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ABSTRACT
With the rapid advancements in medical data acquisition and
production, increasingly richer representations exist to char-
acterize medical information. However, such large-scale data
do not usually meet computing resource constraints or algo-
rithmic complexity, and can only be processed after compres-
sion or reduction, at the potential loss of information. In this
work, we consider specific Gaussian mixture models (HD-
GMM), tailored to deal with high dimensional data and to
limit information loss by providing component-specific lower
dimensional representations. We also design an incremental
algorithm to compute such representations for large data sets,
overcoming hardware limitations of standard methods. Our
procedure is illustrated in a magnetic resonance fingerprint-
ing study, where it achieves a 97% dictionary compression
for faster and more accurate map reconstructions.

Index Terms— Massive data, Incremental Learning,
Compression, Mixture of probabilistic PCA.

1. INTRODUCTION

The development of medical imaging has led to data acqui-
sition and production at much larger scales, for an increas-
ing benefit to medical decision making. The exploitation of
such large-scale data poses a number of challenges. A first
challenge comes from the data processing scalability. Large-
scale data may not be easily stored into memory or may be
collected in a distributed manner from several sources, e.g.
hospitals. Such a limited or distributed storage may limit
the use of traditional methods, which load all the data into
memory before running some optimization procedure. A sec-
ond challenge comes from the data dimensionality. Across
a wide range of medical applications, measured observations
are high dimensional, e.g. magnetic resonance (MR) finger-
prints [1], functional MR signals, neural network latent rep-
resentations of images [2], etc. A typical difficulty is that the
number of parameters for a model of such data can then eas-
ily exceed the number of observations, leading to estimation
issues. In such high-dimensional settings, it is often possible

to reduce the number of parameters by assuming that most of
the information in the data can be captured and represented in
a much lower dimensional subspace. Classical techniques in-
clude principal component analysis (PCA), probabilistic prin-
cipal component analysis (PPCA) [3], factor analysers (FA),
and newer methods such as diffusion maps [4]. More flex-
ible approaches are also based on mixtures of the previous
ones, such as mixtures of factor analysers (MFA) [5] and
mixtures of PPCA (MPPCA) [6]. Another mixture approach
is called HD-GMM in [7] for High Dimensional Gaussian
Mixture Models. It encompasses many forms of MFA and
MPPCA and generalises them, see also [7] for a review on
high dimensional clustering via mixtures. However, most of
these methods are designed for batch data and are thus sen-
sitive to hardware limits such as memory, which restricts the
amount of data they can process or the type of medical de-
vices on which they can be usefully embedded. As a simple
solution, most implementations downsample data sets before
processing, potentially loosing useful information. Another
approach is to design incremental, also referred to as online,
variants handling data sequentially in smaller groups. A num-
ber of incremental approaches exist for dimension reduction
techniques, see the recent SHASTA-PCA [8] and [9] for a re-
view. To our knowledge, much fewer solutions exist for mix-
tures. Estimation of such models is generally based on maxi-
mum likelihood estimation via the Expectation-Maximization
(EM) algorithm [10]. We can mention a preliminary attempt
for an incremental MPPCA based on heuristic approxima-
tions of the EM steps [11]. In this work, considering data both
large in size and dimension, our proposal is twofold. Build-
ing on HD-GMM, originally developed for high dimensional
clustering and density estimation, we show how they can be
used to compress high dimensional data into several reduced
size data subsets. We then derive a new incremental algo-
rithm, based on a principled EM framework, to learn such
a model from very large data sets. We demonstrate the effec-
tiveness of our approach on a MR fingerprinting (MRF) study,
allowing to go far beyond the simulations resolution and size
used in current implementations and to reconstruct a larger



Fig. 1: HD-GMM schematic illustration, M=3, d=2,K=2.

number of MR parameter maps with an improved accuracy.

2. DIVIDE & CONQUER REDUCTION OF LARGE
DATA VOLUMES

Identifying group-wise subspaces. HD-GMM assume that
the observations are i.i.d. realizations of a random variable y
which follows a Gaussian mixture model withK components,

p(y;θ) =

K∑
k=1

πkNM (y;µk,Σk) , (1)

where NM denotes the M -dimensional Gaussian distribution
and µk,Σk, πk are respectively the kth component mean,
covariance matrix and weight. An efficient parameters re-
duction can be obtained by using the eigendecomposition
Σk = DkAkD

T
k , where Dk contains the eigenvectors

{d1, . . . ,dM} of Σk, and Ak is a diagonal matrix with its
eigenvalues. In HD-GMM, each Ak consists of only dk + 1
different eigenvalues Ak = diag(ak1, . . . , akdk

, bk, . . . , bk),
with akj > bk, for j=1:dk, and where dk ∈ {1, . . . ,M − 1}
is a priori unknown but fixed in our work to a user decided
dimension d. When bk is negligible, this parameterization
means that a group-specific subspace Ek, parameterised
by the d eigenvectors associated to the first d eigenvalues
{ak1, . . . , akd}, captures the main cluster shape (see Fig-
ure 1 for an illustration). The model parameters are then θ=
{θk, k = 1 :K} with θk = {πk,µk,Ak,Dk}. They can be
estimated using an EM algorithm. When d << M , a signifi-
cant computation gain can be achieved. Let D̃k consist of the
d first columns of Dk supplemented by (M−d) zero columns
and Dk = (Dk−D̃k). Then, Pk(y) = D̃kD̃

T
k (y−µk)+µk

and P⊥
k (y) = DkD

T

k (y − µk) + µk are the projections of
y on Ek and its orthogonal space E⊥

k . The main EM compu-
tations involve quadratic quantities (y − µk)Σ

−1
k (y − µk)

which can be equivalently written as,

∥µk − Pk(y)∥2
Σ̃

−1

k

+
1

bk
∥y − Pk(y)∥2, (2)

where ∥.∥2
Σ̃

−1

k

is the norm defined by ∥y∥2
Σ̃

−1

k

= yT Σ̃
−1

k y

with Σ̃
−1

k = D̃kA
−1
k D̃T

k . Expression (2) uses the defini-
tions of Pk, P⊥

k and ∥µk − P⊥
k (y)∥2 = ∥y − Pk(y)∥2. The

SNR (dB) d = 8 d = 10 d = 15

SVD [12]
- 0.35 0.33 0.30

15 0.40 0.35 0.32
5 0.44 0.43 0.40

HD-GMM
- 0.031 0.030 0.028

15 0.032 0.031 0.028
5 0.16 0.15 0.10

Size (Go) 0.30 0.38 0.57

Table 1: Compressed dictionary MAEs and sizes. The lower
the better, best values in bold.

gain comes from the fact that (2) does not depend on P⊥
k and

thus does not require the computation of the (M − d) latest
columns of Dk, the eigenvectors associated to the smallest
eigenvalues. Similarly, determinants can be efficiently com-
puted as log(|Σk|) = (

∑d
j=1 log(akj)) + (M − d)log(bk).

This parameterization allows to handle high dimensional data
in a computationally efficient way. However, it does not pro-
vide an actual lower dimensional representation of the data.
While such a reduced-dimensional representation may often
not be needed, it may be crucial to deal with hardware or soft-
ware limitations. Originally, HD-GMM have not been de-
signed for this situation, but we describe next how they can
be further exploited as a dimension reduction technique.
Cluster-wise dimension reduction. As clustering models,
for any possible observation y, HD-GMM provide a proba-
bility rk(y) that y is assigned to cluster k for each k=1 :K.
Denote D̃∗

k the M ×d matrix built with the d first columns of
Dk. A reduced-dimensionality representation ŷk of y can be
obtained, for each of theK different subspaces, by computing
the scalar products of a centered y with the columns of D̃∗

k. It
comes ŷk = Sk(y) = D̃∗T

k (y−µk), while its reconstruction
ỹk in the original space is given by ỹk = D̃∗

kŷk + µk. In
practice, it is reasonable to use as a reduced-dimensionality
representation of y only the one corresponding to the most
probable group k, i.e. with the highest rk(y). In this setting,
HD-GMM acts as a divide-and-conquer paradigm by cluster-
ing the data into K clusters and allowing cluster-specific data
reduction. The divide step allows a much more effective re-
duction than if a single subspace is considered for the whole
data set. In the conquer step, little information is lost, as for
any new observation y, cluster assignment probabilities rk(y)
can be straightforwardly computed to decide on the best re-
duced representation to be used. However, for subsequent
processing, it is important to keep track of clustering informa-
tion for each observation. The reduced representations cannot
be pooled back altogether, as they would be likely to become
impossible to distinguish across clusters.
Incremental learning for large data volumes. In practice,
most approaches lie on optimization procedures requiring



all data to be loaded in a single batch. Batch sizes are then
limited by resource constraints, so that very large data sets
need either to be downsampled or to be handled in an in-
cremental manner, i.e. with smaller data subsets processed
sequentially. Incremental versions of EM exist and can be
adapted to our setting. As an archetype of such algorithms,
we consider the online EM of [13] which belongs to the
family of stochastic approximation algorithms. We refer
to [13] for details on the main assumptions required and
the online EM iteration. When applied to mixture mod-
els, it can be shown [14], that it is enough to check that
each mixture component has an exponential family form.
For the HD-GMM parameterization, omitting the cluster in-
dex k, the exponential form of NM (y;µ,Σ) is given by
h(y) exp

(
s(y)Tϕ(µ,Σ)− ψ(µ,Σ)

)
where s and ϕ are

vectors with respective elements (vec(·) is the vectorization
operator of a matrix)

[
y, vec(yyT ),yTy

]
and[

d∑
j=1

( 1
aj

− 1
b )djd

T
j µ+ 1

bµ,
1
2

d∑
j=1

( 1b − 1
aj
)vec(djd

T
j ),− 1

2b

]

and ψ(µ,Σ) is equal to

1
2

d∑
j=1

[
( 1
aj

− 1
b )µ

Tdjd
T
jµ+ log(aj)

]
+ 1

2bµ
Tµ+ (M−d)

2 log(b).

The form of h(·) is irrelevant for the computations. It fol-
lows an online EM algorithm which is closed-form except for
the update of D̃∗, which is estimated using a Riemanian op-
timization framework in the setting where M >> d [15].

3. LARGE SCALE MR FINGERPRINTING (MRF)

MRF [1] allows the simultaneous acquisition and reconstruc-
tion of multiple tissue properties maps, see [16, 17] for re-
cent reviews. In the original matching approach, maps recon-
struction is based on the search for the best match between
an observed signal and a dictionary of simulated signals (fin-
gerprints). As an alternative, learning approaches have been
studied via various neural network (NN) architectures, but im-
provement has been demonstrated mainly for standard T1 and
T2 relaxometry parameters estimation and only up to 3 param-
eters in the dictionary, see e.g. [18] or Table 2 in [17]. To now,
none of these approaches has shown real scalability properties
with respect to the number of parameters to be reconstructed
[18]. The main issue is that the size of the simulated dic-
tionary increases exponentially with the number of parame-
ters to be reconstructed. In this context, [19] showed that a
dictionary-based Bayesian learning approach was more accu-
rate and less demanding, in terms of dictionary size, than con-
ventional dictionary matching and some NN solutions. We
build on this work by using online HD-GMM estimation to
handle an extensive high-resolution dictionary. This offers a
gain in data storage, when traditional dictionary matching is

used, but also in accuracy and speed of map reconstructions,
when Bayesian or NN methods are considered. In a matching
approach, our proposal is similar in spirit to [20], which dis-
tribute the matching cost into smaller matching tasks. How-
ever [20] does not adapt straightforwardly to learning-based
or NN approaches. For this illustration, we use the method
introduced in [21], to simulate a dictionary for various ranges
of relaxometry parameters T1, T2, T ∗

2 , and magnetic field pa-
rameters δf and B1. In particular, transverse relaxation time
T ∗
2 is a MR tissue property that provides insight into underly-

ing tissue physiology and pathology, making this MR param-
eter a widely used biomarker of several clinical diseases. The
dictionary is made of 4.750M signals in dimension 260, for a
storage cost of more than 20Gb. Gaussian noise is often added
to signals using different SNR values [18]. Table 1 first shows
the efficiency of different dictionary compression strategies.
Mean absolute error (MAE) values are computed, for differ-
ent noise levels, between the original signals and their de-
noised reconstructions after compression. In all cases, HD-
GMM show much lower compression losses than the refer-
ence SVD method [12], achieving better reconstructions even
with a dimension reduced to d = 8, about half smaller than
SVD (d = 15). For HD-GMM their are two hyperparamters
namely the number of componentsK and the reduced dimen-
sion d. Both can be chosen using a Bayesian information cri-
terion (BIC), which in our case gives K = 30 and d = 10.
For initializing our EM algorithm, we use the heuristic men-
tioned in [22] Section 3.5, which provides good performance
for our approach too. Parameters maps reconstruction is then
illustrated on T1, T2, T ∗

2 in Figure 2. We first perform a stan-
dard matching, referred to as full matching, based on inner
products between in vivo acquired MR signals and simulated
signals from the original high dimensional dictionary (Fig-
ure 2 line 1). The in vivo acquisition was performed on one
healthy volunteer with a Philips 3T Achieva dStream MRI at
the IRMaGe facility. As ground truth maps are not available,
full matching maps often serve as reference maps, although
this has obvious limits in terms of hardware and robustness
to noise. Matching results are then shown for reduced dictio-
nary representations, using either SVD with d=10 (Figure 2
line 2) or HD-GMM with d= 10 and K = 30. As learning-
based alternatives, maps obtained with DRONE [23], a 4 lay-
ers fully connected NN, and with a combination of the HD-
GMM reduction and the Bayesian learning model referred to
as GLLiM [19], are also shown (Figure 2 line 3 and 5 re-
spectively). The GLLiM model corresponds to a regression
model for which a number of Gaussian components needs to
be chosen and is set to Kg =50. Figure 2 clearly shows that
both SVD and DRONE provide unsatisfying maps, e.g. for
T2 and T ∗

2 . The HD-GMM approach is visually similar to
full matching. Its combination with GLLiM provides close
to full matching and more spatially homogeneous maps, de-
spite some remaining shim artifacts that we interpret as learn-
ing bias due to the high cross-correlation between δf nominal



Parameter ROI Full matching SVD DRONE HD-GMM HD-GMM+GLLiM Literature [21]

T1(ms)
WM 868± 2 905± 2 850± 2 847± 2 834± 1 690-1100
GM 1373± 7 1400± 7 1272± 6 1360± 7 1337± 7 1286-1393

T2(ms)
WM 49± .1 87± .2 50± .2 55± .2 55± .2 56-80
GM 73± 1 118± 1 77± 1 81± 1 81± .1 78-117

T ∗
2 (ms)

WM 46± .1 23± .5 29± 24 51± .2 51± .2 45-48
GM 46± .4 30± .4 27± 33 55± .6 51± .1 42-52

Table 2: Mean T1, T2, T ∗
2 values with 99% confidence in white (WM) and grey (GM) matters ROIs. Out of range values in

orange and red, red is further out.

Fig. 2:T1, T2, T ∗
2 maps (columns) for various methods (lines).

value and the resulting T ∗
2 value. HD-GMM superior perfor-

mance is then confirmed quantitatively in Table 3 where the
MAE, over all voxels, with respect to full matching is shown
for all 5 parameters. In Table 3, MAEs are computed with
respect to imperfect still noisy full matching maps, which ex-
plains why the GLLiM variant of HD-GMM does not pro-
vide the lowest MAE despite more satisfying maps in terms
of spatial homogeneity. Another quantitative comparison is
provided in Table 2, with T1, T2 and T ∗

2 mean values over
voxels, respectively in white and grey matter ROIs, delineated
on T1 maps. When compared to ranges in healthy subjects as
provided in [21], HD-GMM variants show more in range val-
ues than most other methods. In Python with Jax library (link
to our code upon acceptation), full matching takes 11s, SVD
matching takes 4s and the HD-GMM variants take less than

Method T1 (s) T2 (s) T∗
2 (s) δf (Hz) B1 sensitivity

DRONE [23] 0.14 0.022 0.096 5.0 5.5
SVD [12] 0.056 0.047 0.018 1.4 0.1
HD-GMM + matching 0.058 0.016 0.010 1.0 0.04
HD-GMM + GLLiM [19] 0.081 0.019 0.012 1.3 0.05

Table 3: MAEs over voxels with respect to full matching, for
DRONE, SVD (d = 10), and HD-GMM (d = 10, K = 30,
Kg = 50). Best values in bold.

0.4s on Nvidia V100 GPU. However, in more realistic situ-
ations, calculations are performed locally by a medical prac-
titioner on a CPU. On an Apple M2 Pro CPU, full matching
takes 1 to 2 hours, while HD-GMM variants take only 2min.

4. CONCLUSION AND FUTURE WORK

By equipping high-dimensional Gaussian mixtures models
(HD-GMM) with a dimension reduction procedure and incre-
mental estimation of their parameters, we showed that HD-
GMM could scale to both very large and high-dimensional
data sets. These models can act as a divide-and-conquer
paradigm by initially clustering large data volumes and then
performing cluster-specific dimension reduction. The cluster-
ing structure allows to achieve larger dimension reduction for
the same information loss. This ability was showcased on an
MRF study using more parameters and more dictionary en-
tries than in standard MRF settings. HD-GMM can use more
informative simulations for more accurate parameters maps
and thus provide a promising direction towards unleashing
the full power of MRF. Future work includes testing further
HD-GMM on extensive dictionaries for an increased number
of parameters. However for ultra-high MRF dictionaries, the
sizes of the obtained sub-dictionaries with HD-GMM may
be too high to be efficiently handled via traditional matching.
Coupling HD-GMM and GLLiM regression model of [19]
would then provide a more tractable solution. More generally,
other medical imaging applications can benefit from the scal-
ability and flexibility on the proposed pipeline. HD-GMM
allow an efficient use of higher dimensional information as
can be extracted from NN latent representations, e.g. [2].
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