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ABSTRACT
Diffusion models have shown promising results in cross-modal
generation tasks, including text-to-image and text-to-audio gen-
eration. However, generating music, as a special type of audio,
presents unique challenges due to limited availability of music data
and sensitive issues related to copyright and plagiarism. In this
paper, to tackle these challenges, we first construct a state-of-the-
art text-to-music model, MusicLDM, that adapts Stable Diffusion
and AudioLDM architectures to the music domain. Then, to ad-
dress the limitations of training data and to avoid plagiarism, we
leverage a beat tracking model and propose two different mixup
strategies for data augmentation: beat-synchronous audio mixup
and beat-synchronous latent mixup, which recombine training audio
directly or via a latent embeddings space, respectively. Such mixup
strategies encourage the model to interpolate between musical train-
ing samples and generate new music within the convex hull of the
training data, making the generated music more diverse while still
staying faithful to the corresponding style. In addition to popular
evaluation metrics, we design several new evaluation metrics based
on CLAP score to demonstrate that our proposed MusicLDM and
beat-synchronous mixup strategies improve both the quality and
novelty of generated music, as well as the correspondence between
input text and generated music.

Index Terms— Music Generation, Audio Synthesis, Diffusion
Model, Text-to-Music

1. INTRODUCTION

Text-guided generation tasks have gained increasing attention in re-
cent years and have been applied to various modalities, including
text-to-image, text-to-video, and text-to-audio generation. As a spe-
cial type of audio generation, text-to-music generation has many
practical applications [1, 2]. For instance, musicians use text-to-
music generation to quickly build samples to speed up their cre-
ative process and amateur music lovers leverage generated pieces
for the purpose of musical education [3]. Diffusion models have
shown superior performance in these types of cross-modal gener-
ation tasks, including systems like DALLE-2 [4] and Stable Dif-
fusion [5] for text-to-image; AudioLDM [6] and Make-an-Audio
[7] for text-to-audio. In the domain of music, text-to-music mod-
els include the retrieval-based MuBERT [8], language-model-based
MusicLM [9], MusicGen [10], diffusion-based Riffusion [11] and
Noise2Music [12].

*The first three authors have equal contribution. We would like to thank
IRCAM — Project REACH for supporting this project.

However, text-to-music generation presents several specific
challenges. One of the main concerns is the limited availability of
text-music parallel training data [9] compared to other modalities
such as text-to-image, making it difficult to train a high-quality
conditional model. Further, the effectiveness of diffusion models
trained on more modest training sets has not been fully explored.
Finally, a potential issue with text-to-music generation is the risk
of plagiarism and limited novelty. Diffusion models are capable of
memorizing and combining different image objects from training
images to create replicas [13,14], which can lead to highly similar or
even identical samples to the training data. Music is often protected
by copyright laws, and generating new music that sounds too similar
to existing music can lead to legal issues. Therefore, it is important
to develop models that can generate novel music while avoiding
plagiarism, even when trained on relatively small training datasets.

In this paper, we propose new methods for generating novel text-
conditioned musical audio from limited training data. We first con-
struct a text-to-music generation model, MusicLDM, which adapts
the AudioLDM [6] architectures. Next, to address the data limitation
and encourage novel generations, we adapt an idea from past work in
other modalities: mixup [15], which augments data by recombining
existing training points through linear interpolation. This augmen-
tation encourages models to interpolate between training data rather
than simply memorizing individual training examples, thus is useful
in addressing data limitations and plagiarism in music generation.
However, for music generation, the naive application of mixup is
problematic. Simply combining waveforms from two distinct musi-
cal pieces leads unnatural and ill-formed music: tempos and beats
(as well as other musical elements) are unlikely to match. Thus, we
propose two mixup strategies, specifically designed for music gener-
ation: beat-synchronous audio mixup (BAM) and beat-synchronous
latent mixup (BLM), which first analyze and beat-align training sam-
ples before interpolating between audio samples directly or encoding
and then interpolating in a latent space, respectively.

We design new metrics that leverage contrastive language-audio
pretraining (CLAP) to test for plagiarism and novelty in text-to-
music generation. Experimental results demonstrate that our beat-
synchronous mixup augmentation strategies substantially reduce the
amount of copying in generated outputs. Further, our proposed Mu-
sicLDM1 , in combination with mixup, achieves better overall mu-
sical audio quality as well as better correspondence between output
audio and input text. In both objective and subjective evaluations,
MusicLDM stands as a SoTA model at the task of text-to-music gen-
eration while only being trained on 9K text-music sample pairs.

1music samples: https://musicldm.github.io
code: https://github.com/RetroCirce/MusicLDM/

https://musicldm.github.io
https://github.com/RetroCirce/MusicLDM/
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Fig. 1: Mixup strategies in MusicLDM. Left: tempo grouping and downbeat alignment via Beat Transformer. Middle: BAM and BLM mixup
strategies, and MusicLDM training components (dot arrows indicate the training process). Right: How BAM and BLM are applied in the
feature space of audio and latent variables.

2. METHODOLOGY

2.1. MusicLDM

As shown in the middle of Figure 1, MusicLDM has similar archi-
tecture as AudioLDM [6] : a contrastive language-audio pretraining
(CLAP) module [16], a latent diffusion module [6] with a pretrained
audio variational auto-encoder (VAE) [17], and a Hifi-GAN neural
vocoder [18]. Given an audio waveform x ∈ RT and corresponding
text, where T the sample length, we feed them into three modules:
1. We pass x through the audio encoder [19] of CLAP faudio(·), to

obtain a D-dimensional semantic audio embedding Ea
x ∈ RD .

2. We pass the text of x through the text encoder [20] of CLAP
ftext(·), to to obtain the semantic text embedding Et

x ∈ RD .
3. We transform x into in the mel-spectrogram xmel ∈ RT×F .

Then we pass xmel into the VAE encoder, to obtain an au-
dio latent representation y ∈ RC× T

P
×F

P , where T the mel-
spectrogram frame size, F the number of mel bins, C the latent
channel size of VAE, and P the downsampling rate of VAE.
In MusicLDM, the latent diffusion model has a UNet architec-

ture where each encoder or decoder block is composed of a ResNet
layer [21] and a spatial transformer layer [5]. The output of the dif-
fusion model is the estimated noise ϵθ(zn, n,Ex) from n to (n−1)
time step in the reverse process, where θ is the parameter group of
the diffusion model, and zn is the n-step feature generated by the
forward process. We adopt the training objective [22,23] as the mean
square error (MSE) loss function:

Ln(θ) = Ez0,ϵ,n||ϵ− ϵθ(zn, n,Ex)||22 (1)

where z0 = y is the audio latent representation from VAE (i.e., the
groundtruth), and ϵ is the target noise for training.

For MusicLDM, we make two changes from the original Au-
dioLDM to enhance its performance on text-to-music generation.
First, we retrained the CLAP on text-music pair datasets to improve
its understanding of music data and corresponding texts. We also re-
trained the Hifi-GAN vocoder on music data to ensure high-quality
transforms from mel-spectrograms to music waveforms. Second, in
the original AudioLDM, the model is only fed with audio embed-
dings as the condition during the training process, i.e., Ex = Ea

x ;
and it is fed with text embeddings to perform the text-to-audio gen-
eration, i.e., Ex = Et

x. Although CLAP is trained to learn joint
embeddings for text and audio, it does not explicitly enforce the em-
beddings to be distributed similarly in the latent space, which can
make it challenging for the model to generate coherent text-to-audio
outputs solely with audio-to-audio training.

To further investigate this task, we introduce two additional
training approaches for comparison:
1. Train the MusicLDM directly using the text embedding as the

condition, i.e., ϵθ(zn, n,E
t
x).

2. Train the MusicLDM first with the audio embedding, then fine-
tune it with text embedding, i.e.,ϵθ(zn, n,E

a
x) → ϵθ(zn, n,E

t
x).

The first approach follows the original target of text-to-audio, serv-
ing as a comparison with audio-to-audio training. The second ap-
proach is proposed as an improvement on audio-to-audio generation
as we shift the condition distribution from the audio embedding back
to the text embedding during the training of the diffusion model.

2.2. Beat-Synchronous Mixup

As shown in Figure 1, we propose two mixup strategies to augment
the data during the MusicLDM training: Beat-Synchronous Audio
Mixup (BAM) and Beat-Synchronous Latent Mixup (BLM).

2.2.1. Beat-tracking via Beat Transformer

Musical compositions are structured according to several musical
principles, such as chord progressions, arranging instruments by tim-
bres, creating rhythmic patterns and more. Among all of these, beats
play a crucial role in alignment of simultaneous voices. In audio re-
trieval tasks, mixup is a popular technique that is used to augment the
training data by randomly mixing different audio clips with match-
ing tempos and beats. To achieve this, we use a SoTA beat tracking
model, Beat Transformer [25], extracting the tempo and downbeat
map of each music track, as shown in the left of Figure 1. We cate-
gorize each music track into different tempo groups and mix tracks
only within the same group by allowing small tempo differences.
Furthermore, we align the tracks according to their downbeat maps
by selecting a certain downbeat to serve as the starting position for
the mixup track, resulting in mixup tracks that are neatly ordered in
terms of tempo and matching downbeats.

2.2.2. Beat-Synchronous Audio Mixup

As depicted in the upper part of Figure 1, once we select two aligned
music tracks x1 and x2, we mix them by randomly selecting a mix-
ing ratio from the beta distribution λ ∼ B(5, 5), referred by the
original work [15]:

x = λx1 + (1− λ)x2 (2)

We then use the mixed data x to obtain the CLAP embedding Ex and
the audio latent variable y. We train the latent diffusion model using
the standard pipeline. This beat-synchronous audio mixup strategy
is referred to as BAM.



Table 1: The evaluation of generation quality among MusicLDMs and baselines. AA-Train. and TA-Train. refer to the audio-audio training
scheme and the text-audio traning scheme. MusicGen and MusicLDM are works in the same period.

Model Training Data Size AA-Train. TA-Train. FDpann ↓ FDvgg ↓ Inception Score ↑ KL Div. ↓

Riffusion [11] — ✗ ✓ 68.95 10.77 1.34 5.00
MuBERT [8] — — — 31.70 19.04 1.51 4.69
AudioLDM (w/. original CLAP) [6] 455 hours ✓ ✗ 38.92 3.08 1.67 3.65
Moûsai [24] 2500 hours ✗ ✓ 30.73 10.59 1.50 3.88
MusicGen* [10] 20000 hours ✗ ✓ 25.19 2.17 1.82 3.10

MusicLDM ✓ ✗ 26.67 2.40 1.81 3.80
MusicLDM (Only TA-Training) ✗ ✓ 32.40 2.51 1.49 3.96
MusicLDM w/. mixup 455 hours ✓ ✗ 30.15 2.84 1.51 3.74
MusicLDM w/. BAM ✓ ✗ 28.54 2.26 1.56 3.50
MusicLDM w/. BLM ✓ ✗ 24.95 2.31 1.79 3.40

MusicLDM w/. Text-Finetune ✓ ✓ 27.81 1.75 1.76 3.60
MusicLDM w/. BAM & Text-Finetune 455 hours ✓ ✓ 28.22 1.81 1.61 3.61
MusicLDM w/. BLM & Text-Finetune ✓ ✓ 26.34 1.68 1.82 3.47

2.2.3. Beat-Synchronous Latent Mixup

As depicted in the lower part of Figure 1, in the latent diffusion
model, the mixup process can also be applied on the latent variables,
referred as beat-synchronous latent mixup (BLM). After selecting
two aligned music tracks x1 and x2, we feed them into the VAE
encoder to obtain the latent variables y1 and y2. We then apply the
mixup operation to the latent variables:

y = λy1 + (1− λ)y2 (3)

In contrast to BAM, BLM applies the mixup operation to the
latent space of audio, where we cannot ensure that the mixture of
the latent variables corresponds to the actual mixture of the music
features. Therefore, we first generate a mixed mel-spectrogram xmel

by feeding the mixed latent variable y into the VAE decoder. Then,
we feed xmel to the Hifi-GAN vocoder to obtain the mixed audio x
as the input music. With x and y, we follow the pipeline to train the
MusicLDM.

2.2.4. What are BAM and BLM doing?

In the right of Figure 1, we demonstrate the interpolation between
the feature space of audio when using BAM and BLM. In the feature
space of audio signals, the ”•” represents the feature point of music
data, while the ”△” denotes the feature point of other audio signals,
such as natural sound, audio activity, and noise. During the pretrain-
ing process of VAE, a latent space is constructed for encoding and
decoding the music data by transforming the original feature space
into a lower-dimensional music manifold, on which any feature point
is considered to be a valid representation of music.

BAM and BLM are concerned with augmenting the data at dif-
ferent levels of feature space. BAM linearly combines two points in
audio space to form a new point on the red line. BLM, represented
by the blue line, performs a similar operation but result in a new
point in the VAE-transformed latent space, which will be decoded
back onto the music manifold of audio space.

Both BAM and BLM encourage the model to learn a more
continuous distribution over audio feature space, or implicitly from
the latent space to the audio space, which can improve the model’s
generalization performance and mitigate overfitting. These mixup
strategies have the potential to mitigate the limitations of data size
and help avoid music plagiarism issues. By introducing small varia-
tions through mixup, the model can touch a more rich space of music
data and generate music samples that are related to, but show differ-
ences with, the original training data. In Section 3.2, we evaluated
whether these strategies mitigate the data limitation and plagiarism
issues.

3. EXPERIMENTS

In this section, we conducted three experiments on our proposed
method. First, we trained MusicLDM with different mixup strategies
and compared them with available baselines. Second, we evaluated
MusicLDM in terms of text-music relevance, novelty and plagiarism
risk via metrics based on CLAP scores. Finally, we conducted a sub-
jective listening test to give an additional evaluation.

3.1. Experimental Setup

In this work, we finetuned the pretrained CLAP model on music
datasets in addition to its original training data, allowing it to bet-
ter understand the relation between music and textual descriptions.
The new CLAP model is trained on dataset of 2.8 Million text-audio
pairs, including extra music data in this link2, with an approximate
total duration of 20 000 hours. For MusicLDM, we used the Au-
diostock dataset [16] for training, which provides correct text de-
scriptions for correspoinding music tracks. Specifically, the Audios-
tock dataset contains 9000 music tracks for training and 1000 tracks
for testing with the total duration of 455.6 hours. We trained all
MusicLDM modules with music clips of 10.24 seconds at 16 kHz
sampling rate. In both VAE and diffusion model, music clips are
represented as mel-spectrograms with T=1024 frames and F=128
mel-bins. Unlike AudioLDM, MusicLDM’s VAE utilizes a down-
sampling rate of P=8 and a latent dimension of C=16. The archi-
tecture and training process of MusicLDM’s latent diffusion model
follow those of AudioLDM. We present full hyperparameters and
training details on the appendix page3.

3.2. Generation Quality

We used the audioldm eval library4 to adopt frechet distance (FD),
inception score (IS), and kullback-leibler (KL) divergence to eval-
uate the quality of generated musical audio outputs. We used two
standard audio embedding models: VGGish [26] and PANN [27].
The resulting distances are denoted as FDvgg and FDpann. We com-
pared the groundtruth audio from the Audiostock 1000-track test set
with the 1000 tracks of music generated by each system from the
corresponding textual descriptions.

Table 1 presents the results for our models in comparison with
baselines. We sent textual descriptions from the test set to the offi-
cial APIs of Riffusion, MuBERT, Moûsai, and MusicGen to gener-
ate corresponding audio results. Both Riffusion and MuBERT were

2https://github.com/LAION-AI/audio-dataset/blob/main/data collection
3appendix: https://musicldm.github.io/appendix
4https://github.com/haoheliu/audioldm eval

https://github.com/LAION-AI/audio-dataset/blob/main/data_collection
https://musicldm.github.io/appendix


Model
Objective Metrics Subjective Listening Test

T-A Similarity SIMAA@90 SIMAA@95 Quality Relevance Musicality

MusicLDM 0.281 0.430 0.047 1.98 2.17 2.19
MusicLDM-mixup 0.234 0.391 0.028 — — —

MusicLDM-BAM 0.266 0.402 0.027 2.04 2.21 2.01

MusicLDM-BLM 0.268 0.401 0.020 2.13 2.31 2.07

Table 2: The objective metrics of relevance and plagiarism risk and the subjective
test of MusicLDM variants.

Fig. 2: The generation examples and their most similar
tracks in the Audiostock training set.

unable to achieve results comparable to the remaining models. The
sub-optimal performance of Riffusion resulted from poor music gen-
eration quality, while MuBERT generated high-quality pieces from
real sample libraries but fell short in replicating the distribution of
Audiostock dataset. Moûsai and MusicGen yielded much better gen-
eration quality by leveraging advanced model architectures as well
as the large scale of internal training data. We also retrained the
original AudioLDM model on the Audiostock dataset but rely on
the original CLAP models for condition embeddings. Throughout
all models, we observed that MusicLDM variants, trained on only
455 hours music tracks, are able to achieve competitive FDpann,
FDvgg , and IS scores with only a slightly inferior on the KL diver-
gence score to MusicGen. This underscores the efficacy of CLAP
model pretrained for music, providing more suitable music embed-
dings as conditioning information.

We also observe the inferior results of “MusicLDM (Only TA-
Training)” in comparison to audio-to-audio training variants. This
suggests that a gap exists between distributions of text and audio
embeddings, making it challenging to generate high-quality audio
solely from text embedding. This hypothesis is further supported by
the results of combining audio-to-audio training and text-to-audio
fine-tuning. We observe a significant decrease in FDvgg with small
changes in FDpann and IS, indicating a substantial improvement in
generation quality, driven by leveraging both audio and text embed-
dings during training. Last, we compared MusicLDM with different
mixup strategies (mixup, BAM, BLM). The comparison reveals the
negative impact of the simple mixup on all metrics. This degradation
lies in the inability of the simple mixup strategy to guarantee musi-
cality in its mixture. Similar observations are evident in the BAM re-
sults, indicated by the drops in FDpann and IS. However, the tempo
and downbeat alignments of BAM counterbalance this defect, en-
hancing the model generalization ability and improving certain met-
rics. BLM aligns with our hypothesis that latent space mixup yields
audio closely resembling music, allowing us to largely bypass the
potential confusion issues tied to audio mixing, thus capitalizing on
the ability of mixup to drive generalization and prevent copying. Be-
sides, incorporating text-finetuning results in a further improvement,
solidifying BLM as the most effective strategy.

3.3. Text-Audio Relevance, Novelty and Plagiarism

We proposed two metric groups, text-audio similarity and nearest-
neighbor audio similarity ratio to assess text-audio relevance, nov-
elty, and plagiarism risk in various models. Text-audio similarity
measures the relevance between the text and the audio. It is defined
as the cosine similarity between the groundtruth text embedding Et

gd

from the test set and the audio embedding Ea from generated music.
Also, to measure if models are directly copying training samples, we
compute the cosine similarity between the audio embedding of each
generated track to all audio embeddings from the training set and ob-
tain the maximum (i.e., the similarity of the nearest-neighbor in the

training set). Then, we compute the fraction of generated outputs
whose nearest-neighbors are above a threshold similarity. We refer
this as SIMAA@90 where the threshold is 0.9, and SIMAA@95 with
0.95. The lower this fraction, the lower the risk of plagiarism.

Table 2 presents the results of these metrics on the 1000 tracks
in the Audiostock test set and the generated music from MusicLDM
variants. We did not include other baseline models because they
are not trained with the Audiostock dataset, making the plagiarism
detection on them pointless. We can observe that the original Mu-
sicLDM without mixup achieves the highest text-audio relevance
with an average score of 0.281, but also the highest (worst) nearest-
neighbor audio similarity ratio. MusicLDM with the simple mixup
strategy achieves the lowest SIMAA@90 ratio while sacrificing a lot
in the relevance of the generation. The MusicLDM with BAM and
BLM achieve a balance between the audio similarity ratios and the
text-to-audio similarity. We further conduct the subjective listen-
ing test on three models to evaluate the actual hearing experience
of generations. We excluded MusicLDM-mixup because of the low
perceptual quality of its generations as characterized by instrumental
interference and noises. 15 subjects were invited to listen to 6 groups
of the generations and rated the music in terms of quality, relevance,
and musicality. We observe that the samples of MusicLDM with
BAM or BLM mixup achieve a better relevance and quality than
those of the original MusicLDM, with an inferior on musicality but
still maintaining above an acceptable threshold. In Figure 2, we also
give examples of how BLM helps MusicLDM prevent the plagiarism
risk and generate novel music samples with a lower T-A similarity
to the groundtruth than the original model. More examples and the
detail of the subjective test can be found at the appendix page.

Above all, we can conclude that BLM is the best mixup strategy
in terms of quality, relevance and novelty of the generated audio.

4. CONCLUSION

We introduce MusicLDM, a text-to-music generation model that in-
corporates CLAP, VAE, Hifi-GAN, and latent diffusion models. We
enhance MusicLDM by proposing two efficient mixup strategies:
beat-synchronous audio mixup (BAM) and beat-synchronous latent
mixup (BLM) during the training process. We conduct comprehen-
sive evaluations on different variants of MusicLDM using objective
and subjective metrics, assessing quality, text-music relevance, and
novelty. The experimental results demonstrate the effectiveness of
BLM as an effective mixup strategy for text-to-music generation. It
is noted that beat tracking, as well as other MIR algorithms, is not
perfect in the current stage, thus there must be some error propa-
gation when the beats and downbeats are poorly estimated. In the
future, we plan to investigate how to mitigate such errors via semi-
supervised learning and incorporate more controls into the text-to-
music task.
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