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Critical points of the one dimensional Ambrosio-Tortorelli functional
with an obstacle condition

Martin Rakovsky ∗

Abstract : We consider a family of critical points of the Ambrosio-Tortorelli energy with an obstacle condition
on the phase field variable. This problem can be interpreted as a time discretization of a quasistatic evolution
problem where the obstacle at step n is defined as the solution at step n − 1. The obstacle condition now reads
as an irreversibility condition (the crack can only increase in time). The questions tackled here are the regularity
of the critical points, the properties inherited from the obstacle sequence, the position of the limit points and
the equipartition of the phase field energy. The limits of such critical points turn out to be critical points of the
Mumford-Shah energy that inherit the possible discontinuities induced by the obstacle sequence.

1 Introduction
The Mumford-Shah functional, introduced by D.Mumford and J.Shah in 1989 in [MS89] in the context of image
segmentation, is also used in fracture mechanics to describe brittle fractures [FM98]. If Ω is a bounded open subset
of RN , it is defined, for any u ∈ SBV 2(Ω), as

MS(u) =

∫
Ω

|∇u|2 + 2HN−1(Ju).

In the spirit of the Allen-Cahn model for phase transition ([Mod87], [Ste88]), Ambrosio and Tortorelli proposed in
[AT92] the following variational phase field regularization, defined for (u, v) ∈ H1(Ω)× [H1(Ω) ∩ L∞(Ω)] by

ATε(u, v) =

∫
Ω

(ηε + v2)|∇u|2dx+

∫
Ω

(
ε|∇v|2 + (1− v)2

ε

)
dx

where 0 < ηε << ε is a small parameter that ensures ellipticity. This regularization has also a mechanical
interpretation. The phase field variable v can be seen as a damage variable taking values in the interval [0, 1],
between the state {v = 1} where the material is sane and the state {v = 0} where the material is broken. This
regularized formulation is also at the basis of numerical simulations (see [BFM08]).

In [AT92], a Γ−convergence result of ATε to MS is proved by suitably extending MS as a two variable functional
:

MS(u, v) =

{
MS(u) if v ≡ 1 ,
+∞ otherwise.

Under suitable boundary conditions, the existence of minimizers for ATε for a fixed value of ε is obtained via the
direct method of the Calculus of Variation. The Γ-convergence then ensures that a converging sequence (uε, vε) of
minimizers of ATε converges toward a minimizer of MS.

Concerning the numerical implementation, the term v2|∇u|2 implies a lack of convexity for the functional ATε.
Consequently, numerical methods might fail to converge toward a minimizer of ATε. Using the fact that the
functional remains separately strictly convex, [BFM08] proposes to perform an alternate minimization algorithm.
It is proven in [Bou07, Theorem 1] that the sequence of iterates converge toward a critical point of ATε, but not
always to a minimizer. This motivates to investigate the convergence of critical points of the Ambrosio-Tortorelli
functional as ε→ 0 and compare this convergence with the original goal to minimize the Mumford-Shah functional.

A critical point for the Ambrosio-Tortorelli functional is a pair (uε, vε) ∈ H1(Ω)× [H1(Ω) ∩ L∞(Ω)] such that

d

dt
|t=0 ATε(uε + tψ, vε + tφ) = 0 ∀ (ψ,φ) ∈ H1

0 (Ω)
2.
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with suitable conditions at the boundary ∂Ω (for example Dirichlet conditions, as in [BMR24]).
The Γ-convergence provides little help to study the convergence of critical points. The extension of the fun-

damental theorem of Γ−convergence to the convergence of critical points has been studied in various settings, see
[HT00], [Ton02], [Ton05] for the Allen-Cahn functional and [BBH94], [BBO01], [LR01], [SS07] for the Ginzburg-
Landau functional. For the Ambrosio-Tortorelli functional, the convergence has been established in all dimensions
in [BMR24], with the additional hypothesis of the convergence of the energy ATε(uε, vε) to MS(u, 1). In dimension
one, this hypothesis is no longer required, and it is proved in [FLS09] and [BMR23] that a sequence of critical
points for the one-dimensional Ambrosio-Tortorelli converges to critical points of MS. A similar result is proved
in [Le10] for the one-dimensional Mumford-Shah functional adapted to image segmentation. (See also [BI23] in
cohesive fracture).

In [FL03], a model for the quasi-static evolution of a brittle fracture using the Mumford-Shah functional is
proposed. The model starts with a discretized version of the evolution of the crack, where the irreversibility through
time is translated into the condition that the crack K(ti) is included in the crack K(ti+1), and the Mumford-Shah
functional is then minimized at time ti+1 over all the cracks K containing K(ti), and with a variable Dirichlet
condition gi at the boundary ∂Ω. In [Gia05], it is proved that a quasi-static evolution of ATε approximates a quasi-
static evolution for MS using minimizers of ATε. The irreversibility condition translates into the minimization of
ATε at time ti+1 among all couples (u, v) such that v ⩽ vti,ε, where (uti,ε, vti,ε) is the minimum of ATε at time ti.

A natural question is whether the result of [Gia05] can be extended to critical points. Since in high dimension,
results on the convergence of critical points of ATε require stronger hypothesis, such an extension can be investigated
only in dimension one for the moment. This paper is the first step in that direction, namely, we study the convergence
of the critical points of the functional ATε defined on the pairs (u, v) in H1([0, L]) satisfying v ⩽ v0,ε, where
(u0,ε, v0,ε) is a critical point of ATε. We use the same setting as [BMR23] (Dirichlet conditions on the variables
(u, v)).

In Section 2, we define the one-dimensional functional AT ε at study, which corresponds to the functional ATε
restricted to the pairs (u, v) satisfying v ⩽ v0,ε, we recall the results established by [BMR23] and state the main
result in Theorem 2.6 : the critical points of AT ε with the irreversibility condition v ⩽ v0,ε converge to critical point
of MS. Theorem 2.7, proved in the appendix, deals with the Γ−convergence of the sequence AT ε. Theorem 2.6
can then be seen as an extension of Theorem 2.7 for critical points.

When we study the convergence of a functional with a phase field term, a natural question is the validity of an
equipartition of the energy principle, i.e whether the terms of the phase field energy share the same limit. This
principle, as well as the convergence of the Dirichlet approximation term is also stated in Theorem 2.6.

In Section 3, we establish the properties concerning the critical points of ATε, namely the regularity and the
variations of vε. In Section 4, we study the asymptotic behaviour of the sequence (uε, vε) and prove Theorem 2.6.

Similarly to [FLS09], [BMR23] and [Le10], the key point to the main estimates is the study of the quantity called
discrepancy (Equation 4.5) associated to AT ε (which can be interpreted as the Hamiltonian of the functional). In
[FLS09], [BMR23], this discrepancy is constant, which is no longer the case in our situation. However, we are able
to control the variations of the discrepancy in Lemma 4.7 to obtain analogous estimates and results as in [BMR23].

2 Notations and statement of the results

2.1 Notations and preliminary results
Throughout the paper, L is a positive number. Letters like C,m and M will denote constants that do not depend
on any other parameter and that may change from line to line. We also denote by Ir(x) the interval (x− r, x+ r).

For any open subset Ω ⊂ (0, L), we denote by

||f ||∞,Ω := sup
x∈Ω

|f(x)| ,

[ f ]1/2,Ω := sup
x ̸=y∈Ω

|f(x)− f(y)|
|x− y|1/2

,

||f ||C0,1/2,Ω := ||f ||∞,Ω + [ f ]1/2,Ω.

The one-dimensional Ambrosio-Tortorelli functional, is defined as

ATε(u, v) :=

∫ L

0

(
(ηε + v2)|u′|2 + (1− v)2

ε
+ ε|v′|2

)
dx, ∀(u, v) ∈ H1(0, L)2,
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where ηε is a positive parameter such that ηε/ε→ 0. Before defining the one-dimensional Mumford-Shah functional,
we recall the definition of the space SBV 2(0, L), which is the space of the functions u ∈ L1 such that their
distributional derivative is a Radon measure which writes as

Du = u′dL+ (u+ − u−)νuH0
|Ju

with
∫ L

0

|u′|2 <∞, H0(Ju) <∞.

The one-dimensional Mumford-Shah functional MS defined on SBV 2(0, L)× L2(0, L) reads as

MS(u, v) :=


∫ L

0

|u′|2 + 2H0(Ju) if v ≡ 1 ,

+∞ otherwise.
.

We define a critical point of ATε as follows

Definition 2.1. Let a0 ∈ R. A critical point of ATε is a pair (u, v) ∈ H1(0, L)2 that satisfies for all (ψ,φ) ∈
C∞
c (0, L), 

dATε(u, v)[(ψ,φ)] := lim
t→0

ATε(u+ tψ, v + tφ)−ATε(u, v)

t
= 0 ,

u0,ε(0) = 0, u0,ε(L) = a0 ,

v0,ε(0) = v0,ε(L) = 1.

A critical point (u0,ε, v0,ε) of ATε satisfies the following equations on (0, L)

−εv′′0,ε +
v0,ε−1

ε + v0,ε|u′0,ε|2 = 0 in (0, L) ,[
u′0,ε(ηε + v20,ε)

]′
= 0 in (0, L) ,

u0,ε(0) = 0, u0,ε(L) = a0 ,

v0,ε(0) = v0,ε(L) = 1.

(2.1)

In the sequel, we consider a sequence (u0,ε, v0,ε) of critical points of ATε satisfying the following energy bound

lim sup
ε>0

ATε(u0,ε, v0,ε) < C. (2.2)

In [BMR23, Theorem 1.1], the following has been established :

Theorem 2.2. Up to a subsequence, (u0,ε, v0,ε) → (u0, 1) in L2(0, L)2, where either u0 = ujump ≡ a01[L/2,L] or
u0(x) = uaff (x) = a0x/L.

When integrating the second equation of (2.1), we obtain a constant c0,ε such that

u′0,ε(ηε + v20,ε) = c0,ε.

[BMR23, Lemma 2.4] states that

Lemma 2.3. Up to a subsequence, the sequence

c0,ε → c0; (2.3)

with c0 a real number satisfying c0 ∈ {0, a0/L}.

Theorem 2.2 enlightens a selection phenomenon : the accumulation points of the sequence (u0,ε, v0,ε) are specific
critical points of MS. Indeed, critical points of MS are either the affine function uaff or the piecewise constant
functions. It is also proved in [BMR23, Theorem 1.2] that ujump can be reached by a sequence of critical points of
ATε. The crack of the material at time 0 then corresponds to Ju0

, which is, according to [BMR23, Theorem 1.1]

Γ0 = Ju0 = ∅ or Γ0 = Ju0 =

{
L

2

}
. (2.4)
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The Ambrosio-Tortorelli functional with obstacle is defined as

ATε(u, v) :=

{
ATε(u, v) if v ⩽ v0,ε ,
+∞ else, ∀ (u, v) ∈ H1(0, L). (2.5)

In order to account for the constraint on the phase field variable, we introduce the following definition for constrained
critical points.
Definition 2.4. A critical point of AT ε is a pair (u, v) ∈ H1(0, L)2 that satisfies v ⩽ v0,ε and, for all (ψ,φ) ∈
C∞
c (0, L) with φ ⩾ 0, 

dAT ε(u, v)[(ψ,φ)] := lim
t→0+

AT ε(u, v)−AT ε(u− tψ, v − tφ)

t
= 0 ,

u(0) = 0, u(L) = a1 ,

v(0) = v(L) = 1.

Note that the Dirichlet condition at L is different and carry the evolution in time of the material.
In the sequel, we denote

Oε = {vε < v0,ε} and Fε = {vε = v0,ε}. (2.6)
Since vε, v0,ε ∈ H1(0, L), there difference is continuous by Sobolev embedding so Oε and Fε are respectively open
and closed in [0, L].

2.2 Euler-Lagrange equations
In this subsection, we establish the Euler-Lagrange equations for AT ε. Let (uε, vε) be a critical point of AT ε. Take
φ = 0 in Definition 2.4. Similarly to [FLS09, Introduction], the equation satisfied by uε reads as[

u′ε(ηε + v2ε)
]′
= 0. (2.7)

This means that there exists a constant cε such that

u′ε =
cε

(ηε + v2ε)
a.e in (0, L). (2.8)

As vε is continuous by Sobolev embedding, the left hand side is also continuous. Similarly to [FLS09], we obtain
that u′ε has a constant sign, corresponding to the sign of cε, meaning that uε is monotone on [0, L].

We next move on to the equation for vε. Taking ψ = 0 in Definition 2.4, we obtain the following inequality,
where v′′ε denotes the distributional derivative of v′ε, which exists as vε ∈ H1(0, L),〈

φ , vε|u′ε|2 − εv′′ε +
vε − 1

ε

〉
⩽ 0 (2.9)

which we rewrite in the following way : there exists a non positive Radon measure distribution µε such that

−εv′′ε +
vε − 1

ε
+ vε|u′ε|2 = µε ⩽ 0. (2.10)

Taking φ compactly supported on {vε < v0,ε} gives the reversed inequality of (2.9). This means that the measure
µε is supported on the closed set Fε.

Using (2.10), we see that v′′ε is also a Radon measure, so that v′ε ∈ BV (0, L), which is embedded in L∞(0, L),
and that vε ∈ C0,1(0, L). In section 3.1, we provide a better regularity result on vε. This allows us to establish an
explicit formula for µε at the end of section 3.1 (Corollary 3.3).

In summary, the equations satisfied by (uε, vε) are

−εv′′ε + vε−1
ε + vε|u′ε|2 = µε ⩽ 0 in (0, L)[

u′ε(ηε + v2ε)
]′
= 0 in (0, L)

vε ⩽ v0,ε in (0, L) ,

uε(0) = 0, uε(L) = a0 ,

vε(0) = vε(L) = 1.

(2.11)
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2.3 Statement of the theorems
We consider a sequence (uε, vε) of critical points of AT ε. We suppose that the sequence (uε, vε) satisfies the following
energy bound

lim sup
ε→0

AT ε(uε, vε) ⩽ C. (2.12)

Our first result concerns the regularity and is proved in section 3.

Theorem 2.5. Let (uε, vε) be a critical point of AT ε in H1(0, L)×H1(0, L). Then vε ∈ C1,1([0, L]).

We now state the main result of this work concerning the limit points of (uε, vε).

Theorem 2.6 (Convergence of the critical points). Let (uε, vε) be a family of critical points of AT ε satisfying
(2.12). Then there exists a real number xmin ∈ (0, L) and a subsequence such that

(i) (uε, vε) → (u1, 1) in L2(0, L), with either u1(x) = ujump(x) = a11[xmin,L](x) or u1(x) = uaff (x) =
a1x

L
.

Moreover, if |Fε| ̸= 0 and |a1| ⩾ a0, then u1 = ujump.

(ii)
(

(1−vε)
2

ε + ε(v′ε)
2
)
dx

⋆
⇀ αδxmin in M([0, L]) with α = 0 or α = 2. Moreover, if u1 = ujump then α = 2.

(iii) (ηε + v2ε)|u′ε|2dx
⋆
⇀ |u′1|2dx in M([0, L]).

(iv) (Equipartition of the energy principle)
∣∣∣∣ (1− vε)

2

ε
− ε|v′ε|2

∣∣∣∣→ 0 in L1(0, L).

(v) ε|v′ε|2dx
⋆
⇀

α

2
δxmin

, and (1− vε)
2

ε
dx

⋆
⇀

α

2
δxmin

in M([0, L]).

Remark 2.1. Theorem 2.6 extends the following Γ− convergence result, which we prove in the appendix :

Theorem 2.7 (Γ convergence of AT ε). The functional ATε Γ-converges to the functional MS, defined for every
(u, v) ∈ L2(0, L)2 as

MS(u, v) :=


∫ L

0

|u′|2 + 2H0(Ju ∪ Γ0) if v = 1 ,

+∞ else .

where Γ0 is defined by (2.4).

While the Γ-convergence implies that a converging sequence of minimizers of AT ε converges to a minimizer
of MS(u), Theorem 2.6 acts as a selection criteria : the limit of critical points of AT ε are critical points of MS
that have at most one discontinuity point. Observe that we recover a similar selection phenomenon as in [BMR23,
Theorem 1.2].

Considering (2.7), it is natural to define the crack at time 1 by

Γ1 = Γ0 ∪ Ju1
(2.13)

The different possible values for Γ1 according to Theorem 2.6 are represented in Figure 1.

Remark 2.2. The item (iii) of Theorem 2.6 is called the equipartition of energy principle and is to be compared
with the equality case of the arithmetico-geometric inequality

(1− v)2

ε
+ ε|v′|2 ⩾ 2|1− v||v′|

used in the proof of Gamma-convergence of ATε to MS.

Remark 2.3. Let us stress that the implication in (ii) is not an equivalence, and that the converse is still an open
question. However, the fact that α > 0 is equivalent to the existence of a so-called v−jump for the sequence (vε)
defined as follows :

Definition 2.8. A point x ∈ [0, L] is a v−jump if there exists a sequence (xε) such that xε → x and vε(xε) → 0.
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0 L

a0

t = 0
0 L

a1

t = 1

(a) Γ0 = ∅, Ju1 = ∅ and Γ1 = ∅

0 L

a0

t = 0
0 xmin L

a1

t = 1

(b) Γ0 = ∅, Ju1 = {xmin} and Γ1 = {xmin}

0 L
2

L

a0

t = 0

0 L
2

L

a1

t = 1

(c) Γ0 = {L/2}, Ju1 = {L/2} and Γ1 = {L/2}

0 L
2

L

a0

t = 0

0 L

a1

t = 1

(d) Γ0 = {L/2}, Ju1 = ∅ and Γ1 = {L/2}

Figure 1: Possible values of Γ0, Ju1
and Γ1.

It turns out that a v−jump does not necessarily lead to a discontinuity point in the limit. The variations and the
symmetry of the function v0,ε around L/2 imply that the only possible v−jump for (v0,ε) is L/2. This symmetry
disappears at time 1, as xmin is not necessarily equal to L/2.

Remark 2.4. A similar result holds for a sequence (uε, vε) of critical points of AT ε with Neumann conditions on
vε, which is the framework of [FLS09, Theorem 2.2]. More precisely, if Γ0 and Γ1 are defined as in (2.4) and (2.13),
[FLS09, Theorem 2.2] states that Γ0 = ∅ or Γ0 is a regular subdivision of (−L,L). It can be proved that

• in the former case, Γ1 = {x0, . . . , xn+1}, where x0 = 0, xn+1 = L and xi ∈
[
(2i− 1)L

2n
,
(2i+ 1)L

2n

]
for

1 ⩽ i ⩽ n or {x1, . . . , xn} where xi ∈
[
(i− 1)L

n
,
iL

n

]
for 1 ⩽ i ⩽ n. Observe that, as for Theorem 2.6, the

symmetry of the “perfect staircase” observed in [FLS09, Remark 2.3] is lost at time 1.

• in the latter case, Γ1 = Γ0.

We would like to close this section by explaining what happens if we intend to iterate Theorem 2.6 for t = 2.
Denote by (u1,ε, v1,ε) a sequence of critical points at time 1, i.e satisfying v1,ε ⩽ v0,ε, µ1,ε the right-hand side of the
first equation of (2.11) and (u2,ε, v2,ε) a sequence of critical points at time 2, i.e satisfying v2,ε ⩽ v1,ε. The right
hand-side in the first equation of (2.11) corresponding to v2,ε is a non positive measure µ2,ε. The expression of µ2,ε

now depends both on {v0,ε = v1,ε} and {v1,ε = v2,ε}, so that we do not always have a similar result as Corollary 3.3
in the case |{v1,ε = v2,ε}| ̸= 0. As a consequence, the behavior of (u2,ε, v2,ε) is less predictable, in the sense that we
do not have an analogous of item (i) of Theorem 2.6. A possible reason to that phenomenon is that, as we consider
critical points and not only minimizers, we do not have an energy balance at our disposal, which is crucial in the
iteration argument proposed in [Gia05, Theorem 2.2].

3 Critical points of AT ε

3.1 C1,1 regularity of the critical points
In this subsection, we investigate the regularity of vε. More precisely, we establish the following proposition :

Proposition 3.1. Let (uε, vε) be a critical point of AT ε in H1(0, L)×H1(0, L). Then vε ∈ C1,1([0, L]).

The methods of the proof are similar to those of the classical obstacle problem, see e.g. [FRRO22, Theorem 5.5].
Set wε = v0,ε − vε, which is a non-negative function on [0, L]. Note that by Sobolev embedding, vε ∈ C0,1/2([0, L]),
so that, using the equation (2.8), uε ∈ C1,1/2([0, L]). In particular, u′ε is bounded on [0, L]. On (0, L), wε satisfies
the following equation
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εw′′
ε = ε(v′′0,ε − v′′ε ) =

v0,ε − 1− (vε − 1)

ε
+ v0,ε|u′0,ε|2 − vε|u′ε|2 + µε

=
wε

ε
+ (v0,ε − vε)|u′0,ε|2 + vε(|u′0,ε|2 − |u′ε|2) + µε

=
wε

ε
+ wε|u′0,ε|2 + vε

(
c20,ε

(ηε + v20,ε)
2
− c2ε

(ηε + v2ε)
2

)
+ µε

Since µε ⩽ 0, we obtain the following expressions
εw′′

ε ⩽ wε

(
1

ε
+ |u′0,ε|2

)
+ vε

(
c20,ε

(ηε + v20,ε)
2
− c2ε

(ηε + v2ε)
2

)
on [0, L],

εw′′
ε = wε

(
1

ε
+ |u′0,ε|2

)
+ vε

(
c20,ε

(ηε + v20,ε)
2
− c2ε

(ηε + v2ε)
2

)
on Oε.

(3.1)

Since v0,ε is smooth, it is sufficient to prove that wε is in C1,1([0, L]). We first need to prove that wε grows at
most quadratically around ∂Oε (Lemma 3.2). Then, we can use Schauder estimates on (3.1) to ensure that w′

ε is
continuous at ∂Oε.

Lemma 3.2. There exists a constant C > 0 only depending on ∥u′0,ε∥∞,[0,L], ∥u′ε∥∞,[0,L] and ε such that for any x

such that d(x, ∂Oε) ⩽
1

3
d(x, {0, L}), one has

0 ⩽ wε(x) ⩽ Cd(x, ∂Oε)
2.

Proof. Since 0 ⩽ vε ⩽ v0,ε ⩽ 1, wε is bounded. As u′ε and u′0,ε are also bounded on [0, L], the first inequality of the
system (3.1) gives

εw′′
ε ⩽ 1

ε
wε + |u′0,ε|2wε + vε(|u′0,ε|2 − |u′ε|2) ⩽ C, (3.2)

where this inequality is written in the distributional sense.

Fix any z ∈ (0, L). The mean value formula applied to the superharmonic function εwε − C
|z − ·|2

2
yields, for

any r such that Ir(z) ⊂ [0, L],

εwε(z) ⩾
1

2r

∫
Ir(z)

(
εwε(y)− C

|z − y|2

2

)
dy ⩾ ε

2r

∫
Ir(z)

wε(y)dy − Cr2 (3.3)

Secondly, for any y ∈ Oε, the second equation of (3.1) yields

εw′′
ε (y) ⩾ −vε(y)

c2ε
(ηε + |vε|2)2

⩾ − c2ε
η2ε

= −C ′.

Fix then z ∈ Oε. The mean value formula applied to the subharmonic function εwε + C ′ |z − ·|2

2
yields for any r

such Ir(z) ⊂ Oε,

εwε(z) ⩽
1

2r

∫
Ir(z)

(
εwε(y) + C ′ |z − y|2

2

)
dy ⩽ ε

2r

∫
Ir(z)

wε(y)dy + C ′r2. (3.4)

Now fix x ∈ Oε such that r := d(x, ∂Oε) satisfies r ⩽ 1

3
d(x, {0, L}) and take any x′ ∈ Ir(x) ∩ ∂Oε. Then

I2r(x
′) ⊂ I3r(x) ⊂ (0, L) and x′ ∈ Fε so, using (3.3),

0 = εwε(x
′) ⩾ 1

4r

∫
I2r(x′)

εwε(y)dy − Cr2. (3.5)

Then, since wε ⩾ 0 and Ir(x) ⊂ I2r(x
′), we get

εwε(x)− C ′r2
(3.4)
⩽ ε

2r

∫
Ir(x)

wε(y)dy ⩽ ε

2r

∫
I2r(x′)

wε(y)dy
(3.5)
⩽ 2Cr2.

which is the desired inequality.
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We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. First, we focus on the regularity on (0, L). Let x1 ∈ Oε and take x0 ∈ ∂Oε such that
r := |x0 − x1| = d(x1, ∂Oε) and suppose that r < 1

3
d(x1, {0, L}). Notice that the right-hand side of the second

equation of (3.1) belongs to C0,1/2([0, L]). Applying Schauder estimates ([GT01, Theorem 4.6]) on Ir(x1) ⊂ Oε,
there exists a constant C independent of x1, r and wε such that

r∥w′
ε∥∞,Ir/2(x1) + r2∥w′′

ε ∥∞,Ir/2(x1)

⩽ C

∥wε∥∞,Ir(x1)︸ ︷︷ ︸
:=I

+r2
∣∣∣∣∣∣∣∣wε

(
1

ε
+ |u′ε|2

)∣∣∣∣∣∣∣∣
C0,1/2,Ir(x1)︸ ︷︷ ︸

:=II

+r2 ∥vε(|u′0,ε|2 − |u′ε|2)∥C0,1/2,Ir(x1)︸ ︷︷ ︸
:=III

 . (3.6)

We now estimate the terms in the right hand side of (3.6).

I : Using Lemma 3.2, one has ∥wε∥∞,Ir(x1) ⩽ Cd(x1, ∂Oε)
2 = Cr2.

II : We split the norm ∥ · ∥C0,1/2 into the norm ∥ · ∥∞ and the semi-norm [ · ]1/2. Concerning the norm ∥ · ∥∞,
one has ∣∣∣∣∣∣∣∣wε

(
1

ε
+ |u′ε|2

)∣∣∣∣∣∣∣∣
∞,Ir(x1)

⩽ 2

(
1

ε
+ ∥u′ε∥2∞,[0,L]

)
= C,

where C > 0 is a constant which depends on ∥u′ε∥∞,[0,L]. Concerning the semi-norm [ · ], we use the inequality
[|u′ε|2]1/2 ⩽ 2∥u′ε∥∞[u′ε]1/2. This yields[

wε

(
1

ε
+ |u′ε|2

)]
1/2,Ir(x1)

⩽ ∥wε∥∞,Ir(x1)

[
1

ε
+ |u′ε|2

]
1/2,Ir(x1)

+ [wε]1/2,Ir(x1)

∣∣∣∣∣∣∣∣1ε + |u′ε|2
∣∣∣∣∣∣∣∣
∞,Ir(x1)

⩽ 2∥u′ε∥∞,[0,L][u
′
ε]1/2,[0,L] + [wε]1/2,[0,L]

∣∣∣∣∣∣∣∣1ε + |u′ε|2
∣∣∣∣∣∣∣∣
∞,[0,L]

⩽ C

where C > 0 is a constant depending on ∥u′ε∥C0,1/2,[0,L] and ∥wε∥C0,1/2,[0,L].

III : Similarly, one has

∥vε(|u′0,ε|2 − |u′ε|2)∥∞,Ir(x1) ⩽ ∥u′0,ε∥2∞,[0,L] + ∥u′ε∥2∞,[0,L],

and

[vε(|u′0,ε|2 − |u′ε|2)]1/2,Ir(x1)

⩽ ∥vε∥∞,Ir(x1)([|u
′
0,ε|2]1/2,Ir(x1) + |u′ε|21/2,Ir(x1)

] + [vε]1/2,Ir(x1)(∥u
′
0,ε∥2∞,Ir(x1)

+ ∥u′ε∥2∞,Ir(x1)
)

⩽ 2∥u′0,ε∥∞,[0,L][u
′
0,ε]1/2,[0,L] + 2∥u′ε∥∞,[0,L][u

′
ε]1/2,[0,L] + [vε]1/2,[0,L](∥u′0,ε∥2∞,[0,L] + ∥u′ε∥2∞,[0,L])

⩽ C

,

where C > 0 is a constant depending only on ∥u′0,ε∥C0,1/2,[0,L], ∥u′ε∥C0,1/2,[0,L] and ∥v′ε∥C0,1/2,[,L]. It follows from
(3.6) that

r∥w′
ε∥∞,Ir/2(x1) + r2∥w′′

ε ∥∞,Ir/2(x1) ⩽ Cr2.

In particular, |w′
ε(x1)| ⩽ ∥w′

ε∥∞,Ir/2(x1) ⩽ Cd(x1, ∂Oε). This means that w′
ε(x1) tends to 0 as d(x1, ∂Oε) → 0.

Moreover, as wε vanishes on Fε, w′
ε = 0 a.e on Fε (see [GT01, Lemma 7.7]). So w′

ε admits a representative on (0, L)
that is zero on Fε and is continuous on (0, L), so that wε ∈ C1(0, L).

From (3.2), we also have
∥w′′

ε ∥∞,(0,L) ⩽ C2,

8



where C2 > 0 is a constant depending on ∥u′0,ε∥∞,[0,L], from which we deduce that w′
ε is Lipschitz on (0, L).

To recover the regularity at the boundary points 0 and L, we see that w′
ε is uniformly continuous on (0, L)(because

it is Lipschitz) so it admits a continuous extension on [0, L]. This implies that wε is differentiable at 0 and L with
w′

ε(0) = lim
x→0+

w′
ε(x) and w′

ε(L) = lim
x→L−

w′
ε(x). We deduce that wε ∈ C1([0, L]). Then, as w′

ε is Lipschitz on (0, L),
its extension to [0, L] is Lipschitz as well so that wε ∈ C1,1([0, L]). Hence vε ∈ C1,1([0, L]).

The following result gives an explicit pointwise formula for µε.

Corollary 3.3. Let µε be the right-hand side in (2.10). We have the following expression for µε,

µε =
v0,ε

[(v0,ε)2 + ηε]2
((cε)

2 − (c0,ε)
2)1Fε

= v0,ε(|u′ε|2 − |u′0,ε|2)1Fε
(3.7)

In particular, if |Fε| ̸= 0, then |cε| ⩽ c0,ε.

Proof. As vε ∈ C1,1([0, 1]), µε is absolutely continuous with respect to the Lebesgue measure. Moreover, as vε = v0,ε
on Fε, we have v′ε = (v0,ε)

′ and v′′ε = (v0,ε)
′′ a.e on Fε (see [GT01, Lemma 7.7]). Hence

µε =

(
−εv′′ε +

vε − 1

ε
+ vε|u′ε|2

)
1Fε =

(
−εv′′0,ε +

v0,ε − 1

ε
+ v0,ε|u′ε|2

)
1Fε

=
(
−v0,ε(u′0,ε)2 + v0,ε|u′ε|2

)
1Fε

= v0,ε(|u′ε|2 − |u′0,ε|2)1Fε

= v0,ε

(
c2ε

(vε)2 + ηε
−

c20,ε
(v0,ε)2 + ηε

)
1Fε

=
v0,ε

(v20,ε + ηε)2
(c2ε − c20,ε)1Fε

.

As µε ⩽ 0, provided that |Fε| ̸= 0, one has c2ε ⩽ c20,ε, and |cε| ⩽ c0,ε.

3.2 Shape of vε

The aim of this section is to take advantage of the ODE (2.10) satisfied by vε to determine its variations. We prove
that vε admits a unique global minimum, denoted by xε ∈ [L/4, 3L/4] and that vε is non-increasing on [0, xε] and
non-decreasing on [xε, L]. We start with the following lemma on the possible positions of the critical points :

Lemma 3.4. Let xε be a critical point of vε. If xε ∈ Fε, then xε = L/2.

Proof. Note that statement is non empty, by Rolle’s Theorem, as vε(0) = vε(L). Suppose xε ∈ Fε \ {0, L}. Then

0 = v′ε(xε) = lim
h→0+

vε(xε + h)− vε(xε)

h
= lim

h→0+

vε(xε + h)− v0,ε(xε)

h
⩽ lim

h→0+

v0,ε(xε + h)− v0,ε(xε)

h
= v′0,ε(x)

and

0 = v′ε(xε) = lim
h→0+

vε(xε)− vε(xε − h)

h
= lim

h→0+

v0,ε(xε)− vε(xε − h)

h
⩾ lim

h→0+

v0,ε(xε)− v0,ε(xε − h)

h
= v′0,ε(x)

so that v′0,ε(xε) = 0, which implies xε = L/2 by [BMR23, Proposition 2.1]. If xε = 0, then, using again [BMR23,
Proposition 2.1],

0 > v′0ε(0) = lim
h→0+

v0,ε(h)− v0,ε(0)

h
⩾ lim

h→0+

vε(h)− 1

h
= v′ε(0)

and if xε = L,

0 < v′0,ε(L) = lim
h→0+

v0,ε(L)− v0,ε(L− h)

h
⩽ lim

h→0+

1− vε(L− h)

h
= v′ε(L)

so that 0 and L are not critical points of vε.

The following proposition establishes the variations of vε on [0, L].

Proposition 3.5. The function vε admits a unique local minimum at xε on [0, L]. This local minimum is also a
global minimum and is either located at L/2 or it belongs to the connected component of Oε containing L/2.
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Observe that while v0,ε is symmetric with respect to L/2, the previous proposition states that it is not necessarily
the case for vε.

Proof. According to Lemma 3.4, a local minimum of vε is either L/2 or in Oε. The proof is divided in two steps.
In the first step, we prove that any connected component of Oε contains at most one critical point y. Using this
first step, we prove in the second step that the only connected component of Oε that contains a local minimum is
(if it exists) the connected component containing L/2.

Step 1 : Any connected component of Oε contains at most one critical point.
Take (β, γ) a non-empty connected component of Oε and suppose that it contains a critical point of vε. Assume

that vε(β) ⩽ vε(γ) (the case vε(β) ⩾ vε(γ) can be treated similarly). As β, γ ∈ Fε, we also have v0,ε(β) ⩽ v0,ε(γ).
As v0,ε is decreasing on [0, L/2] and increasing on [L/2, L] ([BMR23, Proposition 2.1]), we have in particular that
γ > L/2 and v′0,ε(γ) > 0.

Assume that {v′ε = 0} ∩ (β, γ) is non-empty. First, γ cannot be critical points of vε, as

v′ε(γ) = lim
h→0

vε(γ)− vε(γ − h)

h
⩾ lim

h→0

v0,ε(γ)− v0,ε(γ − h)

h
= v′0,ε(γ) > 0.

Hence, the supremum y of {v′ε = 0}∩(β, γ) belongs to (β, γ). First, suppose that y > β+γ
2 . The Cauchy problem

−εv′′ε +
vε − 1

ε
+ vε|u′ε|2 = 0 on (β, γ),

vε(y) = vε(y),
v′ε(y) = 0,

admits a unique solution on the maximal interval (β, γ) (by Cauchy-Lipschitz Theorem). But the function vε(2y−·),
defined on (2y− γ, γ), is also a solution of the Cauchy problem on (2y− γ, γ) ⊂ (β, γ), so that by uniqueness, vε is
symmetric around y on (2y − γ, γ) (see Figure 2a). By continuity, vε is symmetric around y on [2y − γ, γ] and

v0,ε(2y − γ) ⩾ vε(2y − γ) = vε(γ) = v0,ε(γ).

Since 2y − γ ∈ (β, γ), it follows from the variations of v0,ε (see [BMR23, Proposition 2.1]) that v0,ε(2y − γ) <
max(v0,ε(β), v0,ε(γ)) = v0,ε(γ). This contradiction shows that

y ⩽ β + γ

2
. (3.8)

Now, suppose that there exists another critical point z of vε on (β, γ). As y is supposed to be the largest critical
point, z < y. Similarly to the previous argument of symmetry, vε(2y − ·) is a solution of the Cauchy problem on
(β, 2y − β) ⊂ (β, γ) so vε is symmetric around y on [β, 2y − β]. It follows that 2y − z is also critical point of vε on
(β, γ), which implies 2y − z = y, hence y = z.

Finally, y is the unique critical point of vε on (β, γ).
Step 2 : (β, γ) contains a local minimum if and only if L/2 ∈ (β, γ).
We distinguish two cases.
Case 1 : Suppose that L

2
/∈ (β, γ) and that y is a local minimum of vε. As v′ε does not vanish on (β, γ) \ {y}, vε

is decreasing on (β, y) and increasing on (y, γ).
On one hand, the symmetry of vε around y yields :

v′ε(β) = lim
x→β+

v′ε(x) = − lim
x→(2y−β)−

v′ε(x) = −v′ε(2y − β) < 0.

But on the other hand :

v′ε(β) = lim
h→0

vε(β)− vε(β − h)

h
⩾ lim

h→0

v0,ε(β)− v0,ε(β − h)

h
= v′0,ε(β) > 0.

Thus, it follows that (β, γ) does not contain any local minimum.
Case 2 : Suppose that L/2 ∈ (β, γ). Since

vε(L/2) ⩽ v0,ε(L/2) < min(v0,ε(β), v0,ε(γ)) = min(vε(β), vε(γ)),

vε admits at least one local minimum on (β, γ). By uniqueness, this local minimum is y.
This concludes the proof.
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vεvε(2y − ·) v0,ε

β

γ2y − γ

y

v0,ε(γ)

v0,ε(2y − γ)

(a) y ⩽ γ + β

2

vε
v0,ε

β

xε 2xε − β

L − β

v0,ε(L − β)

v0,ε(2xε − β)

(b) xε ⩽ 3

4
L

Figure 2: Critical points of vε

Corollary 3.6. The function vε is non-increasing on [0, xε] and non-decreasing on [xε, L].

Proof. Let us prove that vε is non-increasing on [0, xε]. Let a, b ∈ [0, xε] such that a < b. If vε(a) < vε(b),
then vε(a) < min(vε(0), vε(b)), so vε admits a local minimum on (0, b), which contradicts Proposition 3.5. So
vε(a) ⩾ vε(b) and vε is non increasing on [0, xε]. Similarly, vε is non decreasing on [xε, 1].

Notice that the sequence (xε) of global minimum of vε is bounded so, up to an extraction, we can suppose that

xε −→ xmin ∈ [0, L]. (3.9)

The previous proof implies the following on xmin :

Corollary 3.7. Let xε denote the global minimum of vε and let xmin be the limit of a converging subsequence of
(xε). Then xmin ∈ [L/4, 3L/4].

Proof. Suppose that xε ∈ (β, γ) the connected component of Oε containing L/2. Suppose also that vε(β) ⩽ vε(γ).
According to (3.8), xε ⩽

γ + β

2
⩽ 3

4
L < L. On the other hand, the symmetries of v0,ε around L/2 imply

v0,ε(2xε − β) ⩾ vε(2xε − β) = vε(β) = v0,ε(β) = v0,ε(L− β).

From the variations of v0,ε (see [BMR23, Proposition 2.1]) and the inequality v0,ε(2xε − β) ⩾ v0,ε(β), we deduce
that 2xε ⩾ L/2. Then, from the the variations of v0,ε on [L/2, L] and the inequality v0,ε(2xε − β) ⩾ v0,ε(L − β),
we deduce that 2xε − β ⩾ L − β, so xε ⩾ L/2 (see Figure 2b). The case where vε(β) ⩾ vε(γ) can be treated
similarly.

In particular, xmin is not localized at the boundaries of [0, L].

4 Asymptotic analysis
In this section, we prove Theorem 2.6. The proofs of the several items of Theorem 2.6 are disseminated within the
subsections : (i) is proved in subsection 4.3, (ii) in subsection 4.5 and subsection 4.7, (iii) in subsection 4.4 and
(iv) and (v) in subsection 4.6.

4.1 Preliminary estimates
The following estimates are classical and can be found in [FLS09], [BMR23] and [Le10].

First, notice that the energy bound (2.12) provides the following inequality on cε :

C ⩾ AT ε(uε, vε) ⩾
∫ L

0

(ηε + v2ε)|u′ε|2 =

∫ L

0

|cεu′ε| = |cε||uε(L)− uε(0)| = |cεa1|.
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where we used that u′ε is of constant sign (see (2.8)). It follows that |cε| ⩽ C/|a1|. The sequence (cε) is bounded,
so, up to an extraction, we can suppose that it converges to a constant c1. The following proposition establishes
the connection between c1 and the limit function of (uε).

Proposition 4.1. One has vε → 1 in L2(0, L) and, up to an extraction, there exists u1 ∈ BV (0, L) such that
uε → u1 in L1(0, L). Moreover, u′ε → c1 a.e in [0, L] with |Du1|(0, L) ⩽ |a1|. We also have that c1 ∈ [0, a1/L] if
a1 ⩾ 0 and c1 ∈ [a1/L, 0] if a1 ⩽ 0.

Proof. The convergence of vε comes from the energy bound (2.12) :∫ L

0

(1− vε)
2 ⩽ εAT ε(uε, vε) ⩽ Cε→ 0.

As uε is monotone, uε(0) = 0 and uε(L) = a1, it is of constant sign and
∫ L

0
|uε| = |

∫ L

0
uε| ⩽ |a1|L. So (uε) is

bounded in L1(0, L). Secondly, as u′ε is of constant sign,

|Duε|(0, L) =
∫ L

0

|u′ε| = |
∫ L

0

u′ε| = |a1|.

So the total variation of uε is also bounded. Then, the sequence (uε) is bounded in BV (0, L) and we can extract
a converging subsequence in L1(0, L) to a function u1 ∈ BV (0, L). The lower semi-continuity of the total variation
implies

|Du1|(0, L) ⩽ lim inf
ε→0

|Duε|(0, L) ⩽ |a1|.

Using equation (2.8), as one can extract a converging subsequence of (vε) that converges to 1 almost everywhere,
one gets u′ε → c1 almost everywhere. If uε ⩾ 0, then by Fatou’s lemma :

c1L =

∫ L

0

lim
ε→0

u′ε ⩽ lim inf
ε→0

∫ L

0

u′ε = a1.

If uε ⩽ 0, then similarly

−c1L =

∫ L

0

lim
ε→0

(−u′ε) ⩽ lim inf
ε→0

∫ L

0

(−u′ε) = −a1.

We obtain that if a1 ⩾ 0, then c1 ∈ [0, a1/L] and if a1 ⩽ 0, then c1 ∈ [a1/L, 0].

4.2 Estimates on vε

In this section we establish the two main estimates on vε, namely :

Proposition 4.2. Let x ∈ [0, L]. Suppose that vε ⩾ α > 0 over Ir(x) for all ε small enough. Then there exists
ε0 > 0 and b,M > 0 depending on α such that on Ir/2(x)

|µε| ⩽M, |u′ε| ⩽M, vε ⩾ 1− bε, ∀ε < ε0. (4.1)

Corollary 4.3. For any compact set K ∈ [0, L] \ {xmin}, there exists ε0 > 0 and b,M > 0 depending on K such
that (4.1) holds.

Proposition 4.4. If c0 > 0, then,

∥v′ε∥∞ ⩽ C

ε
.

If |c1| > 0, then,

∥u′ε∥∞ ⩽ C

ε
, inf

(0,L)
vε ⩾ m

√
ε.

Note that the first estimate relies on a condition concerning c0 and not c1. The proof of Proposition 4.2 and its
corollary is inspired by the proof of the Proposition 3.12 of [Le10] and the proof of Proposition 3.2 of [HT00].
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Proof of Proposition 4.2. Suppose that the assertion is false for every b. We will reach a contradiction for b large
enough. To this end, fix b > 0 and suppose on the contrary that, for infinitely many ε, infIr/2(x) vε < 1− bε.

First we can already bound u′ε and µε uniformly in ε on Ir(x), namely :

|u′ε| ⩽
|cε|

α2 + ηε
⩽M (4.2)

Concerning µε, since v0,ε = vε on Fε, one has by Corollary 3.3 on Ir(x) :

−µε = |µε| =
v0,ε

(v20,ε + ηε)2
|c2ε − c20,ε|1Fε

⩽ 1

(α2 + ηε)2
M1Fε

⩽M. (4.3)

Let ζε be a smooth function such that ζε(x − r) = ζε(x + r) = α, ζε = 1 − b/2ε on Ir/2(x), ζε ⩽ 1 on Ir(x) and
∥ζ ′′ε ∥ = O(1).

Set gε = vε − ζε. Then gε(x + r), gε(x − r) ⩾ 0, while inf
Ir/2(x)

gε ⩽ (1 − bε) − (1 − (bε)/2) = −(bε)/2 < 0 since

inf
Ir/2(x)

vε ⩽ 1− bε. In particular, gε reaches its minimum at a point x1 of (x− r, x+ r) and this minimum satisfies

gε(x1) ⩽ −(bε)/2. Then :

0 ⩽ εg′′ε (x1) = εv′′ε (x1)− εζ ′′ε (x1) =
vε(x1)− 1

ε
+ vε(x1)|u′ε(x1)|2 − µε(x1)− εζ ′′ε (x1)

= gε(x1)

(
1

ε
+ |u′ε(x1)|2

)
+ ζε(x1)

(
1

ε
+ |u′ε(x1)|2

)
− 1

ε
− εζ ′′ε (x1)− µε(x1)

.

We deduce, using (4.2) and (4.3),

−b/2 ⩾ −bε
2

(
1

ε
+ |u′ε(x1)|2

)
⩾ 1− ζε(x1)

ε
+ εζ ′′ε (x1)− ζε(x1)|u′ε(x1)|2 + µε ⩾ −ε∥ζ ′′ε ∥∞ −M2 −M ⩾ −2M2

which is absurd for b large enough.

Proof of Corollary 4.3. Let K be a compact set of [0, L] \ {xmin} and take δ > 0 such that (xmin − δ, xmin + δ) ⊂
[0, L] \K. Then, for ε > 0 small enough, xε ∈ (xmin − δ/2, xmin + δ/2) so using Corollary 3.6, vε is non-increasing
on (xmin − δ, xmin − δ/2). The L2 convergence of vε then implies

δ

2
(1− vε(xmin − δ))2 ⩽

∫ xmin−δ/2

xmin−δ

(1− vε)
2 → 0. (4.4)

It follows that for ε small enough, vε(xmin − δ) ⩾ 1/2 and then vε ⩾ 1/2 on [0, xmin − δ]. Similarly, vε ⩾ 1/2 on
[xmin + δ, L]. Hence vε ⩾ 1/2 on K.

Let x ∈ K and rx such that Irx(x) ⊂ (0, xmin − δ) ∪ (xmin + δ, L). Then vε ⩾ 1/2 on Irx(x). According to
Proposition 4.2, there exists εx > 0 and constants bx,Mx such that

vε ⩾ 1− bxε , |u′ε| ⩽Mx , |µε| ⩽Mx ∀ε < εx.

As K is compact, there exists a finite covering of K of the form K ⊂
⋃n

i=1 Irxi
/2(xi). Taking ε0 = min

1⩽i⩽n
εxi
, b =

max
1⩽i⩽n

bxi and M = min
1⩽i⩽n

Mxi yields Corollary 4.3.

Before proving Proposition 4.4, we introduce the so-called discrepancy of AT ε.

Definition 4.5. We denote by dε, also named as the discrepancy of AT ε the following quantity :

dε :=
(1− vε)

2

ε
− ε|v′ε|2 − (ηε + v2ε)|u′ε|2. (4.5)

Remark that ∫ L

0

|dε| =
∫ L

0

∣∣∣∣ (1− vε)
2

ε
− ε(v′ε)

2 − (ηε + v2ε)|u′ε|2
∣∣∣∣ ⩽ ATε(vε, uε) < C.

As in [FLS09], [BMR23] and [Le10], we use the variations of the discrepancy to infer estimates on uε and vε. The
following proposition gives the expression of the derivative of the discrepancy :
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Proposition 4.6. There holds
d′ε = 2v′0,εµε. (4.6)

Consequently, dε is non-decreasing on [0, L/2] and non-increasing on [L/2, L].

Proof. Note that dε ∈ C0,1([0, L]), so that we can define its derivative almost everywhere but here in the sense of
D′, which reads as :{

(1− vε)
2

ε
− ε(v′ε)

2 − (ηε + v2ε)|u′ε|2
}′

= 2v′ε[
vε − 1

ε
− εv′′ε ]− 2(v2ε + ηε)u

′′
εu

′
ε − 2vεv

′
ε|u′ε|2

= 2v′ε[µε − vε|u′ε|2]− 2(v2ε + ηε)u
′′
εu

′
ε − 2vεv

′
ε|u′ε|2

= 2v′εµε − 2u′ε [(ηε + v2ε)u
′
ε]

′︸ ︷︷ ︸
=0

= 2v′εµε = 2v′0,εµε

where the last equality uses the fact that vε = v0,ε on the support of µε. Since µε ⩽ 0 and v′0,ε ⩽ 0 on [0, L/2] while
v′0,ε ⩾ 0 on [L/2, L], we deduce that dε is non-decreasing on [0, L/2] and non-increasing on [L/2, L].

We use this expression to prove the following estimate on the discrepancy.

Lemma 4.7. Let dε be the discrepancy associated to (uε, vε), defined by (4.5). If c0 > 0, then :

∥dε∥∞ ⩽ C

ε

The hypothesis on c0 comes from the necessity, in the proof, to bound from below v0,ε(L/2). As stated in
Lemma 2.2 of [BMR23], if c0 > 0, then v0,ε(L/2) ⩾ C

√
ε.

Proof. The proof of Lemma 4.7 consists in estimating dε at its local extremum L/2 and controlling the integral of
the derivative d′ε to prove that the difference |dε(x)− dε(L/2)| is bounded by C/ε.

We start by estimating dε(L/2). We distinguish two cases. Suppose first that dε(L/2) ⩾ 0. Then we have

0 ⩽ dε(L/2) ⩽
(1− vε(L/2))

2

ε
⩽ 1

ε
.

Suppose now that dε(L/2) ⩽ 0. Recall that ∥dε∥1 is bounded by a constant C independent from ε. Then, because
L/2 is a global maximum of dε, dε is non-positive and

C ⩾
∫ L

0

|dε| = −
∫ L

0

dε ⩾ L(−dε(L/2))

so that |dε(L/2)| ⩽ C. Both cases imply that |dε(L/2)| ⩽ C/ε.
Now we prove that the total variation of dε is bounded by C/ε. By Corollary 3.3 :∫ L

0

|d′ε| = 2

∫ L

0

∣∣v′0,εµε

∣∣ = 2

∫ L

0

∣∣∣∣v′0,ε v0,ε
[(v0,ε)2 + ηε]2

((cε)
2 − (c0,ε)

2)1Fε

∣∣∣∣
= 2((c0,ε)

2 − (cε)
2)

∫ L

0

|v′0,ε|
v0,ε

[(v0,ε)2 + ηε]2
⩽ 2C

∫ L

0

|v′0,ε|
v0,ε

[(v0,ε)2 + ηε]2
.

Using that v′0,ε ⩽ 0 on [0, L/2] and v′0,ε ⩾ 0 on [L/2, L], along with the estimate v0,ε(L/2) ⩾ C
√
ε, we have :∫ L/2

0

|v′0,ε|
v0,ε

[(v0,ε)2 + ηε]2
= −

∫ L/2

0

v′0,ε
v0,ε

[(v0,ε)2 + ηε]2
=

1

2

[
1

(v0,ε)2 + ηε

]L/2

0

=
1

2(v20,ε(L/2) + ηε)
− 1

2(1 + ηε)
⩽ C

ε
.

Similarly, we obtain that
∫ L

L/2

|v′0,ε|
v0,ε

[(v0,ε)2 + ηε]2
⩽ C

ε
, so that

∫ L

0

|d′ε| ⩽ C/ε.

We deduce that for a.e x in [0, L], one has

|dε(x)| ⩽ |dε(L/2)|+

∣∣∣∣∣
∫ x

L/2

d′ε

∣∣∣∣∣ ⩽ |dε(L/2)|+
∫ L

0

|d′ε| ⩽ C/ε,

which gives the desired result.
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We are now in position to complete the proof of Proposition 4.4 :

Proof of Proposition 4.4. First we focus on the estimate on vε. For a.e x in [0, L], one has

0 ⩽ ε(v′ε)
2 =

(1− vε)
2

ε
− dε − (ηε + v2ε)|u′ε|2 ⩽ 1

ε
− dε ⩽

C

ε
,

hence the result. Now we focus on the estimate on u′ε. One has

|cεu′ε| = (ηε + v2ε)|u′ε|2 =
(1− vε)

2

ε
− ε|v′ε|2 − dε ⩽

C

ε
.

Dividing by |cε|, we obtain the desired result. Concerning vε, we have

ηε + v2ε =
cε
u′ε

⩾ Cε.

Since ηε << ε, we conclude that vε ⩾ mε.

In [FLS09] and [BMR23], the first estimate of Proposition 4.4 is true without any assumption on the slope c0.
This comes from the fact that the discrepancy dε is constant in their case, so an estimate as in Lemma 4.7 follows.
However, the hypothesis c0 > 0 is not that restrictive in our case, since c0 = 0 implies that c1 = 0 as well, as long
as |Fε| ̸= 0 (see Corollary 4.9).

4.3 Possible values for the limit slope
The goal of this subsection is to establish the following property :

Proposition 4.8. c1 ∈ {0, a1

L }.

Corollary 4.9. If |a1| > a0 and |Fε| ̸= 0 for infinitely many values of ε, then c1 = 0.

Proof of Corollary 4.9. If |Fε| ̸= 0, then by Corollary 3.3 |cε| ⩽ |c0,ε|. Hence, by [BMR23, Lemma 2.1] |c1| ⩽ c0 ⩽
a0/L < |a1|/L, so Proposition 4.8 yields c1 = 0.

The proof of Proposition 4.8 is similar to that of [FLS09, Lemma 4.4].

Proof of Proposition 4.8. We already know by Proposition 4.1 that c1 is within the interval [0, a1/L] (or [a1/L, 0]).

Suppose now that |c1| > 0. The proof is divided into two steps. In the first step, we integrate (2.10) over sets
of the form

Kε,A := {vε ⩽ A
√
ε}

to obtain an estimate on |Kε,A|. In the second step, we split the integral
∫ L

0
u′ε into three terms which we study

using the previous estimate and Proposition 4.4.

Step 1 : We estimate |Kε,A|. Fix A > 0. We integrate the inequality

−εv′′ε +
vεc

2
ε

(ηε + v2ε)
2
+
vε − 1

ε
⩽ 0

over the set {vε ⩽ A
√
ε}. We obtain∫

Kε,A

εv′′ε ⩾
∫
Kε,A

vεc
2
ε

(ηε + v2ε)
2
+

∫
Kε,A

vε − 1

ε
. (4.7)

According to Proposition 3.5, the set KA,ε is an interval that we denote by [aε, bε]. Then we have, using Proposi-
tion 4.4,

|
∫ bε

aε

εv′′ε | = ε|v′ε(bε)− v′ε(aε)| ⩽ C.

Next, recall by Proposition 4.4 that v2ε ⩾ mε >> ηε. We can then bound from below the right-hand side of (4.7)
by ∫

Kε,A

vεc
2
ε

(ηε + v2ε)
2
+

∫
Kε,A

vε − 1

ε
⩾
∫
Kε,A

vεc
2
1/2

2v4ε
− |Kε,A|

ε
⩾ C

|Kε,A|
A3ε3/2

− |Kε,A|
ε

⩾ C
|Kε,A|
A3ε3/2

.

15



Combining the two bounds, we obtain |Kε,A| ⩽ CA3ε3/2. This ends Step 1.

Step 2 : In this step, we investigate the weight of u′ε in each of the three regimes {vε ⩽ A
√
ε}, {A

√
ε ⩽ vε ⩽ 1/2}

and {vε ⩾ 1/2}. Indeed, one has :

a1 =

∫ L

0

u′ε =

∫
Kε,A

u′ε︸ ︷︷ ︸
:=I1

+

∫
{A

√
ε⩽vε⩽1/2}

u′ε︸ ︷︷ ︸
:=I2

+

∫
{vε⩾1/2}

u′ε︸ ︷︷ ︸
:=I3

.

First, thanks to the previous estimate on Kε,A and Proposition 4.4,

I1 ⩽
∫
Kε,A

|u′ε| ⩽
C

ε
|Kε,A| ⩽ CA3ε1/2.

As u′ε → c1 and vε → 1 a.e, we have u′ε1vε⩾1/2 → c1 a.e. As∣∣∣∣ cε
ηε + v2ε

1{vε⩾1/2}

∣∣∣∣ ⩽ 2|c1| × 4,

we can apply the dominated convergence theorem to obtain

I3 →
∫ L

0

c1 = c1L.

For I2, the energy bound (2.2) gives :

C ⩾
∫ L

0

(1− vε)
2

ε
⩾
∫
{vε⩽1/2}

(1− vε)
2

ε
⩾ 1

4ε
|{vε ⩽ 1/2}|

On {A
√
ε ⩽ vε ⩽ 1/2}, we recover

|u′ε| =
|cε|

ηε + v2ε
⩽ |cε|

v2ε
⩽ 2|c1|

A2ε
.

Thus
|I2| ⩽ |{A

√
ε ⩽ vε ⩽ 1/2}| × 2|c1|

A2ε
⩽ C

A2

Combining the estimates on I1, I2 and I3, we obtain

|a1| ⩽
C

A2
+ |c1|L

By letting A tending to ∞, we obtain |c1|L ⩾ |a1|. Combining with |c1| ⩽ |a1|/L, we get the desired result.

We can now conclude the proof of (i) in Theorem 2.6.

Proof of (i) in Theorem 2.6. Let δ > 0. We have already seen with Corollary 4.3 that vε → 1 uniformly on
[0, L] \ Iδ(xmin) for every δ > 0. This combined with (2.8) implies that u′ε → c1 uniformly on [0, L] \ Iδ(xmin) for
every δ > 0. Then we get that :

uε(x) =

∫ x

0

u′ε(t)dt→ c1x,

uniformly with respect to x ∈ [0, xmin − δ]. Similarly, uε(x) → a1 − c1(L − x) uniformly with respect to x ∈
[xmin + δ, L]. Using that c1 = 0 or c1 = a1/L, we see that the limit function u1 of (uε) (in the point-wise
convergence sense) is either u1 = uaff or u1 = ujump. Moreover, as uε is monotone and uε is uniformly bounded by
a1 on [0, L], by dominated convergence, we get that uε → u1 in L2(0, L). The additionnal conclusion corresponds
to Corollary 4.9.
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4.4 Convergence of the Dirichlet energy
In this subsection, we prove the following, which proves part (iii) of Theorem 2.6. The proof is similar to [FLS09,
section 6] and [BMR23, section 3].

Lemma 4.10. (ηε + v2ε)|u′ε|2dx
⋆
⇀ |u′1|2dx weak⋆ in M([0, L]).

Proof. Let φ be a test-function in C∞([0, L]). According to Proposition 4.1 :∫ L

0

(v2ε + ηε)|u′ε|2φ = cε

∫ L

0

u′εφ = −cε
∫ L

0

uεφ
′ + cεa1φ(L) → −c1

∫ L

0

u1φ
′ + c1a1φ(L).

If c1 = 0, then u1 = ujump and u′1 = 0 so

−c1
∫ L

0

u1φ
′ + c1a1φ(L) = 0 =

∫ L

0

|u′jump|2φ.

If c1 = a1/L, then u1 = uaff and u′1 = a1/L, so by integration by part,

−c1
∫ L

0

u1φ
′ + c1a1φ(L) = c1

∫ L

0

u′affφ =

∫ L

0

|u′aff |2φ.

4.5 Convergence of the phase-field term
In this subsection, we prove the first part of (ii) in Theorem 2.6, namely

Lemma 4.11.
(

(1−vε)
2

ε + ε|v′ε|2
)
dx

⋆
⇀ αδxmin weak⋆ in M([0, L]) for some α ∈ R.

The computation of the weight α is made in section subsection 4.7.

We start by noticing that the energy bound (2.2) implies that the measure
(

(1−vε)
2

ε + ε|v′ε|2
)
dx is bounded,

thus we can extract a converging subsequence such that(
(1− vε)

2

ε
+ ε|v′ε|2

)
dx

⋆
⇀ ν in M([0, L])

for some non negative ν ∈ M([0, L]). In [BMR23] and in [FLS09], the proof that ν is atomic relies on the following
estimate (see [BMR23, Lemma 3.1] and [FLS09, Lemma 6.1]): if K is a compact subset of [0, L] \ {xmin}, then∫

K

(
(1− v0,ε)

2

ε
+ ε|v′0,ε|2

)
dx ⩽ CKε

1/4.

The proof of this estimate relies on an integration by part of the PDE satisfied by v0,ε on K, and strongly uses the
estimate ∥v′0,ε∥∞ ⩽ C/ε. In our case, such an estimate ∥v′ε∥∞ ⩽ C/ε is proved only in the case where c0 > 0.

We are going to show the following result, which provides a sharper estimate (an order 1 on ε instead of an
order 1/4) :

Proposition 4.12. Let K be a compact subset of [0, L] \ {xmin}. There exists a constant CK such that :∫
K

(
(1− vε)

2

ε
+ ε|v′ε|2

)
⩽ CKε.

The proof is divided in three steps. In the first one, we prove the result for a compact set K of (0, L) \ {xmin} :

Lemma 4.13. Let K be a compact subset of (0, L) \{xmin}. For any positive test-function φ supported in K, there
exists a constant CK,φ such that : ∫

K

(
(1− vε)

2

ε
+ ε|v′ε|2

)
φ ⩽ CK,φε.

In the second one, we use Lemma 4.13 to obtain a sharper estimate on ∥v′ε∥∞ on (0, L) \ {xmin}.
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Lemma 4.14. Let K be a connected compact subset of (0, L) \ {xmin}. Then there exists a constant CK such that,

sup
K

ε|v′ε|2 ⩽ CKε
1/3.

Finally, we use Lemma 4.14 to prove Proposition 4.12, in a similar way than [BMR23, Lemma 3.1] and [FLS09,
Lemma 6.1].

Proof of Lemma 4.13. The argument is inspired from [HT00, Proposition 4.1] to prove a monotonicity formula for
the Allen-Cahn functional.

Take φ a smooth and positive test function supported on K. First, using Corollary 4.3, there exists b,M > 0
such that

u′ε ⩽M, |µε| ⩽M, vε ⩾ 1− bε on K.

Then ∫
K

(1− vε)
2

ε
φ ⩽

∫
K

b2ε2

ε
φ ⩽ CKε. (4.8)

It remains to estimate
∫
K
ε|v′ε|2φ. To do so, we compare ε|v′ε|2 with its second derivative (in the distributional

sense). One has

[ε|v′ε|2]′ = 2εv′′ε v
′
ε = 2v′ε

(
vε − 1

ε
+ vε|u′ε|2 − µε

)
.

Note that v′εµε ∈ L1(0, L), so it admits a derivative in the distributional sense and then

[ε|v′ε|2]′′ = 2v′′ε

(
vε − 1

ε
+ vε|u′ε|2

)
︸ ︷︷ ︸

=Aε

−2(v′εµε)
′︸ ︷︷ ︸

=Bε

+2
v′2ε
ε

+ 2|v′ε|2|u′ε|2︸ ︷︷ ︸
=Cε

+4v′εvεu
′′
εu

′
ε︸ ︷︷ ︸

=Dε

.

It follows that

2

∫
K

ε|v′ε|2φ = ε2
∫
K

(ε(v′ε)
2)′′φ− ε2

(∫
K

Aεφ+ ⟨Bε , φ ⟩+
∫
K

Cεφ+

∫ L

0

Dεφ

)
. (4.9)

We now study each terms of the right hand side.∫ L

0

(ε(v′ε)
2)′′φ : As φ = 0 outside of K, then φ and φ′ vanish at 0 and L. Applying (4.8) to φ′′ yields

lim
ε→0

∫ L

0

(ε|v′ε|2)′′φ = lim
ε→0

∫ L

0

ε|v′ε|2φ′′ = lim
ε→0

∫ L

0

(
ε|v′ε|2 +

(1− vε)
2

ε

)
φ′′ →

∫ L

0

φ′′dν.

Hence,

ε2
∫
K

(ε(v′ε)
2)′′φ = ε2

∫ L

0

(ε(v′ε)
2)′′φ ⩽ Cφε

2. (4.10)∫
K

Aεφ :

Aε =
1

ε

(
vε − 1

ε
+ vε|u′ε|2

)2

︸ ︷︷ ︸
⩾0

+
1

ε
(−µε)︸ ︷︷ ︸
⩽M

vε − 1

ε︸ ︷︷ ︸
⩾−b

+ vε|u′ε|2︸ ︷︷ ︸
⩾0

 ⩾ −bM
ε

.

so that
−ε2

∫
K

Aεφ ⩽ CK,φε. (4.11)

⟨Bε , φ ⟩ : We use Cauchy-Schwarz inequality and the fact that |µε| ⩽M to get that

∣∣2ε2⟨ (v′εµε)
′ , φ ⟩

∣∣ = 2ε2

∣∣∣∣∣
∫ L

0

v′εµεφ
′

∣∣∣∣∣ ⩽ 2ε3/2 ∥µε∥L2(0,L)︸ ︷︷ ︸
⩽C

∣∣∣∣∣∣ε1/2|v′ε|φ′
∣∣∣∣∣∣
L2(0,L)

. (4.12)
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On the other hand,∣∣∣∣∣∣ε1/2|v′ε|φ′
∣∣∣∣∣∣2
L2(0,L)

=

∫ L

0

ε|v′ε|2|φ′|2 ⩽
∫ L

0

(
(1− vε)

2

ε
+ ε|v′ε|2

)
|φ′|2 →

∫ L

0

|φ′|2dν,

From which we deduce that ∥ε1/2(v′ε)φ′∥2L2(0,L) ⩽ Cφ. (4.12) then yields∣∣ε2 ⟨Bε , φ ⟩
∣∣ ⩽ Cφε

3/2. (4.13)∫
K

Cεφ : Cε ⩾ 0, so

−ε2
∫
K

Cεφ ⩽ 0. (4.14)∫
K

Dεφ : We have u′′ε =

(
cε

v2ε + ηε

)′

= −2cε
v′εvε

(v2ε + ηε)2
, so that

Dε = −8v′εvεcε
v′εvε

(v2ε + ηε)2
· cε
v2ε + ηε

= −8c2ε|v′ε|2
v2ε

(v2ε + ηε)3︸ ︷︷ ︸
⩽C

.

where we used that 1− bε ⩽ vε ⩽ 1 on K. As (cε) is bounded, we can write :

|Dε| ⩽M |v′ε|2.

Thus
|ε2
∫
K

Dεφ| ⩽Mε

∫
K

ε|v′ε|2φ. (4.15)

Injecting (4.14) and (4.15) in (4.9) yields the following inequality, which is true for every ε small enough and every
positive smooth test function φ :

(1−Mε)

∫
K

ε|v′ε|2φ ⩽ ε2
∫
K

(ε|v′ε|2)′′φ− ε2
(∫

K

Aεφ+ ⟨Bε, φ⟩
)

(4.16)

Now combining with (4.10),(4.11) and (4.13), we obtain

(1−Mε)

∫
K

ε|v′ε|2φ ⩽ Cε2 + Cε+ Cε3/2 ⩽ CK,φε (4.17)

Which concludes the proof.

Note that a corollary of this property is that∫
K

ε|v′ε|2 ⩽ CKε for any compact set K ⊂ (0, L) \ {xmin}. (4.18)

We now move on to the proof of Lemma 4.14.

Proof of Lemma 4.14. Let K be a connected compact subset of (0, L) \ {xmin} and let y ∈ K. The strategy is the
following : we consider a mollifier ρε (i.e ρ is positive smooth function, compactly supported on [−1, 1] with integral
1 and ρε =

1

εα
ρ
( ·
εα

)
, whith α > 0 to be determined). Then we take ρε(· − y) as a test function in the inequality

(4.16) and we prove the two estimates ∫
K

ρε(x− y)ε|v′ε(x)|2dx ⩽ CKε
1−α (4.19)

and ∣∣∣∣∫
K

ρε(x− y)ε|v′ε(x)|2dx− ε|v′ε(y)|2
∣∣∣∣ ⩽ CKε

α/2. (4.20)

It follows that for α = 2/3, one has ε|v′ε(y)|2 ⩽ CKε
1/3.
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We start by proving (4.19). One already has from inequalities (4.16), (4.11) and (4.12) that

(1−Mε)

∫
K

ρε(x− y)ε|v′ε|2(x)dx ⩽ ε2
∫
K

(ε|v′ε|2)′′ρε︸ ︷︷ ︸
:=I1

+ ε

∫
K

bMρε︸ ︷︷ ︸
:=I2

− ε2
∫
K

(v′εµε)
′ρε︸ ︷︷ ︸

:=I3

.

I1 : Using Lemma 4.13,∣∣∣∣∫
K

ε|v′ε|2ρ′′ε
∣∣∣∣ = ε−2α

∣∣∣∣∫
K

ε|v′ε|2
1

εα
ρ′′
( x
εα

)∣∣∣∣ ⩽ ε−3α∥ρ′′∥∞
∫
K

ε|v′ε|2 ⩽ CKε
1−3α. (4.21)

Hence,
I1 ⩽ CKε

3−3α (4.22)

I2 :

|I2| =
∣∣∣∣εbM ∫

K

ρε

∣∣∣∣ ⩽ bM |K|ε1−α∥ρ∥∞ ⩽ CKε
1−α. (4.23)

I3 : Using the Cauchy-Schwarz inequality, (4.3) and Lemma 4.13,

|I3| ⩽
∣∣∣∣ε2 ∫

K

v′εµερ
′
ε

∣∣∣∣ ⩽ ε2
(∫

K

µ2
ε

)1/2

︸ ︷︷ ︸
⩽CK

ε−1/2

(∫
K

ε|v′ε|2|ρ′ε|2
)1/2

⩽ CKε
2ε−2α−1/2∥ρ′∥∞

(∫
K

ε|v′ε|2
)1/2

︸ ︷︷ ︸
⩽CKε1/2

. (4.24)

And thus,
|I3| ⩽ CKε

2−2α. (4.25)

Combining (4.22), (4.23) and (4.25) yields (4.19).

We now move on to the proof of (4.20). First, using that
∫
K
ρε(x− y) = 1, we rewrite (4.20) as∫

K

ρε(x− y)(ε|v′ε|2(x)dx− ε|v′ε|2(y))dx.

Then, for all x in K, considering the fact that |v′ε|2 is C0,1([0, L]) and using the Cauchy-Schwarz inequality,

|ε|v′ε(x)|2 − ε|v′ε(y)|2| = 2ε

∣∣∣∣∫ x

y

v′′ε (t)v
′
ε(t)dt

∣∣∣∣ ⩽ 2εε−1

∣∣∣∣∫ x

y

ε2|v′′ε (t)|2dt
∣∣∣∣1/2 ε−1/2

∣∣∣∣∫ x

y

ε|v′ε(t)|2dt
∣∣∣∣1/2︸ ︷︷ ︸

⩽CKε1/2

.

By Corollary 4.3,
∥εv′′ε ∥L∞(K) = ∥vε − 1

ε
− µε + vε|u′ε|2∥L∞(K) ⩽ b+M +M2 ⩽ C

so that ∣∣∣∣∫ x

y

ε2v′′ε (t)
2

∣∣∣∣1/2 ⩽ C|x− y|1/2.

We deduce ∫
K

ρε(x− y)
∣∣ε|v′ε(x)|2 − ε|v′ε(y)|2

∣∣ dx ⩽ CK

∫
K

|x− y|1/2 1

εα
ρε

(
x− y

εα

)
dx.

Changing variable s = x− y

εα
, we rewrite the integral as∫

(K−y)/εα
εα/2|s|1/2ρ(s)ds ⩽ Cεα/2.

Finally, ∫
K

ρε(x− y)
∣∣ε|v′ε(x)|2 − ε|v′ε(y)|2

∣∣ dx ⩽ CKε
α/2.

Combining (4.19) and (4.20) finishes the proof.
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We are now in position to prove Proposition 4.12.

Proof of Proposition 4.12. It is sufficient to prove the inequality for K = [ 0, xmin − δ]∪ [xmin + δ, L] for any δ > 0.
In the sequel, we fix δ > 0. We adapt the argument used by [BMR23, Lemma 3.1] and [FLS09, Lemma 6.3].
Multiplying both sides of the equation (2.10) by vε − 1 and integrating by parts over [0, xmin − δ] yields :∫ xmin−δ

0

(
(1− vε)

2

ε
+ ε|v′ε|2

)
= εv′ε(xmin − δ)(vε(xmin − δ)− 1) +

∫ xmin−δ

0

µε(vε − 1) +

∫ xmin−δ

0

c2ε
vε(1− vε)

(ηε + v2ε)
2
.

We now bound each term on the right-hand side. Let K ′ = K ∩ [L/8, 7L/8] which is a compact subset of
[0, L] \ {xmin}. According to Lemma 4.14, |v′ε| ⩽ CK′ε−1/3 on K ′. Using Corollary 4.3, there exists a constant
b > 0 such that vε ⩾ 1 − bε on K. This implies that µε is uniformly bounded on K (see the inequality (4.3)).
Consequently :

ε |v′ε(xmin − δ)|︸ ︷︷ ︸
⩽CK′ε−1/3

|vε(xmin − δ)− 1|︸ ︷︷ ︸
⩽bε

⩽ Cδε
5/3.

We also have ∣∣∣∣∣∣∣
∫ xmin−δ

0

µε︸︷︷︸
⩽M

(vε − 1)︸ ︷︷ ︸
⩾−bε

∣∣∣∣∣∣∣ ⩽ Cδε,

as well as ∣∣∣∣∣
∫ xmin−δ

0

c2ε(1− vε)
vε

(ηε + v2ε)
2

∣∣∣∣∣ ⩽ c2ε

∫ xmin−δ

0

|1− vε|︸ ︷︷ ︸
⩽bε

1

v3ε︸︷︷︸
⩽C

⩽ Cδε.

We deduce that ∫ xmin−δ

0

(
(1− vε)

2

ε
+ ε|v′ε|2

)
⩽ Cδε.

We proceed similarly on [xmin + δ, L] to conclude.

Once we get Proposition 4.12, we can adapt the proof of Lemma 4.14 to obtain the following :

Corollary 4.15. Let K be a connected compact set of [ 0, L ] \ {xmin}. Then there exists a constant CK such that
for all y ∈ K :

sup
K
ε|v′ε|2 ⩽ CKε

1/3.

Proof. Fix y ∈ K. Take ρε a mollifier, with parameter εα as in the proof of Lemma 4.14 and α > 0 to be determined.
The same argument used to establish (4.20) yields∣∣∣∣∫

K

ρε(x− y)ε|v′ε(x)|2dx− ε|v′ε(y)|2
∣∣∣∣ ⩽ CKε

α/2.

On the other hand, using Proposition 4.12,∫
K

ρε(x− y)ε|v′ε(x)|2dx ⩽
∫
K

ρε(x− y)

(
(1− vε)

2

ε
+ ε|v′ε(x)|2

)
dx

⩽ ∥ρ∥∞
εα

∫
K

(
(1− vε)

2

ε
+ ε|v′ε(x)|2

)
dx ⩽ CKε

1−α.

Combining both estimates for α = 2/3 yields the desired result.

The Proposition 4.12 implies that ν is supported only on {xmin} and thus ν = αδxmin
for some α.

21



4.6 Equipartition of the energy
In this subsection, our goal is to prove the following result, which corresponds to the item (iv) of Theorem 2.6, and
which implies (v).

Proposition 4.16. We have

lim
ε→0

∫ L

0

∣∣∣∣ (1− vε)
2

ε
− ε(v′ε)

2

∣∣∣∣ = 0. (4.26)

We recover here a classical result in the case of the minimizers of ATε, as it corresponds to the equality case of
the arithmetico-geometric inequality used in the proof of the Γ-convergence of ATε to MS. It is used in [FLS09]
and [BMR23] to compute the value of the weight α associated to the limit Dirac-measure of the phase field term
of ATε. An equipartition of the energy result also exists for the Ambrosio-Tortorelli functional with an additional
fidelity term, see [Le10].

In [FLS09] and [Le10], the Neumann conditions on (2.10) imply that the difference (1− vε)
2

ε
− ε|v′ε|2 is positive.

In [BMR23] and [FLS09], the proof of the equipartition of the energy hinges on the fact that dε is constant and
tends to −c20.

In our case, recalling the equality :

(1− vε)
2

ε
− ε|v′ε|2 = dε + cεu

′
ε,

the first ingredient is to prove that dε+cεu′ε → 0 at the boundary point 0 and L of (0, L). It rests on Corollary 4.15.
The second ingredient is to bound d′ε to control the variation of vε on the full interval. To deal with the signs of
each terms and get rid of the absolute values, we need to separate our integrals along L/2 and xε.

Proof of Proposition 4.16. Corollary 4.15 implies in particular that ε|v′ε|2(0), ε|v′ε|2(L) → 0 as ε → 0, by recalling
that xmin ∈ [L/4, 3L/4] (Corollary 3.7). Then we have

dε(0) + cεu
′
ε(0) = −ε|v′ε|2(0) → 0 (4.27)

and similarly, dε(L) + cεu
′
ε(L) → 0.

By Proposition 4.6, dε ∈ C0,1([0, L]), so we can write dε(x) = dε(0)+
∫ x

0
d′ε on [0, L/2] and dε(x) = dε(L)+

∫ x

L
d′ε

on [L/2, L], with d′ε ⩾ 0 on [0, L/2] and d′ε ⩽ 0 on [L/2, L]. However, the sign of u′ε(x) − u′ε(0) depends on the
position of x with respect to xε. So we split the integral in the left-hand side of (4.26) along xε and later along
L/2.

∫ L

0

∣∣∣∣ (1− vε)
2

ε
− ε|v′ε|2

∣∣∣∣ =

∫ xε

0

∣∣∣∣dε(0) + cεu
′
ε(0) +

∫ x

0

d′ε(t)dt+ cε(u
′
ε(x)− u′ε(0))

∣∣∣∣ dx
+

∫ L

xε

∣∣∣∣dε(L) + cεu
′
ε(L) +

∫ x

L

d′ε(t)dt+ cε(u
′
ε(x)− u′ε(L)

∣∣∣∣ dx
⩽ xε|dε(0) + cεu

′
ε(0)|︸ ︷︷ ︸

:=I

+

∫ xε

0

∣∣∣∣∫ x

0

d′ε

∣∣∣∣︸ ︷︷ ︸
:=II

+

∫ xε

0

|cε(u′ε(x)− u′ε(0))|dx︸ ︷︷ ︸
:=III

+ (L− xε)|dε(L) + cεu
′
ε(L)|︸ ︷︷ ︸

:=IV

+

∫ L

xε

∣∣∣∣∣
∫ L

x

d′ε

∣∣∣∣∣︸ ︷︷ ︸
:=V

+

∫ L

xε

|cε(u′ε(x)− u′ε(L))|dx︸ ︷︷ ︸
:=V I

We deal separately with I + IV , II + V and III + V I.

I + IV : This tends to 0 according to (4.27).

II + V : We prove that

22



II + V ⩽
∫ L/2

0

(∫ x

0

d′ε

)
dx−

∫ L

L/2

(∫ L

x

d′ε

)
dx+

∣∣∣∣L2 − xε

∣∣∣∣
∣∣∣∣∣
∫ L

0

d′ε

∣∣∣∣∣
Suppose that xε ⩾ L/2 (the case xε ⩽ L/2 can be treated in a similar way). Recall that d′ε ⩾ 0 on [0, L/2] and

d′ε ⩽ 0 on [L/2, L]. Then II + V can be rewritten as

∫ xε

0

∣∣∣∣∫ x

0

d′ε

∣∣∣∣ dx+

∫ L

xε

∣∣∣∣∣
∫ L

x

d′ε

∣∣∣∣∣ dx =

∫ L/2

0

∣∣∣∣∣∣∣
∫ x

0

d′ε︸︷︷︸
⩾0

∣∣∣∣∣∣∣ dx+

∫ xε

L/2

∣∣∣∣∣∣∣
∫ L

0

d′ε −
∫ L

x

d′ε︸︷︷︸
⩽0

∣∣∣∣∣∣∣ dx+

∫ L

xε

∣∣∣∣∣∣∣
∫ L

x

d′ε︸︷︷︸
⩽0

∣∣∣∣∣∣∣ dx

⩽
∫ L/2

0

(∫ x

0

d′ε

)
dx−

∫ xε

L/2

(∫ L

x

d′ε

)
dx+

∫ xε

L/2

∣∣∣∣∣
∫ L

0

d′ε

∣∣∣∣∣−
∫ L

xε

(∫ L

x

d′ε

)
dx

=

∫ L/2

0

(∫ x

0

d′ε

)
dx−

∫ L

L/2

(∫ L

x

d′ε

)
dx+

∣∣∣∣L2 − xε

∣∣∣∣
∣∣∣∣∣
∫ L

0

d′ε

∣∣∣∣∣ .
Now, as u′ε(0) = u′ε(L) =

cε
ηε + 1

, by (4.27) dε(0) and dε(L) both converge to −c21. Then

∣∣∣∣L2 − xε

∣∣∣∣
∣∣∣∣∣
∫ L

0

d′ε

∣∣∣∣∣ =
∣∣∣∣L2 − xε

∣∣∣∣ |dε(L)− dε(0)| → 0.

We study the remaining terms separately, recalling the expressions (4.6) and (3.7).

∫ L/2

0

∫ x

0

d′εdx ⩽ 2(c20,ε − c2ε)

∫ L/2

0

∫ x

0

−
v′0,εv0,ε

(v20,ε + ηε)2
dx = (c20,ε − c2ε)

∫ L/2

0

[
1

v20,ε + ηε

]x
0

dx

⩽ c20,ε

∫ L/2

0

(
1

v20,ε(x) + ηε
− 1

v20,ε(0) + ηε

)
dx =

∫ L/2

0

c20,ε
v20,ε(x) + ηε

dx−
c20,ε

v20,ε(0) + ηε
· L
2

=

∫ L/2

0

c0,εu
′
0,ε(x)dx−

c20,ε
1 + ηε

· L
2

Similarly, one has

−
∫ L

L/2

(∫ L

x

d′ε

)
dx ⩽

∫ L

L/2

c0,εu
′
0,ε(x)dx− c20,ε

1

1 + ηε
· L
2
.

Summing both inequalities yields∫ L/2

0

(∫ x

0

d′ε

)
dx−

∫ L

L/2

(∫ L

x

d′ε

)
dx ⩽ c0,ε

∫ L

0

u′0,ε(x)dx︸ ︷︷ ︸
u0,ε(L)−u0,ε(0)

−Lc20,ε
1

1 + ηε
= c0,ε

(
a0 − L

c0,ε
1 + ηε

)
→ c0(a0−Lc0) = 0,

where we used that c0 ∈ {0, a0/L} (see [BMR23, Lemma 2.4]). We conclude that II + V → 0.
III + V I : Recall that vε is non-increasing on [0, xε] and non-decreasing on [xε, L]. Then, cεu′ε is itself non-

decreasing on [0, xε] and non-increasing on [xε, L]. This allows us to get rid of the absolute values in the expressions,
so that III + V I rewrites as :

III + V I =

∫ xε

0

cε(u
′
ε(x)− u′ε(0))dx+

∫ L

xε

cε(u
′
ε(x)− u′ε(L))dx

=

∫ L

0

cεu
′
ε(x)dx− cε(xεu

′
ε(0) + (L− xε)u

′
ε(L)) = cε(uε(L)− uε(0))− Lcε

cε
1 + ηε

→ c1(a1 − c1L) = 0
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where we used Proposition 4.8. In conclusion, we get III + V I → 0.

This completes the proof of the equipartition of the energy.

4.7 Computation of the weight of the limit measure
In this section, we compute the weight α of the Dirac mass δxmin

, which completes the proof of the item (ii) in
Theorem 2.6.

To do so, we use the equipartition principle, as it is done in [FLS09, section 6] and [BMR23, section 3].

Proof of (ii). The equipartition principle ensures that :∣∣∣∣∣
∫ L

0

(
(1− vε)

2

ε
+ ε|v′ε|2

)
− 2|v′ε|(1− vε)

∣∣∣∣∣ =
∫ L

0

∣∣∣∣1− vε√
ε

−
√
εv′ε

∣∣∣∣2 ⩽
∫ L

0

∣∣∣∣ (1− vε)
2

ε
− ε|v′ε|2

∣∣∣∣→ 0,

so that it is enough to evaluate
∫ L

0

2|v′ε|(1− vε). Recall that vε is non-increasing on [0, xε] and non-decreasing on
[xε, L], where xε denotes the global minimum of vε. We have :∫ L

0

2|v′ε|(1− vε) =

∫ xε

0

−2v′ε(1− vε) +

∫ L

xε

2v′ε(1− vε) =
[
(1− vε)

2
]xε

0
+
[
−(1− vε)

2
]L
xε

= 2(1− vε(xε))
2.

So the value of α depends on the limit of vε(xε).

First, note that α ⩾ 0 as the measures
(

(1−vε)
2

ε + ε|v′ε|2
)
dx are non negative. Suppose that α > 0. We prove

that vε(xε) → 0. Suppose that it is not the case and that there exists a subsequence such that vε(xε) ⩾ β > 0.
Then vε ⩾ β on [0, L]. According to Proposition 4.2, it implies that vε(xε) ⩾ 1− bε. But then[

(1− vε)
2
]xε

0
+
[
−(1− vε)

2
]L
xε

→ 0

which contradicts that α > 0. Hence, vε(xε) → 0 and[
(1− vε)

2
]xε

0
+
[
−(1− vε)

2
]L
xε

→ 2

We conclude that if α ̸= 0, then α = 2.

As a last remark, we explicit the link between the convergence of ε|v′0,ε|2 and the value of xmin. According to
[BMR23, Theorem 1.1], there are to cases :

• If ε|v′0,ε|2
⋆
⇀ δL/2, then L/2 is a v−jump for v0,ε. The obstacle condition implies that L/2 is also a v−jump

for vε, which means that xmin = L/2. Note that ε|v′0,ε|2
⋆
⇀ δL/2 can happen both when u0 = uaff and

u0 = ujump.

• If ε|v′0,ε|2
⋆
⇀ 0, then v0,ε admits no v−jump and xmin is not always equal to L/2 (but still belongs to

[L/4, 3L/4], see Corollary 3.7). Note that in this case, we always have u0 = uaff .

5 Appendix : Proof of Theorem 2.7
The proof of the Γ−convergence of AT ε is an adaptation the proof of the classical Γ-convergence result of ATε to
MS (see [AT92]). The main difficulty is to take into account the obstacle Γ0 in the proof of the Γ-limsup. The
argument is inspired by [Gia05, Lemma 6.2].

5.1 Proof of the Γ-liminf
Lemma 5.1. Let (uε, vε) be a sequence in L2(0, L)2 converging to (u, v) in L2(0, L)2. Then

MS(u, v) ⩽ lim inf
ε→+∞

ATε(uε, vε).
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Proof. We suppose that lim inf
ε→∞

AT ε(uε, vε) < ∞. We extract a subsequence for which the energy converges to the
liminf. From now on, we keep the notations (uε, vε) for simplicity but we only work with this subsequence.

Since uε ∈ H1(0, L) ⊂ L∞(0, L), we can write ∥uε∥∞ ⩽M . We also have by a maximum principle (i.e replacing
vε by a better competitor) that 0 ⩽ vε ⩽ 1. Now, applying the arithmetico-geometric inequality to the second
member of the energy yields

C ⩾ AT ε(uε, vε) ⩾
∫ L

0

(ηε + v2ε)|u′ε|2 + 2

∫ L

0

|v′ε|(1− vε). (5.1)

We first focus on the second term of the right-hand-side. Fix 0 < a ⩽ b < 1. The coarea formula allows us to
compute ∫ L

0

|v′ε|(1− vε) =

∫ 1

0

(1− t)H0(∂⋆{vε < t})dt ⩾
∫ b

a

(1− t)H0(∂⋆{vε < t})dt. (5.2)

Set f(t) = t− t2/2. Then there exists tε ∈ (a, b) such that∫ b

a

f ′(t)H0(∂⋆{vε < t})dt ⩾ (f(b)− f(a))H0(∂⋆{vε < tε}). (5.3)

Set Xε = {vε < tε} and Yε = {v0,ε < tε}. Note that since vε ⩽ v0,ε, one has Yε ⊂ Xε. Combining (5.1), (5.2) and
(5.3) yields

H0(∂⋆Xε) ⩽ C. (5.4)
Using the variations of v0,ε (see [BMR23, Proposition 2.1], H0(∂⋆Yε) ⩽ 2 and Yε is an open interval (cε, dε).
Moreover, since tε < b, one has

|Yε| ⊂ |Xε| ⩽ |{1− vε > 1− b}| ⩽ 1

(1− b)2

∫ L

0

(1− vε)
2 ⩽ C

(1− b)2
ε→ 0. (5.5)

Because vε ∈ H1(0, L), vε is continuous and Xε is open set and can be written as the union of a countable number
of open intervals and ∂⋆Xε = ∂Xε. By (5.4), up to an extraction, there exists an integer m such that for all ε,

Xε =

m⋃
i=1

(aεi , b
ε
i ).

There exists an index i0 such that (cε, dε) ⊂ (aεi0 , b
ε
i0
). Since |Xε|, |Yε| → 0, one has bεi − aεi → 0 and since [0, L] is

compact, up to another extraction, the sequences (aεi ), (bεi ) converge to the same limit zi. In particular, cε, dε → zi0 .
We will prove that Γ0 ∪ Ju ⊂ ∪i{zi}, with Γ0 being empty or {L/2}. We first prove that Ju ⊂ ∪i{zi}, which

is given if we prove that u ∈ H1(zi, zi+1). Take an index i ∈ {1, . . . ,m} and take zi < α < β < zi+1. Let us show
that uε ⇀ u in H1(α, β).

First, ∥uε∥2 is bounded. Second, thanks to the energy bound (2.2), and since for ε large enough, one has
[α, β] ⊂ [0, L] \Xε ⊂ [0, L] \ {vε < b} :

C ⩾
∫ β

α

(ηε + v2ε)|u′ε|2 ⩾ b

∫ β

α

|u′ε|2 = b∥u′ε∥22.

So (uε) is bounded in H1(0, L). Thus, up to an extraction, uε ⇀ û in H1(α, β). But according to Rellich embedding,
up to a subsequence, uε → û in L2(α, β). Thus û = u and∫ β

α

|u′|2 ⩽ lim inf
ε→0

∫ β

α

|u′ε|2 ⩽ lim inf
ε→0

∫ aε
i+1

bεi

|u′ε|2. (5.6)

Letting α and β tend to zi and zi+1 respectively shows that u ∈ H1(zi, zi+1) with∫ zi+1

zi

|u′|2 ⩽ lim inf
ε→0

∫ aε
i+1

bεi

|u′ε|2. (5.7)

Similarly, we obtain ∫ z1

0

|u′|2 ⩽ lim inf
ε→0

∫ aε
1

0

|u′ε|2 and
∫ L

zm

|u′|2 ⩽ lim inf
ε→0

∫ L

bεm

|u′ε|2. (5.8)
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Combining (5.8) with (5.7) for i = 1, . . . ,m, we deduce that u ∈ SBV 2(0, L) with Ju ⊂ ∪m
i=1{zi} and with∫ L

0

|u′|2 ⩽ lim inf
ε→0

∫
[0,L]\Xε

|u′ε|2. (5.9)

The same argument applied to the sequences (u0,ε, v0,ε) proves that Ju0
⊂ {zi0}. Recalling (2.4), this proves that

Γ0 ⊂ ∪i{zi}. We then have
2H0(Ju ∪ Γ0) ⩽ 2m = H0(∂⋆{vε < tε})

Combining this inequality with (5.2) and (5.3) yields

lim inf
ε→0

2

∫ L

0

|vε|(1− vε) ⩾ 2(f(b)− f(a)) lim
ε→0

H0(∂⋆Xε) = 4(f(b)− f(a))H0(Ju ∪ Γ0). (5.10)

Combining (5.10) with (5.1) and letting a and b tending to 0 and 1 respectivelygives

lim inf
ε→0

∫ L

0

(
(1− vε)

2

ε
+ ε|v′ε|2

)
⩾ 2H0(Ju ∪ Γ0). (5.11)

Now focus on the first term of AT ε. Indeed,∫ L

0

(ηε + v2ε)|u′ε|2 ⩾
∫
[0,L]\Xε

v2ε |u′ε|2 ⩾ a2
∫
[0,L]\Xε

|u′ε|2.

and using (5.9),

lim inf
ε→0

∫ L

0

(ηε + v2ε)|u′ε|2 ⩾ a2 lim inf
ε→0

∫
[0,L]\Xε

|u′ε|2 ⩾ a2
∫ L

0

|u′|2.

Since this inequality is true for every a < 1, letting a→ 1 leads to

lim inf
ε→0

∫ L

0

(ηε + v2ε)|u′ε|2 ⩾
∫ L

0

|u′|2. (5.12)

Summing (5.11) and (5.12), gives lim inf
ε→0

ATε(uε, vε) ⩾MS(u).

5.2 Proof of the Γ-limsup
Lemma 5.2. Let u ∈ L2((0, L)). Then there exists a sequence (uε, vε) converging in L2 × L2 to (u, 1) such that

lim sup
ε→0

ATε(uε, vε) ⩽MS(u).

In the sequel, we denote by MMV
ε (v) :=

∫
V

(1− v)2

ε
+ ε|v′|2 and MMε(v) :=MM

[0,L]
ε (v).

We suppose that u is in SBV 2(0, L), so that MS(u) < ∞. The proof goes the following way : we approach
Ju \Γ0 with the classical recovery sequence (wε, zε) used the proof of the Γ−limsup of ATε to MS (Proposition 5.3).
This sequence might not satisfy the obstacle condition wε ⩽ v0,ε so we apply the modification w1,ε = min(wε, v0,ε)
(Lemma 5.4). In a neighbourhood W of Γ0, we might not have lim sup

ε→0
MMV

ε (w1,ε) ⩽ 2H0(Γ0). For this reason
we construct a sequence w2,ε and a cutoff function φε that both vanish around Γ0(Lemma 5.5). Finally, setting
vε = min(w1,ε, w2,ε) and uε = φεzε, we prove that (uε, vε) satisfies the requirements of Lemma 5.2.

Proof. Let us start by recalling the construction of a recovery sequence (wε, zε) for Ju \ Γ0. This construction can
be found in [AT92].

Proposition 5.3. Let d(x) denote the distance from x to the set Ju \ Γ0 and αε =
√
ηεε. We set

hε(t) = 1− e−
t−αε

ε ,

Then the pair (wε, zε) given by

wε =

{
hε(d(x)) if d(x) > αε

0 if 0 ⩽ d(x) ⩽ αε
(5.13)
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and

zε =


u(x) if d(x) > αε(

2d(x)
αε

− 1
)
u(x) if αε

2 < d(x) ⩽ αε

0 if d(x) ⩽ αε

2

(5.14)

satisfies
(wε, zε)

L2(0,L)2−→ (1, u) (5.15)
and, for all neighbourhood W of Ju \ Γ0

lim sup
ε→0

MMW
ε (wε) ⩽ 2H0(Ju \ Γ0) (5.16)

and,
lim sup

ε→0

∫
W

(ηε + w2
ε)|z′ε|2 ⩽

∫
W

|u′|2. (5.17)

Now we adapt this recovery sequence to satisfy the obstacle condition :

Lemma 5.4. Let
w1,ε = min(wε, v0,ε) (5.18)

Then w1,ε ⩽ v0,ε,
w1,ε

L2(0,L)−→ 1, (5.19)
and for any neighbourhood W1 of Ju \ Γ0 not containing Γ0,

lim sup
ε→0

MMW1
ε (w1,ε) ⩽ 2H0(Ju \ Γ0) (5.20)

and,
lim sup

ε→0

∫
W1

(ηε + w2
1,ε)|z′ε|2 ⩽

∫
W1

|u′|2. (5.21)

Proof of Lemma 5.4. First, by definition of (5.18), w1,ε ⩽ v0,ε.
Second, according to (5.15), wε → 1 in L2(0, L) and according to [BMR23, Theorem 1.1 (i)], v0,ε → 1 in L2(0, L),

so that w1,ε → 1 in L2(0, L) as well.
Third, takeW1 a neighbourhood of Ju\Γ0 not containing Γ0. Using [BMR23, Theorem 1.1 (iv)], lim sup

ε→0
MMW1

ε (v0,ε) →

0, so using (5.16) and (5.17) :

lim sup
ε→0

MMW1
ε (w1,ε) ⩽ lim sup

ε→0

MMW1
ε (v0,ε)︸ ︷︷ ︸
→0

+MMW1
ε (wε)

 ⩽ 2H0(Ju \ Γ0)

and
lim sup

ε→0

∫
W1

(ηε + w2
1,ε)|z′ε|2 ⩽ lim sup

ε→0

∫
W1

(ηε + w2
ε)|z′ε|2 ⩽

∫
W1

|u′|2.

Now we deal with Γ0. Let C > 0 be such that

lim supMMε(v0,ε) ⩽ C. (5.22)
We construct a function w2,ε and a cut-off function φε that vanish around Γ0. The construction is given in the

following lemma (which is the analogue of [Gia05, Lemma 6.2]) :

Lemma 5.5. Set rε = 4
√
ηε/ε, sε = 2rε, tε =

√
sε and kε = tε/sε.

There exists a cut-off function φε such that

φε =

{
1 if sε ⩽ v0,ε
0 if v0,ε ⩽ rε

(5.23)

and ∫
{rε⩽v0,ε⩽sε}

ηε|φ′
ε|2 → 0 (5.24)
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Second, set

w2,ε =


v0,ε if tε ⩽ v0,ε
kε

kε−1 (v0,ε − tε) + tε if sε ⩽ v0,ε ⩽ tε
0 if v0,ε ⩽ sε

(5.25)

Then w2,ε ⩽ v0,ε

w2,ε
L2(0,L)→ 1, (5.26)

and, for some constant C > 0,

lim sup
ε→0

MMε(w2,ε)−MMε(v0,ε) ⩽ C
(

2kε
(kε − 1)2

+
2tε

(kε − 1)(1− tε)2
+

2tε
(1− tε)2

)
. (5.27)

Remark 5.1. Observe that the right hand side of (5.27) tends to 0 with ε as tε → 0 and kε → +∞.

Remark 5.2. The transition from the two states of φε is done on a domain on which w2,ε is equal to zero.

Remark 5.3. The set {v0,ε < tε} might be empty. In this case, w2,ε = v0,ε and φε = 1.

We postpone the proof of Lemma 5.5 to the end of the proof of Lemma 5.2 and now we construct the sequence
(uε, vε) satisfying the requirements of Lemma 5.2, using Lemma 5.4 and Lemma 5.5.

Set
vε = min(w1,ε, w2,ε), (5.28)

and
uε = φϵzε. (5.29)

vε ⩽ v0,ε : This is a consequence of Lemma 5.4 and Lemma 5.5.
(uε, vε) → (u, 1) in L2(0, L)2 : The fact that vε → 1 in L2(0, L) is a consequence of (5.19) and (5.26). Concerning

the convergence of uε, one has

∥uε − u∥L2 ⩽ ∥uε − zε∥L2 + ∥zε − u∥L2 .

One already has from (5.15) that ∥zε−u∥L2 → 0. On the other hand, as u belongs to SBV 2((0, L)), it is a bounded
function and using the definition (5.14) of zε and the definition (5.23) of φε,∫ L

0

|φεzε − zε|2 =

∫ L

0

|zε|2|φε − 1|2 ⩽
∫ L

0

|u|2|φε − 1|2 ⩽
∫
{v0,ε⩽sε}

|u|2 ⩽ ∥u∥2∞|{v0,ε ⩽ sε}|

But the energy bound (5.22) yields

C ⩾
∫
{v0,ε⩽sε}

(1− v0,ε)
2

ε
⩾ (1− tε)

2

ε
|{v0,ε ⩽ sε}| (5.30)

Thus |{v0,ε ⩽ sε}| → 0 and ∥uε − zε∥L2 → 0.
lim sup

ε→0
AT ε(uε, vε) ⩽MS(u) :

Fix W1 a neighbourhood of Ju \ Γ0 and W2 a neighbourhood of Γ0 so that W1 ∩W2 = ∅. Then one has

vε = w1,ε on W1 ; uε =

 zε on W1,
φϵu on W2,
u outside of W1 ⊔W2.

(5.31)

Indeed, outside of W2, v0,ε ⩾ 1 −Mε > tε (see Corollary 4.3 applied to µε = 0 and xmin = L/2) so, outside of
W2, w2,ε = v0,ε and vε = min(w1,ε, v0,ε) = w1,ε and φε is equal to 1 outside of W2. Similarly, for ε small enough,
{d ⩽ αε} ⊂W1, so zε = u outside of W1.

Concerning the convergence of MMε(vε), by (5.20) and (5.27).

lim sup
ε→0

MMε(vε) ⩽ lim sup
ε→0

MMW1
ε (w1,ε) + lim sup

ε→0
MMε(w2,ε)

⩽ 2H0(Ju \ Γ0) + lim sup
ε→0

(
MMε(v0,ε) + C

(
2kε

(kε − 1)2
+

2tε
(kε − 1)(1− tε)2

+
2tε

(1− tε)2

))
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Then, according to [BMR23, Theorem 1.1 (iii),(iv)], MMε(v0,ε) → 2H0(Γ0). Thus, using Remark 5.1,

lim sup
ε→0

MMε(vε) ⩽ 2H0(Ju \ Γ0) + 2H0(Γ0) = 2H0(Ju ∪ Γ0).

Now we deal with the convergence of the elastic energy
∫ L

0

(ηε + v2ε)|u′ε|2. According to (5.21),

lim sup
ε→0

∫
W1

(ηε + v2ε)|u′ε|2 ⩽ lim sup
ε→0

∫
W1

(ηε + w2
1,ε)|z′ε|2 ⩽

∫
W1

|u′|2,

and using the expression (5.31) of uε,

lim sup
ε→0

∫
[0,L]\(W1⊔W2)

(ηε + v2ε)|u′ε|2 ⩽ lim sup
ε→0

∫
[0,L]\(W1⊔W2)

(ηε + 1)|u′|2 =

∫
[0,L]\(W1⊔W2)

|u′|2.

It remains to deal with
lim sup

ε→0

∫
W2

(ηε + v2ε)|u′ε|2.

To compute
∫
W2

(ηε+v
2
ε)|u′ε|2, we recall the definition (5.23) of φε and we apply the inequality |p+q|2 ⩽ 2(|p|2+|q|2)

to p = φ′
εz and q = φεz

′ on the set {rε ⩽ v0,ε ⩽ sε}. Namely,∫
W2

(ηε + v2ε)|(φεu)
′|2 =

∫
{sε⩽v0,ε}∩W2

(ηε + vε)
2|φ′

εu+ φεu
′|2 +

∫
{rε⩽v0,ε⩽sε}

(ηε + vε)
2|φ′

εu+ φεu
′|2

⩽
∫
{sε⩽vε}∩W2

(ηε + 1)|u′|2 + 2

∫
{rε⩽vε⩽sε}

ηε |φε|2︸ ︷︷ ︸
⩽1

|u′|2 + 2

∫
{rε⩽vε⩽sε}

ηε|φ′
ε|2|u|2

⩽
∫
{sε⩽vε}∩W2

(ηε + 1)|u′|2 + 2ηε∥u′∥L2 + 2∥u∥2∞
∫
{rε⩽vε⩽sε}

ηε|φ′
ε|2.

The limsup of this last term is smaller than
∫
W2

|u′|2, the second term goes to 0 and the third term goes to 0

according (5.24), which concludes the proof of the Γ−limsup.

We now turn to the proof of the lemma Lemma 5.5 :

Proof of Lemma 5.5. We start with the construction of a cut-off function φε satisfying (5.23) and (5.24). Divide
the interval [rε, sε] into hε intervals I1, . . . , Ihε

of the same size, such that ηε
ε

· hε
(sε − rε)2

→ 0 (which is possible as

ηε
ε

· 1

(sε − rε)2
→ 0, take for example hε =

⌊(
ηε
ε

· 1

(sε − rε)2

)−1/2
⌋
). Note that by the energy bound (5.22) :

C ⩾
hε∑
j=1

∫
Ij

ε|v′0,ε|2.

So there exists an interval Iε = [αε, βε] of length (sε − rε)/hε such that∫
Iε

ε|v′0,ε|2 ⩽ C
hε
.

Define φε = min
(

(v0,ε−αε)
+

βε−αε
, 1
)

. Then φε takes the desired values on {v0,ε ⩽ rε} and {v0,ε ⩾ sε} and

ηε

∫
{rε⩽v0,ε⩽sε}

|φ′
ε|2 = ηε

∫
{αε⩽v0,ε⩽βε}

|v′0,ε|2

(βε − αε)2
⩽ ηε

ε

C
hε

h2ε
(sε − rε)2

→ 0

which proves (5.24).
Now we turn to the proof of (5.26) and (5.27). Observe that w2,ε ⩽ v0,ε as v0,ε is positive and on {sε ⩽ v0,ε ⩽ tε},

according to (5.25) :
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w2,ε = v0,ε +
1

kε − 1
(v0,ε − tε) ⩽ v0,ε.

To prove (5.26), observe that w2,ε and v0,ε are taking values in [0, 1], so that∫ L

0

|w2,ε − v0,ε|2 =

∫
{v0,ε⩽tε}

|w2,ε − v0,ε|2 ⩽ 4|{v0,ε ⩽ tε}|.

Then, using the energy bound (5.22), we see that

C ⩾
∫
{v0,ε⩽tε}

(1− v0,ε)
2

ε
⩾ (1− tε)

2

ε
|{v0,ε ⩽ tε}|. (5.32)

So |{v0,ε ⩽ tε}| → 0 and ∥w2,ε − v0,ε∥2 → 0, which proves (5.26).
We turn to the proof of (5.27). We compute the difference in energy, starting with the difference between the

Dirichlet energies. The expression (5.25) of w2,ε and the energy bound (5.22) yields∫ L

0

ε|w′
2,ε|2 − ε|v′0,ε|2 =

∫
{sε⩽v0,ε⩽tε}

ε

(
k2ε

(kε − 1)2
− 1

)
|v′0,ε|2 −

∫
{v0,ε⩽sε}

ε|v′0,ε|2

⩽
(

k2ε
(kε − 1)2

− 1

)∫
{sε⩽v0,ε⩽tε}

ε|v′0,ε|2 ⩽ C
(

k2ε
(kε − 1)2

− 1

) .

On the other hand∫ L

0

(1− w2,ε)
2

ε
− (1− v0,ε)

2

ε
=

1

ε

∫
{v0,ε⩽tε}

(v0,ε − w2,ε)(2− v0,ε − w2,ε)

=
1

ε

∫
{sε⩽v0,ε⩽tε}

1

kε − 1
(tε − v0,ε)︸ ︷︷ ︸

⩽tε

(2− v0,ε − w2,ε)︸ ︷︷ ︸
⩽2

+
1

ε

∫
{v0,ε⩽sε}

v0,ε︸︷︷︸
⩽sε

(2− v0,ε)︸ ︷︷ ︸
⩽2

⩽ 2tε
kε − 1

|{v0,ε ⩽ tε}|
ε

+
2sε
kε − 1

|{v0,ε ⩽ sε}|
ε

But the energy bound (5.22) yields, in a similar fashion than (5.32), for any α > 0,

C ⩾
∫
{v0,ε⩽α}

(1− v0,ε)
2

ε
⩾ (1− α)2

ε
|{v0,ε ⩽ α}|.

Hence, the last term is smaller than for

C 2tε
(kε − 1)(1− tε)2

+ C 2sε
(1− sε)2

⩽ C
(

2tε
(kε − 1)(1− tε)2

+
2tε

(1− tε)2

)
.

Summing both estimates yields the desired result. This achieves the proof of Lemma 5.5.

5.3 Critical Points of MS

Theorem 2.7 ensures that the minimizers of AT ε converge to a pair (1, u) that minimizes MS if we have the
additional assumption of an energy bound on (ATε).

A natural extension is to ask whether the critical points of AT ε also converge to critical points of MS. Here,
we prove that the critical points of MS are either affine or piecewise constant.

Take u a minimizer of MS. First, u has a finite number of discontinuity points, that we denote by {x1, . . . , xd}.
Let φ in SBV 2(0, L) with Jφ ⊂ Ju and take u+ tφ as a competitor for t a real number. Then, Ju+tφ = Ju so one
has ∫ L

0

|u′|2 ⩽
∫ L

0

|u′ + tφ′|2,

which rewrites, after dividing by t, letting t tend successively to 0+ and 0−, as :∫ L

0

u′φ′ = 0.
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So u is affine on each interval (xi, xi+1). In the case where u admits at least one discontinuity point, say xi, and
take φ equal to 0 outside (xi, xi+1) and equal to x− xi+1

xi − xi+1
on (xi, xi+1) (where xi+1 can be replaced by L). Then

φ ∈ SBV 2(0, L) with φ′ = 1(xi,xi+1), Jφ = {xi} and

u(xi+1)− u(xi) =

∫ xi+1

xi

u′ =

∫ L

0

u′φ′ = 0,

so that u(xi) = u(xi+1), i.e u is piecewise constant.
Hence, critical points of AT ε converge to critical points of MS. However, there is a selection criterion as limit

functions of critical points of ATε must be non decreasing and admit at most one discontinuity point.
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