

The Role of Mathematical Models in Epidemic Prediction and the Challenges of COVID-19 Comment on 'Data-driven mathematical modeling approaches for COVID-19: A survey' by

E Fanchon, Angélique Stéphanou

To cite this version:

E Fanchon, Angélique Stéphanou. The Role of Mathematical Models in Epidemic Prediction and the Challenges of COVID-19 Comment on 'Data-driven mathematical modeling approaches for COVID-19: A survey' by. 2024. hal-04766375

HAL Id: hal-04766375 <https://hal.science/hal-04766375v1>

Preprint submitted on 4 Nov 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The Role of Mathematical Models in Epidemic Prediction and the Challenges of COVID-19 Comment on 'Data-driven mathematical modeling approaches for COVID-19: A survey' by J. Demongeot, P. Magal

E. Fanchon, A. Stéphanou

Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France

Mathematical models are essential tools in epidemiology, aiding in both understanding and predicting disease dynamics. These models typically pursue two main objectives: first, to simulate epidemiological processes based on key assumptions, thereby improving understanding of disease transmission and behavior; and second, to predict the progression of an outbreak, helping inform public health strategies. During the COVID-19 pandemic, mathematical modeling took center stage to understand this new virus and its rapid global spread.

The pandemic response showcased a diversity of modeling approaches. Classic epidemiological models, like the Susceptible-Infected-Recovered (SIR) framework, were widely employed for their simplicity and minimal parameters, modeling infection and recovery rates in populations. However, COVID-19's complexity required more sophisticated techniques, including partial differential equations (PDEs) and agent-based models (ABMs), which incorporate spatial factors and behavioral heterogeneity. These approaches proved useful in capturing the unique challenges of COVID-19, such as varied contact rates, movement patterns, and differing health risks across regions and populations [1].

Yet, all models faced a common challenge: parameter estimation [2]. Effective models depend on accurate inputs, including transmission rates, recovery times, and the impacts of interventions like lockdowns and vaccinations. With COVID-19, estimating these parameters was especially challenging. Unlike familiar diseases like influenza, there was no pre-existing data on SARS-CoV-2, which required to navigate unknowns in transmissibility, severity, and intervention effectiveness. As the virus and human responses evolved, modelers found it challenging to keep models accurate over time [3].

COVID-19's dynamic nature underscored the limitations of traditional epidemiological models. Transmission rates—the foundation of these models—fluctuated significantly, influenced by viral mutations (e.g., Alpha, Delta, Omicron variants) and public health measures (e.g., distancing, mask mandates, vaccination rollouts). These factors created a highly dynamic system that resisted longterm predictions. In their review, Demongeot and Magal highlighted how the virus's mutation rate, coupled with shifting public health strategies, complicated the modeling landscape, as each change demanded adjustments to the models [4].

Amid these challenges, phenomenological models offered a practical solution. Unlike mechanistic models, which attempt to replicate biological mechanisms, phenomenological models focus on observed disease trends, requiring fewer parameters. This made them particularly valuable during COVID-19's early stages, when data was scarce, and the need for timely predictions was urgent. Despite their utility, these models are less effective for longer-term forecasting in dynamic contexts, as they rely heavily on current data trends, which can rapidly change. However, lessons from these models may inform epidemic forecasting, prompting modelers to explore new strategies for balancing complexity with efficiency.

One avenue for improving longer-term predictions may lie in developing models that are less dependent on real-time data. Models that only need limited "seed data" could leverage generalizable principles of disease spread derived from prior epidemics, rather than continuously updating parameters based on new data. For instance, during the pandemic, modelers frequently adjusted the transmission rate parameter τ to match evolving real-world data, using various functions (e.g., linear, exponential) to adapt τ over time [4]. Identifying early data patterns could allow the automatic selection of the optimal function for τ and enhance predictive accuracy. Observing reproducible sequences of τ functions across similar diseases could offer a pathway for making more reliable longer-term predictions, ultimately aiding preparedness for future outbreaks.

Deep learning, may play a role in this transition toward less data-dependent models. Training algorithms on past epidemic data could help identify early signals in new outbreaks, allowing models to make predictions based on these patterns rather than relying on continuous data adjustments [5]. This approach might enable us to anticipate disease dynamics more accurately, helping public health officials respond proactively.

A crucial question when an epidemic breaks out is how to scale the response of healthcare services, which entails making real-time decisions on resource allocation. Macro-level SIR models are not accurate enough for such needs. An approach to enhance predictive accuracy involves employing ensemble forecasts, combining outputs from multiple models [6,7]. The Austrian COVID-19 Forecast Consortium adopted this method, integrating three conceptually distinct epidemiological models, including both agent-based and compartmental frameworks, to generate predictions two weeks ahead [8].

Another approach to better address healthcare demands, particularly regarding hospital and ICU bed availability, is to develop models taking explicitly into account high risk populations. Older adults and individuals with preexisting conditions — such as diabetes, obesity, chronic respiratory diseases, and cardiovascular diseases — are known to be at higher risk of severe outcomes from COVID-19. These high-risk individuals typically take more preventive measures. To take this variability into account compartmental models have been developed stratifying the population into low- and high-risk groups [9-11]. These models also help informing public health policies, including targeted lockdowns and vaccine prioritization.

The COVID-19 pandemic emphasized both the strengths and limitations of mathematical modeling in epidemic response. Phenomenological models proved effective in the short term, while more sophisticated models struggled with the unpredictable mutational dynamics of SARS-CoV-2. Capitalizing on lessons from previous epidemics and leveraging deep learning approaches, models could be refined to detect early outbreak patterns and improve our preparedness for future diseases. Such efforts could help make epidemic forecasting more efficient to support public health responses in a complex world environment.

References

- [1] Kerr CC, Stuart RM, Mistry D, Abeysuriya RG, Rosenfeld K, Hart GR, et al. Covasim: An agent-based model of COVID-19 dynamics and interventions. PLoS Comput Biol. 2021 ; 17(7): e1009149. <https://doi.org/10.1371/journal.pcbi.1009149>
- [2] Magal P, Webb G. The parameter identification problem for SIR epidemic models : identifying unreported cases. J. Math. Biol. 2018 ; 77:1629-1648. <https://doi.org/10.1007/s00285-017-1203-9>
- [3] Crépey P, Noë H, Alizon S. Challenges for mathematical epidemiological modelling. Anaesth Crit Care Pain Med. 2022 ; 41 : 101053.<https://doi.org/10.1016/j.accpm.2022.101053>
- [4] Demongeot J and Magal P. Data-driven mathematical modeling approaches for COVID-19 : A survey. Physics of Life Reviews 2024; 50 :166-208, this issue. <https://doi.org/10.1016/j.plrev.2024.08.004>
- [5] Ajagbel SA, Adigun MO. Deep learning techniques for detection and prediction of pandemic diseases: a systematic literature review. Multimedia Tools and Applications. 2024 ; 83:5893–5927. <https://doi.org/10.1007/s11042-023-15805-z>
- [6] Viboud C, Sun K, Gaffey R, Ajelli M, Fumanelli L, Merler S, Zhang Q, et al. The RAPIDD Ebola Forecasting Challenge: Synthesis and Lessons Learnt. Epidemics. 2018; 22:13–21. <https://www.sciencedirect.com/science/article/pii/S1755436517301275>
- [7] Ray EL et al. and on behalf of the COVID-19 Forecast Hub Consortium. Ensemble forecasts of coronavirus disease 2019 (Covid-19) in the U.S. medRxiv. 2022; 2020.08.19.20177493. <https://www.medrxiv.org/content/10.1101/2020.08.19.20177493>
- [8] Bicher M, Zuba M, Rainer L et al. Supporting COVID-19 policy-making with a predictive epidemiological multi-model warning system. Commun Med. 2022; 2:157. <https://doi.org/10.1038/s43856-022-00219-z>
- [9] Ortega Anderez D, Kanjo E, Pogrebna G, Kaiwartya O, Johnson SD, Hunt JA. A COVID-19-Based Modified Epidemiological Model and Technological Approaches to Help Vulnerable Individuals Emerge from the Lockdown in the UK. Sensors. 2020; 20(17):4967.<https://doi.org/10.3390/s20174967>
- [10] Asempapa R, Oduro B, Apenteng OO, Magagula VM. A COVID-19 mathematical model of at-risk populations with non-pharmaceutical preventive measures: The case of Brazil and South Africa. Infectious Disease Modelling. 2022; 7(1):45-61. <https://www.sciencedirect.com/science/article/pii/S2468042721000804>
- [11] Ibrahim A, Humphries UW, Khan A, Iliyasu Bala S, Baba IA, Rihan FA. COVID-19 Model with Highand Low-Risk Susceptible Population Incorporating the Effect of Vaccines. Vaccines. 2023; 11(1):3. <https://doi.org/10.3390/vaccines11010003>