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Mathematical  models  are  essential  tools  in  epidemiology,  aiding  in  both  understanding  and
predicting disease dynamics. These models typically pursue two main objectives: first, to simulate
epidemiological processes based on key assumptions, thereby improving understanding of disease
transmission and behavior; and second, to predict the progression of an outbreak, helping inform
public health strategies. During the COVID-19 pandemic, mathematical modeling took center stage
to understand this new virus and its rapid global spread.

The pandemic response showcased a diversity of modeling approaches. Classic epidemiological
models, like the Susceptible-Infected-Recovered (SIR) framework, were widely employed for their
simplicity and minimal parameters, modeling infection and recovery rates in populations. However,
COVID-19's  complexity  required  more  sophisticated  techniques,  including  partial  differential
equations  (PDEs)  and  agent-based  models  (ABMs),  which  incorporate  spatial  factors  and
behavioral heterogeneity.  These approaches proved useful in capturing the unique challenges of
COVID-19,  such  as  varied  contact  rates,  movement  patterns,  and  differing  health  risks  across
regions and populations [1].

Yet,  all models faced a common challenge: parameter estimation [2]. Effective models depend on
accurate inputs, including transmission rates, recovery times, and the impacts of interventions like
lockdowns  and  vaccinations.  With  COVID-19,  estimating  these  parameters  was  especially
challenging. Unlike familiar diseases like influenza, there was no pre-existing data on SARS-CoV-
2, which required to navigate unknowns in transmissibility, severity, and intervention effectiveness.
As the virus and human responses evolved, modelers found it challenging to keep models accurate
over time [3].

COVID-19’s  dynamic  nature  underscored  the  limitations  of  traditional  epidemiological  models.
Transmission rates—the foundation of these models—fluctuated significantly, influenced by viral
mutations (e.g., Alpha, Delta, Omicron variants) and public health measures (e.g., distancing, mask
mandates, vaccination rollouts). These factors created a highly dynamic system that resisted long-
term predictions. In their review, Demongeot and Magal highlighted how the virus’s mutation rate,
coupled with shifting public health strategies, complicated the modeling landscape, as each change
demanded adjustments to the models [4].

Amid these challenges, phenomenological models offered a practical solution. Unlike mechanistic
models,  which  attempt  to  replicate  biological  mechanisms,  phenomenological  models  focus  on
observed disease trends, requiring fewer parameters. This made them particularly valuable during
COVID-19’s early stages, when data was scarce, and the need for timely predictions was urgent.
Despite their utility, these models are less effective for longer-term forecasting in dynamic contexts,
as they rely heavily on current data trends, which can rapidly change. However, lessons from these
models  may  inform  epidemic  forecasting,  prompting  modelers  to  explore  new  strategies  for
balancing complexity with efficiency.



One avenue for  improving longer-term predictions  may  lie  in  developing  models  that  are  less
dependent on real-time data. Models that only need limited “seed data” could leverage generalizable
principles  of  disease  spread  derived  from  prior  epidemics,  rather  than  continuously  updating
parameters based on new data. For instance, during the pandemic, modelers frequently adjusted the
transmission  rate  parameter  τ to  match  evolving real-world  data,  using  various  functions  (e.g.,
linear,  exponential)  to  adapt  τ over  time  [4].  Identifying  early  data  patterns  could  allow  the
automatic  selection of the  optimal  function  for  τ and  enhance  predictive  accuracy.  Observing
reproducible sequences of  τ functions across similar diseases could offer a pathway for making
more reliable longer-term predictions, ultimately aiding preparedness for future outbreaks.

Deep learning,  may play  a  role  in  this  transition  toward  less  data-dependent  models.  Training
algorithms on past  epidemic  data  could  help  identify  early  signals  in  new outbreaks,  allowing
models  to  make  predictions  based  on  these  patterns  rather  than  relying  on  continuous  data
adjustments [5]. This approach might enable us to anticipate disease dynamics more accurately,
helping public health officials respond proactively.

A crucial question when an epidemic breaks out is how to scale the response of healthcare services,
which entails making real-time decisions on resource allocation. Macro-level SIR models are not
accurate enough for such needs. An approach to enhance predictive accuracy involves employing
ensemble  forecasts,  combining  outputs  from  multiple  models  [6,7].  The  Austrian  COVID-19
Forecast Consortium adopted this method, integrating three conceptually distinct epidemiological
models, including both agent-based and compartmental frameworks, to generate predictions two
weeks ahead [8].

Another approach to better address healthcare demands, particularly regarding hospital and ICU bed
availability, is to develop models taking explicitly into account high risk populations. Older adults
and  individuals  with  preexisting  conditions  —  such  as  diabetes,  obesity,  chronic  respiratory
diseases, and cardiovascular diseases — are known to be at higher risk of severe outcomes from
COVID-19.  These  high-risk  individuals  typically  take  more  preventive  measures.  To  take  this
variability into account compartmental models have been developed stratifying the population into
low-  and  high-risk  groups  [9-11].  These  models  also  help  informing  public  health  policies,
including targeted lockdowns and vaccine prioritization.

The COVID-19 pandemic emphasized both the strengths and limitations of mathematical modeling
in epidemic response. Phenomenological models proved effective in the short  term, while more
sophisticated  models  struggled  with  the  unpredictable  mutational  dynamics  of  SARS-CoV-2.
Capitalizing on lessons from previous epidemics and leveraging deep learning approaches, models
could be refined to detect early outbreak patterns and improve our preparedness for future diseases.
Such efforts could help make epidemic forecasting more efficient to support public health responses
in a complex world environment.
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