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ABSTRACT

Choral music separation refers to the task of extracting
tracks of voice parts (e.g., soprano, alto, tenor, and bass)
from mixed audio. The lack of datasets has impeded re-
search on this topic as previous work has only been able
to train and evaluate models on a few minutes of choral
music data due to copyright issues and dataset collection
difficulties. In this paper, we investigate the use of syn-
thesized training data for the source separation task on real
choral music. We make three contributions: first, we pro-
vide an automated pipeline for synthesizing choral music
data from sampled instrument plugins within controllable
options for instrument expressiveness. This produces an
8.2-hour-long choral music dataset from the JSB Chorales
Dataset and one can easily synthesize additional data. Sec-
ond, we conduct an experiment to evaluate multiple separa-
tion models on available choral music separation datasets
from previous work. To the best of our knowledge, this
is the first experiment to comprehensively evaluate choral
music separation. Third, experiments demonstrate that the
synthesized choral data is of sufficient quality to improve
the model’s performance on real choral music datasets.
This provides additional experimental statistics and data
support for the choral music separation study.

1. INTRODUCTION

Choral music is a distinct artistic genre that includes sev-
eral vocal parts (e.g. soprano, alto, tenor, and bass) ar-
ranged into intricate patterns from strict counterpoint to
polyphonic echoes and flows of lyrics. One useful tool in
the analysis and re-production of choral tracks is the abil-
ity to take mixed-down choral music and separate it back
into audio tracks of isolated vocal parts: i.e. choral music
separation, as a subtask of audio source separation.

Audio source separation is an audio signal processing
task that involves separating one or more sound sources
from a multi-source audio mixture. This task has a wide
range of applications in a variety of domains, including

© K. Chen et al.. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: K. Chen
et al., “Improving Choral Music Separation through Expressive Synthe-
sized Data from Sampled Instruments”, in Proc. of the 23rd Int. Society
for Music Information Retrieval Conf., Bengaluru, India, 2022.

speech separation, vocal-accompaniment separation and
musical instrument separation. The latter two tasks are
primary tasks in the field of music signal processing and
have been adopted for practical use in the entertainment
industry [1]. Many models, such as Open-Unmix [2], De-
mucs [3], and Spleeter [4], achieve great separation perfor-
mance. Some models [5] further extend the source separa-
tion task to a zero-shot or query-based setting. However,
choral music separation has received limited attention. Un-
like general musical instrument separation, which seeks to
separate non-homologous sources (e.g., piano, drums, and
singing voice), choral music instrument separation seeks to
separate homologous or close-homologous sources (e.g.,
soprano, alto, tenor, bass). Additionally, the scarcity of
data on choral music separation impedes further progress.
Choral music separation could be used in a wide variety of
scenarios. Individuals could obtain solo tracks from choral
recordings for practice, analysis, and re-production. Not
only does it fill a void in a particular type of musical in-
strument separation, but it also provides convenience for
music educators.

In this paper, we investigate the choral music separa-
tion task from the perspective of addressing the insuffi-
ciency of available datasets. We begin by introducing re-
lated works in the field of choral music separation. Sec-
ond, we present the discovery of how to improve the per-
formance of choral music separation using high-quality,
synthesized music data. Then, we conduct comprehensive
experiments with multiple models and datasets to evaluate
the improvement of using synthesized data on choral music
separation in real datasets. Finally, we discuss the exten-
sibility of our pipeline to more choral-related separations,
such as string quartet separation, as well as its future direc-
tions. The code and the dataset are publicly available 1 .

2. RELATED WORK

Research in choral music separation receives relatively
less attention. Deep learning methods for audio source
separation has already outperformed traditional methods
(e.g. Non-negative Matrix Factorization [6]) for a long
time. Separation models have been developed follow-
ing two directions: frequency-domain models and time-
domain separation models.

1 https://github.com/RetroCirce/Choral_Music_Separation
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Dataset Minutes Songs Public

Choral Singing Dataset [11] 7 3 ✓
Dagstuhl ChoirSet [12] 5 2 ✓
Cantoria Dataset [13] 20 14 ✓
ESMUC Choir Dataset [13] 31 26 ✓
Bach and Barbershop Collection [14] 105 48

Table 1: Existing datasets for choral music separation.

2.1 Frequency-Domain and Time-Domain Models

The traditional method of audio separation is to mask the
frequency-domain representation and then inversely trans-
form it to the time-domain signal, referred as frequency-
domain separation models. Spec-U-Net [7], based on
the U-Net architecture, contains convolutional neural net-
work (CNN) blocks for downsampling the input short-time
Fourier transform (STFT) spectrogram and upsampling the
bottom feature back into a separation mask. The mask is
applied into the input to obtain the separate spectrogram
as output. Res-U-Net [8] replaces the original CNN blocks
with residual CNN blocks to accelerate convergence speed.
On the other hand, time-domain models perform the sepa-
ration directly on the audio waveform. Wave-U-Net [9] in-
corporates an end-to-end U-Net structure on the input and
output of waveforms. Conv-TasNet [10] applies a CNN
encoder-decoder structure to process waveforms into la-
tent features and generates the mask. The masked latent
features are decoded back to waveforms as separation re-
sults. Bypassing the spectrogram processing, time-domain
models can save parameters and perform efficiently in low-
latency systems for speech separation. Some hybrid mod-
els, such as Demucs v3 [3], can leverage both time-domain
and frequency-domain features to achieve the best perfor-
mance for musical instrument separation, while the size of
the model is a little bit large.

2.2 Choral Music Separation

For choral music separation, [15] proposed a score-
informed separation model based on Wave-U-Net and per-
formed experiments on 347 (synthesized) Bach Chorale
pieces from MIDI files with MuseScore_General Sound-
Font. This model performs well on this SoundFont-
Synthesis dataset but poorly on real choral music datasets.
[16] proposed a conditional Spec-U-Net to optimize the
separation performance by conditioning on the fundamen-
tal frequency contour. However, as mentioned in their pa-
per, due to the lack of choral music datasets, the evaluation
was conducted on only three songs with a total duration of
seven minutes. [14] proposed a harmonic overlap score to
increase the model’s sensitivity to different choral voices,
thereby improving performance. It made use of a relatively
large dataset containing 105 minutes of Bach and Barber-
shop Collections, but this dataset is not publicly available
due to copyright concerns, which prevents it from being
open source. And indeed, 100-minute is still not enough to
help achieve an audio separation model with a high gener-
alization ability, we expect to obtain a size more than that.

Pitch range

Name Type Soprano Alto Tenor Bass

Standard MIDI A0–C8 A0–C8 A0–C8 A0–C8
Noire [17] Piano A0–C8 A0–C8 A0–C8 A0–C8
Grandeur [18] Piano A0–C8 A0–C8 A0–C8 A0–C8
Voices Of Rapture [19] Vocal B3–D6 E3–G5 B2–C#5 A1–D4
Dominus Choir [20] Vocal G3–A5 G3–A5 E2–G4 E2–G4

Table 2: Sample instrument libraries we use for synthesiz-
ing choral music separation datasets.

In this paper, we first conduct four fundamental models:
Spec-U-Net, Res-U-Net, Wave-U-Net and Conv-TasNet.
Our objective is to demonstrate the efficacy of synthe-
sized expressive data in improving separation performance
on real choral music datasets. As a result, fundamental
models enable us to consider the performance gains more
directly associated with data changes and augmentations.
Also, score-informed and conditional separation models
introduce external information, such as musical notes of
original songs or multi-pitch estimation results, to guide
the separation’s goal, while it also limits its applications. In
practice, we frequently find ourselves in situations where
the only available input is the audio. We continue to de-
mand unconditioned choral music separation. As a re-
sult, we proceed directly to unconditioned choral music
separation in this paper, without relying on any score con-
ditions.

3. METHODOLOGY

3.1 Scarcity of Datasets

Existing datasets for choral music are listed in Table 1,
collected from previous works and other public sources.
We observe that most of these datasets have short total
lengths; three of them are less than 20 minutes. The Choral
Singing Dataset [11] and ESMUC Choir Dataset [13] have
been used for choral music separation by [16], while the
Dagstuhl ChoirSet [12] and Cantoria [13] Datasets were
never used for separation tasks but instead for singing
performance analysis. The Bach and Barbershop Collec-
tion [14] is relatively longer, but is not publicly avail-
able. As a result, when a model is trained and tested on
such a small amount of data, its generalization and separa-
tion capabilities are severely limited. [15] directly synthe-
sized 347 choral pieces of Bach’s from MIDI files with
MuseScore_General SoundFont and trained the model.
However, this SoundFont-Synthesis dataset is dissimilar
to true choral vocals. Moreover, it lacks lyrics and sylla-
bles. As a result, the trained model performs poorly on real
datasets [15].

In the next section, we first introduce the pipeline of
synthesizing audio datasets for choral music separation
from sampled instrument libraries. Then, we train vari-
ous models on our datasets and compare them to deter-
mine the best model. Finally, we transfer the best model
weights to the real-world datasets shown in Table 1, fine-
tune the model and determine whether it truly improves
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Figure 1: The synthesis pipeline of choral music data from sample instruments and the training pipeline to utilize it.

performance when compared to the previous settings.

3.2 Data Synthesis Pipeline

Figure 1 shows our pipeline of choral music dataset cre-
ation and training methods. Generally, we need three col-
lection steps:

1. The symbolic choral music dataset (MIDI, MusicXML)

2. The sampled instrument libraries (standalone VST plu-
gin, or Kontakt sample libraries)

3. The synthesis configuration (syllables or lyrics choices,
legato, velocity, and tempo)

Then, our provided code can completely automate the data
synthesis process. It is built on top of the python-support
and free digital audio workstation (DAW) – Reaper 2 . With
the above three steps, one could complete any choral music
data synthesis process on supported system platforms.

3.3 Data and Instrument Collection

For Step 1, following [15], we use the JSB Chorales
Dataset [21], which contains 347 pieces of choral music
in MusicXML format. The total duration is 248 minutes at
a tempo of 90 bpm (a.k.a. beat per minute). The data is
first transformed into MIDI files, which serves as the sym-
bolic dataset source for the creation of choral music audio.
For Step 2, a sampled instrument 3 is a sound source plugin
applied in a DAW. Unlike a SoundFont, it contains samples
of real instruments recorded in a professional acoustic en-
vironment. The human singing voice is also considered as
an instrument type. And many vocal sampled instruments
support a variety of lyrical or syllabic sets (e.g., vowels,
Latin words, etc.). We first choose two types of instru-
ments for our purposes: piano and vocal (soprano, alto,
tenor, and bass). Then, we choose two sampled instru-
ments for each type, as shown in Table 2. The reason to
choose the piano instrument is to evaluate the separation
performance of piano as a common and same-source in-
strument. In this case, the model needs to consider most
on the pitch difference between each voice part. When
it comes to the vocal dataset, the model can distinguish
the timbres slightly between soprano, alto, tenor, and bass

2 https://www.reaper.fm/
3 A detailed introduction can be found at https://tinyurl.com/2p8trn2u

voices, but it is more difficult to model the acoustic fea-
tures of these four voices than piano. This allows us to
determine whether the model can improve performance by
exploiting the timbre difference between vocal datasets, or
if it fails to model these timbres and perform a bad separa-
tion result.

Due to the fact that we have two sampled libraries for
each type of instrument, each dataset contains 248 × 2 =
496 minutes (8.2 hours) of synthesized choral music data.
All sampled instrument libraries that we use have a paid
license.

3.4 Synthesis Configuration for Expressiveness

For Step 3, we adopt two methods to further improve the
scalability and quality of synthesized data: the basic data
augmentation, and expressiveness incorporation. The left
of Figure 1 shows a specification.

We perform two operations to augment the data. First,
we notice that the pitch ranges of sampled instrument
libraries do not always correspond exactly to the pitch
ranges of tracks in JSB Chorales Dataset. For instance,
some bass melodies in JSB appear to be lower than the
lowest note in sampled instrument libraries. Instead of di-
rectly discarding these tracks, we implement “octave shift-
ing” by shifting out-of-range notes up or down some oc-
taves until they fall within the range. While it produces
non-realistic jumps between some melodies, it saves the
whole track to preserve more realistic data. Second, we
apply “tonality shifting” to each track. The tonality was
shifted upward and downward by three semitones before
synthesis. Therefore, the effective length of training data
will be further augmented several times.

For expressiveness incorporation, we provide several
options, which are supported by sampled instrument li-
braries, to synthesize audio:

• Legato: for vocal, this includes whether or not to change
breath or sing continuously. In vocal instrument li-
braries, legato is controlled by detecting the presence of
an overlap between adjacent notes. To support the legato
configuration, we begin by segmenting the track into mu-
sical phrases using the breath break information in Mu-
sicXML (if provided) or the note intervals (if specified).
Then, in each phrase, we add overlap to adjacent notes
(to activate the legato) if their pitch distance is less than
7 semitones (i.e., a perfect fifth).



• Velocity: for each phrase, we provide three types of
volume/velocity change curves: crescendo, diminuendo,
and cresc.→dim.. The configuration establishes the
maximum and minimum velocity ranges.

• Word Control: for vocal, we support the word control of
sampled instrument libraries by assigning random com-
binations of words or syllables to each phrase. Note that
real-world performance may not contain random word
changes, but for model training, this still increases the
data richness on each training batch.

The configuration also supports the reverberation as a de-
signed feature, but currently it is not applied in this work.

4. EXPERIMENTS

In this section, we conduct an experiment on evaluating
different separation models on our synthesized datasets.
The purpose of this experiment is to identify the best model
on synthesized datasets and then transfer it to real choral
music datasets.

4.1 Datasets, Models and Hyperparameters

As introduced above, we use two datasets (piano and vo-
cal) to train four models (Spec-U-Net, Res-U-Net, Conv-
TasNet, and Wave-U-Net). Each track is in 22,050 Hz sam-
ple rate. Each dataset contains 496 minutes data. We use
277 tracks for training, 35 tracks for validation and another
35 tracks for testing. Since we have training combinations
among four models, two datasets, and four choral voices,
to save training time, we first train models on the dataset
without the expressiveness incorporation in section 3.4,
named as Standard-Piano and Standard-Vocal datasets.
After finding the best model, we will train it on the expres-
sive datasets in section 4.3.

For model hyper-parameters, In Spec-U-Net [7], we use
a window size of 2048, FFT size of 2048, and hop size
of 441. We apply 7 CNN blocks to downsample the in-
put spectrogram, and another 7 CNN blocks to upsample
it into the separation mask. In Res-U-Net, we apply the
implementation from [8], with 10 residual CNN blocks to
downsample the input spectrogram, then another 6 resid-
ual CNN blocks to upsample. In Wave-U-Net, we follow
the settings of [9] to adopt 6 downsampling CNN layers
and 6 upsampling CNN layers for separation. The filter
channels are set from 32 to 1024 in order for each layer.
The kernel size is 15 for the first layer and 5 for remain-
ing layers. In Conv-TasNet, we follow the setting of [10]
to set hyper-parameters as N = 512, L = 20, B = 128,
H = 512, P = 3, R = 3, X = 8. Spec-U-Net and
Res-U-Net use their default mean absolute error (MAE)
loss function; Conv-TasNet uses the default scale-invariant
source-to-noise ratio (SI-SDR) loss; and Wave-U-Net with
mean squared error (MSE) loss.

For training hyperparameters, the batch size is 8, the
learning rate is 1e-3, and each training sample is a 2-sec au-
dio segment randomly chosen from one music track in the
training set. The number of steps for each epoch is 700. We

Standard
Model

Median Source-Distortion Ratio (dB)
Dataset Soprano Alto Tenor Bass Avg.

Piano Spec-U-Net [7] 9.78 9.46 10.35 10.60 10.05
Piano Res-U-Net [8] 8.53 9.01 9.97 12.23 9.94
Piano Wave-U-Net [9] 6.95 5.36 7.21 9.82 7.34
Piano Conv-TasNet [10] 7.04 6.98 7.29 7.82 7.28

Vocal Spec-U-Net [7] 10.45 10.19 12.25 9.53 10.61
Vocal Res-U-Net [8] 9.35 10.87 10.20 10.77 10.30
Vocal Wave-U-Net [9] 2.65 3.08 3.06 3.90 3.17
Vocal Conv-TasNet [10] 6.60 6.12 6.41 6.58 6.43

Table 3: The separation performance of four models on the
test sets of Standard-Piano and Standard-Vocal datasets.

apply the Adam optimizer [22] with β1 = 0.9, β2 = 0.999,
ϵ = 1e− 8, and a learning rate scheduler where the learn-
ing rate is reduced with a multiplier f = 0.65 if the val-
idation performance does not improve across 3 consecu-
tive epochs. We implemented all methods in Pytorch using
NVIDIA RTX 2080Ti GPUs. All models converged within
300 epochs with early stop using a 10-epoch patience.

For evaluation, source-to-distortion ratio (SDR) is one
of the most widely used metrics for evaluating a source
separation system’s output, which measures a ratio be-
tween the original source track and the noise, interfer-
ence, added artifacts in the separation track. It is consid-
ered to be an overall measure of how good a separation
result sounds. We follow the music separation campaign
SiSEC 2018 [23] to use the median SDR to evaluate sepa-
ration performance. The median SDR is obtained by first
computing segment-level SDR of each 2-sec segment in
each track, then taking the median over them as track-level
SDRs, finally taking the median over the track-level SDRs
as the final SDR. The computing library is mus_eval [23].

4.2 Separation Performance

Table 3 shows all four parts median SDR performance on
two standard datasets by four models. We can see that
the frequency-domain models Spec-U-Net and Res-U-Net
get similar results that are better than those of the time-
domain models Conv-TasNet and Wave-U-Net. Spec-U-
Net achieves the best average SDRs over four parts on two
datasets as 10.05 and 10.61. The Res-U-Net achieves very
close performance. When analyzing the results, frequency-
domain models can take advantage of spectrograms in
choral music to obtain better separation results. The per-
formance on soprano, alto and tenor in vocal is better than
that in the piano dataset, suggesting that the timbre dif-
ference can also help further discriminate different source
tracks. Time-domain models can model the piano acous-
tic features well to achieve a good performance, but find
it hard to model the vocal features solely on the waveform
and face the drops in the vocal dataset.

4.3 Fine-Tuning Evaluation on Real Datasets

After comparing models in standard datasets, we chose the
best model, Spec-U-Net, to conduct the next experiments.
We trained Spec-U-Net on the Expressive-Vocal dataset,
as we synthesized the data with the expressiveness incor-
poration. Then, as shown in the right of Figure 1, we saved



Fine-Tuning Evaluation Set Pretraining Set
Avg. Median SDR (Fine-Tuning Ratio)
ratio=10% ratio=40% ratio=70%

Cantoria Dataset [13]

None 1.42 3.91 4.13
SoundFont-Synthesis [15] 2.39 3.90 4.03

Standard-Vocal (ours) 3.03 4.59 5.08
Expressive-Vocal (ours) 3.73 5.48 5.71

Choral Singing Dataset (CSD) [11]

None 1.98 2.78 5.26
SoundFont-Synthesis [15] 2.12 3.38 6.20

Standard-Vocal (ours) 3.43 4.23 6.91
Expressive-Vocal (ours) 4.19 4.78 7.50

Bach & Barbershop Collection (BBC) [14]

None 4.18 6.08 6.94
SoundFont-Synthesis [15] 4.19 6.17 6.93

Standard-Vocal (ours) 4.98 6.71 7.27
Expressive-Vocal (ours) 5.58 7.17 7.64

Table 4: The fine-tuning performance of three real datasets by our best model – Spec-U-Net.

the best model checkpoints, and conducted a fine-tuning
experiment to verify whether our data is useful for trans-
fer learning on real choral music datasets. Table 4 and
Figure 2 illustrate the median SDR performance of three
real choral music datasets under different fine-tuning ra-
tios with different pretrained models.

For datasets, we chose the Cantoria Dataset, Choral
Singing Dataset (CSD), and Bach & Barbershop Collec-
tion 4 (BBC). The reason for these choices is that Canto-
ria contains the best recording quality, CSD is most fre-
quently used in previous works, and BBC contains the
longest length. The meta information of each dataset has
been described in Table 1.

We considered three ratios for fine-tuning: (1) 10% for
training, 90% for evaluation; (2) 40% for training, 60%
for evaluation; and (3) 70% for training, 30% for evalua-
tion. The fine-tuning experiments demonstrate if our syn-
thesized datasets can improve the separation performance
in real datasets under different settings (e.g., few-shot as
10% and fairly enough as 70%). The intermediate ratio
40% is conducted to further investigate the tendency of the
improvement brought by our datasets.

There are four dataset choices on which to pretrain
the models: (1) None: without any pretraining; (2)
SoundFont-Synthesis: the synthesis dataset in [15] by
the Musescore_General SoundFont as a baseline; (3)
the Standard-Vocal dataset; and (4) the Expressive-Vocal
dataset. Since the SoundFont-Synthesis dataset only con-
tains 248 minutes, instead of using two sampled libraries
(496 minutes), we only provide the data synthesized from
one library – Voices Of Rapture [19] in Standard-Vocal and
Expressive-Vocal for the pretraining. Data augmentations
of “octave shifting" and “tonality shifting" are applied in
all three datasets, except (4) incorporates more expressive-
ness settings. The fine-tuning learning rate is 1e-4, with
the scheduler in section 4.1.

Table 4 shows the average median SDR performance
of Spec-U-Net over four voice parts under different fine-
tuning ratios and different pretraining settings. We can see
that under all three training-test ratios, the performance of
the model pretrained on Standard-Vocal and Expressive-

4 We appreciate the help from authors in [14] to offer the dataset.

Vocal is better than that on SoundFont-Synthesis and
none-dataset, where the performance of Expressive-Vocal
achieves the best. When the training-test ratio is small as
10%, the performance of SoundFont-Synthesis and non-
dataset has the largeest difference, showing that the model
learns some priors from SoundFont-Synthesis and con-
verges to a better optimum. However, when the ratio in-
creases to 40% and 70%, their performance is close to each
other and does not vary much, especially on Cantoria and
BBC. Thus, pretraining on SoundFont-Synthesis dataset
provides a very useful initialization – but gains diminish
(or even no gain) as the initializer is dominated by larger
and larger quantities of real training data.

However, when the model is pretrained on Standard-
Vocal, it has a strong generalization to real choral mu-
sic datasets under all fine-tuning ratios, because acous-
tic features of synthesis tracks share large similarity to
the real datasets. This performance is further boosted by
Expressive-Vocal as we introduce expressiveness during
synthesis, such as lyrics and velocity dynamics. Even un-
der the 70% fine-tuning ratio, as the model has received
many real data, Standard-Vocal and Expressive-Vocal pre-
trained model can still get improvements. In conclusion,
our synthesized datasets provide not only additional data
volume, but also high-quality and close-to-real choral mu-
sic samples for boosting the separation performance.

To further verify our analysis, we visualized the trends
of median SDRs (blue, orange, cyan, and magenta colors),
with a 25th-75th percentile range, for each voice part of
three real datasets in Figure 2. We can see the perfor-
mance of our synthesized datasets (magenta & cyan lines)
marks a clear performance increase and a large gap to that
of SoundFont-Synthesis and non-dataset (orange & blue
lines). However, the trends of SoundFont-Synthesis and
non-dataset are close to each other, and even overlap in
BBC. When analyzing the percentile range of each model,
on Cantoria and CSD, our Standard-Vocal and Expressive-
Vocal pretrained models reveal a clear difference of per-
centile ranges to the left two models, demonstrating that
our models get a large improvement. However, the per-
centile ranges of the SoundFont-Synthesis and non-dataset
pretrained models have a large overlap, demonstrating no



(a) The Median SDR performance on the Cantoria Dataset.

(b) The Median SDR performance on the Choral Singing Dataset (CSD).

(c) The Median SDR performance on the Bach & Barbershop Collection Dataset (BBC).

Figure 2: The Median SDR performance, with a 25th–75th percentile range, of soprano, alto, tenor and bass on three
datasets by Spec-UNet with different pretrained models and different ratios of training-test sets.

difference even though their median SDRs differ a lit-
tle. On the BBC dataset, our models yield improvements
on both the 25th and 75th percentile values but are not
as pronounced as those observed on Cantoria and CSD.
The potential reason is because the BBC dataset contains
a relatively large data size (105 minutes), which makes
the model already achieve a good convergence and hard
to get more significant improvements without model de-
signs. These trends further demonstrates that our synthe-
sized dataset plays a role in making up the data scarcity
and improving generalization ability.

5. EXTENSIBILITY AND LIMITATIONS

Our provided synthesis pipeline from symbolic datasets to
real audio datasets not only benefits choral music separa-
tion tasks, but also other choral-related separation tasks.
For example, string quartet separation, to separate two vi-
olins, viola, and cello parts from a mixed audio, can also
be trained with synthesized data of our pipeline. The de-
tails of the string quartet separation experiment can be ac-
cessed in the code repository. Similarly, our best pretrained
model shows a 100%/30% performance increase to the
SoundFont-Synthesis and non-dataset pretrained models.
This further shows a potential application of our synthesis
pipeline to improve other choral-related separation tasks.

There are also some limitations and future improve-
ments to our work. First of all, our implementations of
expressiveness are still based on random template modes.
Deep learning methods can improve this expressiveness
modeling [24]. Second, the design of the choral separation
model is needed to learn more priors from weak synthe-
sized data that can be transferred to real data, then it will
complement our proposed pipeline better. These limita-
tions are planned for exploration in our future work.

6. CONCLUSION

In this paper, we proposed an automated pipeline for
synthesizing choral music data from sampled instrument
plugins, and created an 8.2-hour choral music dataset
to improve separation performance on real choral music
datasets. We comprehensively evaluated multiple separa-
tion models to demonstrate that synthesized choral data is
of sufficient quality to improve model’s performance on
real datasets. This provides additional experimental statis-
tics and data support for choral music separation study. In
the future, we will focus on the design of timbre-pitch dis-
entanglement model [25] for achieving better separation
performance. The application of choral music separation
results into other music-related tasks, such as music rec-
ommendation [26], is also planned as the future work.
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