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ABSTRACT: The efficiency of fluorinated interfacial adlayers exhibiting minimal surface 

coverage in protecting and tuning the electronic properties of hybrid perovskite materials is 

optimized using a combination of XPS, Kelvin probe, and contact angle measurements to 

characterize the composition, surface potential, and wettability. Results are interpreted on the 

basis of photoluminescence quantum efficiency (PLQE) and time-resolved luminescence to 

assess the adlayer's effect on non-radiative charge recombination. Polarization-modulation 

infrared reflection absorption spectroscopy reveals that for the tetra(fluoroalkyl)stannanes and 

chlorotri(fluoroalkyl)stannanes studied, the wettability and work function of the modified 

surfaces are the result of the organization of the adlayer's molecular components and their 

propensity to selectively passivate defects. For some cases, the effect of solvent choice for the 

deposition can play a more significant role than modifying the adlayer’s thickness or chemical 



 2 

composition. Our results show that the surface potential of methylammonium lead triiodide can 

be tuned over a 230 mV range using a mono-molecular adlayer of chlorotri(fluoroalkyl)stannane 

whereas the tetra(fluoroalkyl)stannanes provide the strongest hydrophobicity (contact angle > 

80°) with little change in the surface potential. The solvent used for deposition strongly affects 

the molecular organization and net dipole moment, leading to significant variations in the surface 

coverage and the electronic properties of the perovskite surface. Whereas exposing the 

methylammonium lead triiodide (MAPI) surface to neat solvent results in a change in surface 

properties, only the presence of interfacial layers resulted in an enhancement of the PLQE that is 

proportional to the average PL lifetime, irrespective of the formation of a compact monolayer. 

KEYWORDS: fluorinated compounds, perovskite films, adlayers, surface engineering, 

passivation 

INTRODUCTION 

The rapid development of perovskite solar cells (PSCs) over the past decade is a result of their 

fundamental optoelectronic properties, which include high absorption covering the entire visible 

region,
1
 tunable direct bandgap ∼1.55 to 2.50 eV,

2
 high charge carrier mobility,

3
 fast exciton 

dissociation, and long charge carrier diffusion lengths, combined with low-cost solution 

processing.
4 

At present, the certified power conversion efficiency (PCE) for a single-junction 

perovskite solar cell has reached 26%.
5
 Despite this tremendous increase in the overall PCE, the 

use of PSCs is limited by issues related to their long-term device stability.
6
 The polycrystalline 

nature of the solution-processed perovskite films results in structural disorder, such as grain 

boundary defects and crystallographic defects in the form of vacancies, interstitials, and antisite 

substitutions. These defects in the bulk and/or at the surface can trigger degradation of the 
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perovskite film, thus reducing device stability. To alleviate this and further improve the 

electronic properties of the material, surface passivation is actively pursued as a promising route 

to reduce the non-radiative recombination losses and further boost device performance and 

stability.
7-9

 These, however, must reconcile adequate modification of the surface properties while 

not impairing electrical connectivity with the electrodes resulting from the presence of a thick or 

electrically insulating layer. 

Numerous passivating agents for perovskite materials have been developed, including 

Lewis acid/base additives and zwitterions,
10,11

 that play several roles, including passivating 

defects, modifying the interfacial electronic properties, or offering moisture protection. A Lewis 

acid may passivate negatively charged defects, thus eliminating trap states.
6,12

 For instance, 

tris(pentafluorophenyl) phosphine (TPFP) was used as a strong Lewis acid to passivate halide 

defects, resulting in an enhancement of the VOC and PCE (from 18.05% to 21.04%).
13

 In contrast, 

Lewis bases such as pyridine or thiophene derivatives may passivate positively charged 

defects.
14-16

 Functional groups with lone pairs, such as carboxylates and phosphoric acid 

containing C=O and P=O groups, show similar defect passivation effects.
17

 Other than Lewis 

acids and bases, zwitterions have been proposed to passivate trap states by forming ionic bonds 

with point defects.
11,18

 Jiang et al.
7 reported the incorporation of phenethylammonium iodide 

(PEAI) as a surface modifier. This passivation reduced the density of defects on mixed 

perovskite films and suppressed non-radiative recombination, resulting in a certified PCE of 

23.32%.  

The surface of hybrid organic-inorganic perovskite (HOIP) materials easily absorbs 

moisture owing to the ionic nature of the perovskite crystal, and this can result in its degradation 

to PbI2.
19

 To overcome this issue and improve the device stability, numerous groups incorporated 
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molecules capable of forming a compact hydrophobic layer on the perovskite surface.
20-22

 To this 

end, the use of bulky alkyl chains
23

 or hydrophobic aromatic compounds
24

 was found to enhance 

device stability. In particular, fluorocarbons are well suited due to their strong hydrophobicity 

and possible binding interactions with the perovskite surface. Functionalization with fluorinated 

groups was found to significantly modify the hydrophobicity and the surface potential of the 

active perovskite layer resulting in improved air stability.
6
 Using polarization modulation-

infrared absorption reflection spectroscopy (PM-IRRAS), Sadhu et al. showed that unsubstituted 

perfluoro-n-alkanes could weakly bond to a MAPI surface, forming stable monolayers with well-

defined orientation.
25

 The interactions between the perfluorinated compounds and the perovskite 

surface also alter the electronic properties of the MAPI surface, leading to a change in the surface 

work function (WF) over a 150-mV range. This can considerably affect the performance of PSC 

devices through energy level (mis)matching between the active layer and the electrode and 

represents an entry into tuning the surface properties.  

Numerous recent studies have revealed that the structure – activity relationship in 

perovskite surface passivating agents is much more complex than previously thought,
26-30

 and 

that the modification of the electronic properties or operational lifetime may result from effects 

that are specific to individual systems.
31,32

 For example, when comparing the effect of 4-

fluorophenethylammonium iodide (F-PEAI)
33

 with its non-fluorinated analogue (PEAI),
7
 it was 

observed that F-PEAI-treated devices show enhanced stability by maintaining 90% of their initial 

efficiency after 720 h of exposure to humidity.
33

 This effect was assigned to the increased 

hydrophobicity of the fluorinated compound even though its fluorine content represents < 15 % 

w/w. Later studies instead showed that F-PEAI is organized vertically on the perovskite surface, 

forming compact monolayers. In contrast, PEAI is oriented horizontally and possesses a much 
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smaller surface coverage. Thus, the difference in surface coverage is likely responsible for the 

improved performance of F-PEAI-treated devices.
34

 Additionally, different molecular 

orientations can result in different surface dipoles that may modify defect passivation 

mechanisms and surface work function.
35,36

 

Despite the great interest in improving the performance of PSC devices using interfacial 

layers, few studies investigated how the interaction between an adlayer and the perovskite 

material affects the material's electronic properties and hydrophobicity. To improve our 

understanding of how adlayers contribute to modifying the interfacial properties of HOIPs with 

the intention of passivating the perovskite surface, we turned our attention to fluorinated 

compounds as they are currently lead compounds for perovskite surface passivation. In 

particular, perfluoro organotin Lewis acids with a tetrahedral geometry seem promising as they 

are generally air-stable and can contribute to modifying both the electronic properties and 

surface hydrophobicity. Herein, R4Sn and R3SnCl derivatives having different molecular dipole 

moments, along with commercially-available tri(pentafluorophenyl)borane, (Figure 1) were used 

to form interfacial layers on top of a MAPI perovskite surface and their effect on hydrophobicity, 

luminescence, and work function was evaluated using contact angle (CA), steady-state/time-

resolved photoluminescence and Kelvin probe measurements, respectively. Additionally, the 

chemical composition of the adlayer, its thickness, and molecular orientations were characterized 

using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and PM-IRRAS. The 

results highlight how chemically engineering the composition and the net dipole of the adlayer 

can modify the perovskite work function and hence the electrical behavior of the active layer. 

Surprisingly, although noticeable differences can be found for similar molecules having different 

chain lengths, an even more significant effect is observed for some compounds when these are 
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deposited from different solvents (toluene vs. -trifluorotoluene). This can lead to essential 

variations in surface potential (over 200 mV) and contact angle, which may contribute to the lack 

of consensus over some interfacial layer’s efficiency (or lack thereof). Importantly, we find that 

non-radiative recombination is significantly reduced even after only partial surface coverage by 

fluorinated adlayers, indicative of substantial surface passivation through site-specific 

interactions. 

Figure 1. Chemical structures of the fluorinated surface adlayers for MAPI perovskite materials. 

The deposition of the adlayer was achieved by spin-coating a 10 mM solution (100µL) of 1, 2, or 

3 in toluene or -trifluorotoluene, followed by rinsing with pure solvent. Bottom: optical 

photographs of the contact angle of a water droplet on a MAPI surface in the absence or presence 

of a molecular layer of 1b or 2b. The energy minimized (MMFF94) structures of 1b oriented 

horizontal or perpendicular to the perovskite surface are presented. 

 

EXPERIMENTAL METHODS 
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Synthesis of (C4F9C2H4)4Sn (1a). A Grignard reagent was prepared by stirring a mixture 

of magnesium turnings (30 mmol, 0.73 g) in dry Et2O (30 mL) for 1 h at ambient temperature 

and under nitrogen. A solution of C4F9C2H4I (9.34 g, 25 mmol) in dry Et2O (30 mL) with two 

drops of 1,2-dibromoethane was slowly added at 0°C. The reaction mixture was stirred for 3 h at 

this temperature before dry Et2O (30 mL) was added. SnCl4 (1.3 g, 5 mmol) dissolved in dry 

toluene (20 mL) was added dropwise, after which the mixture was heated under reflux for 4 

days. The reaction was hydrolyzed by the slow addition of water (30 mL) and the mixture was 

filtered through Celite and then washed with pentane. The filtrates were extracted with ethyl 

acetate. The organic phase was washed twice with water, dried over MgSO4, and concentrated by 

rotary evaporation. The crude product was finally purified by the classical column 

chromatography on silica gel using hexane as an eluent to give pure 1a (42% yield) as a colorless 

oil. 

1
H NMR (300.2 MHz, CDCl3) δ 1.12 (t, 8H, 

3
JH–H = 8 Hz, 

2
JSn–H = 52 Hz), 2.29 (tt, 8H, 

3
JF–H = 

18 Hz, 
3
JH–H = 8 Hz); 

19
F NMR (282.4 MHz, CDCl3) δ − 81.14 (t, 12F), −116.96 (m, 8F), 

−124.60 (m, 8F), −126.13 (m, 8F); 
13

C NMR (75 MHz, CDCl3) δ -1.81 (s, 
1
JC–Sn = 170 Hz), 

27.31 (t, 
2
JC–F = 23 Hz); 

119
Sn NMR (223.8 MHz, CDCl3) δ 10.83. 

HRMS (ESI
–
) m/z theoretical for C24H16ClF36Sn = 1142.9393, found [M+Cl]

-
 = 1142.9362. 

 

Synthesis of (C4F9C2H4)3SnCl (2a). Phenyltin trichloride (1.87 g, 6.22 mmol) solution in dry 

toluene (12 mL) was added dropwise to the Grignard reagent C4F9C2H4MgI, prepared as 

previously mentioned. The reaction mixture was refluxed for 4 h and stirred overnight at ambient 

temperature. The reaction was hydrolyzed by the slow addition of NH4Cl solution and then 

filtrated through a Celite pad. The organic phase was washed with 5% Na2S203 solution and 

deionized water, dried over MgSO4, and concentrated by rotary evaporation. The crude product 
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was finally purified by the classical column chromatography on silica gel using hexane to give 

(C4F9C2H4)3SnPh (65.1% yield) as a colorless oil. 

1
H NMR (300.2 MHz, CDCl3) δ 1.30 (t, 6H, 

3
JH–H = 8 Hz, 

2
JSn–H = 55 Hz), 2.31 (tt, 6H, 

3
JF–H = 

18 Hz, 
3
JH–H = 8 Hz), 7.4 (m, 5 H); 

19
F NMR (282.4   MHz, CDCl3) δ – 81.22 (t, 9F), −116.88 

(m, 6F), −124.48 (m, 6F), −126.19 (m, 6F); 
13

C NMR (75 MHz, CDCl3) δ -1.66 (s, 
1
JC–Sn = 170 

Hz), 27.54 (t, 
2
JC–F = 23 Hz), 136.23 (1C, quaternary), 135.96 (2C, 

2
JSn-C = 17 Hz), 129.55 (1C, 

4
JSn-C = 6 Hz), 128.96 (2C, 

3
JSn-C = 25 Hz); 

119
Sn NMR (223.8 MHz, CDCl3) δ -33.59. 

 

Trimethylsilyl chloride TMSCl (7.5 mmol, 0.95 mL) was added at 0 °C to a carbon tetrachloride 

CCl4 solution (15 mL) containing (C4F9C2H4)3SnPh (5 mmol, 4.69 g) and dry MeOH (25 mmol, 

1 mL). The reaction mixture was stirred overnight at ambient temperature. The solution was 

evaporated, and the crude product was subjected to column chromatography on silica gel using 

dichloromethane as an eluent to give 2a (5.49 g, 46.8%). 

1
H NMR (300.2  MHz, CDCl3) δ 1.52 (t, 6H, 

3
JH–H = 8 Hz, 

2
JSn–H = 55 Hz), 2.46 (tt, 6H, 

3
JF–H = 

18 Hz, 
3
JH–H = 8 Hz); 

19
F NMR (282.4 MHz, CDCl3) δ – 81.10 (t, 9F), −116.28 (m, 6F), −124.41 

(m, 6F), −126.09 (t, 6F); 
13

C NMR (75 MHz, CDCl3) δ 6.26 (s, 
1
JC–Sn = 190 Hz), 26.82 (t, 

2
JC–F = 

23 Hz); 
119

Sn NMR (223.8 MHz, CDCl3) δ 124.38. 

HRMS (ESI
–
) m/z theoretical for C18H12Cl2F27Sn = 930.8904, found [M+Cl]

-
 = 930.8895. 

Fabrication of CH3NH3PbI3 perovskite films. ITO substrates (1.5  1.5 cm
2
) were cleaned by 

sonicating successively in deionized water with detergent, deionized water, and isopropanol for 

10 min each. Then, the pre-cleaned ITO substrates were exposed to UV-ozone treatment for 15 

min to reform the surface.  After ozone cleaning, the ITO substrates were transferred to a 

nitrogen-filled glovebox to spin-coat the perovskite solution. The perovskite solution was 

prepared by dissolving 0.72 M PbAc2·3H2O (Merck) and 2.2 CH3NH3I (GreatCell Solar 
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Materials) in DMF (Merck) and stirring at room temperature for about 30 minutes. The solution 

was filtered with 0.4 μm PTFE filter and spin-coated at 6000 rpm for 2 min on top of the ITO 

substrates. The samples were dried at room temperature for 3 minutes, then annealed at 100
o
C 

for 25 min. For PM-IRRAS experiments, the perovskite solution was spin-coated onto gold 

substrates. 

Adlayer deposition. To deposit adlayers, 100 μL of the prepared solutions (10 mM in TFT or 

TL) were drop-casted on perovskite film and incubated for 2 min before spin-coating at 2000 

rpm for 1 min, followed by rinsing with the corresponding solvent. 

Material Characterization. The crystalline structure of the hybrid perovskite films was 

determined by X-ray diffraction (D2 PHASER, Bruker AXS) employing monochromatic Cu Kα 

radiation (λ = 1.54056 Å) and a current/voltage of 10 mA/30 kV. Scanning was carried out for 2θ 

ranging from 7 to 60° with a step of 0.01°. Surface chemical compositions were determined by 

XPS using a Thermo Fisher Scientific K-ALPHA spectrometer. Samples were freshly prepared 

on ITO substrates in a nitrogen-filled glovebox and sealed in a vacuum box to be introduced on 

the same day for the measurements. Films were analyzed with a monochromatized Al-Kα source 

(hν = 1486.6 eV) and a 400 μm X-Ray spot size. Three measurements per sample were carried 

out to ascertain the reproducibility of the surface chemistry. The survey spectra (0-1300 eV) 

were recorded using a constant pass energy of 200 eV, while high-resolution spectra were 

recorded with a continuous pass energy of 40 eV. Charge neutralization was applied during the 

analysis. High-resolution spectra (i.e. C1s, Pb4f, I3d, F1s, Sn3d, Cl2p, …) were quantified using 

the Avantage software provided by Thermo Fisher Scientific. Main attention was paid to F1s, 

Sn3d and Cl2p spectra by fitting to discuss the chemical bonding. Contact angle determinations 

for water were carried out on a Kruss DAS 100 apparatus (Drop Shape System DAS 10 Mk2) in 



 10 

static mode at room temperature. The reported values correspond to the average of at least three 

measurements. The surface potential was measured in ambient condition by Kelvin probe 

technique using vibrating gold grid reference electrode (Kelvin probe S, Bescoke Delta Phi, 

diameter 2.5 mm). PM-IRRAS spectra of 1a, 1b, 2a, 2b, and 3 interfacial films deposited onto 

perovskite/gold substrates were recorded on a ThermoNicolet Nexus 670 FTIR spectrometer at a 

resolution of 4 cm
–1

, by coadding eight blocks of 1500 scans (4 h total acquisition time). All 

spectra were collected in a controlled dry environment (relative humidity around 3%). 

Experiments were performed at an incidence angle of 75° using an external homemade 

goniometer reflection attachment and adding a ZnSe photoelastic modulator (PEM, Hinds 

Instruments, type III) after the polarizer.
37

 For calibration measurements, a second linear 

polarizer (oriented parallel or perpendicular to the first preceding the PEM) was inserted between 

the sample and the second ZnSe lens. This procedure was used to calibrate and convert the PM-

IRRAS signal in terms of the IRRAS signal (i.e., 
 

 0
1

p

p

R

dR
  where  dR

p
 and  0

p
R  stand for 

the p-polarized reflectance of the film/substrate and bare substrate systems, respectively).
38,39

 

 

RESULTS AND DISCUSSION 

Four fluorinated organotin compounds with different polarities were selected (Figure 1) 

to compare the effect of fluorine atom content and dipole moment on the material's work 

function, photoluminescence, and hydrophobicity. Compared to 1, the Sn–Cl bond in 2 is 

expected to increase the overall dipole moment with respect to the more symmetrical 

tetraorganotin derivative. For each, two different lengths of perfluoalkyl chains were tested, 

either 1H, 1H, 2H, 2H-perfluorohexyl (1a and 2a) or 1H, 1H, 2H, 2H-perfluorooctyl (1b and 
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2b). The C4F9 or C6F13 groups provide fluorophilicity, while the C2H4 spacer improves the 

chemical stability by mitigating the electronic effect of the fluoroalkyl chain on the metal center. 

Additionally, tris(pentafluorophenyl)borane (3) was tested due to its strong dipole moment. The 

compounds were obtained by reacting the corresponding Grignard reagent RMgI (prepared via 

the reaction of RI with Mg) with tin tetrachloride.
40

 For the monochlorinated tin compounds 2, 

the corresponding R3SnPh intermediate was obtained by adding phenyltin trichloride to an 

excess of RMgI,
41

 followed by an electrophilic cleavage of the tin-phenyl bond under mild 

conditions using TMSCl.
40

 The molecular structure of the products was confirmed by 
1
H, 

13
C, 

19
F and 

119
Sn NMR spectroscopy as detailed in the supporting information. In particular, 

119
Sn 

chemical shifts of the various fluorinated organotins fall within the range of those reports for 

tetraalkyl-, phenyltrialkyl- and monochlorotrialkyltin analogues,
40,42

 i.e. 10.8 ppm and 10.5 ppm 

for 1a and 1b, - 33.6 ppm  and - 28.6 ppm for (C4F9C2H4)3SnPh and (C6F13C2H4)3SnPh, 124.4 

ppm and 124.0 ppm for 2a and 2b, respectively. Synthetic details and spectral characterization 

information are presented in the experimental section and supporting information. 

To test the four fluorinated alkyltin compounds as interfacial adlayers, the latter were 

deposited by spin-coating a dilute solution (10 mM) from two different solvents, toluene (TL), or 

-trifluorotoluene (TFT) on top of the CH3NH3PbI3 surface. Then, the resulting layers were 

rinsed with pure solvent to remove excess material. To evaluate the influence of the 

perfluorinated molecules on the structure of the HOIP polymorph and the surface morphology, 

XRD and atomic force microscopy (AFM) measurements were performed on pristine and 

modified CH3NH3PbI3 films. For all samples, the diffraction pattern of the XRD studies shows 

peaks at 14.1, 28.6, and 43.2° (2) attributed to the (110), (220), and (330) planes of a pure 

tetragonal perovskite structure.
43,44

 A weak peak at 12.6° 2θ is also observed and attributed to the 
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(001) plane of traces of PbI2 present in all the samples (Figure S29). These results confirm that 

no phase transformation occurs upon exposure to the solvent or depositing the perfluorinated 

molecules on top of the MAPI surface. The AFM results (Figure S30) were in line with the XRD 

measurements revealing negligible change in the surface morphology and roughness upon the 

adlayers deposition on top of the MAPI surface. The ultraviolet-visible (UV-vis) absorption 

spectra of the pristine and modified MAPI surfaces are primarily used to find any significant 

change in the energy band structure upon surface modification. As can be observed in Figure 

S31, the absorption edge was slightly blue-shifted upon ad-layer deposition in cases 2 and 3. The 

band gap of the pristine MAPI, as determined from Tauc plot (1.56 eV), is in good agreement 

with the reported band gap.
45

 After the ad-layer deposition, the band gap increases up to 1.58 eV 

for 2 (Table S1). 

The presence and composition of the fluorinated interfacial layers were characterized by 

PM-IRRAS and XPS. The latter is beneficial in evidencing the existence of fluorinated species 

thanks to signals from F 1s orbitals. Control experiments with pristine perovskite films treated 

with neat TFT revealed no signals attributable to F atoms (Figure 2A and Figure S32), 

evidencing the absence of residual solvent molecules. On the other hand, for CH3NH3PbI3 films 

coated with 1 or 2, a clear emission line was detected at 688.2 ± 0.1 eV assigned to the F 1s core 

level (Figure 2B and D) and evidenced the presence of a thin perfluoroalkyl tin layer on top of 

the perovskite film. The deconvoluted F 1s spectrum contains two peaks representing CF2 and 

CF3 groups.
46,47  

The CF3 groups could be assigned to those peaks displaced at the highest 

binding energy as it was demonstrated elsewhere that surface fluorination had shifted the F peaks 

to a higher binding energy by increasing the F content with respect to the C one.
48,49

 Moreover, 

for both 1b/TFT and 2b/TL-treated surfaces, the Sn 3d5/2 region exhibited a single feature at a 
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binding energy of 487.0 eV (Figure 2C) and 487.3 eV (Figure 2E), respectively, with a spin-orbit 

splitting of 8.3 ± 0.1 eV to Sn 3d3/2 indicating the presence of only Sn(IV) states with no 

noticeable Sn(II) nor Sn(0) which are expected at 485.8 eV and 484.5 eV, respectively.
50,51

 An 

emission line at 198.5 ± 0.1 eV was detected in the Cl 2p region (Figure 2F), which is consistent 

with the presence of Sn-Cl bonds.
50,52,53

 The absence of these signals for the 1a/TL- and 2a/TL-

treated surfaces are assigned to low surface coverage, placing them beyond the detection limit of 

Sn and Cl core levels by XPS. For comparison, XPS measurements on 3-treated surfaces reveal 

an F 1s peak at 688.2 eV ± 0.1 eV along with a B 1s peak at 186.6 eV ± 0.2 eV, coincidental 

with that of the I 4s peak (Figure S33). For all pristine and modified MAPI surfaces, the Pb 4f 

region shows two main features at 143.5 ± 0.1 and 138.7 ± 0.1 eV arising from the spin-orbit 

splitting of f-orbital and attributed to Pb 4f5/2 and Pb 4f7/2, respectively (Figure S32 and S33).
54

 

Both core level binding energies and spin-orbit splitting of 4.8 eV are consistent with Pb(II) sites 

in MAPI. A weak feature at low binding energy (about 137 eV) was also detected, which can be 

assigned to Pb(0), as previously reported in the literature.
55

 Furthermore, the I 3d region 

confirms the formation of a neat MAPI layer with typical emissions at 631.1 ± 0.1 and 619.5 ± 

0.1 eV assigned to I 3d3/2 and I 3d5/2 core levels (Figure S33).  



 14 

 

Figure 2. XPS spectra of fitted F 1s, Sn 3d or Cl 2p for (A) TFT-treated, (B, C) 1b/TFT-treated 

and (D – F) 2b/TL-treated MAPI surfaces.  

In optimal cases, the orientation, thickness, and existence of specific interactions between 

the adlayer and the MAPI surface can be obtained using PM-IRRAS. This technique was 

previously reported by Sadhu et al.
25

 to study surface-modified perovskite films deposited onto 

gold-coated glass slides. This provides vibrational spectra with an excellent signal-to-noise ratio 

over the 2000–800 cm
–1 

region that is of interest to visualize the methyl ammonium ions and the 

CF2 vibrations of the perfluoroalkyl chain, as can be seen in Figure 3A. To reduce intramolecular 
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repulsion between vicinal CF2 groups, perfluorinated chains adopt a zig-zag helical 

conformation.
56

 Thus, the CF2 vibrations group into modes that are either parallel to the helix 

axis (A2 symmetry) or perpendicular to it (E1 symmetry).
57,58

 Interestingly, the results from the 

PM-IRRAS measurement of 1b/TFT (Figure 3B) show strong contributions from the vibrational 

modes oriented perpendicular to the helix axis (bands at 1252, 1215, and 1147 cm
–1

). Due to the 

selection rule of the PM-IRRAS (transition moment oriented parallel to the surface are not 

detected), this indicates that the perfluorinated chains are not isotropically oriented with respect 

to the surface but possess a horizontal arrangement as illustrated in Figure 1. From this, we may 

deduce that the compounds are tiled flat onto the perovskite surface rather than as an amorphous 

layer. On the other hand, the PM-IRRAS measurement of 2b/TFT on MAPI (Figure 3C) reveals 

not only contributions of CF2 groups from the vibrational modes oriented perpendicular to the 

helix axis (bands at 1248 and 1212 cm
–1

) but also modes that are along the helix axis (bands at 

1377 and 1361 cm
–1

). These latter bands indicate that 2b/TFT perfluorinated chains adopt a less 

parallel orientation to the MAPI surface than those observed for 1b molecules. Finally, the 

contributions observed at 1587 and 1478 cm
–1 

arise from the difference in the broadness of the 

bands related to the asymmetric and symmetric bending vibrations of the NH3
+
 groups, 

respectively, between the treated and non-treated MAPI surfaces. These are likely due to specific 

interactions between molecules of 2 with the methyl ammonium groups of MAPI, certainly 

involving the Cl atom. The interactions between the CF2 groups and the MAPI surface could 

generally originate from H-bonding between the fluorine and the methylammonium cations, 

possibly providing multi-point interactions between the fluoroalkyl chains and the underlying 

surface.
25
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The intensity of the PM-IRRAS signals depends on the quantity of molecules on the 

surface and their orientation. This allows the determination of not only the molecule orientation, 

but also the film thickness by simulating the experimental spectra from the material’s isotropic 

optical constants determined using the p- and s-polarized attenuated total reflection (ATR) 

spectra of the films (Figure S35).
25

 Generally, we observe low surface coverage resulting from 

rinsing the substrate after depositing the interfacial layer. This was done to remove excess 

material that would otherwise lie between the active layer and the electrode or interfacial layer, 

which could be detrimental to the electrical properties of a device. Also, fluorinated alkyl chains 

generally form less densely packed monolayers when compared to non-fluorinated ones.
59,60

 The 

calculated values of average film thickness are given in Table 1 and show that samples treated 

with 1/TFT form the most compact interfacial layers with a better surface coverage (ca. 6 Å). 

This likely corresponds to full surface coverage with one to two molecules retained after rinsing. 

In contrast, films of 2/TFT and 3 give weaker spectral signatures consistent with molecular 

layers whose average thickness (ca. 1 Å) is less than that expected from a single molecule layer 

oriented horizontally on the surface. This is indicative of incomplete surface coverage under 

these deposition conditions. Control experiments in which the substrates were not rinsed 

following adlayer deposition possessed significantly greater thicknesses. 
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Figure 3. (A) PM-IRRAS spectra of pristine MAPI (red line) and after exposure to 1b (black 

line). The baseline-corrected difference signal evidencing the CF2 vibrations is shown in blue. 

(B), (C) Zoom-in of the PM-IRRAS spectrum of 1b/TFT and 2b/TFT modified perovskite 

surfaces (black lines). Also shown are simulated spectra of compact isotropic layers with 

different thicknesses calculated from the isotropic optical constants determined from ATR 

measurement (see supporting information). 
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Surface modification using the fluorinated derivatives is expected to cause an increase in 

the hydrophobicity of the perovskite layer. This can be directly probed using contact angle (CA) 

measurements and has previously been used by others to measure the interfacial layer's ability in 

protecting the perovskite from damage by moisture.
6
 The CA for MAPI samples treated with 1 – 

3 are shown in Table 1, Figure 1, and S34. The sample without any surface treatment shows a 

contact angle of ca. 40°, similar to that previously reported for untreated MAPI surfaces.
61

 

Interestingly, a modest increase in the contact angle is observed for samples treated with neat 

solvent (TL or TFT), indicating that some passivation or solvent-induced surface reorganization 

that increases the surface hydrophobicity takes place upon exposure to a hydrophobic solvent. 

The deposition of 1b, having the longer fluorinated chain, leads to the strongest increase in 

surface hydrophobicity. Expectedly, using a shorter fluoroalkyl chain in 1a leads to a smaller 

contact angle that is intermediate between that of the neat solvent and 1b. It is surprising to note 

that, although an incomplete surface coverage with an average thickness of 1 Å is obtained when 

depositing 1a from TL vs. TFT, a similar contact angle value is obtained for both solvents. This 

may suggest that the molecules deposited onto the surface preferentially bind to surface sites that 

are (partially) responsible for the substrate's overall hydrophilicity. By passivating these sites, an 

interfacial layer may thus substantially enhance the material's resistance to damage by moisture, 

even in the absence of a uniform hydrophobic film. A similar case is observed for 3, which 

contains a substantially lower fluorous content with respect to 1a and 1b (55.6% vs. 61.8% and 

65.6%, respectively). Despite a low surface coverage, a significant increase in surface 

hydrophobicity is observed with a contact angle reaching 76° when deposited from TFT. Finally, 

the more polar compounds 2 possess greater solubility in TL, and this solvent gives larger 

contact angle values with respect to neat solvent treatment than TFT (Table 1).  
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The interactions observed between the MAPI surface and the fluorinated adlayers were 

previously reported to modify the material’s electronic properties.
25

 These variations concern the 

interfacial layer and can be quantified by the work function (WF) of the modified surface. The 

latter can be evaluated using Kelvin probe measurements by comparison with a reference surface 

such as freshly cleaved highly ordered pyrolytic graphite (HOPG) with WF = 4.470 ± 0.005 V.
62

 

The surface potential of pristine MAPI was determined to be 5.29 V, whereas that of the 

TFT and TL-treated samples was found to be lowered to 5.12 and 5.19 V, respectively (Table 1). 

This change in WF parallels the changes observed by contact angle measurement and supports 

the occurrence of some surface reorganization upon treatment with a neat solvent. Taking the 

WF value of the solvent-treated surfaces as a reference, we may compare the WF of the treated 

ones. The values collected in Table 1 show that all of the studied fluorinated compounds lead to 

an increase in the surface WF. The most significant enhancement (+230 mV) is observed for 2b 

deposited from TL. Although the lower value for the same species from TFT might be due to its 

lower surface coverage, an inspection of the data in Table 1 reveals that all of the surfaces 

modified from TFT exhibit lower increases in WF with respect to the same compound deposited 

from TL. This confirms that the choice of solvent is crucial when considering the effect of 

surface modifiers for perovskite devices. In contrast, a comparison of the long and short 

fluoroalkyltin compounds evidences that, despite similar thickness and surface coverage, the 

effect of 1a is smaller than that of 1b (+50 mV vs. +170 mV, respectively). Examination of the 

PM-IRRAS signals shows that the shorter-chain 1a/TFT derivative possesses a stronger 

contribution of the A2 symmetry signal (Figure S36), suggesting that the molecular layer is less 

ordered than for 1b/TFT. In support of this, we note that the situation is reversed in TL, where 

the fluorinated chains in 1a are strongly oriented parallel to the surface and lead to an increase of 
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the WF of +210 mV despite a low surface coverage. We may therefore conclude that the WF 

modification situation is similar to that observed for the surface hydrophobicity in that it is not 

directly proportional to the amount of material deposited but rather to the compound's dipole 

moment and orientation and, presumably, its localization with respect to surface defects. 

 

Table 1. Average work function, thickness and water contact angle of pristine and treated MAPI 

surfaces using either TFT or TL-based solutions.
 a
 

a 
Deposited by spin-coating a 10 mM solution from either TFT or TL followed by rinsing the 

surface with neat solvent. Average of at least three measurements. 
b 

Estimated by PM-IRRAS. 

Values less than the molecular dimensions correspond to incomplete surface coverage. 
c 

Not 

soluble 

 

Passivation of surface defects reduces trap-assisted Shockley-Read-Hall recombination 

processes
63

 and is thus a significant contributing factor in optimizing the efficiency of PSCs. The 

effect of surface modification can be readily quantified from the photoluminescence efficiency 

(PLQE) and time-resolved decay (TRPL), as both of these are affected by the presence of surface 

defects.
64-66

 Snaith and co-workers previously showed that the TRPL signals can be decomposed 

  TFT    TL  

 WF (V) Average 

thickness (Å)
b
 

Contact 

angle (°) 

 WF (V) Average 

thickness (Å)
b
 

Contact 

angle (°) 

Pristine MAPI 5.29 ±0.02   39.6±2.5   5.29±0.02   39.6±2.5 

MAPI + solvent 5.12±0.01   62.5±0.9   5.19±0.01   53.2±1.2 

MAPI + 1a 5.17±0.06 6   69.0±1.9   5.40±0.05 1   70.5±2.3 

MAPI + 1b 5.29±0.02 6   82.7±1.7  
c c

 
c
 

MAPI + 2a 5.15±0.08 1   64.1±2.0  5.33±0.03 1   64.8±2.8 

MAPI + 2b 5.27±0.03 1   57.9±0.4   5.42±0.02 3   61.2±1.7 

MAPI + 3 5.22±0.03 1   76.0±1.9  5.39±0.02 1   60.7±1.0 
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according to a model in which fast bimolecular recombination is followed by a slower 

monoexponential decay characteristic of the concentration of trap states.
66,67

 The impact of the 

presence of adlayers of 1 – 3 deposited from different solvents on the SRH recombination 

processes can be assessed by probing the steady-state and time-resolved photoluminescence (PL) 

properties of the samples along with the average lifetime of the luminescence decay.
68

 The 

emission maximum, average lifetime (calculated from the multiexponential reconvolution of the 

luminescence decay), and quantum yield (PLQY) are given in Table 2 for pristine MAPI, MAPI 

treated with neat TFT or TL solvents, or with solutions of 1 – 3.  

 

Table 2. Photoluminescence quantum efficiency and time-resolved decay parameters for pristine 

MAPI and samples treated using either TFT or TL-based solutions.
a 
 

  TFT    TL  

 em 

(nm) 

avg 

(ns) 

PLQE 

(%) 

 em 

(nm) 

avg 

(ns) 

PLQE 

(%) 

Pristine MAPI 774 313 0.26  774 313 0.26 

MAPI + solvent 774 368 0.09  774 479 0.20 

MAPI + 1a 774 402 0.39  774 520 0.48 

MAPI + 1b 774 577 0.37  
b b b 

MAPI + 2a 768 600 0.75  768 585 0.57 

MAPI + 2b 768 658 0.80  768 520 0.68 

MAPI + 3 774 544 0.60  774 473 0.24 

a
Measured using ex = 456 nm (0.24 nJ/pulse) and em = 760 nm. 

b 
not soluble 

 

As shown in Figure 4A and Table 2, surface modification of MAPI films with molecules 

1, 2, and 3 led to a significant increase in the PL intensity and photoluminescence quantum yield 

(PLQE), while simple solvent treatment of MAPI films with TFT or TL did not result in similar 

increase in PLQE. These results suggest that the number of trap states at the origin of non-
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radiative recombination is decreased when 1-, 2- or 3-adlayers are introduced. The fluorinated 

chlorotin compounds 2 yielded the most significant enhancement in PLQE, with values ranging 

from 0.57 to 0.8%, with a maximum for MAPI surface modified with 2b/TFT. Interestingly, we 

note that PL emission occurs at 774 ± 1 nm for pristine MAPI, TFT or TL-treated MAPI, and 1- 

or 3-modified MAPI films, whereas MAPI treated with 2 exhibits a blue-shifted emission at 768 

± 1 nm. This is consistent with the slightly higher energy band gap determined for MAPI films 

treated with the tin chloride derivatives 2 (Figure S31 and Table S1) and suggests that chlorotin 

fluorocarbon derivatives possess an affinity for specific surface defect sites in MAPI. Specific 

interactions between 2 and the MAPI surface were also evidenced by the shift in the vibrational 

frequency of the NH3
+
 fragment observed in the PM-IRRAS spectra.  

As expected, the TRPL decay of the samples was multi-exponential (Figure 4B) with a 

long-lived component comprised between 0.4 and 1 µs. The intensity-averaged lifetime was 

calculated for each sample (Table 2), confirming that the increase in PLQE is due to a reduction 

of the non-radiative recombination efficiency, especially in the case of polar chlorotin 

compounds 2. Assuming that the radiative recombination rates are unaffected by surface 

passivation, one would expect a linear correlation between the enhancement in emission 

quantum yield and the increase in average lifetime of the samples. Despite some scatter in the 

data due to the difficulties in precisely determining PLQE and TRPL from solid samples with 

low emission, this is clearly the case, as shown in the inset to Figure 4B. What is most 

remarkable, in our opinion, is that the large differences in surface coverage observed between the 

treated samples (Table 1) do not appear to be a determining factor in the adlayer's ability to 

passivate surface defects as probed by PL measurements.  
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Figure 4. (A) PL spectra of pristine and modified MAPI surfaces (ex = 365 nm). (B) TRPL 

decay (ex = 456 nm (0.24 nJ/pulse), em = 760 nm) of pristine MAPI surface (black), MAPI 

following treatment with neat toluene (blue), or with 2a in toluene (red), Inset shows a 

correlation between the PLQY and average lifetime with black line representing best fit 

according to a linear regression (r
2
 = 0.78). 

 

CONCLUSION 

The formation of fluorinated adlayers from tetra(fluoroalkyl)stannanes or 

chlorotri(fluoroalkyl)stannanes on top of MAPI was confirmed through XPS and PM-IRRAS 

measurements. The latter also provides information on the thickness and the orientation of the 

fluorinated chains, revealing that the amount and organization of the surface modifier left after 

rinsing was highly dependent on the nature of the fluorinated species and the solvent used for 

deposition. This, in turn, affects the overall properties of the material, which were highly 

sensitive to the ordering and molecular dipole moment rather than simply correlating with the 

amount of material deposited. From these results, we may tentatively conclude that passivation 

of specific surface sites (eg, defects or grain boundaries) may provide the largest contribution to 

altering the perovskite surface properties such as hydrophobicity and work function. For all 

compounds examined, XRD analyses confirm that the bulk crystallinity of the perovskite 

material is retained. In the most favorable case, a monomolecular layer surface coverage of 2b is 
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sufficient to increase the material's WF by 230 mV, whereas a slightly thicker layer of 1b 

provides the most significant increase in surface hydrophobicity. In contrast, the passivation of 

trap sites contributing to non-radiative charge recombination is not dependent on the full surface 

coverage by the passivating agent. This in turn confirms that specific interactions promote the 

deposition of the latter to defect sites that contribute to non-radiative recombination. 

Our results also confirm the importance of the solvent chosen for the deposition of the 

passivating layer. Different WF and contact angle values are obtained when different solvents are 

used, and for both toluene and -trifluorotoluene, exposure to these solvents alters the 

surface properties by decreasing the WF and increasing the hydrophobicity of the surface. We 

may thus conclude that understanding surface modification of hybrid perovskite materials is a 

complex undertaking that cannot be approximated by transposing the bulk properties of the 

interfacial layer. Instead, one must consider its molecular properties and ordering on the surface, 

as well as solvent effects. 
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