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ABSTRACT: We compute instanton corrections to the partition function of sine-Liouville (SL)
theory, which provides a worldsheet description of two-dimensional string theory in a non-
trivial tachyon background. We derive these corrections using a matrix model formulation
based on a chiral representation of matrix quantum mechanics and using string theory meth-
ods. In both cases we restrict to the leading and subleading orders in the string coupling
expansion. Then the CF'T technique is used to compute two orders of the expansion in the
SL perturbation parameter A\, while the matrix model gives results which are non-perturbative
in A. The matrix model results perfectly match those of string theory in the small A expan-
sion. We also generalize our findings to the case of perturbation by several tachyon vertex
operators carrying different momenta, and obtain interesting analytic predictions for the disk
two-point and annulus one-point functions with ZZ boundary condition.
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1. Introduction

Bosonic two-dimensional string theory is a fruitful playground to test various ideas and tech-
niques of critical string theory; see [[, B, B, ] for reviews. In its spectrum, it contains only
one field-theoretic degree of freedom — a massless scalar field, which is commonly called
“tachyon” because this is the same field that has negative mass-squared in higher dimensions.
In the simplest linear dilaton background, the background value of this tachyon field is taken
to be time independent and exponentially dependent on the spatial coordinate. In this case
the theory is well understood, being an exactly solvable model. On the worldsheet, it is
described by Liouville theory at the central charge ¢ = 25 coupled to ¢ = 1 matter!

So = %/dQZ <8¢5¢ + Tpe’® + 8X5X>, (1.1)

where p is the Liouville coupling (also known as 2d cosmological constant) which is inversely
proportional to the string coupling g;.

It is much more challenging however to describe 2d strings in non-trivial backgrounds
which can be obtained, for example, by introducing the so called “tachyon condensate”, i.e.
choosing a background tachyon field different from the Liouville potential. There are two
main reasons to investigate such backgrounds:

e In Lorentzian signature, such a tachyon condensate typically implies a time-dependent
background [, B, [ (see also, e.g., B, B, [[d]). Understanding time-dependence in string
theory is a notoriously difficult problem and getting a handle on it in the simplified
setting of two-dimensional theory can hopefully bring new insights on how to deal
with time-dependent backgrounds in more complicated setups. Other approaches to
constructing time-dependent backgrounds in two-dimensional string theory can be found

in [, [3, 03]

I Throughout this paper we set o/ = 1 and we use the convention that d?z = dxdy in terms of Cartesian
coordinates x,y. We have omitted the linear term in ¢ from the action since we have specialized to a patch
with flat background metric. Of course, the worldsheet CFT also contains the bc ghosts.




e In Euclidean signature, the “time” direction can be compactified on a circle of radius R.
Then after T-duality, the tachyon condensate turns to a condensate of string winding
modes. If this condensate is chosen in its simplest form corresponding to the so-called
sine-Liouville (SL) theory obtained by adding

A / ?2V(z,%), Ve~ cos(RX) e 2 (1.2)

to the worldsheet action ([[.T]), the resulting model was conjectured to be dual to 2d
string theory in a black hole background [[4] that has the famous “cigar” geometry [[5]
and is described by [SL(2, R)],/U(1) coset WZW model [[@, [7].2 Here R = 1/R is the
dual radius and X = Xp — X, is the dual field. (The conjecture was proven later in
[[§.) Thus, analyzing non-trivial tachyon backgrounds, one can try to access various
important issues of the black hole physics.

However, the CFT technique is not powerful enough to solve the theory. Typically, it
allows to compute only correlation functions on sphere and torus with a very few insertions
of vertex operators. Fortunately, 2d string theory is known to have a dual description in
terms of Matrix Quantum Mechanics (MQM) [[9, BU, RI]. This matrix model not only
provides an exact solution to 2d string theory in the simplest background ([.1)), but also
reveals an integrable structure underlying a large class of backgrounds with a non-trivial

tachyon condensate, including in particular the SL theory relevant for the 2d black hole (see
[BJ] for review).

More precisely, if we are not interested in the winding modes of compactified Euclidean
theory, MQM can be reduced to a system of free fermions moving in the inverse oscillator
potential V(z) = —% 22. Different backgrounds of string theory then correspond to different
states of this system [BJ. In particular, the background described in ([]]) is realized as
the vacuum state where the fermions fill all energy levels up to £ = —pu on one side of the
potential, with p being the same parameter as in ([.1]). How to generate states corresponding
to more general backgrounds was shown in [P4]. The construction heavily relies on a chiral or
light-cone representation of MQM where the scattering of fermions off the potential turns out
to be encoded in the Fourier transform relating the left and right representations. Using this
formalism, it was shown that the tachyon backgrounds described by the worldsheet action

S=5+3 A / PeVp(z2), Vi~ cos(wX) e, (1.3)

are all governed by the Toda integrable hierarchy, consistently with the previous findings
of [P5, PG|, which allows, at least in principle, to compute the corresponding partition and
correlation functions order by order in perturbation theory and exactly in the parameters \,.

Remarkably, it turns out to be possible also to go beyond the perturbative description.
Both CFT and MQM formulations of 2d string theory have instanton effects which go like

Ae_sinst’ SiHSt ~ gs_l (14)

2 More precisely, the duality is supposed to hold at x = 0 and R = Vk. The string theory condition ¢ = 26
further fixes these parameters to R = 3/2 and k = 9/4.



In CFT, they arise due to the existence of the so-called ZZ boundary conditions in Liouville
theory R7]. Then S;, is given by the disk amplitude representing an open string ending on
a ZZ-brane, while A is related to the annulus amplitude with the same boundary conditions.
On the other hand, in MQM the instanton effects are related to the tunneling of fermions
through the inverse oscillator potential.

Starting from 2003, these non-perturbative effects have been extensively studied (see e.g.
B8, B9, BQ, B, B2, B3, B4]) and it was demonstrated that, at the level of the instanton action,
the two formulations of 2d string theory perfectly agree. In particular, in MQM the quantity
Sinst has been computed for the SL theory and its first terms in the small A expansion have
been shown to reproduce the disk correlation functions in the worldsheet CFT with (1,n) ZZ

boundary conditions [B3, BJ.?

At the subleading order in the gs-expansion, in particular for the quantity A above,
the situation however was more complicated. On one hand, the CFT annulus amplitude is
formally divergent which blocked the computation of the factor A from the string theory
side until recent works B3, BA, B7, BY. On the other hand, the factor A was computed
in the dual MQM in [BY9]. Moreover, this was done by two methods: first, by solving a
linearized Toda equation and, second, by analyzing quasi-classical fermion wave functions in
the chiral representation. Both methods produced the same very non-trivial function of the SL
parameter A, see (£:37]). However, the first method is not able to fix the overall normalization
constant. The second method can do it, but led to a strange result A ~ 1/log A where A
is a MQM cut-off supposed to be taken to infinity. Such a result cannot be physical which
implies that something must have been missed in the analysis of [Bd]. Another puzzle related
to the function (2.30) found in [BY] is that at small X it behaves as A~*/2 and thus diverges,
while one could expect that it should reproduce the well-known instanton corrections to the
partition function in the linear dilaton background.

In this paper we return to these problems with the new insights coming from recent
progress in calculation of D-instanton amplitudes. Using string field theory, it was understood
how to properly regularize the divergences appearing in the annulus amplitudes with D-brane
boundary conditions evaluated in the naive CFT approach [i0, ], B§. The recipe resulting
from this understanding has then been successfully applied in ten-dimensional type IIB string
theory [f2, 3], in Calabi-Yau compactifications of critical strings [[f4, [, i), in ¢ < 1 non-
critical models [[7, [, E9], and for S-matrix of 2d string theory in the background described
in (L.T) [, BY, BJ). Here we apply it to 2d string theory in non-trivial tachyon backgrounds.

Before doing this, however, we revise the MQM analysis that was done in [BJ] and led
to a cut-off dependent normalization factor. It was based on the observation [B4] that the
instanton contributions to the partition function of the perturbed theory ([L.3)) correspond
to the so-called double points of the MQM complex curve. While this is true, we realize
that the analysis of [B4] did not take into account the existence of a large class of double
points. Fixing this problem, it turns out to be possible to remove the cut-off dependence.

3 For generic central charge, there is a two-parameter family of ZZ boundary conditions labelled by (m,n) €
IN? [R7]. However, it was argued in [B3, B4], and recently confirmed by the analysis of [B], that only (1,n)
branes survive in the ¢ = 1 limit.



Nevertheless, a close inspection reveals a few other subtle issues in the analysis so that it is
not really trustworthy. Instead, we redo the calculation in a way that avoids these issues and
yields a well-defined result for the instanton corrections ([.4) in the SL theory. Furthermore,
we generalize this result to a generic set of parameters in ([.J) and make it explicit for the
case of two non-vanishing parameters, Ay and Ao, which we dub ‘double sine-Liouville’ (dSL).
In particular, in this case we find a new set of non-perturbative effects which is absent in the
usual SL theory.

Next, we move on to the string theory analysis of non-perturbative effects in the SL and
dSL theories. First, we compute the instanton action S;,¢ up to second order in the parameters
An. In our approach, it is obtained by extremizing certain ‘tachyon potential’ determined
by one and two-point disk amplitudes with ZZ boundary conditions. While the one-point
amplitude is easily computed analytically, this is impossible for the two-point function given
by a highly complicated integral. Moreover, it depends on a free parameter reflecting an
inherent ambiguity of string field theory needed to get a finite amplitude from a naive divergent
CFT expression. Fortunately, at extrema, the potential depends only on combinations of the
two-point functions where the ambiguity is cancelled, and it can be checked numerically that
these combinations are equal to simple elementary functions of external momenta, precisely
such that the resulting instanton action is identical to the one in MQM.

Finally, we compute the subleading contribution A and its first order correction in .
First, we show that in the small A limit, A ~ A\~%/? as predicted by MQM. This behavior
arises due to the lifting of an instanton zero mode by the SL perturbation. A careful analysis
also allows to match the precise normalization factor of the non-perturbative effects in MQM
and string theory. Second, we derive the next order contribution in the A-expansion, which
turns out to be given by two-point disk and one-point annulus amplitudes. Like the former,
the latter cannot be computed analytically and depends on the same ambiguous parameter of
string field theory. But again in the final result the ambiguity is cancelled and one can show
numerically that the two functions combine into an elementary function reproducing predic-
tions of MQM. Thus, our analysis establishes a perfect agreement at the non-perturbative level
of the two descriptions of 2d string theory in the presence of a non-trivial tachyon background
up to several orders in the SL parameters and string coupling expansion.

The organization of the paper is the following. In section P we review the description
of the tachyon perturbations in MQM and the known results on their perturbative and non-
perturbative free energy. In section [J, using this description, we provide a derivation of the
instanton effects in the SL theory. In section [] we generalize these results to generic pertur-
bations and analyze in detail the case of two non-vanishing perturbation parameters. Then in
section [ we compute the instanton action in the SL theory up to second order in the perturba-
tion parameter using string theory methods. In section f] the same is done for the subleading
factor A in the instanton contribution, and section [f] repeats these calculations for the case of
the double SL theory. Finally, section fJ contains our conclusions. Several appendices provide
various consistency checks, technical calculations and other useful information.



2. Tachyon backgrounds in MQM

In this section we review the MQM description of non-trivial tachyon backgrounds of 2d string
theory as well as perturbative and non-perturbative results about free energy associated to
these backgrounds. While the results presented in subsections P.IH2.J will be used below in
section [J, those given in subsections .4 and P-J will be rederived by following an alternative
approach that is better suited for studying instanton effects. Nevertheless, we have reviewed
them here for comparison.

2.1 MQM in the chiral representation

We are interested in the quantum mechanical system where the degrees of freedom consist of
a single time-dependent hermitian N x N matrix, restricted to the singlet sector of the U(N)
symmetry group. The matrix can be diagonalized by a unitary transformation M — QFM Q,
and upon integrating out the degrees of freedom encoded by €2, the system reduces to N
free non-relativistic fermions moving in a potential [pI]. This system becomes dual to 2d
string theory in the so-called double scaling limit where N — oo, while a parameter of the
potential is tuned in a correlated way to its critical value at which the Fermi sea reaches a
local maximum of the potential [I9, Bd, RI]. In this limit, the form of the original potential
becomes irrelevant, and we end up with a system of free fermions in the inverse oscillator
potential V' (z) = —% 2?2, The resulting system is parametrized by a scaling parameter i,
which is equal to the difference between the maximum of V' and the Fermi level, and turns

out to be proportional to the inverse of the string coupling.

A particularly simple way to describe the dynamics of these fermions is to introduce chiral
coordinates in phase space

. rEp
+ = )
V2

so that z_ and x, are canonically conjugate variables. The simplifications come from the

fact that in the chiral representation the one-fermion Hamiltonian Hy = %(p2

{z_,z } =1, (2.1)

— 2%) becomes
a first order linear differential operator

3 Lo . : o 1
Hf = -5 (To2_+2T_24) = TFi (Iiﬂ + 5) : (2.2)
so that its eigenfunctions take a very simple form
i¢+(E) JE—1
WE () = ° 1 FBer, (2.3)

T )
\ 2T *

where ¢ (F) are any constant phases. The non-trivial dynamics, which is usually encoded in
the parabolic cylinder functions solving the eigenvalue problem in the z-representation [BJ], in
this case is hidden in the relationship between the two chiral representations. Namely, since
¥ (x4) and 9” (z_) represent the same physical state in conjugate representations, they must



be related by a Fourier transform?*
~ 1 )
SWE(x.) = — [ dxy ™" =YPE(x_). 24
[E](x-) Nor + €Yl () = YE(a) (2.4)

If one sets ¢4 (E) = F35 ¢o(E) by choosing the overall phase of 4, this condition can be used
to determine ¢g(E). The result depends on the choice of the integration interval, but this
choice affects only the non-perturbative completion of the theory. If one integrates in (B.4)
over the positive half-line, one obtains®

sy )
o) <" p(ipy L 2.5
e Nt i +2 . (2.5)

The function ¢g(E) can be recognized as the scattering phase of the fermions off the inverse

oscillator potential, which in turn encodes the scattering of tachyons in the background ([L.1])
[69]. Thus, the wave functions ¥ can be regarded as describing ingoing and outgoing states,
while S is nothing but the S-matrix operator [24].

The phase ¢o(E) (B7) is not real, but has an imaginary part given by

o n 1

1
log (1 + €*™) Z e?™E, (2.6)

n=1

This implies that the S-matrix restricted to asymptotic states purely on the right hand side of
the potential is not unitary. Since the occupied energy levels have E < 0, (P.0)) is exponentially
suppressed, and this imaginary part is a manifestation of the tunneling of fermions to the left
hand side of the potential. Thus, the chiral description of MQM can also be used to extract
non-perturbative information about the system.

2.2 Tachyon perturbations

The chiral representation is particularly useful for describing backgrounds of 2d string theory
with a non-trivial tachyon condensate [24]. To get a perturbed background, we should change
the state of the free fermion system in such a way that on the dual side it incorporates
tachyons in a coherent state. This can be achieved by changing the asymptotic form of the
one-fermion wave functions. It was found that the perturbed wave functions should take the
following form

e¥i<P:t($:t§E) :I:iE—%

VE(ry) = WJ«} )

(2.7)

% In most of the previous literature, the phase factor in (2.J) was not included into the definition of the wave
functions and instead appeared as an explicit factor on the right hand side of (E)

If we introduce a new variable w via xy = (—FE/x_)e“, then the integral reduces to
(—E/ax_)"F+3 [* due/2e=iF(" —w_ Other than the ¢*/? factor, the integral agrees with that discussed
in appendix C.2 of [E] Therefore, we can follow their discussion to choose the integration contour. Due to
the extra /2 factor in the integrand, the integral converges as u — —oo but is not absolutely convergent as
u — oo. For negative F, this problem can be avoided by taking the w integral for large Re(u) to approach
00 + i€ for some small, positive number e.



where the phases can be split into three pieces

QO:t(ZL':t; E) = Vj:(l’j:) + % ¢(E) + ’Ui(l’i; E) . (28)

6 and

These three pieces are such that V. vanishes at x4 = 0, vy vanishes at x4 — 00,
¢(F) is independent of the coordinates. The potentials Vi encode the form of the tachyon
condensate and are assumed to be given, whereas ¢ and vy are to be determined by the com-
patibility condition that both functions (B.7) represent the same physical state in conjugate

representations

~

S5 () = WF (z_). (2.9)

Here S is the same operator acting by the Fourier transform as in (P4 playing the role of
S-matrix so that ¢(£) can be seen as a perturbed scattering phase.

It is important to note that the wave functions (2.7) are not eigenfunctions of the Hamilto-
nian (R.7) and therefore the corresponding solution to the time-dependent Schrédinger equa-

—iEBt

tion is obtained not by a simple multiplication by e as for the unperturbed wave functions

(B-3), but by the following replacement
U (1y,t) = T2 (eFlyy). (2.10)

Thus, the perturbed state of the system is time-dependent, while W% (x.) describe only the
t = 0 slice. This is in agreement with the time-dependence of string backgrounds with a
non-trivial tachyon condensate like in ([-3).

However, one can in fact define a deformed Hamiltonian for which W% (z.) are eigenstates
with eigenvalue E. Once @4 are fixed, it is defined as a solution of either of the two equations

[Z]
H:Ho—l—l’iaxi@i(l’i;H), (211)

where the ordering ambiguities between x; and H inside 0,, ¢+ are fixed by demanding
that acting on an eigenstate of H of eigenvalue E, 0, ¢4 (vs, H) gives 0., ¢4 (xy, E). We
can see the equality of the two Hamiltonians by noting that \Iff(:ur) is an eigenstate of
Ho+x 0., py(xy; H) with eigenvalue E, and WF(z_) is an eigenstate of Hy+z_ 9, ¢_(v_; H)
with eigenvalue E. Since U¥(x, ) and UZ(z_) are different representations of the same state, it
follows that Hy+ 2+ 0, p+(xy; H) have same eigenvalues and eigenstates, and hence describe
the same operator. Although this Hamiltonian does not seem to have a direct physical
meaning in MQM, it will allow us to define the usual thermodynamic quantities using the
stationary picture it represents. And it is these quantities that will be shown to be equal to
their stringy counterparts.

6 If the perturbation involves, in the string language, vertex operators of momenta larger than 1, the vanishing

condition on v4 is more intricate because there are branch cuts extending toward infinity. For the discrete
spectrum of perturbations () considered below, it can be easily formulated in terms of the parametrization
() and requires that vy vanish at 7 — 400, respectively.



2.3 Free energy

In this paper we are interested in a particular class of perturbations that are dual to the
backgrounds where the worldsheet action takes the form ([.3). The vertex operators appearing
in this action correspond to the spectrum of tachyons of Euclidean theory compactified on a
circle of radius R. In the MQM formalism, such backgrounds are generated by the potentials

kmax

Vi(l'i) = Z t:l:k ZL’I:T:/R, (212)
k=1

where t.; are parameters which can differ from those in the CFT action by normalization
factors. We have determined the precise relation between the parameters in appendix [H.

This class of perturbations is expected to have a thermodynamic description as a system
at finite temperature 1/(2rR) [p4]. In particular, one can define the grand canonical free
energy’

F () = / dE p(E)log (1 + e 2 +E)) | (2.13)

where p(F) is the density of states. To compute p(E) in our system, let us introduce a cut-off
A > p and impose the following boundary condition on the wave functions in the chiral
representation®

S[UL(VA) = UL (VA). (2.14)

Applying this condition to the deformed wave functions (B.7) and using (2.9), one obtains
that, for large A, it is satisfied for a discrete set of energies E,, (n € Z) defined by

G(En) — Enlog A+ V(A) =2mn,  V(A) =) (tp +t_)A**R, (2.15)

Therefore, the density of the energy levels is given by

_logA 1 do(E)
o or dE

o(E) (2.16)
Substituting this result into (P.13), dropping a A-dependent non-universal contribution, and
integrating by parts, one obtains

= E
F(u) = —R/ dE%. (2.17)

—00

" Note that we associate the label FE with energy. This implies that we silently passed to the interpretation
of the system based on the Hamiltonian () where the deformed Fermi sea is stationary and one can apply
the standard thermodynamic relations.

8 To justify this boundary condition, let us put a completely reflecting wall at = = \/A—/2 which requires the
wave function in the z-representation to vanish at this point. For large A, the wave function at the wall is a
sum of an ingoing and outgoing waves which are captured by ¥, and W_, respectively. Since asymptotically
p ~ +z, we find that the boundary condition equates the above two components evaluated at v/A. Then

(B.14) follows from (R.9) up to an irrelevant phase.



From this representation it is easy to establish the following relation [BJ]

25in 2 () = 6(—p), (2.18)

where the operator on the left hand side can be seen as a finite difference operator: 2 sin (S—E) F =

LF(p+ 55) — F(p — 55)). If we evaluate this difference using (P-I7), then naively the result
vanishes since the integrands in the expressions for F(u =+ 55) take the same values. However,
the integrands have a pole on the real axis at £ = —p and one needs to carefully examine
the presription for evaluating the contribution from this pole. For this we can take (B.17) as
the definition of F(u) on the real p axis and define it everywhere else in the complex plane
via analytic continuation. In that case one can easily check that as we approach the point
u+1i/(2R) starting from the real axis, a pole approaches the integration contour over E from
the upper half plane, while as we approach the point p —i/(2R) starting from the real axis,
a pole approaches the integration contour over E from the lower half plane. The difference
between the two integrals can now be computed using the residue theorem and gives the result
P(—h).
The relation (B.I§) shows that to get the free energy, it is sufficient to compute ¢(FE).

2.4 Complex curve and integrability

A useful way to visualize the perturbation is to consider the profile of the Fermi sea, i.e.
the boundary of the region in phase space filled by the fermions. This profile emerges in
the quasi-classical approximation, which corresponds to the tree level of string theory and is
obtained by applying the stationary phase approximation to the integral in (£.9) or its inverse
taken at £ = —p. This results in the following two equations

viws =t w205, 0 (w15 —p1), (2.19)

where goio) is the leading part of ¢4 in the large p limit. In this approach, it is the condition
that the two equations describe the same curve that allows to determine the functions <p(i0).
In the absence of perturbation, they both reduce to the usual hyperbola %(:cQ —p?) =pu. In

section [] we shall give a different perspective on the same equations.

The profile of the Fermi sea determined by (:19) plays an important role in many aspects
of the theory as, being continued to complex values of z, it defines the MQM complex curve
B9, B4]. This curve, regarded as a two-dimensional surface embedded in C?, turns out to
encode various perturbative and non-perturbative information about the system even though
(R.I9) was derived in the quasi-classical approximation. In particular, the instanton effects
studied below will emerge from certain special points of the complex curve.

The complex curve also appears as a crucial element of the integrable structure governing
the perturbations (R.19). Namely, in [R4] it was shown that these perturbation are generated
by a set of commuting Hamiltonians, which together form the Toda lattice hierarchy. This
furnishes a powerful technique for finding exact solutions. Among other things, this implies
the existence of a 7-function whose logarithm coincides with the grand canonical free energy,

— 10 —



F = log (1, {t,}), and can be shown to satisfy a hierarchy of bilinear differential equations
known as Hirota equations [p@]. In particular, the first equation in this hierarchy is called
Toda equation and is a differential equation on F with respect to pu and ¢;.

While an exact solution for the free energy and correlation functions can be found by
solving the Toda (or more general Hirota) equation supplemented by a boundary condition at
tir = 0, there is an easier way to get it. It is based on the use of the so called string equation
which at large p reduces precisely to the equation (B.19) on the Fermi profile. The idea is to
use the following ansatz for the solution of (P.19)

24 (1) = T2 (1 + > axp ejFlk?T) : (2.20)
where y = 853"(0) with Fg) being the leading term in F in the large p limit. Equation (R.20)
provides a parametrization of the MQM curve where 7 plays the role of a uniformization
parameter. To find the coefficients a; and the free energy, one should substitute the ansatz
(B:20) into (2.19), expand the result for 7 > 1 (resp. 7 < —1), and extract the constant term

7/ in the equation

as well as coefficients in front of the positive (resp. negative) powers of e
with z, (resp. z_) dependent right hand side. In particular, for the simplest case where
t; = t_; are the only non-vanishing parameters, which is supposed to describe the SL theory,

this gives an algebraic equation for y and an explicit expression for a; 27

X 1 1 _1l)\x tl L)X
JLeR T (1—§) tfe(2 %)% =1, alzﬁe(l )% (2.21)
Substituting (B.2() back into (P.I9) and using (B.§), it is also easy to get vl the leading
part of the unknown piece of the perturbing phase. Denoting by X, (z+) the mutually inverse

functions defined in the parametric form by (B:20), the general result is given by

T4
0O (g —p) = / X (ya)dys — plogzs — Vi (2s), (2.92)
Ty

where 2. are chosen so that the right hand side vanishes at large x..

It is useful to note that the functions x4 (7, 1) describe a canonical transformation in the
sense that
Ovy Ox_  Ox_ Oxy _1 (2.23)
or O or Ju
Since —p is an eigenvalue of the perturbed Hamiltonian H (R.11), this agrees with the fact

that 7 is a canonical parameter along trajectories generated by H.

For what follows, it is useful to note that if we introduce

A=t pm! (2.24)
and decompose
x=—-Rlogu+ RZ, (2.25)
then the relations (B.21]) can be rewritten as
e? — % (1 — %) N R)Y —1 g = %6(1—252)%@)7 (2.26)

which shows that 2" and a; depend on p and ¢; only through the combination A.
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2.5 Instanton effects

Let us now briefly review what is known about instanton corrections to the free energy of the
theory compactified on a circle of radius R. First, in the unperturbed MQM, they can be
extracted either from the well-known exact formula for F(u) [[, or by inverting the difference
operator in (B-I§) and applying it to (2-§). In both cases, one finds®

[e.e] e}

e—27rnu —2mRnp

Tupl11) = Z; 4n(—1)" sin T2 Z nsin(rRn) (227)

=1

In 2d string theory, there are two types of non-perturbative corrections, which have their
origin in the two kinds of branes. They both have a ZZ-boundary condition for the Liouville
field and differ by the boundary condition imposed on the matter field: Dirichlet in the first
type and Neumann in the second. In (2.27), the first set of terms correspond to D-instantons,
while the second set of terms correspond to DO-branes wrapping the compactification circle.
Note that due to degeneracy between n (1,1) ZZ-branes and (n, 1) ZZ-brane (as well as their
possible fractions), their contributions are mixed in the n-th term of each sum in (.27) and
cannot be distinguished.

After adding tachyon perturbations, the fate of the two types of non-perturbative correc-
tions is quite different. Those which come from wrapped DO-branes do not change, whereas
the first term in (B.27]) acquires a very non-trivial dependence on the parameters ¢,, [B3]. This
dependence has been computed explicitly for the SL theory in the quasi-classical approxima-
tion, i.e. to the first two orders in the large p (or small string coupling) limit. Namely, by
solving a linearization of the Toda equation around its perturbative solution, one can show

that the n-th term in the first sum in (P.27) is replaced by [B3, B3,
A, A) e 50, (2.28)

where
2\ 1

S, = 24 {en(x) + (2 - %) Ne= 5 gin (Een(x))} , (2.29)

o o (3o ()] e

and we used the quantities appearing in the perturbative solution of the SL theory: the scaling
variable A (B.24) and the functions 2" ()\) and a;()\) defined in (R.26). Finally, the functions
0,(\) are solutions of

sinf,, = a;(\) sin (% 0 ) 0,(0) = mn, (2.31)

9 The second method does not allow us to fix the coefficients in the second sum since all terms are annihilated
by the operator in the left hand side of () Note also that for rational R some terms in both sums become
singular. However, in most of the paper, we assume R to be irrational. Therefore, we are not concerned about
these singularities and mixing of different contributions appearing for rational radius.
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and C'is an undetermined constant. It cannot be fixed by this method since A, is a solution
of a homogeneous equation.

Instead, the constant C' was found in by another method which is briefly explained
in appendix [A] and is based on the use of the relation (R.9), combined with orthonormality of
the wave functions V%, to evaluate the scattering phase ¢(FE). However, the obtained result,
given in (A.3), was unsatisfactory because of its dependence on the cut-off A. In fact, as we
show in the same appendix, the analysis in [BY has missed a series of instanton contributions
which can be responsible for disappearance of the cut-off dependence. However, the argument
explaining how this comes about is not rigorous and gives an instanton normalization factor
that differs from the one found later in section i by a factor of i. Therefore, in the next section
we present an alternative derivation from first principles, leading to the results consistent with
the subsequent string theory analysis.

3. Instantons from wave functions: SL theory

In this section we shall give a derivation of instanton effects in the SL theory using the
relation (R.9) between the two chiral representations. For the purposes which will become
clear in section [, we consider a slightly generalized version of the SL theory with an additional
integer parameter k, which is obtained from the general perturbation (B.12) by taking tx = t_
nonzero and all other parameters vanishing.

Before we start, we would like to make a general comment. In principle, a theory like
MQM, which is defined at the perturbative level, can have several non-perturbative com-
pletions [F7]. This manifests, for example, as an ambiguity in the choice of an integration
contour, which in turn determines which saddle points contribute to the integral and which
do not. We resolve this ambiguity by requiring that our specific non-perturbative completion
at finite SL parameter is the one that is obtained by analytic continuation from small ¢;. We
assume that the string theory side is also defined using the same procedure. This is expected
to ensure that if a match with string theory has been achieved in a small domain around
trx = 0, where matrix model quantities can be compared against string correlation functions,
it will continue to hold for finite ¢, as well.

3.1 Determination of the quasi-classical wave functions

Our starting point is the relation (R.9) which, using (R.7) and (R.§), can be rewritten as an
explicit expression for the scattering phase

1 > dflf+

ip(—p) —
e = — —J(xy,x),
5 ) (4, 2-)
1
J(xy,x ) =exp [z'g:+x_ — (i,u - 5) log(zyx_) — ity (xli/R + :B]i/R> (3.1)

— vy (T —p) —iv_(v_; _U)] J
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where we set £ = —u, recalling that p is a positive parameter. We are interested in the large
u expansion and introduce the scaling variable similar to (2.24),

)\k == tk ,U,%_l, (32)

which is kept constant in this limit. Then under the scaling

Tt~ ,ul/2> Ut ~ (33)

the terms in the exponent scale as p. Let us denote by vf ) and vil ) the order 4 and order
one contributions to vx. Then the first two orders of the expansion of the integrand J(z,, x_)
can be written as

j(l’+,1’_) = B(l,_i_’x_)eiS(er,x,)’ (34)
where
S(ry, o ) = zyx_ — plog(wyx_) — by (xi/R + x’i/R) —vP(as) =0 W(z2),  (3.5)
(1) (1)
Blay,z.) = (wya )2 (F @) (3.6)

The ‘effective action’ S(z4,x_) scales as p so that one can apply the saddle point approach
to evaluate the integral (B.1]).

At leading order, one finds the following saddle point equation obtained by variation of
S(zy,x_) with respect to z:
k/R

k
Tyro = p+ R ey + :B+8x+vf) (T4 =), (3.7)

which coincides with one of the equations (B.I9) for the profile of the Fermi sea. In principle,
it determines z, as a function of x_ for an arbitrary function vf). But we have an addi-
tional condition that after substitution of this function into S(x,,z_), the result should be
independent of x_ since ¢(—pu) on the left hand side of (B.]) is a constant. This is equivalent

to the requirement -4 S(z4(z_),2_) = (8,_5)(z4+(v_),2_) = 0 and leads to an equation
analogous to (B.7):

k
Tix_ = p+ = trat /T 4 :B_ava(_o)(x_; — ). (3.8)

It is easy to check that the two equations are compatible provided!®

U:(I:O)(x:ta _,u> :,U,|::|:T:|: + ag e_‘%/ (% e:t%T:t _ (% _ 1) 61%7—:&)
(3.9)

—log(xy/\/1t) — Ak(iﬂi/\/ﬁ)k/R _ % X+ a 6—%}’

10 A systematic approach to arriving at the equations below, which also works for the more general case
discussed in the next section, is as follows. We take the change of variables (B.1(]) as an ansatz and try to
choose the constants a; and 2 such that 7, = 7_ is a solution to the saddle point equation @) for all
7_. Substituting () into @), setting 74 = 7_ and requiring that the equation holds for large 7_, we get
() The knowledge of vg? is not needed at this stage since it vanishes for large value of its argument. Next
we can integrate the full equation (B.7) at 7 = 7_ to arrive at the form of vf) given (B.9). The constant of
integration is fixed by requiring that ’UELO) vanishes for large value of its argument. A similar analysis of (@)
leads to the form of v'*) given in (B.9).
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where 74 are reparametrizations of x4

2o (rs) = JEeEE3Y (1 +a ﬁ%&) , (3.10)

and 2" and a;, are functions of )\ satisfying

k? k _k)g k kg
" 15 (1 - E) N2 Z 1 g = = A e1m3) 7 (3.11)
The last two terms in (B.9) ensure the condition that vf ) vanish at 74 — +00, respectively.

After substitution of (B.9) into (B.4) and (B.§) and using relations (B.11]), the two equations
simplify, respectively, to'!
(1) =z_(71) (3.12)

and
T (14) = 24 (7-). (3.13)

These have an obvious common solution
Th =T-. (3.14)

Plugging (B.9) and (B.10) into (B.) and evaluating the effective action at the saddle point
(B.14), it is straightforward to check that all 7_-dependent terms cancel and one remains with
the following constant contribution to the scattering phase

6O (—p) = Sy (7), 2 (7)) = —plogp+ u (2 + e~ (1 —a2)). (3.15)

Using (2.1§), this result can then be integrated to reproduce the expression for the genus-0

free energy JF ), first found in the T-dual formulation in [p§]. In particular, by calculating
0,2 and 0,y at fixed t;, from (B.) and (B.I1)), and using (P.1§) for large u, we get

2Fo(n) = R0, (—p) = —Rlogu+ R X . (3.16)
One can relate these to the results reviewed in section P by noting that (B.14), substituted

into (B-10), gives us back (B.20) and eqs. (B.I1]) agree with (B.21). Besides, by integrating
(BM) and (B-§), the leading order solution (B-g) for vy may also be expressed as in (P:22):

Tt
vf)(xi; —p) = /O X:F(yﬂ:)dyﬂ: —plogry — Vi(xy), (3.17)
Ty

where Xy (z4) are the mutually inverse functions defined by the identification 7y = 7_ in
(B-I0) and 2% = x4 (+7) with 75 being a solution of the following equation

R R 1 1
To+ape (E eR™ — (— - 1) e‘ﬁcm) =—3 log pu + 3 X —aie " . (3.18)

1 Note that at this point the status of the two equations is different: the first one is the saddle point equation,
while the second ensures that at the saddle point the effective action is 7_-independent.
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Due to this, the effective action (B.J) takes the elegant form

Ty T_
S(ry,z-) =zi0_ — /0 X_(y4) dys — /0 Xy (y-) dy-
i o (3.19)

=r,r_ — /TOT+ (1) 2! (1) dr — /_T zi ()2l (r)dr,

70
where 2/, = 0,x1 (7). Note that this equation is valid for all (z,,z_), not just those that lie

on the extrema of S.

We also need to evaluate the subleading (one-loop) contribution to the integral (B-1]). It
comes from two sources: the subleading terms in the integrand evaluated at the saddle point

(B.14) which produce

1/2
Blay,x) _ (2:5_ ) / (e w) (3.20)
V2w, T4

and the result of the Gaussian integral around the saddle point which gives the factor

2 / 1/2
( m*) , (3.21)

1a

where all functions in (B-20) and (B-21]) are supposed to be evaluated at 7_. Requiring that
all 7_-dependence cancels, we can now fix the subleading contribution to v4(z4) to be given
by
W) = + D oe (25
vi (w3 —p) 5 og( o

1+ ag 6:Fk7i/R
1+ag (1— L) eFhm/R

:j:%log

] (3.22)

Substituting these back into the product of (B20) and (B.21), we see that at order u° the
only contribution to the scattering phase is the non-universal constant term 7 /4 coming from
the factor ¢ in (B.21]) (the same that appears in (.5)), consistently with the fact that the free
energy has an expansion in even powers of the string coupling. This gives, to this order,

_ g T
Gpert(—1) = —plogp+p (2 +e 7 (1 —a})) + 1 (3.23)

Substituting the above results into (£77), one finds that in the quasi-classical approxima-
tion the perturbed wave functions take the following form

eTE T4
U H(ry) ® ——— exp {:Fz/ X+ (y+)dy+| - (3.24)
: NESTEA setm)

This result agrees with the quasi-classical wave functions found in [BY].

Proceeding in a similar way, one can, in principle, compute further corrections in 1/u to
the perturbed wave functions W;*. However, we shall not do this and stop at the subleading
order since our main objects of interest in this paper are not perturbative, but instanton
corrections.
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3.2 Instanton contributions

So far we analyzed only perturbative contributions to the integral (B.]). But there are also
non-perturbative contributions which may have two origins. First of all, as we will see, the
saddle point equation (B.7) (or (B.1Z)) has other solutions besides (B.14). These solutions
generate exponentially suppressed contributions which can be written as

dzy iS
B(xy,x_)eS@e) = g(z_), 3.25
5 TW s +To)e (z-) (3.25)

where the subscript “inst” denotes that the integral over z, is along the steepest descent
contour of the instanton saddles. We have included an extra factor of 1/2 in the integral
since the full integration contour runs over only half of the steepest descent contour of each
instanton. This factor is present even in the unperturbed theory [Bg].'

Second, the functions vi(z4) entering the integrand in (B.J]) may also get instanton
corrections needed to cancel the x_-dependence introduced by the contributions (B.23). Let
us call them vﬁ“). In this paper we are interested only in the one-instanton effects and therefore
in (B.23) these corrections can be ignored because their effect will have double suppression.
On the other hand, we must take them into account in the contribution from the perturbative
saddle. To leading order in the instanton expansion, these corrections change this contribution

to

exp [wpm — i () — ™ (x_)] , (3.26)
where both x4 are expressed as functions of 7_. Here, (vﬁn) (x4)) denotes the expectation
value of US:H)(LF) at the perturbative saddle. At the leading order this is given by v&n) (x4)
itself, but there are subleading corrections involving derivatives of vﬁn) (x4). For our analysis
we shall not need the explicit form of these terms.

Adding (B29) to (B-26), we get the instanton corrected value of e*®. Taking the logarithm
on both sides, one finds

¢ = dpert — WIY =0 4G () = —ieT e G(z), (3.27)

where as usual we have ignored double suppressed terms.

To proceed further, in principle, we should find vﬁ“) by requiring them to cancel the
x_-dependent terms produced by the last term. In appendix [J we do this in the small ¢
expansion. However, we will see now that to find the scattering phase to the desired order,

we do not need to determine v5_3“> explicitly.

12 Due to the relation to the integral in appendix C.2 of [@] mentioned in footnote H, we can use their result
to express the original integration contour as a union of steepest descent contours of various saddle points. In
particular, for large u, we can follow @] to show that the steepest descent contour of the perturbative saddle
reaches the first instanton saddle. Therefore, we can express the original integration contour as a sum of the
steepest descent contour of the perturbative saddle ending at the first instanton saddle, half of the steepest
descent contour of the first instanton saddle and additional contributions that are further suppressed.
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A crucial observation is that the integral (B.23), and hence the last term in (B.27), is
periodic in 7_ with period 27iR, at least for small SL parameter and near Rer_ ~ 0.!3
Indeed, after changing variables to 7 by means of (B.I0), it is easy to see that all terms

/R or via the combination 7, —7_. Shifting the integration
km—/R

depend on them either through e
variable 7, by 7_, one achieves that the only remaining dependence on 7_ is via e , and
thus periodic. In principle, the periodicity could be spoiled by the presence of branch cuts.

For example, the saddle point evaluation of (B.29) gives rise to the factor

e\
(200" oo

where 73(:“)(7'_) is a solution of the saddle point equation (B.I13), different from (B.I4) and
giving rise to an instanton effect. However, from (B.I0) it follows that this factor is still
periodic for small £, and small Re7_. This will be enough for our purposes.

As a consequence of this periodicity, the last term in (B.27) near Re7- = 0 can be

J(z_) = Z g "/, (3.29)

neZ

expanded in Fourier series

with bounded |J,,|. Then (vﬁn)) and v'™ can be chosen to be equal to the parts of this series
corresponding to negative and positive modes, respectively:

(W@ (D) =D F e (1) = DGR (3:30)

This ensures that, on the one hand, the right hand side of (B:27) is independent of 7_, and on
the other hand, the series for <U_(,;n)> (resp. v"™) is absolutely convergent, and hence analytic,
in the region Re7 > 0 (resp. Re7 < 0) and vanishes at 7 — oo (resp. 7 — —o0). Since

<U_(,:n)> is given by vﬁn) plus subleading corrections involving derivatives of vﬁn), we can find

o™ from the expression for (v\™).

As a consequence of (B.29) and (B.30)), only the first term and the constant Fourier mode
Jo survive on the right hand side of (B.27). The latter can be obtained by integrating J(x_)
over 7_ in the range 0 < 7_ < 2mR and dividing the result by 27iR. Thus, we arrive at

2miR

_Zd)pcrt
¢ = Ppert — - R\/ﬂ / dT_/d7‘+ aj+x /2 oSy w ) (3.31)

inst

where we changed the integration variable from z, to 7, and substituted

Blzy,v_) =z, (-i)m (3.32)

13 Tn this case we could also use periodicity under shift by 27iR/k. But our choice allows to provide a uniform
analysis that will also work in the next section where several parameters ¢ are turned on.
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following from (B.6) and (B.23). Although the reasoning leading to this representation applies
only for small SL parameter, as explained in the beginning of this section, the finite parameter
case is obtained by analytic continuation from small ¢;. Therefore, if no singularities appear
on the way, the representation (B.31]) should still be true.

Before analyzing the instanton contributions in the deformed theory, it is instructive to
reproduce the results (B.27) in the undeformed theory from (B.3T]). In this case \x and ay
vanish and a set of solutions to (B.13), (B.1J) are given by

Ty = T_ — 2min, n=12.... (3.33)

Compared to the perturbative contribution, the only extra effect is that the logz, term in
the expression for J(z,,x_) in (B.]) is shifted by —2min, producing an extra multiplicative
factor of (—1)"e™2™#. We focus on the case n = 1. In this case in (B.31) we get

—— [ dry (=22l ) T e Err) — g2t dpert 3.34
0= | dr+ (=2hal) (3.34)
inst

This gives
—2mp

_ L —omy W _ __‘te
— er — = ? — . )
¢ = Gpor T 5 ¢ " = " Isin(n/R)

where in the last step we have used (R.1§). This gives the n = 1 term in the first sum on the
right hand side of (B.27).

Let us now turn to the deformed theory. To evaluate the last term in (B.31), first of all, one
should understand which other saddle points, besides the perturbative one (B.14), contribute
to the integral over 7, in (B.31)). It turns out that, instead of solving this problem, it is easier
to do this for the double integral in (B.31]). The point is that the original saddles, which
solve (B7) or (B-13), have a very non-trivial dependence on 7_, whereas in the double integral
this dependence is fixed by a second saddle point equation coming from the extremization in

(3.35)

the 7_ variable. Besides, the double integral is closely related to the one that was already
analyzed in [B9] and reviewed in appendix [A], so that we can borrow some of those results.

3.2.1 Double points

Since the effective action S(z4,z_) (B is symmetric in 2, and x_, the two saddle point
equations for the double integral in (B-31]) must also be symmetric. Due to (B.12), they simply
read as't

T4 (74) = 24 (72), r_(74) = z_(72). (3.36)

Solutions of these two equations can be given a nice geometric meaning as ‘double points’ of
the MQM complex curve [3] as follows. As discussed in section P-4, the perturbative saddle,
corresponding to (B.10) with 7, = 7 = 7, can be seen as a complex curve embedded into

14 Note that even though the second equation is identical to ), they have slightly different origin. Here it
is a consequence of the saddle point equation, whereas in (B.13) it was derived by demanding 7_ independence
of the phase.
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(1,0,

(20,)=(1,21)

2.0=(30.1)

5.,0):(3,2,1)

1,21

Figure 1. Section of the MQM complex curve by the plane x;, = Z_ and its double points for
R/k = 4/3 and R/k = 3/4. The positions of the double points are captured by (.37) with
the parameters shown in the figure. Due to rationality of R and relations 6V = 637, 69 = 6}
(R/k=4/3) and 07 = 0% (R/k = 3/4), double points with various parameters coincide and there
is only a finite number of them.

C? parametrized by (z,,z_) if we regard 7 as a complex variable. Then a solution to (B:38)
with 7, # 7_ implies that the two values of the uniformization parameter 7 correspond to
the same point of this curve. Mathematically, it represents a pinched cycle where the curve
touches itself.

Although one cannot draw objects in four-dimensional space, the double points can easily
be visualized by taking a two-dimensional section by the plane z, = Z_ [B4]. It results into a
one-dimensional curve which has the same parametrization x4 (7) as in (B.10), but now with 7
being pure imaginary, 7 = i, § € R.'> Then the double points are simply the self-intersection
points of this curve.

We illustrated this in Fig. [ where we showed such sections and the corresponding double
points in the two cases of R/k = 4/3 and R/k = 3/4. We have chosen rational values just
for the illustrative purpose because otherwise the curve would never close. But as a result,
there is only a finite number of double points. In the case of irrational R, which we are really
interested in, their number is always infinite.

It is easy to realize that for irrational R there are two infinite 2-parametric sets of double
points. We will label them by (n,m,v) with n € N, m € Z and v = 0, 1. The corresponding
values of 7o which solve (B.3q) are given by

) =i (om0 T 000, (337)

15 This is to be contrasted with the profile of the Fermi sea which is a section of the MQM curve by the
orthogonal plane x1 = T4 and parametrized by x4 (7) with 7 € R.
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where the functions 6% (\;) are defined to be solutions of the following algebraic equations

sin (67) = (—1)"ay sin (kj_TR 0,’;) , 07 (0) = mn, (3.38)

with ay given in (B.I1]). Several comments are in order:

e Since @7 are independent of m, in each of the two sets the double points with different
index m are related by a shift of the uniformization parameter by a multiple of 2wiR/k.
This is a manifestation of a discrete rotation symmetry of the MQM curve [B4]. In
particular, this symmetry implies that the instanton contributions generated by these
double points are also m-independent. Furthermore, due to the restriction on the range
of 7_ integration between 0 and 27 R, only k different values of m contribute to the
integral.

e The two series of double points labelled by v = 0,1 correspond to maxima and minima
of iS(zy,x_). The precise identification depends on the value of the parameters n,
R/k and A. One can see that at small \;, the integration contour in the undeformed
theory is deformed to the union of the steepest descent contours of only the maxima.
Indeed, according to (B.37), the maxima and minima lie on the imaginary 7_ axis along
which the original integration contour lies. Therefore, as we move along this axis, the
integrand decays as we move away from the maxima of iS(x,,z_) and increases as we
move away from its minima. This shows that for small Ay the steepest descent contours
of the maxima of 1S (z,, z_) lie along the original integration contour, while the steepest
descent contours of its minima lie orthogonal to the original integration contour. As
a result, for each n only one set of double points — the ones that give the dominant
contribution — contribute to the double integral in (B:3]]). Following the comment in
the beginning of this section, at finite A\, we prescribe to integrate over the steepest
descent contours of those double points that produce dominant contributions at small
SL parameter.

e In BY], only the double points (n,m,v) = (n,0,0) (for K = 1) have been taken into ac-
count and shown to generate the instanton contributions (2:2§). They are distinguished
by the fact that they all lie on the real line in the complex x, = Z_ plane so that the
fermion momentum p = (r, — x_)/v/2 vanishes. In appendix [i] we argue that taking
into account the double points (n,m,0) with m # 0, which were omitted in [BY], may
be responsible for cancellation of the cut-off dependence in the instanton normalization
factor found in that paper.

e The second set of double points, (n,m,1), can be obtained from the first one by a
simple flip of the sign of the parameter A\, which generates a shift in the uniformization
parameter by miR/k and exchanges 62 and 6!. Therefore, the instanton contributions
associated to the two sets should also be related by this simple flip. Actually, the
instanton contributions corresponding to v = 1 in (B.3§) were earlier found in [BJ
as solutions of the linearized Toda equation, but they were dismissed because it was
observed that forn = k = 1,1/2 < R < 1 and large SL parameter, the values relevant for
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the description of (T-dual of) the black hole background, the instanton action becomes
negative. However, this is not true for other values of the parameters and therefore, in
general, we cannot disregard them.

Thus, we arrive at the following result for the scattering phase

6 = Pport — m e=Su" (3.39)

k =
- AZ(
4 R/ 27 ; "

where S” and A” are the leading and subleading parts, respectively, of the contribution
generated by the double point (n, m, ), and

] 0 if S0 <S!
v(n) = { L S0 > S at |\ < 1. (3.40)

Finally, the factor k comes from the fact that within the period 27iR which we integrate over
there are altogether k saddle points producing dominant contributions, and the integration
contour after a suitable deformation runs along the steepest descent contour of all of them.
The factor of 1/2 appearing in (B.2]) is associated with the 7, integration and accompanies
the contribution from each of the k£ saddles. We shall now evaluate S/ and A’ explicitly.

3.2.2 Instanton action

The Euclidean instanton action is given by
S, = i0® — i (w (7), 2 (71)). (3.41)

Using (B-9), (B-9), (B-I9) and (B3Y), it is straightforward to obtain the following explicit

expression
2R . [k
Sy (py Ax) =21 |02 4+ (—1)” - = 1) ape " sin = 0|, (3.42)

which for v = 0 and k = 1 reduces to (B.29) found in [B2, B3, BY.

The quantity S? can also be written in more geometric terms so that the resulting ex-
pression is valid also in more general cases, as will be shown in the next section. Using the
expression for ¢(©) derived earlier, we can express (A1) as:

S’ =iS(zy (1), x_(11)) —iS (:5+ (Ti?,’,m)),x_ (Tﬁ?’um))) : (3.43)

where 77 is an arbitrary constant. Using (B.19), we can express this as

(n,m)

Ti
S, =iay(m)a-(n) — iy (f5")e_ (70) +i / o (7) 2 (r) dr
T1

(3.44)

() (n,m)

+i/ - (1) 2’ (1) dT:i/(%y) r_(7) 2! (1) dr,
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where in arriving at the last expression we have used the condition on the double points (B.30)
and integration by parts on the last term of the middle expression. This result can be written

as an integral over a closed cycle on the complex curve'¢

Sy = —Zj{ x_dr, (3.45)
T
where v is the image of the interval [TJ(:,’,O), 7{7?;,0)] under the map 7+ (zy(7),2_(7)). Using

Stokes” theorem, one can also obtain another useful representation

1 7o) o ,
S" = / do_dz, = —i / de / dr =2 / o <e%—1tk> de, (3.46)
Dl o Jrn 0

where D[v”] is a disk in C? with the boundary given by 7” and € and 7 are related to z
via the equations (B.I1]) and (B-I0) with u replaced by e and 74 replaced by 7 everywhere.
" appearing in the integrand is computed from (B-3§), (B-I1)) after replacing Ay by tpean!
everywhere. In arriving at (B.46) we have used the fact that due to (B.23), the Jacobian for
the change of variables from (z4,x_) to (e, 7) is 1.

Now let us analyze which of the saddle points labelled by v for fixed n gives the dominant
contribution. We will restrict ourselves to the leading instanton contribution with n = 1 and
assume that Ay > 0. Then one should distinguish two parameter ranges: 1/2 < R/k < 1 and
R/k > 1.17 The qualitative behavior in the two ranges is presented in Fig. B In the first
case, for small \, S{ < Sl while for large A;, the relation is inverted. Furthermore, at some
point S} becomes even negative and one may worry about the consistency of our expansion.
However, as specified in (B.40), it is the behavior at small )\, that determines which saddle
point contributes to the integral and in this case this is the saddle labeled by v = 0. Thus,
the fact that S} < 0 for sufficiently large ) is irrelevant because this saddle does not actually
contribute. Note however that for this argument to be valid, one needs to ensure that A?
remains non-zero as we increase t, so that the steepest descent contour of this saddle varies
continuously. We have checked numerically that this is indeed the case.

In the range R/k > 1, S? > Si for all \;, and thus it is the saddle point labeled by 1
that is dominant and contributes to the free energy. But again there is a point A$" where S}
vanishes which raises the same worries as in the previous case. Fortunately, as we show in
appendix [J, this is precisely the critical point where the system exhibits the ¢ = 0 critical
behavior: at this point the ¢ = 1 scalar field settles into one of the minima of the SL potential
and decouples, leaving behind a ¢ = 0 system coupled to gravity [59, B§]. As a result, we never
reach a point where S} can become negative. We have also checked that A} remains non-zero
all the way up to the critical point A" so that the steepest descent contour associated with
this saddle point varies continuously as we vary Ag.

16 The leading perturbative contribution ¢(©) to the scattering phase can also be given a similar geometric
representation since, up to non-universal terms analytic in pu, it is equal to a similar integral along the non-
compact cycle on the curve that coincides with the Fermi profile [@]

17 For R/k < 1/2, the vertex operator V, /R (E) grows in the weak coupling region and therefore it is not
marginal and is non-renormalizable. Therefore, we will not consider this range.
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Figure 2: SY as functions of the SL parameter in the two ranges 1/2 < R/k < 1 and R/k > 1,
for A\, > 0. The blue curves correspond to SY and the purple ones to Si.

3.2.3 Instanton prefactor

Next, we compute the factor A in (B:39). As in the case of the perturbative saddle point, it
receives two contributions: from the subleading terms in the integrand of (B-31]) multiplied by
e~™/* coming from the perturbative scattering phase, and from the Gaussian integral around
the relevant instanton saddle. As a result, it is given by

028 _0%S —1/2
i or2 TLOT_
AV =2me 1 \/—a x [(—i)2 det ( gzg agf; )]
OT4 07— or2 (347)
(1 / ' / —1/2
=il ()2l (r) = (el ()|
where the right hand side is evaluated at 7, = TJ(:;,O) and 7 = 7‘9{,0), and at the second

step we have used the representation (B.19) to compute the derivatives of the effective action.

Substituting (B-10) and using (B-37), (B-33), one obtains
712 k k—R,\]"*
vo_ —-1/2 € vy [ 212
AV =mu~ 2/ R/k S0 (@) [cot(@n) <R 1) cot ( I Gn)} . (3.48)

This completes the computation of the instanton corrections to the scattering phase in
the first two orders in the large 1 expansion. However, we are interested in the free energy
which is related to the scattering phase by (R.1§). When the differential operator on the
left hand side of this relation acts on a non-perturbative term, in our approximation it is
sufficient to consider its action only on SY. Due to (B.404), its effect is to bring down the factor
—2sin(6%/R). Thus, the non-perturbative part of the free energy from the n-th saddle point
is found to be

T (11, M) = AL e S (3.49)
where 7(n) is defined in (B.40), S” is given in (B.43) and
AV = k Aryz
no ST RN 27T SIH(Q%/R)

~1/2 3.50)

2 _ —1/2 (
N Z(@z/m eor)— (=1 o (1) E
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Again, for v = 0 and k = 1, this function perfectly agrees with (.30). But now we have also
obtained a concrete finite value for the overall numerical coeflicient

1
C=—r—==. (3.51)
8/ 2mR/k
This is the main new result of this section. The other difference from (P.30) is that the
dominant saddle does not always correspond to v = 0.

Although we have given the results for the n-th saddle point, only the n = 1 contribution
is significant. This is due to the fact that we have only computed the leading order term in g,
expansion for n = 1, and all higher order terms in g expansion around this instanton which
we omitted dominate over the n > 2 contributions. Furthermore, in obtaining (B:27) we have
approximated log(1 + e~#%rertd) as e~ i¢rrtJ and thus neglected multi-instanton contributions.
In particular, powers of the n = 1 contribution compete with the terms given above for
n > 2. In contrast, since ¢per is real and the n = 1 contribution is pure imaginary, they do
not compete with each other and the saddle corresponding to n = 1 indeed gives the dominant
contribution to the imaginary part of the free energy.

3.3 Small )\, limit

To facilitate the comparison of the above results to string amplitudes in sections [l and f, we
will expand them for small \.

First, solving perturbatively (B-I1]), one finds
k2 kYN 4 k 3

Using this in the equation (B-3§), one obtains

2 2
0" = mn + (—1)”% . sin (%) - 2k—Rz (1 - %) A2 sin (%) FOMS).  (3.53)

Plugging these results into (B.42) and (B.5(), one arrives at the following expansions

, Lo . (Tkn k? . (27kn
S/ =u [27m + (—1)"4\g sin (T) + 2 A7 sin ( I ) + O(Az)], (3.54)
—1)" -1/2 —1) -1/2
ar— L )m p DA {1 _ (-1)”1{;—2“ cot (@) sin (W—M) + O()\i)] . (3.55)
8sin () 27 sin (Z£2) R R R

Note several features of these results:

e The subleading contribution A, has a different scaling in u ~ g;' compared to the
non-deformed theory (B27).

e A, diverges for small SL parameter as )\,;1/ 2, and therefore the result is apparently
discontinuous at A\ = 0 where it is expected to be given by (B.3J). This can be traced
to the fact that for Ay = 0, we had a continuous family of saddle points labelled by 7_
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spanning the range 0 < 7_ < 2w R, while for A\ # 0 the 7_ integral becomes Gaussian
of width of order (u\)~'/? for fixed n and k/R. Clearly, when the width of the Gaussian
becomes comparable to 27 R, the current formula breaks down and we make a smooth
transition to the earlier formula valid for Ay, = 0. The transition occurs at A, ~ 1/(uR?).

e While S,, depends on the radius only through the combination R/k, this is not true for
A,

e From (B.54) we conclude that

0 if Agsin (Z2) <0

pn) =14 esin (%) . (3.56)
1 if Agsin (Z2) >0

This implies that AZ™ g pure imaginary.

Finally, using (B-:39) and (B.57), we can give the result for the ratio of the leading non-
perturbative corrections to the free energy in the deformed and non-deformed theories at the
Fi (1, A ;
ry = lim M = 44 sin (R) lim A”Y =

\ 7rk:
in
Ak —0 ?r(&;)(u) Ao—0 L 2\/27r kS

where it is understood that we pick the contribution from the dominant saddle specified by
7(1) in (B.56). Note that the ratio reduces to the ratio of the prefactors of the deformed and
undeformed instanton contributions because Si(l) is smooth in the \; — 0 limit.

leading order at small A\j:

—-1/2

, (3.57)

4. Generic perturbation and double SL

In this section we generalize the previous analysis to arbitrary set of parameters ¢, appearing
in the potentials (2.I2) and then illustrate the results in the case of just two non-vanishing
parameters. Since the derivation follows closely the one for the usual SL perturbation, we
will not provide as much details as in the previous section, but just state the main results.

4.1 Generic perturbation

Let us consider a perturbation generated by the potentials (B.19) with the only restriction
t, = t_j. Starting from the relation (R.9) and following exactly the same steps as in the
previous section, one can arrive at the following generalization of the results of section [3:

e Generalization of () is given by

. dz
glel=n / —= Iy, x),
o )
k
1 max
J(x,x_) = exp [z’:):Jra:_ — (z’u - 5) log(zyx_) —i g Ly (xli/R + :L"Ii/R> (4.1)

k=1

— vy (24 —p) —iv_(z-; —u)} :
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e Generalization of (B.I0), defining the new variables 7. in terms of z., takes the form
kmax
vy (7y) = e (1 + Z ag 6¢R”E> : (4.2)

e Generalization of (B.11]) determining the coefficients 2" and ay is a system of algebraic
equations

k k n
max k B max Y / F
ak—l—z alalk—ﬁ)\ke on —|—Z—)\le —2%) nz n'F( H Qs
I=k+1 I=k+1 S di=l—k
kmax kmax . F
1+ =e” + n el1-2r) , 4.3
Z‘” ¢ ZR el nz n!r( +1—n H“dl (43)
S di=l i=1
where the first equality holds for £ = 1, ..., ky.x, the sums go over ordered decompo-

sitions into d; > 1, and we used the parameters )\, defined in (B.J). As we prove in
appendix D], with help of the first relation, the second one can be rewritten in a much
simpler form

k
max l
e’ =1+ (1 - E) a?. (4.4)
e Generalization of (B.9) and (B:23) take the form:
= R R k
vio)(xi) = u{ifi +e 7 Z ar (k; etR™E _ (E _ 1) 6:|:R7'i) ]
k=1

k k
g max k R max
+e Y apay <1 — ﬁ) - e og(xs /i) = D Ak (e / /)"

k=1 k=1
)
Kkmax k 1 n
e —k2 /2R
+ZA€ 2 2 F__H eyl |
P di=k =1
. 1+ kmax _k eikTi/R
vil) = :FE log Lzt o (1~ 5) . (4.5)
2 1+ ZZI:“TX ay eTtre/R

e The saddle point equation of the x, integral in ([..]) for fixed z_, obtained by extrem-
izing the leading part of the exponential with respect to z,, takes the same form as

(B.12):
v () = (1), (4.6)

with the perturbative solution being 7, = 7_.

e As a consistency check, one can verify that the contribution to the integral in (f.1))
from the perturbative saddle point 7, = 7_ is independent of 7_ and gives the following
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result for the leading part of the scattering phase

k=1
Syl o S NN ) R
— e 2R Qaq. | -
£ ¥ — T (£ —nt1) _~ 1174
=1 n=1 R S di=ki=1
e For instanton contribution one arrives at the same expression (B.31]) for the scattering
phase
2miR
Zd)pcrt / / S( ) (4 8)
= Qper dr_ | dr. (-2 e\t .
= e o v (—ohe

inst

T —

where the effective action takes again the same form as in (B:19),
X (y4) dy+ —/ Xy (y-) dy-

S(ry,x ) =x 0 — /
. e (4.9)

v — / v (r) 2 (r) dr — /_ e (72 (7 dr.

70

T4

+(70)

We have not written down the value of 7y since it will not be needed for calculating the
difference S(z4,2_) — Gpert.-

e The saddle points of the double integral in (4.8) are given by solutions to the equations
identical to (B.36):
wi(r) =2 (r), a(ry) =2 (1), (4.10)
but with z. given by ([.2).
It is obvious from ([.I() that the instanton saddles coincide with the double points of the
complex curve. To find the double points, let us make the ansatz

Then for real (¢, ) the two equations (f£.I(]) become complex conjugates of each other and
the resulting complex equation can be conveniently rewritten as two real ones

kmax
Z a, sin(k() sin <kTR 9) =0,
k=1

kmax
sinf = Z a, cos(k() sin (k RR 9)

k=1

(4.12)

One can make a few general comments on their solutions:

o Let kg = ged{k :tr # 0}. Then an obvious solution to ([.1J) is
G =mm /Ky,
hmax (k R ) (4.13)

Sin(en,m) - Z(_l)mk/ko Qe sin T 9n m 9n,m|tk:0 = Tn,
k=1
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where m € Z, n € N and 6,,,, depends on m only mod 2. This solution is a direct
generalization of the double point (B.37) and exists for any set of parameters t;.

e In general, there are additional solutions, whose existence however can depend on the
values of parameters. An explicit example of such kind of double points will be consid-
ered in the next subsection.

e The transformation ( — ¢ + 27 /kg is a symmetry of the equations (f.13). Acting on
the set (f.13), it shifts the value of m by 2. Therefore, it is a general feature that the
instanton contribution from the saddle labelled by (n,m) depends on m only via the
combination m mod 2.

e The transformation ¢ — 27 — ( is also a symmetry of the equations ([.1J). Acting on
the set ([.13), it exchanges the double points labeled by (n,m) and (n,2ky — m) and
therefore preserves whether the second index is odd or even. Since these double points
are already related by the shift symmetry mentioned above, in this case this symmetry
does not lead to anything new. However, for more general solutions it could relate
double points that are not related by any other symmetry.

Let us now evaluate a contribution from a solution to (f.IJ) to the free energy. As usual,
it takes the form
A(C, 0) e~ Sms(60) (4.14)

Here Siu is given by (i times) the difference of S(z,,z_) given in (.9) evaluated at the
perturbative saddle 7, = 7_ and the instanton saddle (f.11). The final result, generalizing

(B2, is"™

Sinst(Ca 9) - 2”

0+e {Xk: (% - 1) ar cos(kC) sin (% 9)

+ 3 2 v cos((k - 00psin (10 H ,

k£l

(4.15)

and can be rewritten in an elegant geometric form similarly to (B.49) and (B.49)
" k
Sinst (¢, 0) = —i%x_dmr = 2/ 0 (eﬁ_ltk) de, (4.16)
¥ 0

where 7 is a closed cycle on the complex curve obtained as the image of the interval (i(R¢ —
6),i(R¢+6)) under the map 7 — (24 (7),x_(7)). The generalization of (B.50]) for the prefactor

) 260 = (~gamrm) (C i) o

18 Naively, one also obtains an imaginary contribution. However, rewriting it using only trigonometric func-

tions with arguments k¢ and (% — 1) , it can be shown to actually vanish.
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where the first factor comes from inverting the relation (R.I§) with help of (£.16) and the
second factor is the subleading contribution to the second term in (.§). As in (B.47), the
function A(C, 6) can be found to be

}_1/2 : (4.18)

A(G,0) = 2 [i(a (r)aly () — 2 (m)al (7))

where 71 are given by ([I1)). Collecting all factors together and substituting (£.3), one

obtains an explicit result
kmax _1/2
2Im {2 [T (14 a (1 - ﬁ) G ) . (4.19)
o==% k=1 R

Finally, the instanton contributions ({.14) should be summed over all (relevant) solutions

~1/2 .2 /2

_ K
A9 = 4R/ 27 sin(0/R)

of (f.12) with ¢ € [0,27). In particular, since these contributions are invariant under { —
¢ + 27/ kg, which is also a symmetry of (f.13), there are at least kg identical contributions of
each type. If one takes into account also the symmetry ¢ — 27 — (, one gets an additional
factor of 2, which is however absent for the instantons associated to ([.13) since in this case
the symmetry reshuffles the contributions that have been already counted.

4.2 Double sine-Liouville

Let us now illustrate the general results of the previous subsection on a particular example
where there are only two non-vanishing parameters ¢, and 9, which we dub “double sine-
Liouville”. In this case the equations (f.3) and (f.4) reduce to

o — 2k WP 2 Ak e(1=35)% |
R L4+ 2% (1-2) dgp e 0)7 (4.20)
e’ =1+ (1—%)ai+ (1—%)a§k,
while the first equation in (f.I3) takes a factorized form
sin(k() {ak sin (% 6’) + 2ayy, cos(k() sin (2]{;% R 9)} =0. (4.21)

This implies that the MQM complex curve has two different sets of double points and hence
in this theory there are two types of instanton effects. We will consider them now one by one.

4.2.1 First set

The first set is the one described in (f-I3) which exists for any values of the SL parameters.
It has (,, = mm/k, m € Z, and since the corresponding solution for 6 and the instanton
corrections depend only on whether m is even or odd, we will label them by v = m mod 2,
similarly to the usual SL case. In particular, we have

sin(0)) = (—1)"ay sin (% GZ) + agy sin <2k]; R 9;) : (4.22)
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where as usual different solutions are distinguished by the ‘initial condition’ at vanishing

values of the parameters: 67|, —x,,—0 = mn. The instanton corrections to the free energy take
the same form as in (B.49) where S” is obtained from (f.1) as

o [(R (2% 2R 2R (ko
S = QM{HZ +e? [(E — 1) gy, Sin (E Hn)+(— )Y <? -1+ <? — 3) a%) ay sin (E Hn)] } :

(4.23)
The prefactor is found as a special case of (f.19) with an additional factor k counting the
number of the double points within the period 27iR,

A = “_1/2m6%/2{ {za% sin ((% . 1) eg) + (~1)"a sin (LRR 9;)} (4.24)

8v/2m sin(0%/R)

X {cos(e;;) - (% - 1) (g COS <2k]; il 9;) —(=1)" (% — 1) a COS (% 9;;)] }

In the limit of small A\, and A\y; (with their ratio fixed), one finds

—-1/2

2k k 2k?
agk—ﬁ)\gk—l—(‘)()\g) ak:ﬁ)\k_R—<1_

2k
— | A O\
R) k Aok + O(N°),

2 k A2 (4.25)

2k
214+ (1= N4 — 1 A2+ O(A3).
*32( R) +R2( R) kT

Using this in the equation (f.23), one obtains

0" =mn + (—1)”% Ak sin <@) + 2k Aok Sin (27rkn)

R R R

k? k . (27kn 2k* (. 2k . [47kn
2k 3k wkn\ . (2mkn 5
— (=1) 5753 <2 — E) Ak Ao COS <?> sin < I ) + O(\°).
Plugging these results into (.23) and (£:29), one arrives at the following expansions

mnk 2rkn k 2mnk
S,”L:,u[27m+( )4)\ksm( R)+4)\2ksm< I ) Rz)\ksm< I )

4k2 [ 47mkn k2 rkn\ . [7kn
R2)\ ( I )—l—( 1)” IGﬁ)\k)\gkcos ( R)sm( R)—I—O()\?’)]

— 1)y~ 1/2 ‘ kn -1/2 Tk 1/2
AV = (8831% (27T sin (%)) (( 1) Ak + 8Ag cos ( Rn))

1 % cot (7;‘) sin (%) (( 1"\ + 4 cos( Zn)) (4.28)

)\k)\gk cos? (Thn)
N + (—1)8)\gy, cos ( mhn

(4.27)

X

— 31 —



Figure 3: Section of the MQM complex curve of dSL for R/k = 3/4 and various values of the
parameters A, and g, shown in the order of decreasing ratio Agx/Ax. In the last picture one has
passed a critical point where three double points merge together and leave behind only one.

4.2.2 Second set

The second set of double points corresponds to vanishing of the second factor in (.2]). Using
the resulting relation in the second equation in ([L.12), one finds that there is a two-parameter
set of such double points characterized by (. m, 6,,) which satisfy

a, sin (% Hn)

B 2a9 sin (% 9n)

cos(kCnm) = , sin(6,,) = ag sin <R ;z%c Hn) . (4.29)
Note that the equation on 6 does not depend on (. This is why 6, carries only one index
distinguishing the initial conditions at vanishing values of the parameters: 6,|y,—x,,—0 = ™n.
The index m on ¢, ,, labels solutions related by the symmetries ¢ — (+2n/k and ( — 27—,
so that on an interval of length 27 there are 2k such solutions. Since the different saddle points
labelled by m are related by the symmetry transformations, the contribution to the integral
from these saddle points will be independent of m.

Note that decreasing |A\ox|, one eventually reaches a critical point A, where the right
hand side of the first equation becomes larger than 1 and the solution ceases to exist. We
illustrate this situation in Fig. fJ. One can see how three double points, two of the second set
and one of the first, approach and then merge together turning into a single double point. In
fact, this is a generic situation as the condition for the critical point cos(k({) = %1 coincides
with the equation on ¢ from the first set. Physically, at this point nothing dramatic happens
to the system except that, exactly at |Aox| = S}, the one-loop determinant vanishes signaling
the emergence of a zero mode of the effective action. As a result, in the neighborhood of the
critical point the above analysis becomes inapplicable.

Let us now assume that |Agr| > AS; and evaluate the instanton effects generated by the
solutions of (f.29). The contribution of the n-th set of saddles to the free energy can be
written as

A, e S (4.30)
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where S,, and A,, are obtained from ([.15) and ([.19), respectively, upon specializing to our
case and using (£.29). Besides, A, should include the factor 2k, the number of the double
points within the period 27¢R. This results in

s | (R 2k R (R a} sin (£6,)sin (££46,)
S, =2 gn_—x | : il £ T R R R
:u{ € (k‘ )CLZkSlIl(R )+<k+<kj )a2k) . 251n(%9n) )
4.

—1/2 22 2 gin? (E=R g B
q Vk/Re aj_sin (Qk_R W) Yy sin (2k; Ren)
4427 sin(0/R) | | 22k sin (252 6,,)
L (4.3

[0 (%) men (220)]

In the limit of small A\, and A\y; (with their ratio fixed), one finds

2k . (27kn 2k> 2k . (4mkn
0, =mn — = Aok Sin ( I ) ~ (1 - E) A3, sin ( I ) + O\, (4.33)
i k? wkn )
= — — — . 4.34
cos(kCpm) Shar cos (F1) 22 Ak €OS < 7 ) + O0(N%) (4.34)

Substituting these results into (f.31)) and ([l.33), one gets

. (27kn A7 mkn 4k* , . [47kn 5
Sn = U [271"” — 4)\2k S1n ( R ) — 4)\2k tan <?> + ﬁ )\2k S < R ) + O()\ ):| s
(4.35)

(—1)np= /2 <Az <7rkn) , <27rk:n))_1/2
A, = t — 4\
1amsin (22) \Bhar \ R TR
] (4.36)

X

2k ™ 2kn 4k N\ op COS2 (Tkn)

1+ — Mg cot (—) sin ( ) - B R+ 090\,
R? R R 1_ 64;2% cos? (k)

k

Comparing the first order terms in (f.27) and ([L.33), we can find which of the two sets
of double points generates the dominant contributions. One obtains

2
. (27kn (—=1)" Mg 9
Sl — S, = 8\ sin 14+ ———F<| +0(X\), 4.37
" 251 ( R ) 8ok COS (’%k) () (4.37)
which implies that if Ao sin (%) is positive then the dominant contribution is due to the

second set. Otherwise it is the first set that is dominant. Furthermore, it is straightforward
to check that the condition

Ak

8 cos (’%k)

Mok| > A\, = + O(A?) (4.38)

ensuring the existence of the two sets of double points, also ensures that the prefactor of
the dominant instanton contribution, (f.2§8) or ({.3G), is pure imaginary. If it is spoiled, the
second set of double points does not exist anymore and we return to the situation described
in section g where a half of double points from the first set competes with the other half.
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5. D-instanton action in string theory

Our goal in this section is to compute the D-instanton action in the sine-Liouville theory
using CFT technique and compare it with the results of the matrix model analysis described
in section J. We will restrict ourselves to the case of (1,1) ZZ boundary conditions for the
Liouville field, although a generalization to (1,n) ZZ branes is straightforward.'®

5.1 String field theory conventions

We begin with a brief recollection of the string field theory results from section 3.3 of [IF] that
we shall be using. Let ¥, = ccV, be an on-shell closed string field with V. being a dimension
(1,1) primary in the matter plus Liouville sector. Then the string field theory one-point
function of 1. is given by

Adgisk(e) = % (coe) o =

where (-) denotes upper half plane correlation function and 7 is the Euclidean action of the

N | —

(co — o), (5.1)

D-instanton. The string field theory two-point function of 1. and an on-shell open string field
1, is given by

Adisk(Veto) = imT (Yetho) - (5.2)
The factor of i was found in appendix A of [I4]. The string field theory three-point function
of ¢. and a pair of on-shell open string states wg” =V and w,(f) =V is given by

Ag(ed 9@ = ixT / du (4o (i) OV () (5.3)

where the integral over u runs along the boundary of the upper half plane, i.e. along the
real axis. Inserting more on-shell open string vertex operators will lead to insertion of more
factors of [ duV,(u) into the correlation function. Finally, the effect of inserting a 1. into an
existing amplitude with required number of integrated and unintegrated vertex operators is

/d:cdy v 5.4)

to insert an integrated vertex operator

T
into the correlation function.

We shall also need the correct normalization of the string field theory two-point function
of two on-shell closed string vertex operators ceVY and ceV . The result for this, analyzed
in appendix A of [I9], is

: 1
Adisk(cEVc(l) CEVC(Q)) = %/ dy <CEVC(1)(2') (c(z) + E(Z))VC(2)(z, 2)> , Z=1y. (5.5)
0

Finally, the results for the sphere amplitude can be read out from section 3.1 of [IZ]. The
on-shell three point function takes the form:

4K2 <CEVC(1) ceV, CEVC(?’)> (5.6)

sphere ’

19 Up to first order in the SL parameter it has already been done in [B3].
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where k is the closed string coupling constant. Its relation to the D-instanton tension 7" needs
to be determined by comparing the decomposition of the annulus partition function into the
closed and open string channels, and depends on the specific D-instanton we are considering.
Every additional external closed string state requires insertion of integrated vertex operator

given in (5.4).

5.2 Normalization of the coupling constants

Let us now fix some normalizations. In the undeformed theory the instanton action is given
by

1
T=—=2mu, (5.7)

S

which defines g, and establishes its relation to the matrix model parameter u. Note that
this relation could receive corrections. However, since it is fixed by comparing perturbative
amplitudes and since perturbation theory gives a power series expansion in g2, this relation
does not get modified at order g;.

Next, we describe the sine-Liouville deformation as the result of adding the following
operator to the world-sheet action

Xk/d2z Vi/r(2, 2), d’z = dxdy and z = x + iy, (5.8)

where the precise normalization of the vertex operator V, introduced in ([.3) is fixed by
specifying the one-point disk amplitude

(Vo (7)) = sin(mw) cos(w), (5.9)
with x being the D-instanton location along the time direction. Various numerical factors

and a power of u that usually appear in this amplitude have been absorbed into the overall
normalization of V. The ghost part of the disk amplitude is normalized as

{c(21)c(22)c(23)) gnost = —(21 — 22) (22 — 23)(21 — 23) - (5.10)
Using (B.1), (6.9) and (5.10), we get

Agisk (ceV,,) :g (co eV, (i) = % ((9c(i) — 9e(i))ceVa (i) (5.11)

=2T'sin(rw) cos(wz) .
This amplitude can be used to establish a relation between the string theory parameter e
and the matrix model parameter \;. In appendix [{ it is shown that in the normalization of

the vertex operator in which (FIT]) holds, A, and A are related by

e = T2\ (5.12)
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5.3 First order correction

Deforming the world-sheet action by (p-§) corresponds to inserting into the world-sheet cor-
relation function the following factor

exp [—Xk / i Vk/R(z,z)] _ Xn: # ( / 2 Vs m(z. z))n | (5.13)

Expectation value of this operator on the disk, regarded as a function of the instanton position
x along the Euclidean time direction, may be viewed as a contribution to — Vg (x) where Vg ()
is the effective potential for the D-instanton position. Using (p.4]), we see that every insertion
of —Xk f d2sz/R(z, zZ) corresponds to insertion of a string field —kaca?k/R. Hence we can
express Veg(z) as

Vg(2) = VO (2) + VO (2) 4 -+, (5.14)

where V(™ denotes the correction of order (\j)™:

n—l1 (7‘(‘?\;)" Adisk ((ka/R)n) . (515)

Vi = (-1)

In particular, due to (5-I7)), the order & contribution is given by

VO (z) = 2w, T'sin %{: cos % . (5.16)
The potential has k£ minima and £ maxima at
xy =7m(2m+v)R/k, m=0,...,k—1, v=0,1. (5.17)

Whether v = 0 or v = 1 corresponds to the minima depends on the sign of A sin “—;. Adding
the value of the potential at the extrema to the action T of the instanton in the undeformed
theory, we see that in the presence of deformation we have two different types of instantons
with action T' + ATV(l), where

ATV
T

This result perfectly agrees with (B.54) taken for n = 1 provided we use the relation (p.19).
Furthermore, this shows that the critical points z¥ correspond to the double points of the

~ Tk
— (—1)” 27\, sin %. (5.18)

MQM complex curve labelled by (1, m, ). Since the dominant saddle corresponds to negative
ATV(I), we have at the dominant saddle

~ k
(—1)” Apsin = < 0. (5.19)
R
This is the same condition as (B.56)).

As will be discussed in section [, eventually we need to integrate over the instanton
position x. One can give an argument similar to that in MQM that the integration contour
along the real x axis can be expressed as the union of the steepest descent contours of the
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dominant saddle points. Indeed, since the dominant saddle points describe local maxima

Vet the integrand falls off along the real z axis away from these saddle

of the integrand e~
points and therefore the steepest descent contours of the dominant saddles are directed along
the integration contour of x. In contrast, the steepest descent contours of the subdominant
saddles are along the imaginary x axis and are orthogonal to the x integration contour. The
reader would have noticed that this argument is identical to that in MQM, with the role of x
being played by i7_ in MQM. This feature continues to hold in more general situations, and
the general result is that the x integration contour lies along the steepest descent contours of

the local minima of Vig .

5.4 Second order correction

We can also calculate the correction to the action to the order Xi in terms of the disk two-point
function. It is given by

2
’ﬂ' ~
V(z) = —7 )\i Adisk(cwk/R ka/R) s (5.20)
where, using (b.9),
1

29,

Agisk (Y, ceV,,,) = /0 dy (ccV,, (1) (c(z) + ¢(2))Vu, (2, 2)) , Z=1y. (5.21)

This integral however has a divergence as y — 0 which needs to be regulated using string
field theory. This has been done in [BG, [l]. Let us define

gs_l Adisk(cmwl mez)

_ 22
Jo(wi,wo) Adgisc(ceUe, ) Agiskc(ceWe, ) o

where U, is obtained from V,, by replacing the ¢ = 1 matter part cos(wX) by e“*X. Then we
have

A is Cévw Cng 9s W —2iwx
(ixz( k(ceV ))2) = Tooim |F56) 4 4 fp(—w,—w) € 4 2p(w, )| (5.23)

An explicit finite integral representation for the function fg(wi,ws) is given in appendix [G-]]
As is discussed there, an important feature of this representation is that it involves the additive
contribution —wjws log 3% depending on an arbitrary constant parameter 3, representing a
field redefinition ambiguity of string field theory. Physical results however should be [-
independent.

Using (b.11)), (5.20) and (5.23), as well as T' = 1/g, and the evenness of fg(w;,ws) under
w; — —Ww;, we get

~ k 2k
V() = =72 T A2 sin? (%) [fE(w,w) cos ?:c + fe(w, —w)] : w==k/R.  (5.24)
Note that this correction does not destroy the extrema (b.17) of the effective action. Therefore,

the order Xi shift in the D-instanton action is obtained by evaluating V®(z¥ ). This gives,

AT
T

~ . mk
= —7m2\Z sin® (—

R) [fE(w,w) + fa(w, —w>] (5.25)

— 37 —



Importantly, this combination is independent of the parameter 3, as is expected for physical
quantities. Although an analytic expression of fg(wi,ws) is not known in string theory, its
numerical evaluation shows that it satisfies a set of remarkably simple relations (G.5). In
particular, the first relation ([G.5a)) ensures that

AT® k2 ~, . (27k
T 2R2 >\k Sin (?) y (526)

which is perfectly consistent with the matrix model prediction found in (B:54) after using
(BM) and (B:I7). Thus, we found a perfect match between instanton actions in MQM and
string theory up to second order in the SL deformation parameter.

6. Normalization of the instanton contribution in string theory

In this section we analyze the overall normalization of the D-instanton contribution to the
amplitudes in string theory, given by the exponential of the annulus partition function. First,
we evaluate it in the undeformed background. Next, we find how it is modified by the SL
perturbation at the leading order in the perturbation in the parameter M. Then we extract
the second order correction.

6.1 Unperturbed theory

Let us first consider the subleading instanton contribution in the unperturbed theory. It
coincides with the partition function of the ZZ instanton which is given by

1 > dt 27rt —27rtn2R2
Ay =5 exp UO o7 Z(t)] . Z(t) = Z e (6.1)

n=—oo

We have included a multiplicative factor of 1/2 since the full integration contour contains only
half of the steepest descent contour passing through the D-instanton saddle point [B]. The
n-th term in the sum in (B.I]) is the contribution from the open strings on the D-instanton
that wind n times along the compact time direction. Particular attention must be paid to
the n = 0 term because the integral over t diverges as t — oo. This divergence can be treated
using open string field theory and yields [BY, Eq.(3.16)]

dt 1 iR
exp |:/2—t(€27rt—1):|zﬁ/d$:§ (62)

The contribution from the n # 0 terms gives a finite integral, at least for R > 1, which is
evaluated as follows [[[7), Eq.(3.16)]

1/2
exp [Z/ 2t 1—n?R?) _ e—27rtn2R2)] H (n2R2 — 1)
n£0
-1l

/R
ﬁ sm(w/R)
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Substituting (6.2) and ((.3) into (B.1]), we get
1

Ao = W ) (6.4)

which agrees with the n = 1 term in the first sum in (R.27) up to a sign. In fact, the sign of
(6-2) is ambiguous and depends on the particular choice of the integration contour.

6.2 First non-trivial order perturbation

We shall now compute the correction to the exponential of the annulus partition function to
the first non-trivial order in Xk A crucial observation is that the zero mode associated with
the D-instanton position x is lifted in the deformed theory. Let us therefore carefully analyze
the effect of this lifting.

In the undeformed theory, let £ be the zero mode of the open string field theory that
describes the freedom of translating the D-instanton along the Euclidean time direction. In
order to evaluate the ¢ integral, we need a relation between £ and the position = of the
D-instanton along the Euclidean time direction. It is given by [B,

1
GomV2

where the open string coupling constant g, is related to the tension T' of the instanton via

dé = dz, (6.5)

the relation ]

~omgl

Therefore, the contribution from the integration over £ is given by

% _ \/g/dx — (2nT)'?R. (6.7)

This goes in as a factor in the final expression given on the right hand side of (£.9).

(6.6)

In the deformed theory, the mode £ acquires a mass h given by the Ly eigenvalue of the
corresponding vertex operator. As a result, the contribution to the partition function from
this mode is now given by
% e 2 = p1/2 (6.8)
Comparing (B.71) and (f.§), and taking into account that in the deformed theory there are k
critical points on the circle that give identical contributions, we find that the ratio of the zero
mode contribution in the deformed theory to that in the undeformed theory is equal to

1 :%(%hT)—W, (6.9)

where the index 1 indicates that this result corresponds to the (1,1) ZZ boundary condition.

It remains to evaluate the induced mass h of the zero mode. The direct string theory
calculation involves computing the quadratic term in £ that appears in the effective action
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in the presence of the deformation (B.§). It is proportional to the disk amplitude with one
closed string vertex operator ¢V and a pair of open string vertex operators iv/2c0X, and
its calculation is described in appendix [Fl. Here instead we shall calculate h by an indirect
method based on the tachyon potential obtained up to second order in the SL parameter in
(b-16) and (B.24)). For this we use the fact that the string field theory action, expanded to
quadratic order in &, gives the result h&2/2. This can be compared with the potential Vg (z)
expanded to quadratic order in (x — x.) where x. describes an extremum of the potential.

Thus, we have

1 1 h
) air () (2 — x0>2 = 2 hgz = Am2g2
where in the last step we have used (B.5). Using (6.4), (F.16) and (5.24) and substituting for

the critical point =¥, (5.11), we now get

(z — )%, (6.10)

" (v . /{32 k - ]{72 k -
h = Vetr (@) = (=1)"" 27\, — sin (W—) + 412\ — sin® (%) fe(w,w)+0(\),

T R? R R?
(6.11)
where w = k/R.
Substituting the order \;, contribution to (B-I1) into (B.9), one finds
, K vy —1/2 —3/2 vy o (TR o ~1/2
ri=—=2nrh"T) = (2m) (=1)"" Agsin | — woe (6.12)
R R
where in the last equality we used (B.7). Using (b.19) we see that at the dominant saddle,
N ~1/2
Y = (2m)7%% |\ sin <”—Jf) 2 (6.13)

This result agrees with (B.57), provided we use the relation (5.17).

The presented derivation sheds light on the apparent singularity of the instanton contri-
butions in the SL theory at small A\, noticed in [BY]: it arises due to the lifting of the zero mode
of the instanton with the mass parameter proportional to A\g. Furthermore, the divergence
in the limit A\, — 0 is an artifact of the approximation used to get the above results. We
see from (B.10) that the x integral is Gaussian of width of order g,/v/h ~ (uhe) =2 for fixed
k/R. When this becomes of order 27 R, which is the range of x integration, the Gaussian
approximation breaks down. This occurs at A\ ~ 1 /(uR?), in agreement with the MQM
results. Once A\, becomes sufficiently small, the expansion must be rearranged and instead
of first expanding in powers of g, and then in A, the procedure should be reversed. This is
precisely what is done in the MQM framework in appendix [H and, as is expected, the results
show no sign of singularity.

6.3 Second order contribution

Note that in the computation of the previous subsection we have used only the order Xk term
in the expression for h. The inclusion of the quadratic order term is meaningful only when
we also take into account the effect of order A shift in the conformal weights of the non-zero
modes in the sum in (B.1). We shall now describe a procedure for doing this.
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First, let us note that the expression for the quadratic correction to h, as given in (6.11)),
is not quite correct since the relation (6.5) between £ and x can also get corrections of order
Xk. We shall deal with this by expressing the integral over ¢ as an integral over x, picking up
a Jacobian factor. In that case exp(—h&?/2) will be replaced by exp(—V/i(z.)(z —z.)?/2) and
we can perform the Gaussian integral over z, picking up a factor proportional to ( C’f’f(xc))_l/ 2,
while the Jacobian from the change of variable will give an additional contribution that can
be regarded as a part of the annulus amplitude as described in []. A similar Jacobian factor
is involved in relating the string field theory gauge transformation parameter and the U(1)

transformation parameter on the D-instanton, but it is also included in the annulus amplitude.

To facilitate the analysis, it will be useful to first consider a toy model where we have two
open string modes — a zero mode = and a non-zero mode y in the undeformed background.
Let us suppose that in the presence of a background closed string field A, the potential takes
the form:

1 2 2 2.2 2

Then after changing variables from string field theory degrees of freedom to x,y and sup-
pressing the corresponding Jacobian factors, the partition function in the deformed theory is
given by

de dy

—— —— eV = (CoX + C3A?) T2 (Cy + O )2
\/%\/%6 (2 3 ) (1 4)

C C
~ —1/2 - -2
(C1CN) (1 2 A) <1 2 )\) .

The first factor on the right hand side of this expression has the interpretation of the first

(6.15)

non-trivial order result discussed in the last subsection. The second factor can be identified
as the result of order \? correction to the effective potential for = in the presence of the
deformation. In particular, the quantity C3/Cy can be interpreted as the ratio of the order
A% and order A correction to V”(z) at the extremum. The third factor is the contribution due
to the correction to the mass of the non-zero mode. We can interpret the quantity C,/2C
as tadpole diagram in the undeformed theory with an external closed string field A and the y
field propagating in the loop. The factor of Cy comes from the A-y-y interaction vertex, the
factor of 1/C} comes from the y propagator and the factor of 1/2 comes from the standard
symmetry factor of the tadpole diagram. In full string theory the factor Cy/2C; will be
replaced by the annulus one-point function in the undeformed theory, with the contribution
from the massless internal modes removed.

Thus, in full string theory, we need to evaluate two factors. One is the effect of the order
A? correction in (B.I1]) on the x integral, which produces the following factor

(1 + (—=1)"*' 27\ sin (W—;) fE(w,w))_1/2 ~ 1+ (—1)"T A sin <%€) fe(w,w),  (6.16)

where as usual w = k/R. The second is obtained from the annulus one-point function of
the external closed string after removing the zero mode contribution. Denoting the annulus
one-point function of ¢V, by A(ccV, ), we can express the second factor as

1— 7 A(cEV,). (6.17)

— 41 —



Following [[]], we shall include in this the contribution from the Jacobian factors from the
change of integration variables from £ to x and from the string field theory gauge transforma-
tion parameter to the U(1) transformation parameter, both computed to order Xk As aresult,
the net extra contribution to the normalization of the partition function is now obtained by

taking the product of (6.16) and (f.17), which can be written as

1 — A A(ceV,) + (=1)"7A sin (”—;) Felw,w). (6.18)
Let gs gr(w) be the ratio
T (6.19)
Then using the symmetry w — —w of gr(w), (B.11]) and (B.7), one gets
A(ceV,) =2 gr(w) sin(rw) cos(w ) . (6.20)
Evaluating this result at z%, given in (p.17) and substituting into (f.1§), one obtains
1+ (—1)""'7w A, sin (W—;) <2gR(w) — fE(w,w)) : (6.21)

Due to (F.I3), this factor agrees with the one appearing in (B55) to order A, provided the
following relation is satisfied

2g9r(w) — fe(w,w) = % cot % : (6.22)

Let us decompose the function gr(w) into two pieces
9r(w) = gp(w) + Agp(w), (6.23)

where gg(w) is the result for the ratio (B.19) at R = oo keeping w fixed and Agg(w) is the
correction due to finite R. Thus, at R = oo, the relation (p.23) reduces to

20p(w) — fe(w,w) = w. (6.24)

It follows from the analysis of [BE], ]| that gg(w) is given by the integral in ([G.11). Note that
like fg(wi,ws), the function gg(w) involves a [-ambiguity in the form of an additive term
—%wz log 32, but this ambiguity is cancelled in the combination of fr and gg appearing in
(6:24), as is expected for all physical quantities. In appendix [G.2, eq.(G.17), we show that
the relation (£.24) actually follows from the results of [II] and the relation ([G.5d). We have

also checked that it holds numerically.

Substituting (B.24)) into (6.29), we find that the finite R correction to the annulus one-
point function should take the form

1
Agp(w) = Jw (% cot% — 1) . (6.25)
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We have derived its analytic integral expression in appendix and discussed numerical
and analytical tests of (6.23) in appendices and [G.J. This confirms agreement between
instanton effects in MQM and in string theory up to subleading order in g; and quadratic
order in the SL deformation parameter.

Note that if we did not introduce the additional integer parameter k labelling the SL
perturbation, we would not be able to take the limit R — oo keeping w fixed. In that case it
would be impossible to distinguish between R factors responsible for the w-dependence and
for finite radius effects.

7. Double sine-Liouville

In this section we repeat the analysis of the previous sections for the double SL perturbation,
considered in section L. in the MQM formalism and corresponding to the presence of two
non-vanishing couplings

N / 2V, (2, Z) + Aok / 4?2 Vo (2, %), (7.1)

where w = k/R. In this case, to the second order in the parameters Xk and X%, the effective
action is given by a simple generalization of (5.16) and (5.24)

V() = 20T [Xk sin(w) cos(w) + g sin(27w) cos(2wz)
— 5 M sin?(mw) (o (w,w) cos(2wr) + folw, —w)) )
— 5 My sin(2mw) (fi(2w, 20) cos(dwr) + fu(2w, —2w) |
T har sin(7w) sin(2mw) ( fel(w, 2w) cos(3wz) + fa(w, —2w) cos(wx))} .
Its derivative is
(@) = 2nTw sin(mw) sin(we) [—Xk — 8p cos(mw) cos(wa)

+ 27TX2 sin(7mw) fg(w, w) cos(wz) (7.3)
+ 1672, cos(mw) sin(27w) f (2w, 2w) cos(wz) cos(2wz) .

+ T Ak Aok Sin (27w ) (fE(w, —2w) + 3 fp(w, 2w)(4 cos®* (wz) — 1))] :
Thus, there are two types of critical points.

7.1 First type of critical points

The simplest solution to vanishing of ([7.3) is given by

T = TM/W, m=0,...,2k— 1. (7.4)
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At the critical point, the potential takes the following value
Ve () =27T [(—1)’”3:;C sin(mw) + Aoy sin(27w)
Ty .
— 5 M sin? () ( felw,w) + fe(w, —w))
. g X2, sin?(27w) ( Fe(2w, 2w) + f(2w, —Qw))
(= 1)™ A A sin(mw) sin(27w) ( felw, 2w) + fo(w, —zw))}

=4r?p [(—1)’”5:;c sin(mw) + Aok sin(27rw)]

(7.5)

+ it p [X% sin(27w) + 4X§k sin(47w) 4+ 16(—1)™ A Aoy, cos?(Tw) sin(mu)] :

where we used the relations (G.54)) and ([G.51) satisfied by the two-point disk amplitude, as
has been confirmed by its numerical evaluation. This result reproduces the expansion (f.27)
of the instanton action under the following identifications

v=m mod 2, Xk = 7T_2>\k, XQk = 7T_2)\2k, (76)

which are perfectly consistent with (5.13) and with the identification of critical and double
points in the previous section.

Next, we compute

" ~ ~
R = W = 27w | (—1)™ T\ sin(mw) — 4o sin(27w)
+ 272 sin?(7w) fp(w, w) + 8TAZ, sin?(27w) fp(2w, 2w) (7.7)

+ (=1)™ 7 Ap Agg sin (7w sin(27w) <9fE(w, 2w) + fe(w, —2w)>] :

Thus, the ratio of the zero mode contributions in the perturbed and non-perturbed theory is
given by

k ~1/2 _ (2m) =3/

P = 5 (27T hy) (=115 — 8o cos(mw) + o(A’?))_l/ S (79)

psin(mw)
where the factor k& comes from the fact that the critical points with even/odd m generate the
same contributions. Again it is easy to check that, with the identifications ([7.6]), this ratio
agrees with ([.2§).
Following the same analysis that led to ((.21), we can also compute the first order cor-
rection to 71,,. It is given by a multiplicative factor (1 — K,,, + O(A\?)) where
Ko = (—1)™271 N sin(7w) gr(w) + 27 gy sin(27w) g (2w)
msin(mw)
(—=1)™ A 4 8oy cos(mw)
+(—=1)" N Ao cos(mw) <9fE(w, 2w) + fr(w, —2w))] (7.9)
2 _ N 972 2}\' }\' 2
=Y ot (1) sin(ﬁw)((—l)m)\k + 4o cos(mu)) 4 T2k 208 () ,
R R Ak + (—1)™8)gy, cos(mw)

where we used (6.29), (G.5H) and ([G.5d). This result perfectly agrees with (£.2§).

[Xif];(w, w) + 16X§k cos?(1w) fu (2w, 2w)
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7.2 Second type of critical points

Another solution to vanishing of ([7-J) is found to be

Xk WX%
cos(Wxy,) = — — + —= tan(mw) fp(w, w) cos(ww,,)
8o cos(mw) 4o

+ 27 Ao Sin(27w) £ (2w, 2w) cos(2w L) cOS(W Ty, ) (7.10)
+ %Xk sin(7w) <3fE(w, 2w) (4 cos*(way) — 1) + f(w, —2w)>.
This can be solved iteratively as a power series expansion in \ as
cos(wn) = ——— T in(mw) (3 Frlw, 20) — fo(w, —2w) — 2f5 (2w, Qw))
8oy cos(mw) 4

B A3 tan(rw)

613, cos(mw)

Here the index m is supposed to numerate different solutions and due to the symmetries

r — x4+ 27R/k and x — 27 R — x, we expect to have 2k of them. Note that due to (G.5d),

the last bracket can be simplified to fg(w,2w)—2fr(w,w). At the critical point, the potential
takes the following value

<2fE(w, W) — 3fa(w, 20) + fa(2w, 2w)> FO0.  (7.11)

N2

Ve () = 27T [—X% sin(27w) — tan(mw)

16X
+g X2 sin?(mw) (fE(w,w) — fe(w,—w) + % fe(2w, 2w) — ng(w, 2w) + % fe(w, —2w)>

—g X2k sin?(27w) <fE(2wa 2w) + fp (2w, —Qw))

™ tan?(rw) <4fE(w w) —4fp(w,2w) + fe(2w 2w)> + O(X?’)}
25612, ’ ’ ’
= 2u [ Aoy, sin(2mw) — % tan(mw) 4 4m2w? A2, sin(47w) + O()\?’)] (7.12)
2%k

where we used ([G.54), (G.5d) and ([G.5d). This result reproduces the instanton action (f.33)

under the same identifications ([.G) for )\k and )\gk, while it does not depend on index m.

Next, we compute
Via() )
T 8ok

+ = )\k sin?(7w) <4fE(w, w) — 3f5(2w, 2w) — 2mw? cot(mu)) (7.13)

!

£ tan?(nmw (2f w,w) — f5(2w, 2w )],

0 (mw) (2w, w) = fu( )

where we used ([G.5H)-([G.5d)). Thus, the ratio of the zero mode contributions in the perturbed
and non-perturbed theory is

N2

h:

= 2mw? {éﬁgk sin(27w) — tan(mw)

+ 87AL, sin?(27w) f (2w, 2w) —

2

-1/2
2k (27Th)™"* = 2(27) %%y (zﬁ% sin(2ﬂw)—¥ tan(m)+o@2)> , (7.14)

R

r =
8ok
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where the factor 2k comes from the fact that all critical points generate the same contribution.
Again the identifications ([7.§) ensure the agreement of this ratio with (£.3G).

Finally, we compute the first order correction to ;. As in the previous case. It is given
by a multiplicative factor (1 — K + O(A\?)) where

N2 ~ )2
K = ——F tan(rw W) + 2w A9, Sin (27w 2w — k —1
4oy, (me)on(e) 2 Sin(2mw)gn(2) <32)\§k cos?(mw) )
(9 5
% mein(2mw) [)\2 <4fE(w, w) — 3fp(2w, 2w) — 21w? cot(m;))
k

v 64 \oy cos?(mw)

~ )\4
+64)2;, cos®(1w) fr(2w, 2w) — —=2— cos™(Tw) <2fE(w,w) - fE(Qw,Qw))]

322,
97120 ~ A2 2}’\ 2
— T cot (E) sin(27w) + t u;ﬁfk cos”(mw) , (7.15)
R R 1 — =3 cos?*(mw)

k

where we used (p.22) and ([G.5). This result perfectly agrees with ([.36)).

By the general argument given at the end of section f.3, the integration contour along
real x axis is given by the union of the steepest descent contours along the local minima of

Vog. Furthermore, these are the same saddles that also contribute to the integral over 7_ in
the MQM.

8. Discussion

In this paper we revised the evaluation of instanton corrections in the sine-Liouville theory and
its generalizations describing tachyon backgrounds of 2d string theory, which was initiated
in BY]. First, we found the instanton contributions in the framework of Matrix Quantum
Mechanics, where the results can be obtained non-perturbatively in the SL parameter(s) Ay,
and then reproduced their expansion up to second order in A\, from string theory disk and
annulus amplitudes. This has allowed us to solve several issues raised by the old results of [BY
and confirmed once more the perfect match between matrix model and CFT descriptions of
2d string theory, now extended to non-trivial time-dependent backgrounds. By T-duality and
FZZ conjecture, our results should also describe instanton effects in the black hole background
of cigar geometry.

It is worth noting that the results of the MQM approach for the instanton action (B-43),
or more generally ([.T5), and the subleading instanton contribution (B-50), or (I9), provide
predictions for an infinite set of disk and annulus correlation functions of tachyon vertex

operators with (1,n) ZZ boundary conditions. In this paper we extracted only a few of
them for the disk two-point and annulus one-point amplitudes at n = 1, and checked them
against numerical evaluation of their explicit integral representations. However, many more
predictions can be obtained by either taking n > 1, or going to higher orders in A\, or adding
more perturbation parameters.
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An interesting feature of these predictions is that all correlation functions of vertex op-
erators with (Euclidean) momenta k;/ R, k; € Z, appear to be given by elementary functions,
which should be contrasted with very complicated integral expressions derived for them from
the CF'T formulation (see appendix [G]). This suggests that there should exist a way to evaluate
these integrals explicitly due to some hidden integrable structure.

Another important feature of these amplitudes is that their original CFT expressions
are typically divergent and one needs to apply string field theory technique to convert them
to finite quantities. While this has been done for the disk two-point and annulus one-point
amplitudes, there are no explicit finite expressions for the higher point correlation functions
yet, although the general approach of how this should be done is understood.

It would also be interesting to go beyond the subleading instanton contribution and
compute higher gs-corrections. This should be possible using the Toda integrable structure
of the MQM formulation, whereas in CF'T the complications increase drastically with each
order in perturbation. Finally, an exciting research direction is to apply resurgence technique
to this system and eventually find its complete non-perturbative partition function.

Acknowledgements. We are grateful to Ivan Kostov and Spenta Wadia for discussions and
to Victor Rodriguez for sharing with us his code for computing numerically string amplitudes.
A.S. is supported by ICTS-Infosys Madhava Chair Professorship and the J. C. Bose fellowship
of the Department of Science and Technology, India.

A. Normalization factor and the cut-off

The first attempt to fix the constant C' in (2.30) was made in [BY. In this appendix we review
and extend this approach but find that this does not quite lead to the correct result. We
discuss possible shortcomings in this approach that eventually force us to the first principle
analysis described in section B

The approach of [Bg] was based on a combination of the relation (B.9) with the orthonor-
mality of the perturbed wave functions W2, which allows to rewrite this relation in the presence
of the cut-off A as

Z VA
. V2 TEI N
O = ﬁ/ dz, / dr_ WE(a ) €+ WE(xy) (A1)

where we took into account that for finite cut-off, 6(E — E’) in the normalization condition
should be replaced by p(F)dg g and then used (R.16). In the quasi-classical approximation,
the double integral can be evaluated by saddle point. Taking into account (£.29), one obtains
two saddle point equations

ry = Xy (o), o =X_(z4), (A.2)

where X are functions obtained from the two equations (B.20) by eliminating 7 in one of
them using the second. The main contribution to the integral comes from the trivial solution
(B:20). In the (x4, z_)-plane it represents a one-dimensional curve which is nothing but the

— 47 —



deformed classical fermion trajectory in the phase space. As a result, the contribution from
this ‘saddle contour’ is proportional to log A, which is the length of the trajectory in the
presence of the cut-off in terms of the uniformization parameter 7, and cancels the same

factor in ([A).

However, as explained in section B.2.T, there are also other solutions to ([A.4) which
correspond to the so-called double points of the complex curve. In [B9], the double points
corresponding to setting 7 = Fif, in the expression for xy, where 6,, are defined in (B.31),
have been taken into account. The contributions to the double integral (A1) generated by
these double points are exponentially suppressed compared to the leading contribution and,
after being integrated to get the free energy using (B.1§), can be shown to be precisely of the
form (B.2§). Moreover, in this way one finds that the constant factor C' in (B.30) is given by

V2T R
= YT (A.3)
8log A
where log A in the denominator is the same factor as in (JA]) because the contributions of
double points to the integral are finite and do not cancel it.

Of course, such result cannot be correct and it is natural to look for a mistake responsible
for the cut-off dependence. The analysis in section B.2.]] suggests a natural candidate for
such a mistake. It reveals that for a given n there is actually a discrete parameter family of
double points, denoted there by (n,m,0) with m € Z, which generate the same instanton
contributions as the ones considered in [BY]. The latter correspond in this notation to m =0
and the other double points are all obtained by an imaginary shift of the uniformization
parameter 7 — 7 4 2mimR. Therefore, one may expect that taking these additional double
points into account can resolve the issue.

Indeed, due to these additional contributions each instanton correction (£:2§) gets an
additional factor equal to the number of double points with fixed n contributing to the
integral (A.d]). Naively, this number is infinite and we arrive at even worse problem than
before. However, we will now provide a tentative argument as to why for a finite cut-off, this
number is also finite and actually cancels the A-dependence in ([A.3).

The idea is to apply the Bohr-Sommerfeld quantization rule which states that one state
of a quantum system occupies a volume in the phase space equal to 2wh. As a first step, note
that according to (B.23) the variable canonically conjugate to the energy is the uniformization
parameter 7. Therefore, if AE is the distance between energy levels, the maximal distance
that a fermion can travel along the uniformization parameter should satisfy |A71| = 27h/AFE.
On the other hand, from (B.17), after restoring A, one finds AE = 27wh/log A, which finally
gives |A7| = log A. Assumung that this result is independent of whether the fermion travels
in real or imaginary direction, one obtains that the number of double points with fixed n
contributing to the integral (A.]) is given by

_log A
2R’

M(A) (A.4)
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Multiplying ([A.3) by this factor, one arrives at a cut-off independent result

(A.5)

Remarkably, the new normalization factor differs from (B.5]]) taken for k = 1 just by a
factor of 4, which can be traced back to the factor of ¢ appearing in 1/(2miR) [ d7_ used to
extract the constant Fourier mode in (B31)). On the other hand, it is (B:5]) that is shown
to reproduce the string amplitude computation. Thus, the approach we followed here is still
unable to produce a fully consistent result. This is probably related to one or several problems
listed below:

e First of all, the argument based on the Bohr-Sommerfeld quantization rule is definitely
non-rigorous. Besides, it requires an extension to a complexified domain where the
uniformization parameter changes in the imaginary direction. It is tempting to think
that this is precisely the place where the factor of ¢ is lost, but it is difficult to justify
its insertion mathematically.

e Second, the representation ([AZ]) is based on the use of the orthonormality of the per-
turbed wave functions. It is well justified at the perturbative level, but may fail non-
perturbatively.

e Finally, this derivation completely ignored instanton corrections to the perturbed wave
functions which do arise as is demonstrated by an explicit calculation in the limit of
small SL parameter in appendix [B]

Given these problems, in the main text we follow a more solid approach which starts directly
from (R.9) without any additional assumptions.

B. S-matrix

In this appendix we show how the formalism of sections fJand [J reproduces the non-perturbative
on-shell amplitudes in the 2d string theory in the background (1)) with a compact time di-

rection. For this we need to reverse the order of expansion in the two small parameters. In

the computation of the contribution to the free energy in the deformed theory from a given

instanton sector, we first expanded in powers of g5 ~ 1/ for fixed A, and then expanded each

term in power series in \,. However, to compute the S-matrix, we first need to expand in

powers of the deformation parameters, so that the n-point S-matrix is given by the coefficient

of the n-th power of A\;’s, and only after that expand in powers of g;.

We shall work up to second order in the perturbation, which gives us access to two-
point amplitudes in the undeformed theory. Since the energy conservation forces the energies
of incoming and outgoing states to be equal, one can restrict the analysis to a single SL
deformation parametrized with fixed k. Our starting point is the expression for the scattering
phase (B.T]). Let us change the integration variable from x4 to y+ = log(x+/\/it) and evaluate
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the integral on the right hand side using the saddle point method. As we know, there is an
infinite number of saddles labelled by n € IN, with n = 0 corresponding to the perturbative
saddle. Since we are interested only in the one-instanton contribution, it will be sufficient to
consider the saddles labelled by n = 0 and 1. Furthermore, for each of these saddle points we
restrict ourselves to the first subleading order in the expansion in the string coupling constant.

Let us express the integrand J (\/me*, \/ime?~) given in (B) as

exp [f(y+) + Aeg(ys) + Mh(ys) + -], (B.1)

for some functions f, g, h, etc. In these rescaled variables the functions f, g, h are of order
and for large p we can evaluate the integral using the saddle point method. Let the saddle
point be at

Yr = Yo + Aky1 + Ay2 + - - (B.2)

Then after expanding in A, the saddle point equation implies the following relations

by _ dW) _ M), 9 W)g" (o) (9" (%0))* " (w0)
Pl =0 =" 2= P T (P 2P Y

Substituting this into (B.J]), keeping terms up to quadratic order in )\, and (y, — y»), and
carrying out the Gaussian integration over y,, we get

VERD 2 exp | ) + Muaton) + 4 () — 3 G20 (B.4)

where

D:_fl/+)\k<f_gl_g/l)

f//
(B.5)
+ AZ l h/ _ h// + g_/ g/// _ g//f_/// + g/(f///)2 _ g/.f(4) 7
f// f// f// 2(f//)2 2f//
and all functions are evaluated at .
To apply this to our integral, let us expand v as
vr (VEert) = phpus (ya) + pA; wa(ys) + - - . (B.6)

At this stage we do not know the functions u4+ and w4 except that they must decay at large
values of their arguments. Then introducing a convenient notation & = p + /2, we have the
following identifications

flys) =ipe? ™ —ifi(logp+yy +y-),
g(ys) = —ip (™ + R puy (o) +u_(y-)), (B.7)
h(ys) = —ip (wi(ys) +w-(y-)).

The n-th saddle point is given by

Yoo = =G —2min+O(u™?), G- =y — . (B.8)
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Substituting these identifications into (B:4), taking into account the factor 1/+/27 in (B)),
and multiplying instanton contributions by an extra factor of 1/2 to account for the fact that
the integration contour runs over only half of the steepest descent contour of the instanton,
we can write the scattering phase in our approximation as

15

P(—p) = —i <log Iy + 51—(}) : (B.9)

where [, is the contribution from the n-th saddle given by

e~ 2mmit k k
1, = exp |4 — iflog L — iuA (eﬁyov”—i—eEy*jLu n) +u_ _)
D P [ itlog fu = ipuy +(Yon) (y-)

(B.10)
v ) M k £ / i
— A 2 = e 4 (Yon) | + wi(Yon) +w-(y-) 7|,
where
D — —inll—2\ E 5—1 £ yon " ) _\2D® B.11
n — 1% k R\R € + u—l—(yO,n) u—l—(yo,”) k~n | ( : )
DP =w] (yon) — W (Yon)
k k2 k (B.12)

- (b s ationn) (5 (17 %) b~ lon) + o))

and we dropped O(p°) terms in D,, because they go beyond our approximation. The main
difference of this analysis from the one in section fJ will be that here we shall expand the
integrand in a power series in \;, while in section B the exponential factors containing A, had
not been expanded as they are accompanied by a factor of u = 1/gs.

B.1 Perturbative contribution

First, let us study the contribution log Iy from the zero instanton sector. Taking the logarithm
of (B:I() and neglecting the terms that have negative powers of i, one finds

log Iy ~ m—wlogﬂ+%
. ik? kg By T,
—ipAy || 1+ oRy )¢ e +up(—y-) +u-(y-) + @M(—y—) (B.13)

. 1 Z k _k 4 / ~ 2 ~
i (5 (1- ) (B +ut0) +unloin) +w_<y_>> Mo,

where )
2 1 ]{7 ]{? _k )
Dy = DY + 3 (E (E — 1) e Y +ull(—y_) — uﬁr(—y_)) : (B.14)

Extracting the terms of order A\, requiring that they should be independent of y_ and taking
into account that w4 must be decreasing functions, one gets two conditions which fix these
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functions at the perturbative level up to second order in 1/u expansion

1 k ik? _k
up(—y-) + @u'fr(—y_) = —erY = qu)(er) = — (1 — 2R2,u) e RYT,
e (B.15)
u(_p)(y_) = — (1 + 2R2,u) e RY-.

Substituting these results into terms quadratic in A} in (B:I3), one finds

B ) (et (1= 2 Y ehi) i) + )
2R 21 ) \° 2R ) © YT W=

—i ]

+ R
(2B e (145 b 2 (B.16)
2R2 R e R e . .

As above, requiring that this expression is independent of y_ and taking into account that
w4 are decreasing functions, one obtains two conditions fixing them as

k2 ik 3k _2k

These results are perfectly consistent with the ones obtained for finite A;, in (B.9) and

(B:22). Indeed, inverting (B.10)), one finds
2k — R

Y+ _ 2
aé€

2R

[

L
R

=

9 _2
xe

1 -y
Ti::tb%—iryi—ake_%xe_ Ryi+-~-}. (B.18)

Substituting this expansion into (B.9) and (B.22) and expanding in power series in ), we
recover (B.17) and (B.17), respectively.

Finally, extracting the constant terms from (B.16), adding them to the first line in (B.13),
multiplying by —i, and keeping only non-negative powers of u, one obtains

R? 4
Thus, there are no corrections to the scattering phase at the subleading order in 1/u expansion,

except the constant term 7/4, as it should be. Using (B.1§), one gets that the free energy, up
to non-universal terms, is given by?

k2 s
(bpert = (1 - 10g,u - =5 )\2) + -+ O(,u_l, Ai) (B19)

R
Fpert & ) p?log p — kp 2. (B.20)

The coefficient of the A\ term should be related to the leading perturbative contribution to
the two-point S-matrix after we identify k/R = w and 27 R = §(w — w’). Thus, we find the
S-matrix

%5@) — '), (B.21)

which agrees with the explicit computation on the string theory side.

20 Recall that the derivative in (R.1§) is taken keeping constant tj, not .
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B.2 Instanton contribution

Next, we study the leading instanton contribution to the scattering phase which, as in section
B.3, has two sources: the second term in (B.9) and an instanton correction to the first term
appearing due to possible instanton corrections to u4+ and w4. To write them explicitly, we
represent

Uy = u( P)y = 2mm (m), wy = wf) + 6_2”“w$n), (B.22)

where u? and w® are given by (BI9) and (B:I7), while u™ and w!™ encode instanton

corrections and are still to be found.

Thus, on one hand, using (B:13), one obtains

. T in in i in
—i (lg fo)yp = —pe”*™ [Ak (ui () + (o) + ol ”’(—y_)) (B.23)

k —k L in in in { in
A7 (E (7o ehe Jul (o) + (0 (g wf)) o+ 5 >"<—y_>)],

where we neglected O(u’A2) terms multiplying ui because as we will see, they contribute

to the order beyond our approximation. However, we have kept similar terms involving wi »)

since w{™ will turn out to be of order y. On the other hand, from (BI0) we have

k) 17
|

; 1+%>\k<(1—%)6_§y7+(1+%
R—e
20 i En (- by erhrd (14 k

ud U 1% T N B24
XeXp{lﬂ)\k ((1—6_23k)6_1%y — (1— QZR@,U (1—e¥) ez’%y) ( )

2 )
P (1) ],

-2

IR
5| =

where we again neglected O(u°A?) terms. Expanding (B:24) in powers of \;, adding the
resulting expression to (B.23) and requiring cancellation of y_-dependent contributions, one
can fix all the unknown functions:

in 1 T k2
W) = 1 (1- ) (1 - 23%) e,

in ) i 2 2k2 - B
wi )(yi) - %,LL ((1 N ei%) + Rzzlu <€i4Rk — €i2Rk>) e_%yi.

Then the remaining constant terms in (B.23) and (B.24) give the instanton contribution to
the scattering phase

k k> . [2rk
Dinst = 5 e 2 [1 + 442 N% <sm <%) — R sin <%))} ) (B.26)

Finally, from (R.18) we obtain the leading instanton correction to the free energy

(B.25)

ie 2T

w0 () {1 g (o ()~ (7))

(B.27)

?inst =
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The Ag-independent part of this result agrees with (2.27), while the term proportional to
A? provides instanton contribution to the two-point amplitude in the undeformed theory. To
get the precise normalization, we use the relation (F.19). The two-point function is given by
the second derivative of Fj,q with respect to Xk which gives after substituting k/R = w

—2mp

20 p? sinfz(ﬂﬁ sin?(7w) {1 + i (% cot (%) - w? cot(mu))} . (B.28)

This needs to be compared to the instanton induced two-point amplitude computed from
string theory. In a power series expansion in g, = 1/(2wu), the leading term of this contribu-
tion is the product of e=2™ two disk one-point functions and the exponential of the annulus
partition function, while the subleading term is the sum of the disk two-point function with
the product of the disk one-point function and the annulus one-point function, each multiplied
by e?™ and the exponential of the annulus partition function.?! The latter is given in (£.4),
but reversing the steps in ([.9), it needs to be rewritten as

i 2R
[Ty B.2
R Rsim(/R) /0 v (B-29)

with the understanding that the integration over the instanton position x needs to be carried
out at the end. From the discussion above (5.I4) it follows that the relevant disk one-
point function is that of w¢eV,, which can be computed from (b.11). Taking its square and
multiplying by (B.29), one obtains the leading contribution

i (4m2p sin(rw))? /%R 5 el T
StRsm(t/R) o dx cos®(wx) = Sn(n/ 1) sin®(mw). (B.30)

Next we consider the subleading contribution. Using (B29), (F-11)), (F-23) and the fact
that the relevant string field accompanying the deformation parameter A is wA;ccV,, we
see that the net contribution to the instanton induced two-point amplitude from the disk
two-point function is given by

gs 1 (47 sin(rw))? /QWR 0 o

IS d ( ’ wr —w, — wr 2) ,— )

I SiRsm(r/R) ), x| fe(w,w)e™ + fp(—w, —w)e +2 fp(w, —w)

.2
3 sin(7mw) B
On the other hand, using (B:29), (5.11]) and (F.20), the contribution from the annulus one-
point function reads

(B.31)

i (4m2p sin(Tw)
8rRsin(m/R)

The factor of 2 on the left hand side accounts for the possibility of exchanging the two
external lines. Summing up (B.30), (B:31), (B:33) and multiplying by e~>™, we obtain the

21 We assume that the constant contribution, representing the partition function on surfaces of Euler number
—1, continues to vanish even for finite R.
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string theory result for the instanton contribution to the two-point amplitude to the first
subleading order in the string coupling:

% sin?(7mw) [1 + % (fE(W, —w) + 291%(“))} - (B.33)

The agreement with (B:2§) then follows immediately from ([G.54d) and (6.23).

C. Critical behavior and pure two-dimensional gravity

In this appendix we demonstrate that for R/k > 1, the instanton action, Slf(l) vanishes exactly
at a critical point where the system reduces to a theory with vanishing central charge. As
in section B, 7(n) denotes the value of v for which S has lower value, which according to
(B.5@) is 1 for positive A\ and 0 for negative A\z. The existence of such critical point in the
SL theory is well known [pd], but it was analyzed in relation to the instanton effects only in
the region 1/2 < R/k < 1 [BZ]. Here we redo the analysis for R/k > 1 and provide additional
consistency checks.

Let us consider the equation (B.11)) for the function 2 (\;) which is related to the second
derivative of the free energy. Taking derivative of the 1.h.s. with respect to 2 and equating
it to zero, we find that it reaches a maximum value at

e~ (17 5) % — % ( - %) (2 - %) . (C.1)

Substituting this value back into (B.I1]), we get the left hand side to be equal to

]._ﬁ k2 ]{} ]{j _1,1%
2_§{ﬁ<1—ﬁ)(2—ﬁ)&] . (C.2)

R

Equating this to 1, one finds a critical value for A

RGBT ey c3)

The significance of this critical value lies in the fact that for [\z| > A{", the left hand side of
equation (B.11) is less than 1 even when 2" is chosen so as to maximize the left hand side of
(B-I1l). Therefore, (B.11) does not have solutions anymore.

Solving (B.11]) near the critical point, one finds

— 2—k/R 1/2 2 2k 3/2
%—logl_k/R 20 +3 3 = d+0(577), (C.4)

where .
L= Jtelpdet
(1—k/R)(2—Fk/R)’

5:
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and we have chosen the smaller of the two solutions for 2", since as we increase |\;| from 0
to AY', Z should approach 2., from below. This implies

S % ll — (2 - %) 6% 4 % (2 — %) <6 — %) 5§+ 0(53/2)} , (C.6)

where we used the relation (B.50) between (1) and the sign of A\;. Substituting this result
into the equation (B.3§), one observes that at the leading order 95(1) vanishes, while at the
next orders it becomes

95(1) — ]{551/4 .
1 6R/ 1

/R

V6 3_% 4k>
R  R?

+ —) 5+ 0(8°). (C.7)

Finally, plugging the above expansions into (B.47), we obtain an expansion of the instanton
action near the critical point

s = 2y [% <1 - %) 5 + 0(57/4>] . (C.8)

In particular, Slf(l) — 0" and the instanton action never becomes negative.

Now let us verify that at the critical point we indeed reach the ¢ = 0 theory. To this end,
we define
p=p's, (C.9)

and take the limit 6 — 0, 4 — oo with p fixed. In terms of the new parameter we get a finite
instanton action and the subleading instanton contribution (B-50)

g7 _ 16v/6 (1 _ E) H5/4
" 5k/R R ’

gt IR R/R)UE () RNTE
! 16+/7 63/4 R

(C.10)

Both these quantities have the same scaling in @ as the instanton effects in the ¢ = 0 theory
with respect to the cosmological constant [0, F1].

Moreover, we can also check that the numerical coefficients also perfectly match those
in the ¢ = 0 theory. For this purpose, we compute and compare dimensionless combinations
of physical quantities that do not depend on the normalization of the parameters. As such
combinations, one can take, for example,

ro = Lﬂtm ., rn=8"4A (C.11)
(=0:%0)

where Fy, Si.st and A are the genus zero free energy, instanton action and instanton prefactor
of the ¢ = 0 theory, respectively. Their values can be found in the literature, see e.g. [B1], B2,

B,

i
=23, = . C.12
ro=2v3 " 30r (C12)
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To reproduce (C.132) from ([C.I0), first, one must take into account that the relation
between the free energy of the SL theory near the critical point and the one of the ¢ = 0
theory is expected to contain the factor k because in the case of perturbation by the operator
Vi/r (L3J) there are k vacua where the scalar field can settle down and hence we get &
contributions of the same ¢ = 0 theory. This leads to the relations

T =kF,, S =8, AW =fA, (C.13)

where Slf(l) and A'lj(l) are given in ([C:I0), while F, is obtained from F;, by i) expressing it in
terms of p and w, ii) dropping all terms analytic in g since they are not universal, iii) taking
the limit © — oo keeping p fixed. This prescription implies

. re re R 3 cr

The easiest way to find F is to note that, re-expressing F;™® back in terms of p and ¢, and

using (B-I6) and (C-4), one has
RFyE| =R(Z — X)) =—-2R5"*+0(5), (C.15)

2%

where |;, indicates that the derivative is taken at constant t;. On the other hand, the same
result is obtained by taking the second p-derivative of

32 K\
2= v /2
Fy =~ R (1 R) " (C.16)
with help of (C9) and (CH). It now follows from ([C-1@) that
2
"Fy = —8R (1 — %) pt/?. (C.17)

Then substituting ([C.13)), (C.17) and (IC.10) into ([C.11]), one easily checks that one indeed
recovers ([C.139).

D. Simplified expression for 2"

In this appendix we prove the relation ([£.4), i.e. that the equations

kmax kmax F (% _'_ 1) n
e+ Y @ =+ Yom Y, n,F(LJrl_n)Hadi, (D.1)
: R =1

I=k+1 l=k+1 S di=l-k
n>1
kmax kmax 1—\ (L ‘I‘ 1) n
1+ o =e’ + m B Qd; (D.2)
12:1: 1 ; 2?21;'—1 n!F(}%—l—l—n)g

e’ =1+ (1 - é) a?. (D.3)
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To prove this fact, let us multiply (D)) by -= D5 i [T, a4, and sum over k from
m t0 kmax. The resulting equation can be written as

kmax kmax m m+1
Zk‘ak > Had+— > > ) di]fas
=m Zm d;=k 1=1 I=m+1 Zm+1 =l i=1 i=1

(D.4)

NOERDE
Rzmm Z’?;i—l (n—m)!F(}iz+1 n—l—m Had

n>m

Next, we symmetrize the factor > . d; over all permutations of d;. If ¢ runs over n values,
the symmetrization amounts to the replacement

n 1) ml
E:dk+ 2;zz7;, (D.5)

where (1) = m are binomial coefficients. In the second term in (D.4), this gives rise to
the factor DR +1) 7> while in the term on the right hand side one obtains
F'(£+1)% _ I'(£+1) . I'(£+1)
nn—m)IT(Lk+1-n+m) nh-m)IT(t-—n+m) nn-—m-DIT(5-—n+m+1)
(D.6)
Thus, (D.4) takes the form
kmax kmax m+1
E I OlN | REE ) SETID O | O o
=m S, di=k =1 I=m+1 m+1dlzl
:kmaxm > r(L+1) I'(£+1) ﬁad
P A nn—m)T (L —n+m) nn—1-m)T(£-n+1+m) 11%

n>m

Noting that in the second term on the right hand side n is forced to be > m + 1 due to the
presence of the (n —1 —m)! in the denominator, and hence [ is forced to be > m + 1 due to
the constraint Y, d; =1, (D7) can be written as:

Sm = —Smi1; (D.8)
where
> S T(&+1) n
Sm l{:ak ad; — il R a0, (D.9)

Since the sums over k and [ become empty for m > k., one concludes from (D.§) that all
the 8,,’s actually vanish. Moreover, for m = 1 the second term in (D.9) coincides with the
last term (D.J). Therefore, using 8; = 0 in that equation, one immediately gets (D.3), which
proves the desired result.
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E. Normalization of the SL parameter

Our goal in this appendix will be to derive the relation (p-IF) between the deformation
parameter M. in the sine-Liouville string worldsheet theory and the MQM parameter ;. For
this we shall exploit the fact that by taking the derivative of the free energy with respect to the
deformation parameters we can generate the correlation functions of the theory. Therefore,
comparison of the correlation functions in different formalisms can be used to find the relation
between the deformation parameters. To this end, we introduce another set of deformation
parameters A such that by taking the derivative of the free energy with respect to the A's
we get the perturbative and the instanton amplitudes computed in the convention of [63, Bg].
We then proceed in three steps.

1. First, we compare the sphere amplitudes in MQM computed in section § with the sphere
amplitudes computed in [pF to find the relation between A, and A

2. Next, we compare the disk amplitude in string theory computed in section ] with the
disk amplitude in string theory computed in [Bf] to find the relation between A, and
Ak

3. Finally, we combine the two relations to determine the relation between Xk and Ag.

Note that during this analysis we never make use of the disk amplitudes computed from MQM,
so that the agreement between (p.1§) and (B.54) remains a non-trivial test of the equivalence

between the MQM and string theory descriptions.

We begin with step 1. Our starting point are the results for the scattering amplitudes in
the non-compact ¢ = 1 string theory for a state of energy w to go into n states of energies
Wi, -+, Wy, as given in Egs. (1.3), (1.4) of [f3]. We shall use a different normalization of the
external states by dividing by the energy w carried by the states, so that the amplitudes have
smooth w — 0 limit.?? In this normalization the amplitudes take the form:

3-point amplitude = i =" 6(w — w; — wy), -

4-point amplitude =4 1~ 6(w — w; — wy — w3) (1 + iw), w,w; > 0. (E1)
These formulas are in Lorentzian signature and for non-compact time direction, and the
parameter g in [pF is identified as 1/u in our conventions. To adapt these formulas for
Euclidean time, we should make the analytic continuation w — iwg with w on positive
(negative) real axis continued to positive (negative) imaginary axis. We should also replace
i0 (w—> ,w;) by 0 (wg — >, wp,). Finally, in order to account for the fact that the Euclidean
time circle is periodic with period 27 R, we need to take the wg’s to be quantized in units of
1/R and replace the Dirac delta function by R times the Kronecker delta function. Dropping
the subscript F to avoid cluttering, we can write the Euclidean version of the amplitudes as

3-point amplitude = R it~ 8,0y 100s 5

. . . (E.2)
4-point amplitude = R 17 *(1 — W) 0w oy +ws-tws » w,w; > 0.

22 As will become clear later, the overall normalization of the external states is not important, e.g. we could
have divided the amplitudes by 2w instead of w for each external state.
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Next, let us introduce couplings A, and write an expression for the free energy Fo as a
function of the \y’s so that upon taking derivative of Fy with respect to the —\i's we get
back (E.2) for w; = k;/R. Tt is now easy to check that the following form of Fy reproduces
the amplitudes given above:

R ks R o5y -1 R 550 LA
Fo=—gu N+ N — B MY Ao, nt gk AOZ(l—E)AnA_n+-~--(E-3>

n>0 n>0

For example, the three-point function of three zero momentum states is Ru~! according to

(EQ). The third derivative of Fy with respect to —Ag reproduces this result after we set A,
to zero. Similarly, (E.3) correctly reproduces the amplitude of four zero momentum states,
one zero momentum and two non-zero momentum states, and two zero momentum and two
non-zero momentum states. After restricting to the case where A_r = A are the only non-
vanishing couplings, the expansion ([E.3) reduces to

1

. C e 1 k o
R'F, = e M_l)\s WA — 1 AR + o1 (1 - —) WAL 4+ (E.4)

41 R

We shall now compare (E4) with the Taylor series expansion of the MQM free energy
in powers of small fluctuation du around a background value of 1 and in the SL deformation
parameter t;. First, since 9,5 = R¢®(—pu), by expanding (BI) to quadratic order in t,
we obtain

k2 -
R0, = —pulnp+p— pa; + O(ay) = —plnp+ p — = pRE £ O(al). (E.5)

Using this, we can calculate all the derivatives of JF required to expand it around some
background value of p in powers of ¢, and fluctuation du. Keeping only the cubic and higher
order terms in the expansion, we get

_ 1 k? L1k
R0 = — 5 (0p)* + o w2 (0p)" — &5 (6p)u™ it
S i . k (E.6)
2~ g2
Comparing (E-4) and ([E.§), one finds the relations
No =0 VI L AN (E.7)
0= OH, k= R 2 k= R AR - .

Note that in this derivation we only needed to compare the cubic terms. The agreement be-
tween the quartic terms is an added test of the correspondence between the sphere amplitudes
in string theory and MQM.

We now turn to step 2, i.e. the determination of the relation between A and the parameter
i used in section H. We shall do this by an analysis similar to the one we did above, but
using disk amplitudes instead of sphere amplitudes. To this end, we introduce the notion of
Faisk that plays the role of Fj for sphere amplitudes, i.e. it is the generating function of disk
amplitudes. We can also identify this with —V.g introduced in section [, but we shall work
with a fixed D-instanton location by setting = = 0.
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First, note that according to (E.I1), and the fact that the deformation parameter Xk
corresponds to switching on a string field background 7w\, céV,,, Fgiex is given by

~ k
=27\ T sin % ) (E.8)

to linear order in Xk The minus sign takes into account that the derivative of Fgiq with
respect to —Xk should generate the disk one-point function. We now compare this with the
disk one-point function computed in [BG], with the same normalization of the vertex operators
that was used in computing the sphere amplitudes (E.2). Tt is given by 2sinh(nw) for real
positive w in the Lorentzian theory. We need to divide this by w in our normalization of the
external states. After replacing w by iw and including the minus sign to account for the fact
that the derivative of Fgq with respect to — )i, should generate the one-point function, leads
to a contribution to Fgisk of the form

—4 Ny % sin ”—; : (E.9)

where the additional factor of 2 comes from the two contributions corresponding to w = +k/R.
Comparing (E.§) and (E.9) and using T' = 27, we get

So B M

Ak (E.10)

Tk mp w2
where in the last step we used (E.7]). This reproduces (5.12) up to a sign.

The above analysis does not determine the sign of the relation between A, and A since
Ak (equivalently ¢;) appears quadratically in all the formulae. We shall now show that if we
assume that the relative sign is k-independent then the double SL theory can determine the
sign. For this we consider the case of a four-point amplitude with outgoing momenta 0, k/R,
k/R and incoming momentum 2k/R. According to ([E.J), the corresponding amplitude is

given by
2k

Ru™? (1 — E) : (E.11)

This corresponds to a term in JFy
1 _ 2N\ ¢ o 2
3 Ru™? (1 - E) Ao A2 Aok (E.12)

where the factor of 1/2 compensates for the fact that the derivative with respect to Ak
produces a factor of 2. There is a similar term with the signs of the momenta reversed.
Therefore, when we set \_, = A\; and A_op = Agi, we get the following contribution in Fy

Ry (1 _ %) S0 A2 Ao (E.13)

On the other hand, using (f.1) for 0, = R¢© | and keeping only the terms proportional to

81t A2 Mgy, We get
2k\ 2 k3
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Using (E.]) with the same sign for all k& we see that (E.I3) and (E.I4) agree, provided we

choose the relative sign between A and Ag to be positive:?3

. k - 2k
A = — u Aot = — 1 Mot . E.15
k RM k> 2k R,U 2k ( )

It then follows from the earlier discussion that ([E.I() has positive sign and hence reproduces

(b-12) exactly.

F. Direct computation of the conformal weight of the zero mode

In this appendix we shall compute the correction to the conformal weight of the zero mode
due to the presence of the SL perturbation by directly analyzing the world-sheet diagram.
For this we need to compute the disk amplitude of a pair of open string vertex operators
corresponding to the zero modes and a closed string vertex operator corresponding to the SL
deformation.

The string field associated with the SL deformation has the form kacé V., with V, nor-
malized as in (f-9). On the other hand, the normalized vertex operator of the open string
zero mode £ has the form z'gox/ﬁcaX where the factor of iv/2 compensates for the factor of
—1/2 in the operator product expansion

1
0X (2)0X =———+ .- F.1
(20X (w) =~ 4+ (F.1)
and the factor of open string coupling g, arises due to the fact that we work in a convention
in which the string field theory kinetic operator for the open string field does not have any
factor of 1/¢2. According to (5-3) and the discussion above (F.14), the two-point function of

¢ in the presence of the SL deformation is given by
2T / du <(—7er) V(1) iV2g,c0X (0) i\/igoaX(u)> . (F.2)
0

We have restricted the range of u from 0 to co since the two vertex operators are identical and
the negative u region can be related to the positive u region by an SL(2,R) transformation
together with an exchange of two vertex operators. This has been compensated by the explicit
factor of 2 multiplying the expression. Now, if h denotes the conformal weight of the zero
mode ¢ in the deformed theory, then the effective potential will have a term h&2/2 and will
produce a &-€ two-point function —h. Equating this to (F.J), we get

h=—4ir®T g> N\ /0 " (ceV, (i) cOX (0) OX (u)) . (F.3)

We can evaluate the correlation function using (B.9), (B.10), (£.6) and (F.1), and find

~ o0 1 2 2
h = =2\, sin(mw) cos(wx) / du {—— + d }
0

w2 1+ u?

(F.4)

23 Since in any term in Fy involving product of Ai’s the sum of all the k’s must be even, it is always possible
to switch the signs of Ag’s with odd k’s without affecting any of our results. On the string theory side this
sign ambiguity corresponds to a translation by 7 along the Euclidean time circle.
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This integral diverges from the u = 0 end, but one can extract finite answer from this using
string field theory. Instead of developing the whole formalism from the beginning, we shall
use the existing results of ]| by mapping the world-sheet configuration to a more symmetric
form where the closed string vertex operator is inserted at ¢ as usual, but the open string
vertex operators are inserted at £ on the real line. Under the SL(2,R) transformation
z—= (24 6)/(1 — B z), the vertex operators at i, £+ are mapped to the positions:

i, —B =0, B—u=28/(1-p%. (F.5)
Using the relation between u and S given above, we can express ([F.4) as,

2w? 1

N 1
h = —4)\; sin(7w) cos(wz)/o dp [m e

} (B*+1). (F.6)

The integral (F.q) diverges for small 3. We regulate the divergence using string field
theory whose effect is to regard this contribution as the one coming from the sum of two
Feynman diagrams shown in Fig.2 of [[I]]. Of these Fig.2(a) represents the region § < € for
some small number ¢ and Fig.2(b) represents the contribution from the region ¢ < g < 1.
The contribution from Fig.2(b) gives

— 4N, cos(wx) sin(rw) /1 ap {12:);2 - Bz;gl]
e (F.7)
= — 4\, cos(wz) sin(mw) {%Mz - i + O(E)] -

The contribution from Fig.2(a), involving the open string tachyon contribution to the internal
propagator, cancels the 1/4e term, and we are left with

h = —27\,w? cos(wz) sin(rw). (F.8)

This agrees with the order \; contribution to (B-I]) at the critical points z = 0 and 7R/k.

G. Disc and annulus amplitudes

In this appendix we shall summarize the results for the disk two-point function and the
annulus one-point function.

G.1 Disk two-point function

The function fg(wi,ws), defined in (f.29) as a ratio of the disk two-point and one-point
functions of the vertex operators U, proportional to €% comes out of the analysis of [Bd, [T].
It is obtained by analytic continuation from the corresponding correlation function f(wy, ws)
with Lorentzian momenta by rotating the arguments by 7/2 in the anti-clockwise direction
in the complex plane:

fE(wl,wg) = f(z'wl, iWQ) . (Gl)
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The Lorentzian two-point function itself has the following integral representation

fwi,ws) = —% (1 — 2wywy 10%52)

92— 1/4 1/22 witw?)/2

1
d w2/2 1—wiw2 1 1+w1w2 »\7 r\7
sinh(7|wy |) sinh(7|ws|) / y[ —Y) (1+y) (Viey (i \wz\(zy»
0

1+ 2wiwoy

— 27312 9= Wi+ Ginh(r|wy|) sinh(r|ws|) - :
Yy

(G.2)

which is supposed to hold for real wq,ws. Some features of this equation are as follows:

1. \7|Lw| denotes the Liouville vertex operator e(?~1¥D¢.

2. The term given in the last line of ([G.3) is a subtraction used in [B] to make the y integral
finite. A detailed analysis from string field theory shows that in order to compensate
for this subtraction, we need to add —1/2 + wiws log 32 to the resulting expression, as

given in the first term on the right hand side of (G.2) [{]).

3. This additional term involves an arbitrary constant parameter (3 labelling the string
field theory. This shows that f(w;,ws) has an ambiguity in the form of an additive
term proportional to wyws. All physical quantities are supposed to be unaffected by this
ambiguity.

Using (G])), (G3), we can now write

1
fE(wl, (.UQ) = —5 (1 + 20)10)2 lOg 52)

9—1/4,1/29—(wi+w3)/2

/dy [y TR(1 - )t (] 4 gyl (Vi OV (i)

* sin(m|ws |) sin(7|ws)|)
0

27312 AHD)/2 i (7|wy |) sin (7 |ws)

1— lewgy] (G.3)

y2

where <\72L|wl‘( i)V, (0 )> is obtained from the expression for <\7|]:J1|(i)\7fw2‘(iy)> by replacing

(lwn], |we|) with (i]w], i|ws|). This function satisfies
fe(wi,wa) = fr(we, wi) = fe(—wi, —ws). (G.4)

The function fg(wi,ws) has been evaluated numerically in [Bg] for a range of values of
w1, wo.2* Using these results, we have checked that the following relations are satisfied

fe(w,w) + fe(w, —w) = —7Tw? cot(mw), (G.5a)
fe(w,2w) + fp(w, —2w) = —27w? cot(Tw), (G.5b)

24 We are grateful to Victor Rodriguez for sending to us the results of this numerical calculation.
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4fp(w,w) — 4fp(w,2w) + fg(2w, 2w) = 0. (G.5¢)

Note that the left hand sides of all these equations are independent of the parameter (3
appearing in ([G-3). From this it follows, in particular, that

2fp(w, —w) = 2fp(w,w) — fE(2w, —w) + 3fp(2w,w) — fr(2w,2w) = 0. (G.5d)
Finally, numerical results show that fg(w;,ws) also satisfies a more general relation:

fE‘((A)l, (A)g) —+ fE‘((A)l, —w2) = —TTWiW2 COt(?TuJQ), for w1 >wy >0. (G6)

In fact, the imaginary part of f(w;,ws) can also be calculated analytically with the fol-
lowing result [53:

fim(w1,wa) = % wiwe (coth(mwy) + coth(mws)) sgn(wy + we). (G.7)
This gives

fim(w, w) + fim(w, —w) = Tiw? coth(nw),
fim (W, 2w) + fim(w, —2w) = 2miw? coth(mw),
4 fim(w, w) — 4 fim(w, 2w) + fim (2w, 2w) =0,

fim(w1, wa) + fim(w1, —wa) = Tiwywsy coth(mws) ,

(G.8)

for w > 0 and w; > wy > 0. If we assume that the real parts of the combinations of f(w;,w;)
appearing on the left hand sides of ([G.§) vanish, then these relations reproduce the ones in
(G3), (G-6). However, we do not have an independent argument for the vanishing of the real
parts of these combinations.

G.2 Annulus one-point function at R = oo

The function gg(w), defined as the R — oo limit of the ratio (f.19) of the annulus and disk
one-point functions of the vertex operators U, similarly to fg(w;,ws), is obtained by analytic
continuation from the corresponding function g(w) with Lorentzian momenta by rotating the
arguments by 7/2 in the anti-clockwise direction [Bg, [1]:

ge(w) = g(iw) . (G.9)
The function g(w) has the following representation

o0

g(w) = Smh WM /dt/d:c[ it) (9/ D (2:£|zt)> o (W (2m2))

0

—%smuﬂwp(f——¥%+2w)

sin?(2mx

(G.10)

2

1
+2w log%,
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where [ is the same parameter that appeared in ([G.2). As usual, in the physical quantities
the S-ambiguity must cancel. Using ([G.9) and ([G.10), we get

00 1/4 9
2im? , 27 N\ Y /2
0 0
7 ) 627rt -1 ) 1 ) 52

The functions f(w;,ws) and g(w) were shown to satisfy some general relations []]. In
particular, equating (1.13) and (1.15) in that paper gives the following relation

n+1 n+1 n n

Z fwi,w;) + Zg(wi) =—i ij (1 — wai coth(mui)> :

=1 i=1 j=1 i=1 (G.12)
forw:t’-.-’wn>0, wn_,’_l:—wl—..._wn’

where we have set the constant C' appearing in [, Eq.(1.13)] to zero since this is required
by matching the string theory and the matrix model results. Specializing to n = 1, one finds

flw,—w) +2g(w) = —iw (1 — 7w coth(rw)), (G.13)
or its Euclidean version
fe(w,—w)+2g9p(w) = w (1 — Twcot(nmw)) . (G.14)
Combining this with ([G.5d), one also obtains
29p(w) — fe(w,w) = w. (G.15)

We have checked that numerical evaluation of the functions fg(w;,ws) and gg(w) does confirm
this relation.

G.3 Annulus one-point function for compact time

Finally, we calculate the annulus one-point function when the Euclidean time direction is
compactified on a circle of radius R.

Let us describe the annulus using coordinates oy, 05 with range
0<o, <m, 0<o0y<2nt. (G.16)
The boundary condition in the Euclidean time coordinate X is given by
X(0,09) =0, X(m 09)=2mnR forné€Z, X (01,09 4+ 27t) = X(01,02). (G.17)

Note that X is not allowed to change by a multiple of 2rR as oy changes by 27 since the
values of X at o1 = 0, 7 are fixed.
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Our goal will be to compute the one-point function of ¢@X(@1=2m%.02) for y = k /R, k € Z.
We shall evaluate it using the Euclidean path integral approach. For this we decompose a
general fluctuating field X subject to the boundary condition ([G.I7) as

X = aygsin(po)e™' + R, n€Z, ap,=ap_,. (G.18)

P,qEL
p>0

The Euclidean world-sheet action for this background is given by

1 m q
Sops = E/do—ld@ [(801)()2 + (ac,zxf] => - 1 ( ’t + ) |apq? +27n° R*% . (G.19)

P,qEZ
p>0

Therefore, the world-sheet path integral over the field X involves integration over a,, and
summation over the integer n, with weight factor

e Suws g0 X(2m2.02) — oy | — Z 1 < %t 4 ) |ap.ql® + iw Z ap.qsin(2map)e o2/t
P,qEL p,q€L (G20)

p>0 p>O

X exp<—27m2R2t +4Aminw R) .

Since the term involving a,, is independent of R, the integration over these variables
produces an R independent term that may be identified as part of the integrand appearing
in the first line of ([G.11)). The effect of compactification is then to multiply it by the factor

Z exp (—27m2R2t +4Aminwx R) = Z exp(—2mn*R%t) cos(4mnwz R) . (G.21)

nez nez

This gives the unregularized version of gr(w) to be:

o 1/4
2im? 9 9
_m/dt/dxﬂw(t,x)%exp(—Qﬂn R t) cos(47mw:)3R), (G.22)
0o 0 n
where
» 9o . » —w2/2
U, (¢, x) = n(it) <W 1(2 :c|zt)) (Wi (2m2)) A - (G.23)

The integral in ([G.29) diverges from the regions near x = 0 and ¢t = co. We have to follow
the procedure described in [}, 9] to subtract the divergent part and replace it by a finite
part. We choose the subtraction term to be

o 1/4
o2t _
—_— —2mn*R? 2. .24
W/dt/dl’ (sm Tma) Zexp ™’ R°t) — ) (G.24)

0 0
We have checked in subsection [G.4] that for this choice of the subtraction term, the finite part
that replaces this divergent integral has the same form as in the non-compact theory, leading
to
w dt w(t, ) ex 27Tn2R2 cos(drnwzx R G.25
9r(w) = smh 7r|w| / / Z p( t) cos( ) )
0

neL
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7 2 t 1 52
—; Slnh(ﬂ'|u]‘) W Zexp 27Tn2R2 ) — 2 — 5&]2 lOg Z .

nez

Comparing this with ([G.I1)), we get

o 1/4
2im?
Agp(w) = — m/dt/dx ilw(t,x)gexp(—%rﬁﬁ’zt) cos(4mnwz R)
o0 n#0 (G.26)
_L sinh(7|w]|) L Zex (—27n’R%t) |.
T sin®(27z) 4 P
n;é()

The matrix model analysis, described e.g. in ([.29), requires that ([5.24) should evaluate
to

1 s T
Agp(w) = Jv (E cot i 1) . (G.27)
The expansion of the right hand side for large R takes the form
™ w 4

In section [G.J we shall give an analytic proof of ([G.28) starting from ([5.2G) using the fact
that for large R the contribution to the integral is dominated by the small £, small z region.
We have also tested the full formula ([G:27) numerically by modifying the code developed in
[Bq). However, unlike in the case of [Bd], a large part of the contribution to the integral comes
from small ¢, small z region even for moderate values of R, and in this region the numerical
analysis suffers from significant error due to the fact that terms in both the first and the
second line of ([G.26) become large and only the sum evaluates to a finite integral. For this
reason the error in the integral is large and we have only been able to verify (G.27) with
about 10% accuracy.

G.4 Subtraction term for compact Euclidean time

While evaluating the annulus one-point function, we have subtracted from the integrand the
term ([G.24)). The n = 0 term in the sum was present even in the case when the time direction

was non-compact, and the effect of this subtraction is compensated by the last term on the
right hand side of ([G.2]). Thus, we are left with the term:

nez
n#0

1
dv vl —1 2p2
— de | ———— > v |, v=e 2, G.29
/ v / sin?(27x) Z ( )
0 0
The general rule for dealing with this term is that we need to first express it as a sum of
string field theory Feynman diagrams, extract its finite expression by properly treating the
Feynman diagrams and then add this contribution back. The four Feynman diagrams are

displayed in Fig. 7 of [E] and the regions in the z-v plane covered by these diagrams have
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Figure 4: This figure shows the different regions of the moduli space covered by different Feynman
diagrams contributing to the annulus one-point function.

been shown in Fig. 8 of [I]]. We have reproduced the last figure in Fig. []. Here a and ~ are
two parameters of the string field theory. The final results are supposed to be independent
of these parameters. The parameter § that appeared in the expressions for the functions
fr(wi,ws) and gp(w) is related to o and v as v = off. We shall take o and 7 to be large as
in )], and ignore terms containing inverse powers of o and 7. To the desired accuracy, the
regions (a)-(d) can be described as follows:

A 2 —
a2—§) , 0§27rx§7_1—v

(G.30)

where

-2
<1+$> 2 2 22 2, -2 1™
L(x) = 1-2 t7(2 — 1+ — 31
(x) 27 sin? (277) {co (2mx) —~°f }a v ( +472) (G.31)
and f = f(tan(mwz)) is another arbitrary function appearing in the definition of string field
theory.

We now note that for large R, the integrand in ([G.29) decays for small v. On the other
hand, the regions (a) and (c) have v < a2 which is small for large . Therefore, the
contributions from regions (a) and (c) will involve negative powers of « which we are ignoring

in our analysis. Thus, we only need to concentrate on the contributions from regions (b) and

(d).
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To evaluate the contribution from region (d), we express the integrand in ([5.29) as

d 2 p2
ds, 0= ﬁ (v™" = 1) cot(2mz) nzezv” = (G.32)

n#0

so that the integral over the region (d) will be given by the integral of € along the boundary
of (d) in the anti-clockwise direction. The boundary consists of four parts. Let us consider
them one by one. First, the contribution from the boundary at v = 1 vanishes since dv = 0
along this boundary. Second, the contribution from the boundary at x = 1/4 is also zero
because cot(2mx) vanishes for this value of x. Next, along the boundary between the regions
(d) and (c), v is bounded above by a~? and, as a result, the integrand is suppressed by
positive powers of a~!. Thus, we can ignore this contribution as well. This leaves us with the
boundary between the regions (b) and (d). To evaluate it, we set

2rx =yt (1 - a_2> : (G.33)
and integrate {2 over v. This gives the contribution from region (d):

v —2\-1 ' av _ "
- (1—a™) /(QQ_;) - 1) (G.34)

nez
n#0

where we have ignored terms containing negative powers of ~.

Finally, let us consider the contribution from region (b). In this case we change variables
to (¢, v) appropriate to region (b) [E]:

ome =yl (1 a4+ 0(ah) + O(y2 2)) , (G.35)
and express the integral (G.29) as

1 vl - (1= a7+ 0(a7h)
/(az_%) Y v / 2m sin?[y1g (1 — a2 + O(a~1) + O(y2¢?))] (G.36)

nez
n#0

The ¢ integral has divergence from the ¢ = 0 end. The divergent term is proportional to
dq/q?, but there are no divergences of the form dq/q. The string field theory rule for dealing
with these divergences is to replace fol dqq~'7® by —1/a [[]]. Operationally this is equivalent
to using a lower cut-off € on the ¢ integral and then removing all negative powers of ¢ from
the result of integration before taking the e — 0 limit. Using this step, we can replace ([G.30)
by
ey [ L n’R? Q.37
27T(oz)/((v ) D o (G.37)

az_%) Lo

new
n#0
This exactly cancels ([G.34), showing that no extra term need to be added to the expression

for the annulus one-point function to compensate for the subtraction term given in ([G.29).%

25 This cancellation can be traced to the fact that for the particular class of string field theories used in the
analysis, the relation between x and ¢ given in ) does not have a term of order ¢2. In a more general
version of string field theory the terms will not cancel, but the difference will be cancelled by another term
that involves exchange of the out of Siegel gauge field ¢o|0) [Jt]]].
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w A P B

Figure 5: This is a diagrammatic representation of potentially divergent contribution to the annulus
one-point function from the closed string channel. The line labelled by w denotes an external on-
shell closed string with energy w, the line labelled P is an internal off-shell closed string with zero
energy and Liouville momentum P, the vertex A represents a disk two-point function of two closed
strings and the vertex B denotes the disk one-point function of a single closed string.

One can also examine possible divergences from the closed string channel, corresponding
to the v — 1 limit. For non-compact Euclidean time and Euclidean external momenta this
limit does not produce any divergence [B@], but we shall now reexamine this for compact
Euclidean time coordinate for which the energies are quantized. A diagrammatic represen-
tation of the potentially dangerous contribution is shown in Fig. . The contribution from
this diagram is an integral over the Liouville momentum P which is taken to be close to
0, with the integrand given approximately by the product of the disk two-point function
fE(w,0)(2T sin(rw)) (2T sin(7P)) ~ —2w T?sin(rw)sin(7P) from ([G.§), representing con-
tribution from the vertex A, a disk one-point function of Liouville momentum P given by
2T sin(wP) from (B.10]), representing contribution from the vertex B, and the closed string
propagator proportional to 1/P2 Thus, the amplitude is proportional to

P
4w T?sin(mw) % sin?(7 P). (G.38)

This has no divergence from the P = 0 end.

As discussed in [, gr(w) receives additional contribution from the exchange of out of
Siegel gauge mode ¢y|0) and from the Jacobian factors for the change of variables from the
string field theory zero mode to the translation zero mode and the string field theory gauge
transformation parameter to the conventional gauge transformation parameter. However, all
these contributions can be determined in terms of disk amplitudes which do not depend on
R. Therefore, the computation of Agg is not affected by these contributions.

G.5 Analytic study of large R expansion of Agg

In this section we shall give an analytic derivation of ([G:2§) starting from ([G-2¢). For this
we define the function

F(u,v) = Z e~ cos(2mn) (G.39)
n#0
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Let us introduce a cut-off € on the lower limit of the x integral in ([G.26), analyze the unregu-
lated and subtraction terms separately, and at the end combine the two terms before taking
the € — 0 limit. The subtraction term given in the second line of ([G.24) takes the form:

o 174

2t
—27r/dt/dx L prno). (G.40)
sin®(27z)
0 €

It follows from ([G.39) that F'(u,v) is exponentially suppressed for u > 1. Therefore, in (G.40)
the main contribution to the integral comes from the region t ~ R=2 < 1 for large R, and we
can approximate the integral by

o 174

—2w/dt/dx,2LF(R2t,0) = —e—l/dttF(R%,O). (G.41)
sin®(2mx)
0 € 0

We now turn to the analysis of the unregulated part of Agg(w) given by the first line of
(G20). This can be expressed as

o 174

2im dt | desl,(t,2) F(R*,2w R G.42
—m/ /93 (t,z) F( ,2wR). (G.42)
0 €

Using the exponential fall off of F'(u,v) for u > 1, we see that the integration over t gets
significant contribution only from the region ¢t ~ R=2 < 1. Therefore, we can replace i,
by its small ¢ approximation, which can be found in appendix A of [Bf (see eq.(A.3) with s
replaced by 1/t). As a result, we get, up to an overall normalization,

oo 1/4 2,2
_ /dt/d:):F(RQt 2w Rx) t*ﬂﬂ (G.43)
sinh(7w) ’ sinh?(27x/t) .

0 €

oo

x / dP; sinh(27P;) e 2™/ (2 tanh(a /t)) 22 (VL (1) VE (i tanh(r2 /) v -
0
We could determine the overall normalization by careful comparison between our normaliza-
tion conventions and those in [B], but instead we shall determine it by an indirect method
later. Since the integration over t is restricted to a region of order R~2, the presence of
sinh®(27z/t) in the denominator restricts the  integral within a range of order R~2 and the
presence of the factor e 271/t restricts the P, integral within a range of order R~!. This

allows us to simplify the integrand in the large R limit. We define
y = tanh(mx/t), (G.44)

and express the integral, up to an overall normalization, as

[e.e] [e.e]

1 2
I 2 —3/2/ P, sinh(27 P, —2nP7/t
Snh(rw) /dt (R*t,0)t dP; sinh(2wPy) e ™1

° ’ (G.45)

< [y ) O 0V )

em/t
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Comparing this result with ([G.J) for small P;, we now see that it can be expressed in terms
of the unregulated part of fp(w,2P;) as

C o [o¢]
70/0[ 732 F(R?,0) /dpl sinh?(27 Py) _zwpf/t(fgnreg(W,2|P1|) + fe (w ,—2|P1|))a
0 0

(G.46)
where Cj is an (as yet) unknown normalization constant and fg° denotes the part of fg
given in the second line of ([G.3) with the lower cut-off on the y integral placed at me/t. It
follows from ([G:J) that in order to replace fz® by fr in (G:4G), we need to add to this

expression a term of the form

00 ) .
62’0 /dtt 32 F(R%,0) /dPl sinh?(27P)) e —2mPi/t 7
e
S " (G.47)
Cy e !

— dtt F(R?t,0).
MO/ (R21,0)

On the other hand, we know that the actual term that renders the original integral finite is
given by ([G.41]). Comparing the two expressions, we get

Co=4V2. (G.48)

Substituting this into ([5.40), we obtain the full expression for the large R approximation of

Ag(w)

Agp(w) ~ 2f/dtt 32 F(R%,0) /dP1 sinh?(27 Py) _2“P12/t<fE(w, 2|P )+ fe(w, —2|P1|)).
0

(G.49)

We now use the observation that P; is constrained to be small, of order R~!, and the result
(IG.G) to write the above expression as

o0 [e.9]

Agp(w) ~ —2V2w /dtt 32 F(R?t,0) /dPl sinh?(2w Py) e =27/t
o0 ’ (G.50)
— Tw / dt F(R*t,0) .
0

Using ([G.39), this integral can be expressed as

T —92mn2R2 w _ 71'2 w
AgE(w):—ﬁw/dtZe 2 Rt:—2—m Zn 22_@@ (G51)
0 n#0 n#0

This reproduces ([G.2§).
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