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Abstract
In this paper we put forward a new approach to mu-
sic captioning, the task of automatically generat-
ing natural language descriptions for songs. These
descriptions are useful both for categorization and
analysis, and also from an accessibility standpoint
as they form an important component of closed cap-
tions for video content. Our method supplements
an audio encoding with a retriever, allowing the de-
coder to condition on multimodal signal both from
the audio of the song itself as well as a candi-
date caption identified by a nearest neighbor sys-
tem. This lets us retain the advantages of a retrieval
based approach while also allowing for the flexibil-
ity of a generative one. We evaluate this system on
a dataset of 200k music-caption pairs scraped from
Audiostock, a royalty-free music platform, and on
MusicCaps, a dataset of 5.5k pairs. We demonstrate
significant improvements over prior systems across
both automatic metrics and human evaluation.

1 Introduction
Captioning is an important multimodal task that aims to gen-
erate natural language descriptions for data of other modal-
ities. While this task has been well-studied for various do-
mains including images, speech, and video, one domain that
is less thoroughly researched by comparison is music. Thor-
ough musical captions span several different aspects of the
song – a good description needs to be able to identify tempo,
instrumentation, genre, and/or emotional character, while
rendering this information in concise natural language.

Being able to produce these captions automatically is im-
portant for a variety of reasons. Musical descriptions are
helpful for curation and promotional purposes, and also play
a meaningful role in accessibility. For example, much au-
diovisual content including streaming media, movies, and
television is made accessible to deaf and hard-of-hearing
users through the use of closed captions. Beyond simply
transcribing speech, these captions must also convey other
forms of audio such as background noises and music. Mu-
sic of course has many attributes that would be apparent
to a hearing user, all of which contribute to the emotional
content of the scene. Yet even manually written captions
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Figure 1: Visualization of RGMC, our music captioning model. We
first encode the input song using an HTS-AT audio encoder, and
project it through a mapping network to a sequence of word embed-
ding sized vectors. We separately retrieve the song in train with the
most similar audio encoding and postpend its caption to the audio
prefix. This gets passed to GPT-2 which autoregressively outputs
the predicted caption.

frequently fall short in their descriptiveness [Kim, 2020;
Davidson, 2022] despite their importance in conveying mean-
ingful information to the viewer [Aleksandrowicz, 2020;
Revuelta et al., 2020]. Musical descriptions are also useful
for categorization, search, and many other applications where
the audio is not renderable or is computationally intractable
to directly reason over. Further, there is also growing interest
in using text representations in creative musical applications
– for instance, in systems that can produce and edit music in
collaboration with humans using natural language as an in-
termediary modality [Zhang et al., 2023]. There is therefore
reason to want systems that can at large scale produce higher
quality captions for music.

Prior research on music captioning as a task has predom-
inantly explored either retrieval or generative methodolo-
gies [He et al., 2022a; Manco et al., 2021]. Retrieval-based
models are inherently tethered to the distribution in their train
set. On the other hand, generative models require large train-
ing sets and cannot as easily take advantage of near matches
to datapoints previously seen. They also require extensive
pretraining and are less adaptable to frequently changing cor-
pora. Therefore, an approach that combines these ideas to



mitigate their respective downsides is desirable.
Unfortunately, building such a system requires large scale

and freely available captioning datasets for popular contem-
porary music, which are currently underutilized in prior work
on this task. For example, MusCaps [Manco et al., 2021], a
recent step forward in this domain, uses a private dataset of
production music with just 6035 audio-caption pairs. In or-
der to both evaluate our method robustly and also encourage
future work in this direction, we instead use a public dataset
of ∼250k song-caption pairs scraped from the royalty-free
music website Audiostock, spanning a wide variety of gen-
res and moods 1. We also perform further evaluation on
Agostinelli et al. [2023]’s smaller dataset of 5.5k pairs.

This larger scale enables the modeling strategy that we put
forward here, which we call RGMC (Retrieval Guided Music
Captioner). RGMC takes inspiration from prior work on im-
age captioning and contrastive pretraining. Namely, Clip-
Cap [Mokady et al., 2021] previously introduced a strategy in
which an image is embedded via a pretrained CLIP encoder
network [Radford et al., 2021] and then projected to a vector
sequence in word embedding space in order to be conditioned
on by a language model decoder, specifically GPT-2 [Radford
et al., 2019]. We similarly use a pretrained audio encoder
from CLAP [Wu et al., 2023] to build a music feature prefix
for our songs. We then further augment this encoding with
a retrieved candidate caption from our training set, allowing
our decoder to condition on signal from both and either com-
bine them or back off to one if the other is uninformative. By
allowing the model to incorporate both audio features and text
examples through a multimodal prefix, RGMC can generate
captions that are both well-formed and stylistically similar to
those in the dataset while also being adaptable to the specific
details of each song.

We evaluate this model across several automatic captioning
metrics, and demonstrate large improvements over a strong
nearest neighbor baseline as well as prior neural work. We
also conduct a round of human evaluation which we similarly
lead in both measures of fluency and descriptiveness. Addi-
tionally, we conduct various ablations which test the brittle-
ness of our approach and measure the relative contributions
of the audio and text components.

In summary, this paper makes the following contributions:
we (1) Put forward a novel method for captioning music clips
based on a retrieval guided generative pipeline (2) Demon-
strate improvements in generated caption quality across two
datasets in terms of both automatic metrics and human eval.

2 Related Work
Audio captioning more broadly has been relatively well stud-
ied, with a variety of published datasets and models for that
task [Mei et al., 2022]. However, noticeably less work has
gone into studying music captioning specifically, and there
are relatively few open datasets and models built with music-
to-text applications in mind. At the same time, music cap-
tioning as a task differs substantially from general audio cap-
tioning. The language of musical description is focused and

1https://github.com/LAION-AI/audio-dataset/blob/main/laion-
audio-630k

rich, and therefore musical captions can contain complex de-
tail and analytical insights about tempo, harmony, and timbre.

Music retrieval systems do exist both for captioning
and other multimodal tasks. He et al. [2022b] and
He et al. [2022a] take advantage of a retrieval strategy to
augment a text decoder, although their method conditions
on song lyrics, which many songs (especially those used as
background music) do not have. McKee et al. [2023] de-
veloped a model that retrieves music potentially relevant to
a provided video, although they do not tackle captioning.
There is also much work on using retrieval-augmentation
generation in the context of language models, although this
is largely focused on unimodal settings [Lewis et al., 2020;
Borgeaud et al., 2021; Khandelwal et al., 2019].

One of the most directly relevant works to our own is
MusCaps [Manco et al., 2021] a generative system for music
captioning. Despite achieving strong performance and being
one of the most prominent models for this task, they use a
relatively small scale and private dataset, and do not incor-
porate retrieval into their pipeline. By scaling up to a larger
corpus, we can by contrast take advantage of retrieval strate-
gies. Other related work on generative music captioning has
focused on classical music [Kuang et al., 2022], although this
limits dataset size and contemporary applicability. There is
also recent work on using LLMs for data augmentation for
this task by generating pseudo-captions from a taglist [Doh et
al., 2023]. While this method operates under an incomparable
task setup as it assumes tags are available and does not have
a way of conditioning on audio, we do compare to their su-
pervised music-to-text baseline. There has been some similar
work on building interactive QA systems capable of under-
standing audio, speech, and music as well [Deng et al., 2023;
Gong et al., 2023b; Gong et al., 2023a].

Prior work has also studied contrastive text-audio represen-
tation learning for pretraining purposes. Audio and text repre-
sentations from CLAP [Wu et al., 2023] have performed well
on a variety of downstream tasks, such as audio classification,
music genre classification, and sound event detection. Mu-
Lan [Huang et al., 2022] is another recent work in this space,
and has even been used for pseudo-labeling of music for train-
ing diffusion models [Huang et al., 2023]. CALL [Manco et
al., 2022] has also seen similar success. This underscores
the versatility of jointly learned embeddings and the potential
they hold for music captioning.

Our architecture also takes inspiration from image caption-
ing work that similarly takes advantage of contrastively pre-
trained multimodal encoders. CLIP [Radford et al., 2021] has
seen tremendous success across several vision tasks. Its im-
age encoder was utilized by ClipCap [Mokady et al., 2021]
which put forward the idea of projecting its visual feature
embeddings into word embedding space in order to be con-
ditioned on by a text decoder. Srivatsan et al. [2024] further
augmented this projection with relevant text in order to create
prefixes representing multimodal features for the downstream
task of alt-text generation.

There does also exist a recent body of work on the adjacent
task of playlist captioning, which aims to assign a description
to not just one song but an entire set of them [Choi et al.,
2016; Gabbolini et al., 2022; Kim et al., 2023; Doh et al.,



2021]. This requires models to infer similarities across songs
instead of prioritizing individual specificity.

Of course beyond the technical component, this task nec-
essarily has meaningful considerations from an accessibility
standpoint. Foley and Ferri [2012] write on the delicateness
of assistive vs accessible technologies to either improve or
diminish access for people with disabilities in a broad sense.
Aleksandrowicz [2020] conducted a recent study on the way
that deaf and hard-of-hearing people perceive the emotions of
film music from captions, motivating the importance of this
domain. Revuelta et al. [2020] highlighted the difficulties in
transmitting sufficient emotional information through tradi-
tional captioning alone, with Lucı́a et al. [2020] proposing
vibrotactile captioning as an alternative.

3 Model
At a high level, RGMC works by building a prefix in word
embedding space and then feeding that as input to a lan-
guage model decoder which autoregressively continues the
sequence to generate the predicted caption. See Figure 1 for
a visualization. This prefix consists of two halves: the candi-
date caption ỹ retrieved by nearest neighbor, and an audio em-
bedding of the song x that has been projected to a sequence of
vectors in word embedding space (but does not exactly map
to any particular token sequence) which we refer to as e(x).
Our aim is that e(x) will capture the specific details of the
audio, and ỹ will provide a stylistic template or perhaps in-
clude reference to uncommon features not picked up on by
the audio encoder, and that by combining these two sources
of information our decoder can produce a more accurate cap-
tion.

More formally, our modeling goal is to formulate and op-
timize a distribution p(y|x, ỹ) over the caption y conditioned
on both the audio of that particular song x as well as a cor-
responding candidate caption ỹ with respect to our model pa-
rameters. We represent x as a 10 second waveform cropped
from the middle of the full song with a sample rate of 48 kHz
such that x ∈ R480k. We will optimize our model using a
dataset D = {(x1, y1), ..., (xN , yN )} consisting of N songs
along with corresponding text captions. In this case, our set
of candidates is simply our training set excluding that exam-
ple if it is contained, or D̃ = D−{(x, y)}. This prevents our
model from learning a degenerate solution where it simply
copies the nearest candidate and ignores the audio features.

Over the rest of this section we will walk through the three
basic steps of our pipeline, namely the encoding and projec-
tion of audio features into a conditionable prefix, the retrieval
of a nearest neighbor candidate caption, and finally the de-
coder itself.

3.1 Audio Conditioning
In order for our decoder to be able to condition on audio in-
formation from the original waveform, we need to be able to
map a feature representation of it to a manifold that our lan-
guage model can reason over. This process is shown in blue
in the upper left portion of Figure 1. Formally, we desire an
encoder function f : R480k → R512 which maps these wave-
forms to a music feature space.

For the purposes of captioning audio data, a cross-modal
representation that aligns language and audio features is ex-
tremely desirable. Therefore, we specifically parameterize
f(x) via the audio encoder from CLAP [Wu et al., 2023],
which is itself an HTS-AT [Chen et al., 2022] network fol-
lowed by an MLP projection layer. While we only directly
use the audio encoder, CLAP is explicitly trained to maxi-
mize the dot product of corresponding audio and text embed-
dings (while also incorporating erroneous pairs as negative
samples) which makes it an inherently well-suited pretrained
model for our purposes.

Having obtained the audio encoding f(x), we use a map-
ping network to project it to word embedding space. This
takes the form of a function g : R512 → R10×d where
d = 768 is the token dimensionality that our language model
expects. We parameterize g with a simple two layer MLP.
Together then we can define our prefix e(x) = g(f(x)), a
text-like sequence that contains audio features from the song.

3.2 Retrieve and Edit
Given however the relatively shallow diversity of song cap-
tions, it becomes useful to allow RGMC to condition on a
candidate caption suggested by a retrieval system (depicted
to the lower left in yellow in Figure 1). This allows the de-
coder to learn simple edits instead of having to construct the
entire caption from scratch. It also biases it towards learning
a copy mechanism which it can back off to. We can choose a
neighbor x̃ for any song based on the dot product of the au-
dio embeddings f(x). Supposing that for every song in our
candidate set we have a corresponding caption ỹ, this can be
concatenated together with the audio prefix we already have
to obtain a multimodal prefix e(x)⊕ ỹ.

Of course, the addition of a search system within our
pipeline complicates training. Not only is the nearest neigh-
bor retrieval non-differentiable as it involves the discrete se-
lection of a single candidate, it is also computationally ex-
pensive to have to execute for each batch during training as
the encoder (and therefore the embeddings being compared)
will change after each gradient step. In order to circumvent
this, we simply do not backprop through the candidate selec-
tion process, and instead assume that it is a fixed observation
that the model conditions its caption on. That being said, in
order to keep the candidate embeddings relatively up to date
over the course of training, we recompute them at the begin-
ning of each epoch based on the current parameters of the
CLAP encoder. The encoder therefore does not receive ex-
plicit learning signal from retrieval, but our hope is that since
it does receive loss from captioning it will nonetheless create
feature representations that would place songs with similar
captions next to each other in its embedding space.

3.3 Decoding
Having computed the multimodal prefix, our GPT-2 [Rad-
ford et al., 2019] decoder simply conditions on it as a textual
prompt and autoregressively outputs the predicted caption, as
shown in green to the right of Figure 1. Putting together our
notation from earlier, this yields our desired distribution over
the caption:



ŷ = argmax
y

log p(y|x, ỹ)

= argmax
y

log p(y|e(x)⊕ ỹ)

= argmax
y

log p(y|g(f(x))⊕ ỹ)

At train time, we perform teacher forcing and backprop the
cross entropy loss between the logits and the gold reference
tokens through the network to obtain gradients for GPT-2,
the mapping network, and HTS-AT. At test time, we employ
beam search with a beam size of 5, and also disallow any
trigram from being generated twice in an output sequence.

4 Implementation Details
We rely on HTS-AT’s official pretrained music checkpoint
which is trained on a composite collection of music datasets
contained within the LAION-Audio-Dataset2. For our audio
encoder, we use the projected 512-dimensional contrastively
trained embedding, which is itself the output of a 1024-
dimensional CLAP encoding passed through an MLP layer.

For the GPT-2 [Radford et al., 2019] decoder, we use the
publicly available ‘gpt2’ checkpoint from HuggingFace.

We use the public implementation of MusCaps3 which we
train from scratch on the Audiostock data due to the unavail-
ability of their dataset and checkpoints, performing prepro-
cessing and tokenization as they describe.

We train our own models with a batch size of 32 and
the Adam optimizer [Kingma and Ba, 2015] with a learn-
ing rate of 1e − 5. Our implementation runs on a single
NVIDIA A6000 GPU in roughly 24-36 hours, and inherits
some code from the ClipCap [Mokady et al., 2021] repos-
itory. We perform early stopping based on our loss on the
held out validation set. Demo and code are available at
https://github.com/NikitaSrivatsan/RGMCPublicIJCAI.

5 Dataset
CLAP introduced a 250k dataset [Wu et al., 2023; Chen* et
al., 2024] of music tracks and associated metadata scraped
from Audiostock4, which we use for our experiments. These
tracks are accompanied by both a short text caption and a
long text caption, as well as three tag lists, one describing
purpose, one describing impression, and one general. For our
purposes we only consider the short text caption, as the long
text is inconsistent in format and quality, and the tag lists are
not natural language. These tracks have an original sampling
rate varying from 32−48 kHz, which we resample to a fixed
48 kHz. The total duration of the raw dataset is 11 305 hours.
Since the audio input is processed by CLAP which resam-
ples all audio inputs to 48 kHz to extract the embeddings, our
proposed music caption model can support audio inputs with
arbitrary sample rates. Following MusCaps [Manco et al.,
2021], we standardize the formatting of the captions by cast-
ing them to lowercase and removing all punctuation.

2https://github.com/LAION-AI/audio-dataset
3https://github.com/ilaria-manco/muscaps
4https://audiostock.net/

One issue with Audiostock as a source of music/caption
pairs is the prevalence of duplicate and near-duplicate cap-
tions. We frequently found instances of songs with almost
identical captions, for example with the only difference being
a version number at the end. We therefore needed to remove
these redundant examples, both to prevent train/test leakage
and also to keep the model from overfitting to those captions.
Following Lee et al. [2022] we computed the Jaccard similar-
ity between the set of 5-grams within all pairs of captions and
marked any that scored above 0.8 as duplicates. We agglom-
eratively clustered duplicates based on this threshold, and for
each cluster retained only the datapoint with the smallest ID
number. This ultimately left us with 200 170 total datapoints,
split into 184 242 train, 7925 val, and 8003 test.

In addition to Audiostock, we also perform some exper-
iments on MusicCaps [Agostinelli et al., 2023], a much
smaller scale dataset of 5.5k music-text pairs (not to be con-
fused with our baseline system MusCaps). MusicCaps spec-
ifies a roughly even train/eval split. We additionally split off
487 from the train set to use as dev for hyperparameter tuning
and early stopping. It’s worth noting that while the captions
in MusicCaps are lengthy and descriptive, they also reflect a
high degree of annotator subjectivity [Lee et al., 2023].

6 Experiments
Having described our model, we can now perform captioning
experiments to evaluate our method. In this section we will go
over the setup of these experiments including the baselines we
will compare against, and the metrics we will use to evaluate
our output against the gold references.

6.1 Baselines
We compare RGMC against a variety of baselines. These
include naive retrieval methods, generative prior work, and
ablations of the modalities represented in our prefix.

Random Caption. The first of these is a Random Caption
system which just returns a randomly selected caption from
the train set. This is effectively a lower bound for this task,
and measures to some extent the uniformity of our data.

Nearest Neighbor. We also try a Nearest Neighbor system,
identical to the one inside our model’s pipeline. It encodes
every song in train via a frozen HTS-AT, and when given a
song at test time retrieves the one with the highest dot product
against its embedding, and returns its corresponding caption
verbatim.

MusCaps. Our primary neural baseline is MusCaps. This
model differs from ours in a few key ways, most notably
in that it is not retrieval guided and uses an LSTM decoder
as opposed to a transformer LM. The encoder and decoders
of our systems are also pretrained on different data. We re-
train MusCaps on the Audiostock dataset using their publicly
available implementation.

LP-MusicCaps Supervised. LP-MusicCaps developed a
pseudo-captioning system as well as an audio-to-text music
captioning model. They listed numbers for their supervised
captioning system trained and evaluated exclusively on the
MusicCaps dataset, which we compare to here.



Song ID Model Music Caption

119693
Gold sad and lonely violin and piano sound

MusCaps a magnificent and moving orchestra that feels the beginning of the story
RGMC a sad ballad of piano and strings

1702
Gold cute and nimble fantasy pop

MusCaps a heartwarming and cute reggae song
RGMC a little comical dark fantasy song

128382
Gold light and catch a kind of electric jingle

MusCaps a song that makes you feel the beginning
RGMC danceable beat electro pop

73107
Gold japanese style hip hop with slow tempo

MusCaps a refreshing and bright song with a refreshing acoustic guitar
RGMC easy to use japanese style bgm with koto and shakuhachi

58045
Gold strings dissonance jingle horror

MusCaps a magnificent and magnificent song that feels the universe
RGMC horror bgm with a sense of tension

1349464
Gold slightly sad music box with ambient sound

MusCaps music box and environmental sounds that match the rain scene
RGMC a music box that fits the sad scene with ambient sound

Table 1: Comparison of RGMC’s output captions against MusCaps and the original gold reference for various songs in the Audiostock
dataset. We generally see that our predictions are more accurate to the genre and other details, and also less likely to repeat adjectives and
produce other grammatical mistakes.

Model Descriptiveness Fluency
MusCaps 29.0 20.4

RGMC 63.4 49.5
Equal Quality 7.5 30.1

Table 2: Results from human evaluation, showing annotator prefer-
ence for RGMC vs. MusCaps by fluency and descriptiveness.

LTU. Gong et al. [2023b] and Gong et al. [2023a] are QA
systems that both have the ability to perform music cap-
tioning. Their performance on the MusicCaps dataset was
recorded by Deng et al. [2023], which we show here.
RGMC (Audio Only). The first of our baselines forgoes
the nearest neighbor candidate retrieval, and instead simply
feeds the projected audio prefix e(x) directly into the decoder.
This lets us measure the relative predictive importance of the
audio features in our prefix, and indicates the level of qual-
ity achievable in the absence of an on hand candidate set to
perform retrieval over.
RGMC (Text Only). We also examine a version that masks
out the audio encoding, and only conditions on the candidate.
This measures the redundance between the information pro-
vided by the neighbor caption and the audio features them-
selves. Note that this model is still able to indirectly condi-
tion on the audio insofar as the retrieved candidate describes
it (and it being chosen based on those audio features).

6.2 Metrics
Previous work on music captioning (as well as other forms
of captioning) evaluate using standard string similarity met-
rics that compare the ngram overlap of the model’s generated
caption with a gold reference. Since we have the user written

captions for songs from the uploader, we can treat these as
gold and measure these same scores. Specifically, we mea-
sure performance on BLEU@4 [Papineni et al., 2002], ME-
TEOR [Denkowski and Lavie, 2014], ROUGE-L [Lin and
Och, 2004], and CIDEr [Vedantam et al., 2015] using a pub-
lic fork of the MS COCO [Lin et al., 2014] evaluation reposi-
tory5. We also use two neural evaluation metrics that measure
the alignment of our generated captions under a pretrained
contrastive model, specifically CLAP [Wu et al., 2023] us-
ing the default checkpoint, following a similar approach to
Chen* et al. [2024]. Specifically we measure the average co-
sine similarity between CLAP’s embedding for the music and
our predicted text (which we call CLAP A-T), as well as the
similarity between its embedding of our predicted text and
the gold caption (which we call CLAP T-T). The former is an
especially insightful metric as unlike all the others, it is not
measuring the similarity between our output and the subjec-
tive human written reference but rather directly measuring the
similarity between that output and the original song. We also
include the similarity between the gold caption and the audio
as a rough proxy for human captioning performance on the
former. We find that these metrics qualitatively line up with
human judgement of quality for this dataset, and are mostly
comparable in range to those reported for existing systems on
other datasets for this task.

7 Results
We now discuss the results of our experiments, including au-
tomatic captioning metrics, an ablation of both our multi-
modal prefix and our retrieval method, human evaluation, and
a qualitative inspection of our generated descriptions.

5https://github.com/LuoweiZhou/coco-caption



Model CIDEr BLEU@4 METEOR ROUGE-L CLAP A-T CLAP T-T
Gold Caption 1000 100 100 100 22.01 100

Random Caption 2.81 0.11 1.39 3.26 10.86 29.50
Nearest Neighbor 57.41 5.93 8.69 16.79 21.62 44.22

MusCaps 26.98 2.05 6.62 14.22 24.52 42.47

RGMC (Audio Only) 41.63 3.08 8.56 16.78 27.68 45.61
RGMC (Text Only) 47.04 3.65 7.72 15.15 24.69 43.63

RGMC 59.69 4.96 9.83 19.15 27.00 46.36

Table 3: Results from RGMC on Audiostock as compared to Nearest Neighbor and MusCaps. We additionally provide an ablation of our
system that ignores the candidate caption and only conditions on audio, and similarly one that only conditions on the candidate without the
audio. Scores are also shown for returning the gold and a randomly selected caption from train. CLAP A-T indicates the CLAP score between
audio and predicted text, and CLAP T-T indicates the score between the predicted and gold text.

Candidate Copy % CIDEr BLEU@4 METEOR ROUGE-L
Random 3.97 35.66 2.70 7.72 15.32

NN 12.66 59.69 4.96 9.83 19.15
Gold 9.76 231.28 22.04 20.25 36.42

Table 4: Comparison of various methods for selecting the candidate
caption, including random, nearest neighbor search (default), and re-
turning the gold caption itself. We show scores on the same metrics
as well as the Copy %, or the frequency of our decoder returning an
identical string to the candidate.

7.1 Human Evaluation

Despite the usefulness and scalability of automatic metrics,
the true test of output quality is human judgement. We there-
fore perform a survey of human annotators comparing the
quality of captions generated by RGMC against our neural
baseline MusCaps. We randomly selected 31 songs from the
Audiostock test set and presented them to a group of three
hearing human annotators via an online survey. For each song
the annotators were provided a 10 second clip from the mid-
dle of the track (i.e. the same input fed to the model’s en-
coder) as well as two candidate captions for that song, one
from each model. The order of the models’ captions was ran-
domly shuffled and they were not labeled. Annotators were
asked which of the two captions was the more accurate de-
scription of the provided song, and also which of the two was
more fluent in terms of grammar and phrasing. They could
answer that the two were too similar to distinguish, but dis-
couraged from doing so frequently.

We report the proportional votes for each model across all
annotators in Table 2. We can see that the annotators had
a strong preference for our system with respect to descrip-
tiveness, and infrequently selected that the two models were
indistinguishably similar. In terms of fluency our model was
still preferred by plurality although by a much smaller mar-
gin, with annotators reporting that the two were similarly flu-
ent almost a third of the time. This could be explained by
the high variability in the fluency of the gold descriptions
themselves. We find annotators are in unanimous agreement
35.5% of the time on descriptiveness and 38.7% of the time
on fluency (chance would be 11.1%).

7.2 Qualitative Inspection
In Table 1 we show some examples of RGMC’s predicted
captions as compared to MusCaps and the gold reference.
We generally observe that we do slightly better at identify-
ing musical genre and repeat adjectives less frequently than
the baseline. We can also see from looking through the gold
examples that they tend to vary in which aspect of the mu-
sic they primarily focus on describing (e.g. instrumentation,
mood) and also in the fluency of their style, with some read-
ing closer to a list of tags than a natural language description.
This variation in captioning style does of course manifest in
the output of the models themselves.

7.3 Automatic Metrics
Table 3 shows results from our system alongside our base-
lines and ablations for Audiostock. The full RGMC model
gets the highest performance on most metrics. Nearest neigh-
bor is a fairly competitive baseline, perhaps to some extent
due to dense genre clusters of similar songs present in our
data. It’s also worth emphasizing that BLEU is a precision
driven metric as opposed to for example ROUGE which is
based on recall. The fact that nearest neighbor does better
on the former but not latter could mean that while it can find
similar songs with captions that do not contain incorrect in-
formation, it may be less able to produce idiosyncratic details
that the gold may mention. This is also supported by its rela-
tively poor performance on CLAP A-T. MusCaps does quite
poorly by comparison, even underperforming the audio only
ablation of our system. This could be due to its differences in
architecture and pretraining. Our ablations also show that a
meaningful amount of our system’s performance comes from
the retrieval component, although it is not sufficiently infor-
mative by itself. Some songs will naturally not have a close
equivalent in the train set, and the retrieval method itself is
imperfect and the caption it retrieves may not fully describe
the audio content of the original piece. We also note that
many of our systems achieve a higher CLAP A-T score than
the gold; this is not entirely unexpected as the gold captions
are not necessarily the only correct output for a given song,
and there may easily be other captions that are more similar
under CLAP’s embedding space.

Table 5 shows results of our system and various baselines
on the MusicCaps dataset. This dataset has been evaluated



Model CIDEr BLEU@4 METEOR ROUGE-L CLAP A-T CLAP T-T
Gold Caption 1000 100 100 100 34.02 100

Random Caption 3.30 3.21 8.91 17.47 10.64 33.19
Nearest Neighbor 8.07 4.49 11.27 19.77 30.97 54.96

MusCaps 1.0 2.1 10.3 19.6 18.79 38.95
LP-MusicCaps Supervised - 4.79 - 19.22 - -

LTU - - 7.6 8.5 - -
LTU-AS - - 6.0 6.3 - -

RGMC 8.76 5.90 11.85 20.82 30.34 56.06
RGMC (Transfer) 11.25 5.92 11.83 21.25 32.38 57.06

Table 5: Results from RGMC on the MusicCaps dataset as compared to Nearest Neighbor and MusCaps, as well as reported results from
the LP-MusicCaps supervised baseline, and LTU. Scores are also shown for returning the gold and a randomly selected caption from train.
CLAP A-T indicates the CLAP score between audio and predicted text, and CLAP T-T indicates the score between the predicted and gold
text. RGMC (Transfer) indicates our model pretrained on Audiostock and then finetuned on MusicCaps. All other models except LTU are
only trained on MusicCaps, and we only include results from the literature that use the same test set and metric implementations.

on by some prior work which makes it a useful point of
comparison. However at the same time, it is substantially
smaller, which makes it far less ideal for assessing the per-
formance of a retrieval guided approach such as ours, which
benefits substantially from a large scale and diverse candi-
date pool. Nonetheless, we see that our system achieves the
best performance on all metrics compared to the retrained
MusCaps as well as Doh et al. [2023] and Gong et al. [2023b;
2023a]. It’s likely that on a small dataset like this, our model
is better able to learn to produce fluent output by way of its re-
trieval mechanism. We also investigate the effects of transfer
learning. Specifically we take RGMC trained on Audiostock
and then further finetune it on the MusCaps train set, and find
that this yields a mild boost in performance.

7.4 Retrieval Method Ablation
In order to measure the downstream effect of the specific re-
trieved candidate we performed an ablation which replaces
the nearest neighbor with a more or less informative alterna-
tive. We can use these as a way to artificially strengthen or
weaken the retrieval aspect of our pipeline, and examine how
much of an effect this has on downstream performance. This
tells us how reliant the decoder is on the relevance of the can-
didate, how robust it is to retrieval mistakes, and how well it
can take advantage of in-domain close matches at test time.

Random Candidate. First we replace the candidate with
a randomly chosen one from the train set. This lets us see
how the model responds when the retrieval system does not
recover anything relevant to the particular example.

Gold Candidate. Second we try an oracle that replaces the
nearest neighbor with the gold caption. This measures how
well the system can take advantage of a “perfect” retrieval
that returns the most possibly relevant caption.

We also list the frequency at which the model’s generated
caption exactly matches the retrieved candidate. This lets us
measure to what extent the decoder is simply regurgitating
the retrieved candidate as opposed to synthesizing it with the
audio signal and producing something novel.

Results on Audiostock are shown in Table 4. We see that
random does worst, followed by nearest neighbor, and then

the gold oracle. Furthermore, we find that gold and especially
random tend to copy the candidate exactly less frequently.
This could indicate that when retrieval fails, the model is
able to recognize that and back off to only conditioning on
the audio, and avoid being distracted by the confounding sig-
nal from the “neighbor” caption. Similarly when it produces
something desirable, the model is able to take advantage of
that and enjoy a large boost in performance, despite not ex-
actly duplicating it more frequently than it would otherwise.
This shows that the quality of search has a large effect on
downstream captioning, and there may be headroom left here.

8 Conclusion
In this paper we put forward RGMC, a novel method for mu-
sic captioning that combines retrieval and generative strate-
gies. We trained and evaluated this system on a large scale
dataset of music-caption pairs scraped from Audiostock,
and demonstrated considerable improvements over prior ap-
proaches both in terms of performance on quantitative auto-
matic metrics, and also human evaluation. This model could
be useful for curation purposes, accessibility, and has the po-
tential to play a strong role in human-in-the-loop systems for
music creation and editing. There is however still significant
headroom left on this task, and many avenues for future work
exist that may continue to close it. The results from our ab-
lation indicate that we may see further gains from improving
the retrieval method, or perhaps even allowing the decoder to
condition on a top-k list as opposed to simply the closest indi-
vidual caption. The datasets also contain other sources of in-
formation that we have not yet utilized. For example, jointly
training a predictive head on our encoder over the tag lists,
or even using the short captions to pretrain learning genera-
tion of the longer ones may be fruitful. It may also be worth
explicitly biasing the model towards generating interpretable
prefixes, as one of the advantages of our approach is that it
implicitly learns pseudo-textual audio embeddings. Finally,
in order to make strong claims about the usefulness of our
system from an accessibility perspective we would need to
conduct an evaluation using deaf or hard-of-hearing annota-
tors, which was unfortunately beyond the scope of this work.



Ethical Statement
If this work were simply deployed as a substitute for human
captioning, it may lead to a worse experience for those who
rely on captions for accessibility. The model may be biased
towards genres that are overrepresented within its train data,
and may not generalize well to other styles. It is also likely
to mirror problematic descriptions that users wrote; we do
observe usage of Eurocentric phrases like “oriental” and “ex-
otic” within the dataset. The model also has the potential to
misgender vocalists. The copyright implications of training
on these datasets are currently ambiguous.
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