indeed, if there is a ξ P DR such that
dP pξ, τpξqq is big, then there are intermediate points where it is not so big to be in the
same plaque, and still bigger than ε. In that case, the Poincaré distance and the distance
in M are comparable. This simple argument does not work anymore in our context
because of the singularities. When the above distance is not so big, we could be near the
singularity. In that case, we can not conclude anything. On the other hand, when we are
outside neighbourhoods of the singularities, the Poincaré distance between two points of
the same leaf could be big and the distance in M very small if they do not belong to the
same plaque.

Let us describe how we overcome this difficulty. First, we use Dinh, Nguyên and
Sibony’s Birkhoff type Theorem [5] to control the time spent near the singularities.
Next, we prove thorough estimates on the distance between the identity and an auto-
morphism τ of D and find a large amount of points where the distances between them
is big enough but not too big. Then, this enables to show that the distances between
two points of the intersection of a Bowen ball with a plaque correspond in some sense to
large subsets of the disk which are spent near the singular set. Since this time is small,
this should not happen often. More precisely, we show somehow that this intersection
contains at most eδR disks of radius e´R, for δ comparable to the proportion of time spent
near the singular set. Since this δ can be chosen arbitrarily small, we have our result. The
last argument relies on studying what we call subsets of Rn with prescribed steps. That is,
subsets for which it is known that the distance between any two points is in some small
union of intervals. These look like what we obtain when constructing the Cantor ternary
set by induction.

The article is organized as follows. In Section 2, we begin by recalling some basic
facts about the Poincaré metric. We show that Corollary 1.3 is indeed a consequence
of Theorem 1.2. Then, we define the different entropies we shall use. We recall some
results of the three authors to reduce to studying the plaquewise entropy and showing
Proposition 2.7. In Section 3, we prove this proposition. We begin by reducing to two
lemmas that will allow to work in one single plaque. Next, we study briefly subsets of Rn

3



with prescribed steps. We finish by introducing a fine geometric setup and proving the
two lemmas.

Notation. Throughout this paper, we denote by D the unit disk of C, and rD the open
disk of radius r P R˚

` for the standard Euclidean metric of C. For R P R˚
`, we also denote

by DR the open disk of hyperbolic radius R in D, so that DR “ rD with r “ eR´1
eR`1

, or if
r P r0, 1q, with R “ ln 1`r

1´r
.

If F “ pM,L , Eq is a singular holomorphic foliation and x P MzE, we denote by Lx

the leaf of F through x. Moreover, if Lx is hyperbolic, we denote by ϕx : D Ñ Lx a
uniformization of Lx such that ϕxp0q “ x. Given a Hermitian metric gM on M , we denote
by d the distance induced by gM and by Bpa, ρq the ball of center a and radius ρ. We use
the same notation for a ball in Rn. Similarly, we denote by dP the Poincaré distance if
one is given a Poincaré metric denoted gP on the disk or on a leaf. We are also given
Bowen distances dR on MzE, and denote by BRpx, εq the ball of center x and radius ε for
the distance dR.

Finally, we denote by LebpBq the Lebesgue measure of a Borel set B Ă Rn. We use C,
C 1, C2, etc. to denote positive constants which may change from a line to another.

Acknowledgments. The author is supported by the Labex CEMPI (ANR-11-LABX-0007-
01) and by the project QuaSiDy (ANR-21-CE40-0016).

2. HYPERBOLIC ENTROPY FOR FOLIATIONS

2.1. Leafwise Poincaré metric. In all this section, we let F “ pM,L , Eq be a singular
holomorphic foliation on a compact complex manifold M . Suppose that M is endowed
with a Hermitian metric gM and for x P MzE, consider

(2.1) ηpxq “ sup
!

}α1
p0q}gM ; α : D Ñ Lx holomorphic such that αp0q “ x

)

.

Above, }v}gM is the norm of a vector v P TxLx with respect to the Hermitian metric gM .
That is, }v}gM “ pgM,xpv, vqq

1{2. The map η was introduced by Verjovsky in [21]. It is
designed to satisfy the following facts.

Proposition 2.1. (1) For x P MzE, ηpxq ă `8 if and only if the leaf Lx is hyperbolic,
that is, it is uniformized by the Poincaré disk D.

(2) If Lx is hyperbolic, we have ηpxq “ }ϕ1p0q}gM , where ϕ : D Ñ Lx is any uniformiza-
tion of Lx such that ϕp0q “ x.

(3) If Lx is hyperbolic, then 4gM
η2

induces the Poincaré metric on Lx.

Here, we are interested in the case of hyperbolic leaves. We need to specify our global
setting. Let us introduce some terminology, for which we follow [7, Definition 3.1].

Definition 2.2. If all the leaves of F are hyperbolic, we say that F is hyperbolic. If
moreover there exists a constant c0 ą 0 such that ηpxq ă c0 for all x P MzE, we say
that F is Brody-hyperbolic.

We say the Poincaré metric of F is complete if F is hyperbolic and 4gM
η2

is complete as a
Hermitian metric on MzE. We refer the reader to [4, Property P.2.] for more details.

In full generality, it is not known whether the map η is continuous. In fact, we can only
say that it is lower semi-continuous [9, Theorem 20]. However, with the asumption that
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the Poincaré metric is complete, Lins Neto [13, Theorem A] shows the continuity of η.
For discussions about this regularity, see [18, Section 4] and the references therein. See
also [6, 7, 1] for a modulus of continuity with more restrictive singularities.

As mentioned before, there are cases when we know the Poincaré metric is complete.

Theorem 2.3 (Canille Martins–Lins Neto [4, Theorems 1 and 2]). Let F be a local sin-
gular holomorphic foliation near 0 P Cn, with singularity at 0 of any type listed in Corol-
lary 1.3. Then, the Poincaré metric of F is complete at 0.

Therefore, Corollary 1.3 is a consequence of the following, the proof of which is essen-
tially the same as [7, Proposition 3.3].

Lemma 2.4. Let F “ pM,L , Eq be a Brody-hyperbolic singular holomorphic foliation on
a compact complex manifold. Suppose that all a P E admit a neighbourhood Ua on which
the Poincaré metric of F Ua is complete at a. Then, the Poincaré metric of F is complete.

Proof. Let ηa denote the η map of the foliation F Ua. We will show that there exists a
constant Ca ą 0 such that η ď Caηa on some neighbourhood Va Ă Ua of a. Since M is
compact and F is Brody-hyperbolic, it is not difficult to see that it implies the result. Let
ρ ą 0 be such that the ball Bpa, ρq is contained in Ua and consider Va “ B

`

a, ρ
2

˘

. Fix x P Va

and ϕx : D Ñ Lx a uniformization of Lx such that ϕxp0q “ x. That way, ηpxq “ }ϕ1
xp0q}gM .

Since F is Brody-hyperbolic, there exists a radius r0 P p0, 1q, independent on x, such
that ϕxpr0Dq Ă Ua. More precisely, the hyperbolic radius R0 “ ln 1`r0

1´r0
corresponding

to r0 can be chosen to be equal to ρ
c0

, for c0 ą 0 as in Definition 2.2. By the extremal
condition (2.1) of ηa, it follows that ηapxq ě r0 }ϕ1

xp0q}gM “ r0ηpxq. □

2.2. Bowen distance and various notions of entropy. From now on, suppose that F
is hyperbolic. Also, denote by d the distance on M induced by the ambient Hermitian
metric gM . For x P MzE, fix ϕx : D Ñ Lx a uniformization of Lx such that ϕxp0q “ x. The
idea of Dinh, Nguyên and Sibony [6, pp. 581–582] is to consider the Poincaré distance
in D to be a canonical time. More precisely, for R ě 0, consider the Bowen distance

dRpx, yq “ inf
θPR

sup
ξPDR

dpϕxpξq, ϕypeiθξqq, x, y P MzE.

It measures the distance between the orbits of x and y up to time R. It is clear that it is
independent on the choice of ϕx. This enables us to define various notions of entropy. For
x P MzE, R ě 0 and ε ą 0, denote by BRpx, εq “ ty P M ; dRpx, yq ă εu the Bowen ball of
radius ε and center x up to time R. For Y Ă MzE, R ě 0, ε ą 0 and F Ă Y , we say that
F is pR, εq-dense in Y if Y Ă YxPFBRpx, εq. Denote by NpY,R, εq the minimal cardinality
of an pR, εq-dense subset in Y . The topological hyperbolic entropy of Y is defined as

hpY q “ sup
εą0

lim sup
RÑ`8

1

R
logNpY,R, εq.

For Y “ MzE, we denote it by hpF q. If M is compact, it is not difficult to prove that it
does not depend on the choice of gM . A similar and equivalent definition can be made
with maximal pR, εq-separated sets, but we do not need it. The interested reader can
see [6, Section 3] for more details.

Now, we introduce some entropies for harmonic measures following [6, Section 4].
Basically, harmonic measures are quasi-invariant measures by the foliation F . Here, we
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only use (2.2) below, which can be seen as a local expression of this quasi-invariance.
That is, a harmonic measure can be locally disintegrated into a transverse positive Radon
measure times a leafwise positive harmonic density. We refer the reader to [5, 9, 10, 18]
for a definition and a link with ddc-closed currents.

To define measure-theoretic entropy, the idea is to consider analogous quantities as
those emerging from Brin–Katok Theorem. Let µ be a harmonic probability measure
on F . All our harmonic measures will be supposed to have total mass 1. For R ě 0,
ε ą 0 and δ P p0, 1q, let NpR, ε, δq be the smallest integer N such that there exists
x1, . . . , xN P MzE with µ

`

YN
i“1BR pxi, εq

˘

ě 1 ´ δ. Define the hyperbolic entropy of µ as

hpµq “ sup
δPp0,1q

sup
εą0

lim sup
RÑ`8

1

R
logNpR, ε, δq.

To study this quantity, Dinh, Nguyên and Sibony consider local upper and lower hyperbolic
entropies h˘pµ, xq, for x P MzE. Namely,

h`
pµ, x, εq “ lim sup

RÑ`8

´
1

R
log µ pBRpx, εqq , h`

pµ, xq “ sup
εą0

h`
pµ, x, εq;

h´
pµ, x, εq “ lim inf

RÑ`8
´
1

R
log µ pBRpx, εqq , h´

pµ, xq “ sup
εą0

h´
pµ, x, εq.

In the context of a non-singular foliation, they prove that these are leafwise constant (see
Theorem 1.1). This enables them to obtain a link between all these entropies.

Theorem 2.5 (Dinh–Nguyên–Sibony [6, Proposition 4.5]). Let F “ pM,L q be a (non-
singular) hyperbolic holomorphic foliation on a complex manifold M (we do not assume
that M is compact). Let µ be a harmonic measure on F . If the quantities x ÞÑ h˘pµ, xq are
constant µ-almost everywhere, then,

h´
pµq ď hpµq ď h`

pµq ď hpF q.

Under these hypotheses, the above theorem is in fact implicitly proved, for the authors
state it in the setup of Theorem 1.1. However, they only use that h˘pµ, xq are constant.
Let us define another notion of entropy that they introduce to prove their results.

2.3. Local transversal entropy. Let x P MzE. If ε ą 0 is sufficiently small, then there
exists a flow box U » D ˆ T such that Bpx, εq Ă U . Denote by πT : U Ñ T the projection
on the second coordinate. Consider a disintegration of the measure µ in U . That is,

(2.2) µ “

ż

T

ˆ
ż

D
ftpzqgP pz, tq

˙

dνptq,

where ν is a finite positive Radon measure on T and the ft, for t P T, are positive
harmonic functions on D with ftp0q “ 1. Such a decomposition is unique up to changing
the ft on a ν-negligible set and exists due to [5, Propositions 2.3 and 5.1]. Define

rh`
pµ, x, εq “ lim sup

RÑ`8

´
1

R
log ν pπT pBRpx, εqqq , rh`

pµ, xq “ sup
εą0

rh`
pµ, x, εq;

rh´
pµ, x, εq “ lim inf

RÑ`8
´
1

R
log ν pπT pBRpx, εqqq , rh´

pµ, xq “ sup
εą0

rh´
pµ, x, εq.
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It is not difficult to show that rh˘pµ, xq do not depend on the choice of the flow box U .
The following is implicitly proved by the three authors. They state it with more restrictive
hypotheses but their proof still works without changing anything.

Theorem 2.6 (Dinh–Nguyên–Sibony [6, Theorem 4.2]). Let F “ pM,L q be a Brody-
hyperbolic holomorphic foliation on a complex manifold M and µ be a harmonic measure
on F . Then, the quantities x ÞÑ rh˘pµ, xq are leafwise constant. In particular, if µ is ergodic,
they are constant µ-almost everywhere and we denote them by rh˘pµq.

Note that there is no compactness assumption on M . Therefore, we can apply it to
pMzE,L q in the singular case. Now, Theorem 1.2 wil be a consequence of Theorems 2.5
and 2.6, combined with the following, the proof of which occupies the next section and
needs some detours.

Proposition 2.7. Let F “ pM,L , Eq be a Brody-hyperbolic singular holomorphic foliation
on a compact complex manifold M . Let also µ be an ergodic harmonic measure on F . Sup-
pose that the singularities of F are isolated and that the Poincaré metric of F is complete
in the sense of Definition 2.2. Then, for µ-almost every x P MzE,

h˘
pµ, xq “ rh˘

pµ, xq ` 2.

In particular, x ÞÑ h˘pµ, xq are constant µ-almost everywhere and h´pµq ě 2.

3. PROOF OF PROPOSITION 2.7

3.1. First reduction. Let F “ pM,L , Eq be a Brody-hyperbolic singular holomorphic
foliation on a compact complex manifold M and µ be an ergodic harmonic measure
on F . Suppose that the singularities of F are isolated and that the Poincaré metric of F
is complete. First, we intend to reduce the proof to two lemmas, which together will
give estimates to the measure of plaquewise Bowen balls. More precisely, we estimate
the quantity of automorphisms τ of the disk, such that ϕ ˝ τ is close to ϕ, for some
given ϕ uniformization of a leaf. These estimates will take some time to be proven, but
we already show how to obtain Proposition 2.7 from them.

Lemma 3.1. For δ ą 0 and µ-almost every x P MzE, there exists ε0 ą 0 satisfying the
following. For ε ą 0 sufficiently small, there exists C ą 0 such that for all sufficiently large
R ą 0 and y P BRpx, ε0q,

C´1e´R
ď Leb

`␣

θ P r´π, πs ; dDR
pϕy ˝ rθ, ϕyq ă ε

(˘

ď Ce´p1´δqR.

Here, rθ P AutpDq denotes the rotation of angle θ.

We need a similar result for a general automorphism in AutpDq. For ζ P D, denote by
τζ P AutpDq defined by τζpξq “

ξ`ζ

1`ζξ
. We need some preparation.

Lemma 3.2. Given x P MzE, there exist flow boxes D ˆ T » U Ă V containing x and
r0 P p0, 1q such that

U Ă
ď

tPT

ϕt

´r0
3
D
¯

and
ď

yPU

ϕypr0Dq Ă V.
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Proof. First fix a flow box V containing x. Since η is bounded above, we can find r0 P p0, 1q

and U sufficiently small such that the map

r0D ˆ U Ñ M, pζ, yq ÞÑ ϕypζq

is injective and with values in V . Now, since η is bounded from below near x, shrinking U
if necessary, we can suppose U Ă YtPTϕt

`

r0
3
D
˘

. □

Lemma 3.3. For δ ą 0 and µ-almost every x P MzE, there exists ε0 ą 0 satisfying the
following. For ε ą 0 sufficiently small, there exists C ą 0 such that for all sufficiently large
R ą 0 and y P BRpx, ε0q,

C´1e´3R
ď Leb

`␣

pζ, θq P r0D ˆ r´π, πs ; dDR
pϕy ˝ τζ ˝ rθ, ϕyq ă ε

(˘

ď Ce´3p1´δqR.

Here, r0 is given by the previous lemma.

Proof of Proposition 2.7. We take for granted Lemmas 3.1 and 3.3 and show how they
give us our result. Consider x P MzE satisfying the conclusions of the lemmas and fix
δ ą 0. Let r0 P p0, 1q, D ˆ T » U Ă V be given by Lemma 3.2 and 0 ă ε ă ε0

3
sufficiently

small to have the conclusions of both other lemmas. Using (2.2), we get

µpBRpx, εqq “

ż

T

ˆ
ż

D
ftpzqχBRpx,εqpz, tqgP pz, tq

˙

dνptq,

where χB denotes the characteristic function of a Borel set B. Now, since x P MzE is still
far from the singular set, gP is equivalent to the Lebesgue measure and by the Harnack
inequality, there exists c ą 0 such that c´1 ď ft ď c on U . Therefore, there exists c1 ą 1
with

c1´1µpBRpx, εqq ď

ż

πTpBRpx,εqq

Leb pBRpx, εq X pD ˆ ttuqq dνptq ď c1µpBRpx, εqq.

Here, the Lebesgue measure is the one of D in the flow box U . For t P πTpBRpx, εqq,
choose yt P BRpx, εq X pD ˆ ttuq. Then, BRpx, εq X pD ˆ ttuq Ă BR pyt, 2εq X pD ˆ ttuq.
Moreover, for yt P BR

`

x, ε
2

˘

, BR

`

yt,
ε
2

˘

X pD ˆ ttuq Ă BRpx, εq X pD ˆ ttuq. Hence,

(3.1)

µpBRpx, εqq ď c1νpπTpBRpx, εqqq sup
tPπTpBRpx,εqq

LebpBRpyt, 2εq X pD ˆ ttuqq;

µpBRpx, εqq ě c1´1ν pπT pBR px, ε{2qqq inf
tPπTpBRpx,ε{2qq

Leb pBR pyt, ε{2q X pD ˆ ttuqq .

So, changing ε if necessary, it will be sufficient to bound above and below the Lebesgue
measure of BRpy, εq X pDˆ ttuq, for y P BRpx, ε0q X pDˆ ttuq. Let y1 P BRpy, εq X pDˆ ttuq.
Since y and y1 are in the same plaque, there is ζ P r0D such that y1 “ ϕypζq. Thus,

BRpy, εq X pD ˆ ttuq “
␣

ϕypζq; ζ P r0D, Dθ P r´π, πs , dDR
pϕy ˝ τζ ˝ rθ, ϕyq ă ε

(

.

Denote by

Aεpyq “
␣

ζ P r0D, Dθ P r´π, πs , dDR
pϕy ˝ τζ ˝ rθ, ϕyq ă ε

(

,

Bεpyq “
␣

pζ, θq P r0D ˆ r´π, πs , dDR
pϕy ˝ τζ ˝ rθ, ϕyq ă ε

(

,

Cεpy
1
q “

␣

θ P r´π, πs , dDR
pϕy1 ˝ rθ, ϕy1q ă ε

(

, y1
P BRpy, εq X pD ˆ ttuq .

Since the Poincaré metric in the flow box is equivalent to the Lebesgue measure, we have

(3.2) c´1 Leb pAεpyqq ď Leb pBRpy, εq X pD ˆ ttuqq ď cLeb pAεpyqq .
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Moreover,
Leb pBεpyqq ď LebpAεpyqq sup

ξPπζpBεpyqq

LebpC2εpϕypξqqq,

Leb pB2εpyqq ě Leb pAεpyqq inf
ξPπζpBεpyqq

Leb pCεpϕypξqqq ,

where πζ is the projection on the disk from D ˆ r´π, πs. Now, applying Lemmas 3.1
and 3.3 and coming back to (3.2), we get

C´1e´p2`δqR
ď Leb pBRpy, εq X pD ˆ ttuqq ď Ce´p2´3δqR.

By (3.1), we obtain

pc1Cq
´1µpBRpx, εqqep2´3δqR

ď νpπTpBRpx, εqqq ď c1Cep2`δqRµpBRpx, εqq.

Letting R go to infinity and noting that ε can be chosen arbitrarily small, this implies

h˘
pµ, xq ´ 2 ´ δ ď rh˘

pµ, xq ď h˘
pµ, xq ´ 2 ` 3δ.

Since δ was chosen arbitrarily, we conclude the proof. □

3.2. Subsets of Rn with prescribed steps. This subsection is devoted to studying briefly
subsets of Rn with distances in a pre-defined set. As will appear in the next subsection,
the sets appearing in Lemmas 3.1 and 3.3 will be of that kind (for n “ 1 or 3) and we are
especially interested in estimating their Lebesgue measure. The sets we study look like
the union of intervals we obtain when constructing Cantor sets by induction. Let us be
more precise.

Definition 3.4. Let N P N and for i P J0, NK, j P t1, 2u, take εi,j ě 0. Suppose that

0 ă εi`1,2 ă εi,1 ă εi,2, i P J0, N ´ 1K ,

and εN,1 “ 0. A Borel subset A Ă Rn is said to have prescribed pεi,jqi,j-steps if for any
x, y P A, there exists i P J0, NK such that }x ´ y} P rεi,1, εi,2s.

In particular, it should be noted that diampAq ď ε0,2. The following gives an upper
bound to the Lebesgue measure of those sets. The bound is loose but will be sufficient.

Lemma 3.5. Let A be a Borel subset of Rn with prescribed pεi,jqiPJ0,NK,jPt1,2u-steps. Suppose
that for i P J1, NK, εi,2 ă

εi´1,1

2
. Then, if Vn “ VolpBp0, 1qq in Rn,

LebpAq ď Vnε
n
N,23

nN
ˆ

N´1
ź

i“0

ˆ

εi,2
εi,1

˙n

.

Proof. Let us show by induction on N that such an A is contained in the union of at most
pN “ 3nN ˆ

śN´1
i“0

´

εi,2
εi,1

¯n

balls of radius εN,2. If N “ 0, this is trivial. Suppose that this
was proven at rank N ´ 1. Take A as in the statement of the lemma. Then, we can apply
the induction hypothesis to εi,j, i P J0, N ´ 2K , j P t1, 2u, εN´1,2 and ε1

N´1,1 “ 0. This gives
pN´1 balls of radius εN´1,2 which cover A. Now, each of these pN´1 balls has prescribed
pεi,jqiPtN´1,Nu,jPt1,2u-steps. Indeed, if B is one of these balls and if x, y P A X B, then

}x ´ y} P r0, 2εN´1,2s X

˜

N
ď

i“0

rεi,1, εi,2s

¸

“ r0, εN,2s Y rεN´1,1, εN´1,2s .
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Here, we use that εN´1,2 ă
εN´2,1

2
. Since pN “ pN´1p

1
1, with p1

1 “ 3n
´

εN´1,2

εN´1,1

¯n

, this is
enough to prove the induction hypothesis for N “ 1. This means that for x, y P A, either
}x ´ y} ď ε1,2, or }x ´ y} P rε0,1, ε0,2s. Let x1, . . . , xr be a maximal ε1,2-separated subset
of A. Since the xi are ε1,2-separated, }xi ´ xj} ą ε1,2 for i ‰ j and the prescribed steps
imply that }xi ´ xj} ě ε0,1. Therefore, the balls

`

B
`

xi,
ε0,1
2

˘˘

iPJ1,rK are disjoint. Since
diampAq ď ε0,2, they are also all included in B

`

x1, ε0,2 `
ε0,1
2

˘

. Hence,

Vn

´

ε0,2 `
ε0,1
2

¯n

“ Vol
´

B
´

x1, ε0,2 `
ε0,1
2

¯¯

ě Vol

˜

r
ď

i“1

B
´

xi,
ε0,1
2

¯

¸

ě

r
ÿ

i“1

Vol
´

B
´

xi,
ε0,1
2

¯¯

“ rVn

´ε0,1
2

¯n

,

using first the inclusion and second the disjointness of the balls. From the above inequal-
ity, it follows that r ď

´

2ε0,2`ε0,1
ε0,1

¯n

ď

´

3 ε0,2
ε0,1

¯n

“ p1. Moreover, by maximality of the
ε1,2-separated family x1, . . . , xr, A Ă Yr

i“1Bpxi, ε1,2q. This completes the proof. □

3.3. Geometric setup. In this subsection, we prepare some geometric and dynamical
ground. In particular, we need Dinh, Nguyên and Sibony’s Birkhoff-type Theorem. Let
F “ pM,L , Eq be a Brody-hyperbolic singular holomorphic foliation on a compact com-
plex manifold. Suppose that F has isolated singularities. For x P MzE, fix ϕx : D Ñ Lx

a uniformization of Lx. For r P p0, 1q and the corresponding R “ ln 1`r
1´r

, define

mx,R “
1

MR

pϕxq˚

ˆ

log` r

|ζ|
gP

˙

,

where log` stands for maxplog, 0q, gP denotes the Poincaré metric on the disk and

MR “

ż

D
log` r

|ζ|
gP “ ´2π logp1 ´ r2q „RÑ`8 2πR.

Theorem 3.6 (Dinh–Nguyên–Sibony [5, Theorem 7.1] (see also [18, Theorem 5.36])).
Keep the above notations and hypotheses. Let µ be an ergodic harmonic measure on F .
Then, for µ-almost every x P MzE, mx,R converges weakly to µ when R tends to infinity.

Now, fix an x P MzE such that mx,R Ñ µ. We use this convergence to control the time
that Lx spends near the singular set. More precisely, we need the following.

Lemma 3.7. Suppose moreover that the Poincaré metric of F is complete. Fix δ ą 0. There
exist 0 ă ρ1 ă ρ2 ă ρ3 satisfying the following. Denote by U sing

j “ ty P MzE; dpy, Eq ď ρju,
for j P t1, 2, 3u.

(i) If y P MzE and j P t1, 2u are such that dpy, Eq ď ρj and y1 P Ly is such that
dpy1, Eq ě ρj`1, then dP py, y1q ě 4.

(ii) µ
´

U sing
3

¯

ă δ
2
. In particular, for all large enough R ą 0, mx,R

´

U sing
3

¯

ă δ.

(iii) x R U sing
3 .

Proof. Choose first ρ3 ą 0 satisfying (ii) and (iii). Clearly we can do so since µpEq “ 0
and mx,R Ñ µ. Then, since the Poincaré metric is complete, we can choose ρ2 P p0, ρ3q

and after that ρ1 P p0, ρ2q satisfying (i). □
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Lemma 3.8. With the notations of Lemma 3.7, there exist c ą 1 and ε0 ą 0 such that the
following holds. Let y R 1

2
U sing
1 , y1 P Ly be such that dP py, y1q ď ε0. Then,

c´1dP py, y1
q ď dpy, y1

q ď cdP py, y1
q.

Above, 1
2
U sing
1 “

␣

y P MzE; dpy, Eq ď
ρ1
2

(

.

Proof. Given ρ1, we can cover Mz1
4
U sing
1 by a finite number of flow boxes. It follows

that η is bounded by c´1 ă η ă c on Mz1
2
U sing
1 . Moreover, we find an ε0 ą 0 such that

y R 1
4
U sing
1 implies that Bpy, cε0q is contained in a flow box. For y and y1 satisfying the

above conditions, we get
cε0
2

ě
c

2
dP py, y1

q ě dLypy, y1
q,

where dLy denotes the distance on Ly induced by the restriction of gM to Ly. This implies
that y and y1 are in the same plaque and the bounds on η give us both needed inequalities.

□

The following describes circles that are in a large part mapped to the singular set.
These Ri,j will prove to give prescribed steps of the sets involved in Lemmas 3.1 and 3.3.

Lemma 3.9. With the notations of Lemma 3.7, take R ą 0 sufficiently large. Denote by

Isingj “

!

R1
P r0, Rs ; Leb

!

ξ P BDR1 ;ϕxpξq P U sing
j

)

ą
π

3

)

, j P t1, 2, 3u.

Here, Leb of the circles BDR1 are normalized to have mass 2π. There exists pRi,jqiPJ0,NK,jPt1,2u
,

such that 4 ă Ri,2 ă Ri,1 ă Ri`1,2, i P J0, N ´ 1K, R ě RN,2 and RN,1 “ `8, with
(1) Ri,1 ´ Ri,2 ě 4, Ri`1,2 ´ Ri,1 ě 4, for i P J0, N ´ 1K.
(2) Ising1 Ă YN

i“0 pRi,2, Ri,1q.
(3) r0, Rs X

`

YN
i“0 pRi,2, Ri,1q

˘

Ă Ising3 .

Moreover,
řN´1

i“0 Ri,1 ´ Ri,2 ` pR ´ RN,2q ď 12δR and N ď 3δR.

Big R will correspond to small ε, that is why the order is reversed compared to sets
with prescribed steps.

Proof. This is where we use our weird conditions on ρ1, ρ2, ρ3. The Isingj are open subsets
of r0, Rs. Hence, they are an at most countable union of intervals. For each C3 connected
component of Ising3 , if C3 XIsing1 ‰ H, consider IC3 to be the convex hull of the union of all
connected components C2 of Ising2 XC3. Define I to be the union of the IC3, for all the C3.
Since each IC3 contains a point of Ising1 and all points of Ising2 in C3, condition (i) implies
that the length of IC3 is at least 4. Indeed, points in the part of the circle of hyperbolic
radius R1 P Ising1 which are in U sing

1 must go out of U sing
2 so that we leave IC3. Moreover,

since we work component by component in Ising3 , the same condition (i) implies that the
IC3 are pairwise distant of at least 4. Indeed, points in the part of the circle of hyperbolic
radius R2 P IC3 which are in U sing

2 must go out of U sing
3 so that we enter a new IC1

3
. If we

denote the IC3 by pRi,2, Ri,1q, points (1), (2) and (3) are then clear. To have R0,2 ą 4, we
use (iii). The bounds on RN,j are just technical for further notations. Here actually, it is
only asked that RN,2 ´ RN´1,1 ě 4. If this is not satisfied for RN,2 “ R, then we can just
put RN´1,1 “ `8 and still get all points of the lemma.

For the estimate
řN´1

i“0 Ri,1´Ri,2`R´RN,2 ď 12δR, we need the following computation.
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Lemma 3.10. Let 0 ă r2 ă r1 ă r and Rj “ ln
1`rj
1´rj

(or rj “ eRj ´1

eRj `1
), j P t1, 2u be the

corresponding hyperbolic radii. Then
ż r1

r2

log

ˆ

r

ρ

˙

4ρ

p1 ´ ρ2q2
dρ “ R1 ´ R2 ` op1q,

where the op1q stands for R2 goes to infinity.

End of proof of Lemma 3.9. Taking for granted the above estimate, let us finish our proof.
If R is sufficiently large, we have mx,R

´

U sing
3

¯

ă δ by (ii). We get

MRδ ą

ż

D
χtϕxPUsing

3 upξq log`

ˆ

r

|ξ|

˙

gP pξq,

where as usual, χB is the characteristic function of B. Let us continue our computation.

MRδ ą

ż r

0

ˆ
ż 2π

0

χtϕxPUsing
3 upρeiθqdθ

˙

log

ˆ

r

ρ

˙

4ρdρ

p1 ´ ρ2q2

MRδ ą
π

3

N´1
ÿ

i“0

ż ri,1

ri,2

log

ˆ

r

ρ

˙

4ρdρ

p1 ´ ρ2q2
`

π

3

ż r

rN,2

log

ˆ

r

ρ

˙

4ρdρ

p1 ´ ρ2q
2

MRδ ą
π

3

N´1
ÿ

i“0

pRi,1 ´ Ri,2q `
π

3
pR ´ RN,2q ` opRq.

Here, we have denoted ri,j “ eRi,j ´1

eRi,j `1
as usual and we have used (3). For the last inequal-

ity, we applied Lemma 3.10 and Cesàro Theorem. Note that (1) implies Ri,2 ą 8i ` 4,
which goes to infinity with i ď N “ OpRq. Now, since MR „ 2πR, we get our result. □

Proof of Lemma 3.10. This is only a silly computation. Integrating by parts,
ż r1

r2

log

ˆ

r

ρ

˙

4ρ

p1 ´ ρ2q2
dρ “ 2

„

1

1 ´ ρ2
log

ˆ

r

ρ

˙ȷr1

r2

` 2

ż r1

r2

dρ

ρp1 ´ ρ2q
.

Since 1
ρp1´ρ2q

“ 1
2

´

1
1´ρ

´ 1
1`ρ

` 2
ρ

¯

, we obtain
ż r1

r2

log

ˆ

r

ρ

˙

4ρ

p1 ´ ρ2q2
dρ “ 2

„

ρ2

1 ´ ρ2
log

ˆ

r

ρ

˙ȷr1

r2

´ logp1 ´ r21q ` logp1 ´ r22q.

Now, we translate into hyperbolic language. For j P t1, 2u,
r2j

1´r2j
“ 1

4
eRj ` o

`

eRj
˘

. More-

over, log r
rj

“ 2e´Rj ´ 2e´R ` o
`

e´Rj
˘

. So the first bracket above is op1q. The other terms
satisfy 1 ´ r2j “ e´Rjp4 ` op1qq. We get the estimate wanted. □

3.4. End of proof of Lemmas 3.1 and 3.3. Our preparation is soon to be over and we
move on to the end of our proof. We begin by Lemma 3.1, for it involves less computation
and already explains the ideas of the proof of Lemma 3.3. First, let us study the distance
to identity of a rotation in AutpDq.

Lemma 3.11. Let 0 ă ε1 ă ε2 be sufficiently small with ε1 ď 1
16
ε2, θ P r´π, πs and ξ P D.

Then, if |ξ| ě 1
4
,

dP
`

ξ, eiθξ
˘

P rε1, ε2s , for 8ε´1
2 |sinpθ{2q| ď 1 ´ |ξ|

2
ď

1

2
ε´1
1 |sinpθ{2q| .
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Proof. Denote by tanh´1
pxq “ 1

2
ln 1`x

1´x
, x P p´1, 1q and compute.

dP
`

ξ, eiθξ
˘

“ 2 tanh´1

ˇ

ˇ

ˇ

ˇ

ξp1 ´ eiθq

1 ´ eiθ |ξ|
2

ˇ

ˇ

ˇ

ˇ

“ 2 tanh´1

ˇ

ˇ

ˇ

ˇ

ˇ

2ξ sinpθ{2q

cospθ{2q
`

1 ´ |ξ|
2
˘

´ i sinpθ{2q
`

1 ` |ξ|
2
˘

ˇ

ˇ

ˇ

ˇ

ˇ

“ 2 tanh´1

¨

˚

˝

2 |ξ| |sinpθ{2q|
´

`

1 ´ |ξ|
2
˘2

` 4 |ξ|
2 sin2pθ{2q

¯1{2

˛

‹

‚

“ f

˜

1 ´ |ξ|
2

2 |ξ| |sinpθ{2q|

¸

,

for f : R˚
` Ñ R˚

` defined by fpxq “ 2 tanh´1
´

1?
1`x2

¯

. The function f is strictly decreasing

and has inverse f´1 : y ÞÑ

b

1
tanh2py{2q

´ 1 “ 2
y

`OyÑ0p1q, as is shown by a straightforward

computation. It follows, that if ε1, ε2 are sufficiently small, and if x P
“

4ε´1
2 , ε´1

1

‰

, then
x P rf´1pε2q, f

´1pε1qs and fpxq P rε1, ε2s. The bounds on 1 ´ |ξ|
2 exactly give

1 ´ |ξ|
2

2 |ξ| |sinpθ{2q|
P
“

4ε´1
2 , ε´1

1

‰

,

for |ξ| ď 1
4
, so we get our result. □

Lemma 3.12. Take the notations of Lemmas 3.8 and 3.9 and let ε ą 0 be sufficiently small,
R ą 0 be sufficiently large. Define εi,1 “ 2 arcsin

`

8cεe´Ri,1
˘

and εi,2 “ 2 arcsin
`

16cεe´Ri,2
˘

,
for i P J0, NK. Note that εN,1 “ 0. Then, for y P BRpx, ε0q,

A “
␣

θ P r´π, πs ; dDR
pϕy ˝ rθ, ϕyq ă ε

(

has prescribed pεi,jqi,j-steps.

Proof. Let y P BRpx, ε0q, ε be sufficiently small to determine and θ1, θ2 P A. We have to
show that |θ1 ´ θ2| P YN

i“0 rεi,1, εi,2s. Since θ1, θ2 P A, we have

(3.3) dDR
pϕy ˝ rθ1 , ϕy ˝ rθ2q “ dDR

pϕy ˝ r|θ1´θ2|, ϕyq ă 2ε.

Denote by θ “ |θ1 ´ θ2|. With the notations of Lemma 3.8, set ε2 ă ε0, ε1 “ 1
16
ε0

sufficiently small, and ε “ 1
2
c´1ε1. Fix ϕy a uniformization of Ly with dDR

pϕx, ϕyq ă ε0.
By definition, it is clear that ε0 ă

ρ1
2

. Hence, if ξ P DR satisfies dpϕxpξq, Eq ą ρ1, then
dpϕypξq, Eq ą

ρ1
2

. Take ξ P D such that

1 ´ |ξ|
2

“ 8ε´1
2 |sinpθ{2q| “

1

2
ε´1
1 |sinpθ{2q| .

Since y is still far from the singular set, it is clear by Lemma 3.8 that A Ă r´Cε,Cεs, for
some constant C ą 1. Shrinking ε if necessary, we obtain that |ξ| ě 1

4
. By Lemma 3.11,

2cε “ ε1 ď dP
`

ξ, eiθξ
˘

ď ε2 ă ε0.

Hence, (3.3) together with Lemma 3.8 imply that either dP p0, ξq ą R, or ϕypξq P 1
2
U sing
1 .

This should hold for every ξ with same modulus, so we deduce by Lemma 3.9(2) that
dP p0, ξq P YN

i“0 pRi,1, Ri,2q. Therefore, 1 ´ |ξ|
2

P YN
i“0

`

2e´Ri,2 , 4e´Ri,1
˘

and

sinpθ{2q P

N
ď

i“0

`

8cεe´Ri,1 , 16cεe´Ri,2
˘

.

This concludes the proof. □
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End of proof of Lemma 3.1. For the upper bound, we apply Lemmas 3.12 and 3.5. Note
that εi,2 ă

εi´1,1

2
, because Ri,2 ´ Ri´1,1 ą 4 in Lemma 3.9. We obtain

LebpAq ď 2εN,23
N

N´1
ź

i“0

εi,2
εi,1

ď 32cεe´ReR´RN,212N
N´1
ź

i“0

eRi,1´Ri,2 .

The last statement of Lemma 3.9 now gives

LebpAq ď 32cεeδp3 logp12q`12qRe´R.

Since δ was chosen arbitrarily, we deduce the upper bound wanted. For the lower bound,
we will use notations of Lemma 3.11. Recall also that c0 ą 0 is such that η ď c0 on MzE.
If θ satisfies |sinpθ{2q| ď c´1

0
ε
4
e´R and ξ P DR, then 1´|ξ|

2

2|ξ||sinpθ{2q|
ě 4c0

ε
. Thus,

dP
`

ξ, eiθξ
˘

“ f

˜

1 ´ |ξ|
2

2 |ξ| |sinpθ{2q|

¸

ď f

ˆ

4

c0ε

˙

ď c´1
0 ε,

where f is defined in Lemma 3.11. Since ξ is arbitrary in DR, we get that θ P A. It
follows that LebpAq ě c´1

0
ε
2
e´R. Such an estimate can also be thought as Lemma 3.11 for

ε2 “ c´1
0 ε and ε1 “ 0. □

We argue similarly for Lemma 3.3, with analogous steps. But first, let us see how to
compose the automorphisms of the disk.

Lemma 3.13. Let ζ1, ζ2 P AutpDq and θ1, θ2 P R. If ζ1, ζ2 are sufficiently small, there exist
ζ P D and θ P R, with

1

2
}pζ1 ´ ζ2, θ1 ´ θ2q}

8
ď }pζ, θq}

8
ď 3 }pζ1 ´ ζ2, θ1 ´ θ2q}

8
,

satisfying
pτζ1 ˝ rθ1q

´1
˝ pτζ2 ˝ rθ2q “ τζ ˝ rθ.

Here, }pζ, θq}
8

“ max p|ζ| , |θ|q.

Proof. This is just computation, that we partly leave to the reader. We have the following
composition rules.

rθ ˝ τζ “ τeiθζ ˝ rθ, τζ1 ˝ τζ2 “ rθpζ1,ζ2q ˝ τζpζ1,ζ2q,

for ζpζ1, ζ2q “ τζ2pζ1q and θpζ1, ζ2q satisfying eiθpζ1,ζ2q “
1`ζ1ζ2
1`ζ1ζ2

. Playing with these rules,
we get the form wanted, with |ζ| “ |τζ2p´ζ1q|. So indeed, dP p0, ζq “ dP pζ1, ζ2q and
2 |ζ1 ´ ζ2| ď |ζ| ď 3 |ζ1 ´ ζ2|. Moreover, θ “ θ2 ´ θ1 ` θp´ζ1, ζ2q. Therefore, we just need
to show that |θp´ζ1, ζ2q| ď |ζ1 ´ ζ2|. We have

ˇ

ˇ1 ´ eiθp´ζ1,ζ2q
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

2iℑ
`

ζ1ζ2
˘

1 ` ζ1ζ2

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

2ℑ
`

pζ1 ´ ζ2qζ2
˘

1 ` ζ1ζ2

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

2
|ζ1 ´ ζ2| ,

if ζ1 and ζ2 are sufficiently small. Above, ℑpzq denotes the imaginary part of a complex
number z. We get the estimate wanted. □

Lemma 3.14. There exist constants C1, C2 ą 1 satisfying the following. Let 0 ă ε1 ă ε2
be sufficiently small with ε1 ď pC1C2q´1ε2, θ P r´π, πs and ζ P r0D. There exists a subset
Λ Ă r´π, πs, with LebpΛq “ π

2
, such that if ξ “ ρeiλ, ρ ě 1

4
, λ P Λ and

C2ε
´1
2 }pζ, θq}

8
ď 1 ´ |ξ|

2
ď C´1

1 ε´1
1 }pζ, θq}

8
,
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then dP
`

ξ, τζ
`

eiθξ
˘˘

P rε1, ε2s.

Proof. First, let us compute a formula for the distance

dP
`

ξ, τζ
`

eiθξ
˘˘

“ 2 tanh´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

ξ ´
ζ ` eiθξ

1 ` ζeiθξ

˙ˆ

1 ´ ξ
ζ ` eiθξ

1 ` ζeiθξ

˙´1
ˇ

ˇ

ˇ

ˇ

ˇ

“ 2 tanh´1

ˇ

ˇ

ˇ

ˇ

ˇ

ξp1 ´ eiθq ´ ζ ` ζeiθξ2

1 ´ eiθ ` eiθ
`

1 ´ |ξ|
2
˘

` ζeiθξ ´ ζξ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 2 tanh´1

ˇ

ˇ

ˇ

ˇ

ˇ

2iξ sinpθ{2q ` ζe´iθ{2 ´ ζeiθ{2ξ2

2i
`

sinpθ{2q ` ℑ
`

ζξe´iθ{2
˘˘

´ eiθ{2
`

1 ´ |ξ|
2
˘

ˇ

ˇ

ˇ

ˇ

ˇ

.

Now, take ξ “ σi ζ
|ζ|
e´iθ{2ρeiλ, with σ “ ˘1 chosen such that σ sinpθ{2q “ ´ |sinpθ{2q|.

If ζ “ 0, then any complex number of modulus 1 can replace ζ
|ζ|

. The above formula
becomes

dP
`

ξ, τζ
`

eiθξ
˘˘

“ 2 tanh´1

ˇ

ˇ

ˇ

ˇ

ˇ

2ρeiλ |sinpθ{2q| ` |ζ|
`

1 ` ρ2e2iλ
˘

2i psinpθ{2q ´ σρ |ζ| cospλqq ´ eiθ{2 p1 ´ ρ2q

ˇ

ˇ

ˇ

ˇ

ˇ

.

Next, suppose that |λ| ď π
4
. This gives indeed a subset Λ of angles, of Lebesgue mea-

sure π
2
. It should be noted that the three terms in the numerator have non-negative real

part. Moreover, if ρ satisfies the conditions of the lemma with ε1 and ε2 sufficiently small,
it is clear that the term 1 ´ ρ2 in the denominator dominates all the others. Therefore,

2 tanh´1

ˆ

?
2{p4πq }pζ, θq}

8

2C´1
1 ε´1

1 }pζ, θq}
8

˙

ď dP
`

ξ, τζ
`

eiθξ
˘˘

ď 2 tanh´1

ˆ

3 }pζ, θq}
8

C2ε
´1
2 {2 }pζ, θq}

8

˙

ε1 “

?
2

8π
C1ε1 ď dP

`

ξ, τζ
`

eiθξ
˘˘

ď 24C´1
2 ε2 “ ε2,

for ε1, ε2 sufficiently small. Here we have defined the constants C1, C2 to get the extreme
identities. The lemma is proven. □

Lemma 3.15. Take the notations of Lemmas 3.8 and 3.9 and let ε ą 0 be sufficiently small,
R ą 0 be sufficiently large. Define εi,1 “ 4

3
cC1εe

´Ri,1 and εi,2 “ 16cC1εe
´Ri,2, for i P J0, NK.

Note that εN,1 “ 0. Then, for y P BRpx, ε0q,

A “
␣

pζ, θq P r0D ˆ r´π, πs ; dDR
pϕy ˝ τζ ˝ rθ, ϕyq ă ε

(

has prescribed pεi,jqi,j-steps.

Proof. We argue similarly to Lemma 3.12. Fix ε2 ă ε0 sufficiently small, ε1 “ pC1C2q
´1ε2

and ε “ p2cq´1ε1. Take pζ1, θ1q, pζ2, θ2q P A and pζ, θq given by Lemma 3.13. That way,

2ε ą dP,DR
pϕy ˝ τζ1 ˝ rθ1 , ϕy ˝ τζ2 ˝ rθ2q ě dP,DR´3|ζ1|

pϕy ˝ τζ ˝ rθ, ϕyq.

Finally, take ξ “ ρeiλ, with λ P Λ given by Lemma 3.14 and

1 ´ ρ2 “ C´1
1 ε´1

1 }pζ, θq}
8

“ C2ε
´1
2 }pζ, θq}

8
.

As in Lemma 3.12, because LebpΛq “ π
2
, we obtain 1 ´ ρ2 P YN

i“0

`

2e´Ri,1, 4e´Ri,2
˘

. Here,
we work with Lemma 3.9 for R´3 |ζ1| but this does not change anything to the estimates.
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This gives }pζ, θq}
8

P
`

4cC1εe
´Ri,1 , 8cεC1e

´Ri,2
˘

. Lemma 3.13 then implies

}pζ1 ´ ζ2, θ1 ´ θ2q}
8

P

N
ď

i“0

ˆ

4

3
cC1εe

´Ri,1 , 16cC1εe
´Ri,2

˙

. □

End of proof of Lemma 3.3. The proof is essentially the same as of Lemma 3.1. Note that
εi,2 ă

εi´1,1

2
because Ri,2 ´ Ri´1,1 ą 4. By Lemmas 3.5 and 3.15, there exist universal

constants C,C 1 such that the Lebesgue measure of the Borel set involved is lower than
Cε3epC1δ´3qR. For the lower bound, the computation of Lemma 3.14 easily shows that
for }pζ, θq}

8
ď Cεe´R and ξ P DR, dP

`

ξ, τζ
`

eiθξ
˘˘

ď c´1
0 ε. We conclude the same using

that F is Brody-hyperbolic. □
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