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Abstract: Spiking neural networks (SNNs), as the third generation of neural 9 

networks, are based on biological models of human brain neurons. In this work, a 10 

shallow SNN plays the role of an explicit image decoder in the image 11 

classification. An LSTM-based EEG encoder is used to construct the EEG-based 12 

feature space, which is a discriminative space in viewpoint of classification 13 

accuracy by SVM. Then, the visual feature vectors extracted from SNN is mapped 14 

to the EEG-based discriminative features space by manifold transferring based on 15 

mutual k-Nearest Neighbors (Mk-NN MT). This proposed “Brain-guided system” 16 

improves the separability of the SNN-based visual feature space. In the test phase, 17 

the spike patterns extracted by SNN from the input image is mapped to LSTM-18 

based EEG feature space, and then classified without need for the EEG signals. 19 

The SNN-based image encoder is trained by the conversion method and the results 20 

are evaluated and compared with other training methods on the challenging small 21 

ImageNet-EEG dataset. Experimental results show that the proposed transferring 22 

the manifold of the SNN-based feature space to LSTM-based EEG feature space 23 

leads to 14.25% improvement at most in the accuracy of image classification. 24 

Thus, embedding SNN in the brain-guided system which is trained on a small set, 25 

improves its performance in image classification. 26 
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1. INTRODUCTION 3 

Artificial Neural Networks (ANNs), especially deep neural networks, have shown 4 

good performance in machine learning such as pattern recognition. Although these 5 

methods are highly effective, they function differently from the human brain. In 6 

recent years, models inspired by the human brain function to mimic its ability in 7 

cognitive tasks have attracted the research community's attention [1]. Spiking 8 

Neural Networks (SNNs) are the third generation of neural networks with 9 

biologically plausibility [1]. Spiking neurons (the basic unit of SNN) simulate the 10 

process in which nerve cells take stimulation, generate action potentials and emit 11 

spikes, such that information transmission in neurons is done by propagating 12 

discrete spikes [2].  13 

SNNs are challenging to train because spiking neurons have discrete, nonlinear, 14 

and non-differentiable transfer functions [2]. Spike-timing dependent Plasticity 15 

(STDP) is a physiological unsupervised learning mechanism used for training the 16 

convolutional and fully connected (FC) SNNs [3]. In STDP, synaptic weight 17 

change is based on the temporal correlation between pre- and post-synaptic spike 18 

time [4][1]. ANN-to-SNN conversion is the second method used to training SNNs. 19 

In this method, first, an ANN is trained and, then the weights are transferred to the 20 

equivalent/corresponding SNN [2][5][6][7][8]. Spike-based backpropagation 21 

algorithms with the integration of spike timing information are the third method 22 

used for SNN training [1][9][10][11]. The non-differentiability of the spiking 23 

neuron is handled in spike-based backpropagation methods by defining a surrogate 24 

gradient as a continuous approximation of the real gradient [12][13] [14]. 25 
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The last method is the hybrid training technique which combines ANN-SNN 1 

conversion and spike-based back-propagation [15][16][17]. In this method, ANN-2 

SNN conversion is used as an initialization step followed by spike-based back-3 

propagation incremental training [15]. 4 

In this paper, SNN is trained with conversion method and compared with other 5 

training methods i.e. training from scratch and also hybrid training. Then, the 6 

trained SNN is applied as an image encoder in the image classification problem. 7 

To improve the separability of these encoded image manifolds, this encoder is 8 

embedded in a brain-guided system. Thus, simplicity and bio-inspiring learning 9 

algorithm of SNN is combined with the discriminative potential of the brain-10 

guided system.  11 

Experimental results on a subset of ImageNet dataset [18] show that this proposed 12 

method improves the performance of the SNN in image classification problem. 13 

The rest of the paper is as follows: In the “related works” section, we present a 14 

literature review about the existing brain guided models. In the “proposed method” 15 

section, the details of SNN are explained in model architecture and learning rule 16 

and use SNN in our brain guided system. In the “experiments” section, we describe 17 

our experiments and the obtained results. Finally, remarks and future work is 18 

provided in Conclusion. 19 

2. RELATED WORKS 20 

EEG is a non-invasive method that measures the electrical activity of the brain 21 

through electrodes that are placed on the scalp. These signals are widely used in 22 

research fields such as clinical diagnosis of diseases as Alzheimer's [19][20], 23 

Multiple sclerosis (MS) [21], Parkinson's [22] and, brain-computer interface (BCI) 24 

applications [23][24][25]. 25 
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 Researchers in cognitive neuroscience figure out that visual stimuli  creates 1 

discriminating patterns related to different categories in brain activities [26][27]. 2 

The human brain can recognize common patterns in stimuli quickly. Researches in 3 

this area will be grouped in two categories: 4 

EEG based visual stimulus Classification. In [28], linear discriminant 5 

analysis (LDA) classifier was used to classify EEG signals evoked by visual 6 

stimuli. In this research, several experiments have been performed on the different 7 

numbers classes and time intervals of the EEG signals. In [29], Fares et al. 8 

proposed an EEG-based bi-directional deep learning framework for visual object 9 

classification. This framework consists of three steps: extracting information from 10 

the EEG signal, feature encoding, and classification. The first step is to extract 11 

region-level information from the raw signals. All EEG signal channels are divided 12 

into the right hemisphere, left hemisphere and, middle group based on the physical 13 

position of the channel electrode. By calculating each channel's difference in the 14 

left hemisphere group and its corresponding channel in the right hemisphere and 15 

combining the obtained difference with the middle group, region-level information 16 

is extracted. The feature encoding step is performed to extract the EEG description 17 

from the region-level information through a stacked bi-directional long short-term 18 

memory (LSTM) network. After independent component analysis (ICA) based 19 

feature selection, SoftMax and support vector machine (SVM) are examined as the 20 

classifier. The classification accuracy on the ImageNet-EEG dataset [30] with 21 

SVM at the best performance was 97.3%. In [31], the RA-BiLSTM network has 22 

been introduced to classify brain activity evoked by visual stimuli. The RA-23 

BiLSTM architecture consists of a forward A-LSTM layer and a backward A-24 

LSTM layer. The difference between A-LSTM and LSTM is a channel level 25 
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attention gate. The accuracy of the proposed method on the ImageNet-EEG dataset 1 

is 98.4%. 2 

Human brain-guided system for image classification. Spampinato et al. [30] 3 

provide a new perspective on the “human-based computing” strategy for 4 

automated visual classifications. The idea of this method is that the model learns a 5 

discriminative space of brain signals from visual categories, and then the images 6 

are mapped to this manifold. LSTM is used as the EEG encoder in this method. 7 

Fine-tuned convolutional networks, such as AlexNet, GoogleNet, and VGG, are 8 

used as a feature extractor to encode the image. The feature vectors extracted from 9 

the images are mapped to the corresponding feature vectors extracted from the 10 

EEG signals by several regression methods, such as k-Nearest Neighbors (KNN), 11 

ridge, and Random Forest (RF). The output of this step is fed to the classifier and 12 

the image class label is assigned. The proposed method on the ImageNet-EEG 13 

database[30] achieves an accuracy of 83% for image classification. In [27], 14 

Kavasidis et al. proposed an approach to generate images using EEG visual evoked 15 

brain signals. The proposed method involves an encoder identifying a hidden 16 

feature space for classifying the brain signal and a decoder that converts the 17 

learned features into images using a deconvolution method. The encoder consists 18 

of an LSTM layer. Variational autoencoder (VAE) and generative adversarial 19 

network (GAN) are used for decoding to generate corresponding images. The 20 

ImageNet-EEG dataset was used to evaluate the proposed image generation 21 

method. A qualitative examination of the produced images shows that VAE 22 

performs better in displaying the object's structure and leads to more realistic but 23 

low resolution images. On the other hand, GAN has high-resolution but artificial 24 

images. The results confirm that both models can translate EEG features into 25 

meaningful images in corresponding classes. 26 
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Palazzo et al. [32] proposed a multi-model approach that uses deep encoders for 1 

images and EEG. The method presented in a Siamese configuration for joint 2 

manifold learning, and maximizing the degree of compatibility between visual 3 

features and brain representation. In this method, the EEG encoder consists of a 4 

convolutional network called EEG-ChannelNet. For image encoding, a pre-trained 5 

convolutional neural network (CNN) is used to extract visual features and apply 6 

them to a linear layer for mapping in shared embedding space. The ImageNet-EEG 7 

dataset is used to train the network and evaluate the proposed method. In the best 8 

case, using Inception-v3 in the image encoder, the EEG signals classification rate 9 

is 60.4% and for images is 94.4%. 10 

Researchers in [33] have proposed integrating explicit and implicit learning into a 11 

deep learning framework to analyze the content of EEG signals and stimulus 12 

images. The image is processed via a CNN-based encoder in the explicit learning 13 

path as well as a stimulus to stimulate the brain. In the implicit learning path, raw 14 

EEG signals are processed via LSTM. Then, K nearest images to the presented 15 

image is retrieved in the KNN regressor layer. Then, the mean of the EEG features 16 

corresponding to these K images are considered as the EEG-based description of 17 

the image. In this method, SoftMax and multi-class SVM are used as classifiers. 18 

The proposed framework using the ImageNet-EEG dataset[30] has achieved an 19 

accuracy of 94.1% at best. 20 

In [26], a method for automatic visual classification that uses an ensemble LSTM-21 

based deep network to encode EEG is introduced. This study proposed the 22 

LSTMS-B model to decode the activities of the human brain. This model is based 23 

on the standard Bagging algorithm, which suggests a voting strategy for decoding 24 

and classifying EEG signals. Separately, in the image encoding phase, the ResNet-25 

18 network and KNN, RF, and support vector regression (SVR) are used as 26 
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regressors to map the image features to the EEG features. The classification 1 

accuracy of the proposed method on the ImageNet-EEG dataset is reported to be 2 

90.16% at best.  3 

A two-step method for combining Gabor features from EEG data and features 4 

extracted from images is proposed in [34]. In this method, the feature vectors 5 

extracted by Inception-v3 are combined with the EEG feature vectors, and the 6 

classification is done by the new feature. The results showed that combining EEG 7 

and image features improves the classification accuracy on an EEG-image dataset 8 

(with 14 electrodes and images of six different classes) from 91% to 97%. 9 

3. PROPOSED METHOD 10 

There is a significant relation between the brain activation map and what evokes 11 

the human visual system (HVS) [32][35]. In other words, it seems that visual 12 

stimulus is encoded into brain activation map by the HVS, which can be sensed by 13 

EEG, fMRI, etc. Due to the high ability of the human in object recognition, it can 14 

be assumed that the brain's encoding system provides high separability between 15 

different visual classes. One of the easiest ways to extract the distinguishing 16 

information of brain function is EEG. Therefore, we have taken such useful 17 

information as a guide to distinguish between different classes of SNN-encoded 18 

images by inspiration from the brain function.  19 

In this work, SNN is chosen because of its higher compatibility with HVS [36] and 20 

its low achieved performance in classification problems [37]. It is expected that 21 

synergistic interactions between the brain-inspired coding system and the artificial 22 

networks can improve SNN performance and also HVS modeling by embedding 23 

the SNN in a brain-guided system.   24 
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As it can be seen from literature review, a human brain-guided system consists of 1 

three fundamental parts: (i) an implicit learning part or EEG-based encoder, (ii) an 2 

explicit learning part or image encoder and (iii) a manifold mapping from image-3 

based feature space into EEG-based encoding space. 4 

As shown in Figure 1, the proposed method for image classification consists of two 5 

stages: training and test stages. In the training stage, a LSTM-based network 6 

encodes the EEG signals corresponding to visual stimuli, and a classifier is 7 

employed to classify these extracted feature vectors. The SNN-based encoder is 8 

trained using these visual stimuli (images), simultaneously. Then, the manifold 9 

transferring block is trained to map the visual feature vector into the corresponding 10 

EEG-based feature vector, i.e. a mapping from explicit visual space to implicit 11 

EEG-based space.  12 

In the test stage, the SNN-based visual feature vector fed to manifold transferring 13 

block to find its corresponding implicit feature vector in EEG-based space. Finally, 14 

the classifier assigns a label to this vector. Therefore, there is no need for EEG 15 

signals in the test stage. 16 

 In the following, the details of each component of the proposed method are 17 

discussed. 18 
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Figure 1. Graphical abstract of the proposed model for image classification 

3.1. SNN-based Image Encoding 1 

In this section, the spiking neuron model is described, and the architectural details 2 

of the SNN-based image encoder are explained. 3 

3.2. Spiking neuron model 4 

In spite of ANN, a SNN composed of spiking neurons, such as Leaky Integrate-5 

and-Fire (LIF) neurons which are defined as follows[38]: 6 

�[�] = �[� − 1] +
1

�
(�[�] − (�[� − 1] − ������) ) 

(1) 

�[�] = Θ(�[�] − ���) (2) 

�[�] = �[�](1 − �[�]) + ������ �[�] (3) 
 7 

Here M[t] and U[t] denote the membrane potential after neural dynamics and after 8 

the trigger of a spike at time step t, respectively. Where τ represents the membrane 9 

time constant and X[t] is the input current at time step t. ��� and ������ are the firing 10 
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threshold and the reset potential, respectively. The output spike at time step t, 1 

defined as S[t], which equals 1 if there is a spike and 0 otherwise. 2 

The spike generative process is described with Eq. (2), where �(�) is the heaviside 3 

step function and is defined by �(�) = 1 for  � ≥ 0 and  �(�) = 0  for  � < 0. Eq. 4 

(3) illustrates resetting processes. 5 

In surrogate gradient learning method, the linear or exponential approximation of 6 

the gradient respectively represented by Eq. (4) and Eq. (5), is used during error 7 

back-propagation [15]:  8 

��(�) = � ��� {0, 1 − |�|} (4) 

��(�) =  ����|�| (5) 

Where α and β are constants, and x can be substituted by �[�] − ��ℎ. 9 

According to surveys conducted in [15], the term Δ� = � − �� (0 < Δ� < � ) is a 10 

good replacement for �[�] − ��� , where  t� is the last time step when the post-11 

neuron generated a spike, and T represents the total number of time steps. 12 

This replacement helps for faster access during training by be pre-computed and 13 

stored all possible values of gradients in a table. 14 

Unlike STDP, surrogate gradient-based learning enables efficient end-to-end 15 

training of SNNs [14]. 16 

3.2.1. SNN-based Image Encoder 17 

In this work, the above-mentioned idea (in Figure 1) is applied to the spiking 18 

neural network introduced in [15] which its architecture is tabulated in Table 1.  19 

 20 

 21 
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 Table 1. SNN model architecture with VGG5 structure 

 Layer Input size # 
kernel 

Kernel 
size 

pad Strid
e 

Output 
size 

Input layer Poisson Generator 3×64×64 - - - - 3×64×64 

 
Feature 

Extractor 
Layer 

 

Conv-1 3×64×64 64 3×3 1 1 64×64×64 
AvgPool-1 64×64×64 - 3×3 0 3 64×21×21 

Conv-2 64×21×21 128 3×3 1 1 128×21×21 
Conv-3 128×21×21 128 3×3 1 1 128×21×21 

AvgPool-2 128×21×21 - 3×3 0 3 128×7×7 
 

Classifier  
FC1  128×7×7 = 6272 - - - - 4096 
FC2 4096 - - - - 4096 
FC3 4096 - - - - 2 

 1 

In the input layer, the images are converted into spike trains. The Poisson generator 2 

function generates a Poisson spike train whose pulses are proportional to the pixel's 3 

values at the input [15]. 4 

More details of this spiking neural network is presented in [15].   5 

3.3. LSTM-based EEG Encoder 6 

The structure of the EEG encoder is shown in Figure 2. This network consists of a 7 

layer with n LSTM cells that followed by two fully connected layers. In the LSTM 8 

layer, the dimensionality of the output is m × n, which the last state (n in size) is 9 

fed to the first fully connected layer. The LSTM-based network can extract 10 

information from a long sequence of EEG signals because it can learn long-term 11 

dependencies [26]. The embedding layer has n neurons. The number of neurons in 12 

the classifier layer, N, is equal to the number of classes. After training this 13 

network, the EEG-based feature vector is extracted from the output of embedding 14 

layer. 15 
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Figure 2. Architecture of the applied LSTM-based EEG encoder, where (n) is the number of EEG signal 

channels. 

3.4. Manifold transferring 1 

It is worth noting that in the training set there is an EEG-based feature vector Yi 2 

corresponding to each image-based feature vector Xi. Obviously, Yis lie on a 3 

manifold embedded in Y-space and also for X-space. Therefore, the manifold X is 4 

corresponding to manifold Y. Manifold Transferring (MT) refers to a set of 5 

methods (e.g. KNN, Random Forest, Ridge regressor, etc) to find the 6 

corresponding instance in the manifold X for each test observation in manifold Y. 7 

The core of these methods is to find the best examples in the manifold Y which 8 

represent the test observation. Then, the vectors of X corresponding to these best 9 

examples are similarly combined to map the test observation into the manifold X. 10 

For example, in KNN manifold transferring, k nearest neighbors of the test visual 11 

feature vector O are considered from the training set. The neighbors are weighted 12 

by the similarity to the test observation which is usually the reciprocal of their 13 

distances to it which encoded in W∗. The corresponding instances in EEG-based 14 

manifold corresponding to these neighbors combined with the mentioned weights 15 

to represent the test visual vector O in the EEG-based manifold. In general form, 16 
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for the observation O in the feature space Y, W∗ is the weights of the training 1 

examples of Y that minimizes fidelity penalty term of � subject to the restriction of  2 

�. Included in the cost function  �. 3 

 4 

�(�, �) = ������
�

�(�, �, �) + ��(�) (6) 

Where α is the regularization parameter. 5 

In this work, the mutual k-Nearest Neighbors manifold transferring (Mk-NN MT) 6 

is introduced and compared with different MT methods. In this view, if two 7 

samples are in k-neighborhood of each other, they are neighbors [39]. 8 

In this approach, the visual feature vector of the test image is transferred to the 9 

weighted average of the EEG-based feature vectors corresponding to its �� mutual 10 

neighbors in the training visual feature space. If there isn’t any mutual 11 

neighborhood (�� = 0) for a test visual feature, the KNN manifold transferring is 12 

executed. The algorithm of Mk-NN MT is presented in Figure 3. 13 

 14 

Mutual k-NN Manifold Transferring Algorithm 

Input: � (# Neighbors), Y (Training Samples of visual feature space), X (Training samples of 

EEG-based feature space) , O (an observation or test sample in visual feature space) 

Output: Xo as the presentation of O in EEG-based feature space 

Step 1: Find and select � nearest neighbors of O in Y space named Y1, Y2, …, Yk sorted in order 

of similarity. 

Step 2: Find and select all mutual neighbors of O between Yi s. �� ≤ � denotes the number of 

these neighbors and update the set of selected Yis. 

Step 3: Calculate the weight wi of each Yi based on predefined similarity measurement. 

Step 4: Find Xi in the EEG-based feature space corresponding to the selected Yis. 

Step 5: Calculate Xo as the weighted average of Xis 

Figure 3. Mutual k-NN Manifold Transferring Algorithm 

 15 

 16 

 17 
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4. EXPERIMENTAL RESULTS 1 

To evaluate the proposed SNN-based brain-guided system, several experiments are 2 

conducted on the ImageNet-EEG dataset [24]. All the experiments are 3 

implemented in PyTorch, on the CPU of Intel Core i3-3600k- 3.70 GHz, with 4 

NVIDIA GeForce GTX 1060 with 48 GB RAM. 5 

4.1. ImageNet-EEG Dataset 6 

The ImageNet-EEG dataset presented in [30] has been used to train and evaluate 7 

the proposed method. This dataset is a subset of ImageNet [18], including 40 8 

classes of images. There are 50 images in each class; each image is displayed to six 9 

subjects (five male and one female) on the monitor screen for 500 milliseconds. 10 

These six subjects were homogeneous in terms of education level, age, and cultural 11 

background [30]. Pause time for displaying between classes was 10 seconds. Each 12 

person's EEG signals are recorded/ received by a cap with 128 electrodes (Brain 13 

products actiCAP128Ch). During the acquisition process, Brainvision signal 14 

amplifiers were used [26].  15 

The first 40 samples and the last 20 samples of each EEG signal were removed to 16 

reduce the effect of sequential images. Thus, the range (40ms-480ms) was used in 17 

this study similar to [26]. So, the size of input EEG signals is 440×128 (time × 18 

channels) .This dataset is divided into six different splits of training, validation, 19 

and test sets, with ratios of 80% (1600 images), 10% (200), 10% (200), 20 

respectively. 21 

5. Experiments and Evaluations 22 

The aim of this work is to improve the performance of the SNN in a two and three-23 

class image classification problem based on transferring its feature manifold to 24 
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more separable space via a brain-guided system. SNN plays a role of image 1 

encoder in explicit path of a brain guided system.  2 

Some classes were selected from the data set and trained for two-class 3 

classification problems. These classes are ‘Airliner’, ‘Pizza’, and ‘Fish’. 4 

"Airplane" and "Fish" classes are similar in terms of object structure in the image, 5 

and "Pizza" class is different from them in this aspect. Figure 4 shows some 6 

examples of images in these classes. Details of the number of images and EEG 7 

signals in these classes are given in Table 2. 8 

 

Figure 4. Some examples of the selected classes 
 9 

Table 2. Details of selected classes from ImageNet-EEG dataset in split # 0 
Class  # Train images # Validation images # Test images # Train EEG signal 

Airliner 32 7 11 192 
Fish 33 12 5 198 
Pizza 30 11 9 180 

 10 

As can be seen, each class contains a variety of images with variation in type, pose, 11 

light, background, etc. And also, the main body of objects are similar in different 12 

classes e.g. between Airline and Fish. In addition, the number of training images in 13 

each class is very small. It is obvious that SNN faces a challenging problem. 14 
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In the following, several experiments are conducted to evaluate the proposed 1 

method. 2 

Experiment I: In this experiment, we evaluate the EEG encoder in the implicit 3 

path of the proposed brain-guided network. The proposed LSTM-based EEG 4 

network was trained for two and three class EEG classification by setting the 5 

parameters as listed in Table 3. In this EEG encoder, EEG features are extracted 6 

penultimate FC layer. Therefore, the size of the EEG feature vector is 128. The 7 

results are shown in Table 4.  8 

Table 3. Architecture and parameter setting of the 
proposed LSTM-based EEG encoder 

Parameter Value 

LSTM layer 1 

Number of LSTM cell 128 

LSTM  layer input size 440×128 

LSTM layer output size 440×128 

Number of FC layer 2 

Batch size 16 

Optimizer Adam 

Learning rate 0.001 

Weight decay 0.5 

Epoch number 50 

Loss function Cross entropy 
 9 
 10 
 11 
 12 
 13 
 14 

Table 4. Classification accuracy of the proposed EEG encoder 

classes Train accuracy 
(%) 

Val accuracy 
(%) 

Test accuracy 
(%) 

Training 
time(s) 

Airliner/Fish 98.96 100 96.8 28 

Airliner/Pizza 99.18 100 96.43 27 
Fish/Pizza 98.91 100 100 27 

Airliner/Fish/Pizza 99.82 100 97.22 37 

Average  99.21 100 97.61 29.75 

As it can be seen from Table 4, this proposed encoder can encode EEG signals 15 

effectively. 16 
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Experiment II: As mentioned before, the SNN introduced in Table 1 is alone 1 

employed as the image encoder for image classification. In this step, images were 2 

resized to 64×64. The images are fed to SNN as input after a normalization and 3 

augmentation step. 4 

SNN is trained with three different methods: 5 

 Back-propagation from the Scratch: SNN is trained from the scratch 6 

using spike-based back-propagation with surrogate gradient-based 7 

optimization method. Here, linear approximation of the gradient is used for 8 

training. 9 

 Conversion ANN-SNN: First an  ANN is trained and then its weights are 10 

converted using threshold balancing method [15] and assigned to the 11 

corresponding SNN. 12 

 Hybrid Training: First an ANN is trained and then its weights are 13 

converted as initial weights to SNN. Then, this SNN is trained with 14 

surrogate gradient-based STDB (Spike timing dependent back propagation) 15 

method [15]. In this method, exponential approximation of the gradient is 16 

used for training. 17 

The parameters used for training the SNN-based image encoder are listed in Table 18 

5. 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 
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Table 5. Architecture and parameter setting of the proposed SNN-based image encoder 

Parameter Value 

Convolution  layer 3 

Average pooling layer 2 

FC layer 2 

Batch size 8 

Optimizer Adam 

Learning rate 0.0001 

Weight decay 0.0005 

α 0.3 

β 0.01 

Epoch number 100 

Loss function Cross entropy 

 1 

Figure 5 shows the results of these different methods of training the SNN to 2 

classify images for time steps. 3 

According to the results, the conversion method seems more appropriate for SNN 4 

training in the studied dataset. 5 

It can be seen that at small values of time steps, e.g. T = 15, the classification 6 

accuracy for training data is low. In the other hand, with increasing time steps, 7 

there is no significant change in the accuracy of data classification. Thus, given the 8 

low computational complexity and acceptable accuracy, we set the time steps to 9 

50, empirically.  10 
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Figure 5. Accuracy of SNN in image classification with different time steps for the different 

training methods 

Experiment III: Here, we evaluate the manifold transferring which is conducted 1 

from image-based visual feature space to EEG-based feature space in some 2 

aspects. After training SNN with conversion method, this network can be used as 3 

an image encoder in the brain-guided system. For each input image, the output of 4 

the AvgPool-2 of SNN is extracted as visual features vector with the size of 6272 5 

(128×7×7).  6 

At the same time, each EEG signal (corresponding to the each subject that 7 

observed each image) is encoded into a feature vector of size 128. In this way, six 8 

EEG-based feature vectors are extracted from the EEG encoder. The average of 9 

these feature vectors is considered as the EEG-based feature vector corresponding 10 

to that image. 11 
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Mk-NN (k=5), KNN (k = 1, 3, or 5), Random Forest (RF) (number of estimators 1 

=100), and Ridge (� = 1) regressions were used as manifold transferring method 2 

to transfer the visual feature space to EEG-based feature space.  3 

After manifold transferring, a classifier that is trained on EEG-based feature space 4 

can classify the transferred feature vector. SVM, Soft-max, and k-NN (k=5) are 5 

first trained with EEG-based feature vectors extracted from EEG encoder, and then 6 

are examined as classifiers in the proposed brain-guided system.  7 

The average of the accuracy of SVM classifier for different methods of MT, is 8 

plotted at time steps in Figure 6. 9 

 
 

 
 

Figure 6. Brain-guided network average performance chart for different MT methods on  various time 
steps, for classification on Airliner/Fish, Airliner/Pizza, Fish/Pizza, and Airliner/Fish/Pizza 

 10 

The obtained classification results of three classifiers corresponding to different 11 

SNN training methods, with time steps equal to 50, are shown in Table 6. 12 
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As can be seen from Table 6, in the two-class classifications, the Mk-NN MT 1 

method achieved better accuracy in most cases. In the three-class 2 

(Airliner/Fish/Pizza) problem, Mk-NN, while not the winner, came second in 3 

classification accuracy in most cases. In addition, the accuracy of the brain-guided 4 

model on three-class classification with different MT methods tabulated in Table 7. 5 

As can be seen, the Mk-NN MT method achieved better performance than KNN (k 6 

= 1, 3 and 5) in most cases. 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 
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Table 6. Accuracy of Brain-guided network in image classification.  
In each classifier, the best accuracy is reported along with its MT method.  

 

Classes 

 

SNN  training method 

SNN 
Acc 
% 

Brain guided model Acc % 

SVM SoftMax KNN-5 

 

 

Airliner/Fish 

Back-propagation  

From the scratch 

 

75 

81.25 
KNN-3, KNN-1, 

RF, Ridge 

87.5 
Ridge 

81.25 
KNN-3, KNN-

1, RF, Ridge 

ANN-SNN Conversion 75 81.25 
RF, Ridge, Mk-

NN 

87.5 
RF 

81.25 
RF, Ridge, Mk-

NN 

Hybrid Training 75 81.25 
Ridge, Mk-NN 

81.25 
Ridge 

81.25 
Ridge, Mk-NN 

 

 

Airliner/Pizza 

Back-propagation From 

scratch 

 

95 

100 
RF, Ridge 

95 
kNN-1, , Mk-NN 

100 
RF, Ridge 

 

ANN-SNN Conversion 

 

95 

100 
KNN-5, kNN-3, 

Mk-NN 

95 
KNN-1, KNN-

3,KNN-5, Mk-NN 

100 
KNN-5, KNN-

3, Mk-NN 

 
Hybrid Training 

95 100 
KNN-5, KNN-3, 

Mk-NN 

100 

Mk-NN 

100 
KNN-5, KNN-

3, Mk-NN 

 

 

Fish/Pizza 

Back-propagation From 

scratch 

 

92.85 

85.71 
RF, Ridge 

42.85 
Ridge, kNN-1, 

Mk-NN 

85.71 
RF, Ridge 

 

ANN-SNN Conversion 

 

78.57 

92.85 
KNN-3, KNN-5 
RF, Ridge, Mk-

NN 

85.71 
KNN-1 

92.85 
KNN-3, KNN-5 

RF, Mk-NN 

 
Hybrid Training 

85.71 92.85 
KNN-3, KNN-5 
RF, Ridge, Mk-

NN 

85.71 
KNN-1 

92.85 
KNN-3, KNN-5 
RF, Ridge, Mk-

NN 

 

 

Airliner/Fish/Pizza 

Back-propagation From 

scratch 

84 80 
Ridge 

76 
RF 

84 
Ridge 

ANN-SNN Conversion 76 80 
RF 

80 
RF 

84 
Ridge 

 
Hybrid Training 

 

76 

76 
Ridge, RF, 

KNN-3   

76 
kNN-5 

76 
Ridge, RF 

 1 

 2 
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Table 7. Accuracy of Brain-guided network in Airliner/Fish/Pizza image 
classification. 

SNN training 
method 

 
MT method 

Brain guided model Acc % 
Classifier 

SVM SoftMax KNN-5 

 
 

Back-propagation 
From scratch 

Mk-NN 64 68 64 

KNN-1 60 64 60 
KNN-3 52 60 52 
KNN-5 60 60 56 

RF 76 76 76 
Ridge 80 64 84 

 
 

ANN-SNN 
Conversion 

Mk-NN 76 76 76 

KNN-1 68 68 68 
KNN-3 72 72 72 
KNN-5 64 64 64 

RF 80 80 80 
Ridge 72 76 84 

 
 

Hybrid Training 

Mk-NN 72 72 72 

KNN-1 72 72 72 
KNN-3 76 72 72 
KNN-5 68 76 68 

RF 76 76 76 
Ridge 76 68 76 

 1 

According to Table 8, the brain-guided model achieves more improvements in 2 

image classification accuracy, when Mk-NN and KNN-5 are used to manifold 3 

transferring and classifier, respectively. 4 

Table 8. The improvement of classification accuracy in brain-guided network compared to the SNN 
SNN 

training  
method 

 
Classes 

Improvement % 
MT method - Classifier 

RF - 
SVM 

RF - 
KNN-5 

Ridge- 
SVM 

KNN-3 
- SVM 

Ridge- 
KNN-5 

Mk-NN-
SVM 

Mk-NN- 
kNN-5 

 
From 

scratch 

Airliner/Fish +6.25 +6.25 +6.25 +6.25 +6.25 0 0 
Airliner/Pizza +5 +5 +5 0 +5 0 0 

Fish/Pizza -7.14 -7.14 -7.14 -10 -7.14 -12 -12 
Airliner/Fish/Pizza -8 -8 -4 -8 0 -20 -20 

 
Conversion 

Airliner/Fish +6.25 +6.25 +6.25 0 +6.25 +6.25 +6.25 
Airliner/Pizza 0 0 0 +5 0 +5 +5 

Fish/Pizza +14.28 +14.28 +14.28 +14.28 +7.14 +14.28 +14.28 
Airliner/Fish/Pizza +4 +4 0 0 +8 -2 0 

 
Hybrid 

Airliner/Fish 0 0 +6.25 0 +6.25 +6.25 +6.25 
Airliner/Pizza 0 0 0 +5 0 +5 +5 

Fish/Pizza +7.14 +7.14 +7.14 +7.14 +7.14 +7.14 +7.14 
Airliner/Fish/Pizza 0 0 0 0 0 -4 -4 
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 1 

In general, the brain-guided model increases the accuracy of SNN-based image 2 

classification at most about 14.25%. When the SNN is trained in the conversion 3 

method, it leads to more improvement in the accuracy of the brain-guided network 4 

than the others. 5 

Figure 7 shows the t-SNE plots of features extracted from the image encoder and 6 

EEG encoder in the brain-guided network. As can be seen, when SNN is trained in 7 

conversion or hybrid method, the visual features are more discriminative. 8 

  

(a) |(b) 

 

 

(c)  

Figure 7. t-SNE illustration of training visual features extracted by SNN-based image encoder  in Brain-

guided model for Airliner / Fish / Pizza, SNN is trained by (a) From scratch method, (b) Conversion 

method and (c) Hybrid method 

 9 

 10 
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Experiment IV: In this section, an analysis is performed on the features extracted 1 

from the SNN-based image encoder. For this purpose, the Fisher criterion is used. 2 

If the  ��� is the n-th instance of the k-th class. In this case, the between-scatter 3 

matrix and within scatter matrix are respectively defined as [40]: 4 

�� = �(�� − �)��(�� − �)�

�

���

 
 

(7) 

�� = � �(���− ��)(���− ��)�

��

���

�

���

 

 
(8) 

 5 

where K is the number of classes and ��  is the number of samples in the k-th class. 6 

� and  ��   are the total mean and average in k-th class, respectively. 7 

The Fisher criterion is defined as follows: 8 

���ℎ�� ��������� =  
��(����

�)

��(����
�)

 
 

(9) 

 9 

Comparison of Fisher discrimination criterion for visual features extracted from 10 

SNNs with different training methods is performed in Figure 8.  11 

As can be seen, for Airliner/Pizza and Airliner/Fish/Pizza categories this criterion 12 

in the Hybrid method is higher than the other two methods. For all classes, the 13 

Conversion method is higher than from the scratch method. The geometric mean of 14 

Fisher ratio shows that the relative performance of the Hybrid method is about 15 

1.078 higher than Conversion in the four/ (three two-class) studied classification 16 

problems. 17 

 18 
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Figure 8. Fisher discrimination criterion for visual features extracted from SNNs with the 

different training methods 

 1 

Experiment V: Here, a study has been done on the effect of manifold transferring 2 

on the separability of visual features. We show the improvement of separability of 3 

the SNN-based visual feature space in the proposed method in three ways: 4 

 t-SNE plot: Figure 9 shows the t-SNE plot for features extracted from 5 

encoders (EEG features and Visual features). As can be seen, the visual 6 

features have a higher discriminability after mapping to the EEG feature 7 

space by manifold transferring.  8 

 9 

 10 

 11 

 12 
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(a) 

 

  

 

 

 

 

 

 

 

(b)  

Figure 9. t-SNE illustration of features extracted by encoders in Brain-guided model for Fish / Pizza, (a) 

EEG average features, (b) Visual features before and after manifold transferring for train and test data. 

  1 

  Fisher criterion: Equation 9 in the expresses Fisher's criterion as the ratio 2 

of extra-class variance to intra-class variance. Qualitatively, if the intra-class 3 

variance is low and the extra-class variance is high, the distinction becomes 4 

more straightforward. In Figures 10 and 11, Fisher's criterion is calculated as 5 

the degree of separability of visual features before and after manifold 6 

transferring. Figure 10 shows that the separability of the visual features is 7 

increased by MT, the separability in the choosed training data is higher than 8 

in the test data. 9 
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Figure 10. Comparison of Fisher discrimination criterion for visual features before and after 

MT in test and train images for Fish/Pizza classification 
 

 

Figure 11 shows that the separability of the train visual features is increased by MT 1 

for different classification problems in this work. 2 

 3 

  
Figure 11. Comparison of Fisher discrimination criterion for train visual features before and 

after MT   
 

 4 
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 1 

 SVM margin: The SVM margin across the training set corresponds to 2 

generalization properties in linear models [41]. In Figures 12, SVM margin 3 

show as the separability of the train visual features increases after MT for all 4 

classification problems of this research. 5 

 6 

Figure 12. Comparison of SVM margin for train visual features before and after MT. 
 

 

 7 

Experiment VI: In this part, we employed the spiking LSTM presented in [42] to 8 

encode the EEG signals ,with architecture same as Figure 2, to classify the image-9 

evoked EEG signals. Therefore, the number of weights in the LSTM-based and 10 

spiking-LSTM-based encoders is the same. The training results of this EEG 11 

encoder are shown in Table 9. As can be seen, in the 3-classes classification 12 

problem, the accuracies have decreased compared to Table 4. Also, the Spiking 13 

LSTM-based encoder outperforms are lower than in the LSTM-based encoder in 14 

view of average accuracy. 15 
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Table 9. EEG classification accuracy with spiking LSTM substituted for LSTM in Figure 2. 

Classes Train accuracy Validation  accuracy Test accuracy 

Airliner/Fish 99.74 98.21 93.75 

Airliner/Pizza 99.73 100  98.21 

Fish/Pizza 99.73 100 98.75 

Airliner/Fish/Pizza 98.75 96.59 93.75 

Average 99.48 98.7 96.11 

 1 

6. CONCLUSION 2 

In this work, we attempt to employ the simplicity of SNN with EEG-based 3 

discriminative feature space. To this end, we assembled an SNN-based brain-4 

guided system of LSTM-based EEG encoder, visual image decoder based on a 5 

SNN which is trained with conversion method, manifold transferring based on 6 

mutual k-NN, and SVM-based classifier. In the proposed model, the EEG signal is 7 

not needed after training. The test image is converted into spike patterns and 8 

mapped to LSTM-based EEG feature space. An SVM-based classifier assigns a 9 

class label to the resulted feature vector and corresponding image. Different 10 

aspects of the proposed system are investigated on the challenging small-sample 11 

ImageNet-EEG dataset. 12 

Various analyzes have been performed on the results obtained from SNN-based 13 

image encoders and compared with other conventional methods for training SNN. 14 

The results show that the training method in SNN can affect the degree of 15 

discrimination of the features extracted from the images. According to the obtained 16 

results, it can be said that one can sort these methods with respect to their 17 

appropriation for training SNN-based image encoder in the brain-guided model, 18 

first the conversion and then hybrid, finally the training from the scratch method. 19 
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 Also, the experimental results show that the separability of the SNN-based visual 1 

feature space is improved in the proposed method. In addition, this proposed SNN-2 

embedding in brain guided system improves the accuracy of SNN in image 3 

classification up to 14.25% on the challenging small-sample ImageNet-EEG 4 

dataset without any overfitting phenomenon. 5 

Declarations 6 

Author Contribution: Zahra Imani: Conceptualization, Methodology, Software, 7 

Formal analysis, Validation, Visualization, Writing - original draft. Mehdi Ezoji: 8 

Supervision, Conceptualization, Methodology, Investigation, Validation, Writing - 9 

review & editing. Timothee Masquelier: Supervision, Conceptualization, 10 

Methodology, Investigation, Validation, Writing - review & editing. 11 

Conflict of Interest: The authors declare that they have no known competing 12 

financial interests or personal relationships that could have appeared to influence 13 

the work reported in this paper. 14 

Availability of Data and Materials: The custom code for data analysis is 15 

available upon request from the corresponding author. 16 

Funding: No funding was obtained for this study. 17 

 18 

REFERENCES 19 

[1] G. Srinivasan, C. Lee, A. Sengupta, P. Panda, S. S. Sarwar, and K. Roy, “Training 20 

Deep Spiking Neural Networks for Energy-Efficient Neuromorphic Computing,” in 21 

ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and 22 

Signal Processing (ICASSP), 2020, pp. 8549–8553. 23 



32 
 

[2] Q. Fu and H. Dong, “An ensemble unsupervised spiking neural network for 1 

objective recognition,” Neurocomputing, vol. 419, pp. 47–58, 2021. 2 

[3] T. Masquelier, “Spike-based computing and learning in brains, machines, and 3 

visual systems in particular (HDR Report).” Ph. D. Dissertation. https://doi. 4 

org/10.13140/RG. 2.2. 30232.49922, 2017. 5 

[4] C. Lee, P. Panda, G. Srinivasan, and K. Roy, “Training deep spiking convolutional 6 

neural networks with stdp-based unsupervised pre-training followed by supervised 7 

fine-tuning,” Front. Neurosci., vol. 12, p. 435, 2018. 8 

[5] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion of 9 

continuous-valued deep networks to efficient event-driven networks for image 10 

classification,” Front. Neurosci., vol. 11, p. 682, 2017. 11 

[6] P. Panda, S. A. Aketi, and K. Roy, “Toward scalable, efficient, and accurate deep 12 

spiking neural networks with backward residual connections, stochastic softmax, 13 

and hybridization,” Front. Neurosci., vol. 14, 2020. 14 

[7] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in spiking neural 15 

networks: VGG and residual architectures,” Front. Neurosci., vol. 13, 2019. 16 

[8] J. Wu et al., “Progressive tandem learning for pattern recognition with deep spiking 17 

neural networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 11, pp. 18 

7824–7840, 2021. 19 

[9] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in spiking 20 

neural networks,” IEEE Signal Process. Mag., vol. 36, pp. 61–63, 2019. 21 

[10] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment in time,” 22 

Adv. Neural Inf. Process. Syst., vol. 31, pp. 1412–1421, 2018. 23 

[11] M. Zhang et al., “Rectified linear postsynaptic potential function for 24 

backpropagation in deep spiking neural networks,” IEEE Trans. Neural Networks 25 



33 
 

Learn. Syst., vol. 33, no. 5, pp. 1947–1958, 2021. 1 

[12] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropagation for 2 

training high-performance spiking neural networks,” Front. Neurosci., vol. 12, p. 3 

331, 2018. 4 

[13] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass, “Long short-5 

term memory and learning-to-learn in networks of spiking neurons,” Adv. neural 6 

Inf. Process. Syst., vol. 31, 2018. 7 

[14] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in spiking 8 

neural networks: Bringing the power of gradient-based optimization to spiking 9 

neural networks,” IEEE Signal Process. Mag., vol. 36, no. 6, pp. 51–63, 2019. 10 

[15] N. Rathi, G. Srinivasan, P. Panda, and K. Roy, “Enabling deep spiking neural 11 

networks with hybrid conversion and spike timing dependent backpropagation,” 12 

arXiv Prepr. arXiv2005.01807, 2020. 13 

[16] I. Garg, S. S. Chowdhury, and K. Roy, “DCT-SNN: Using DCT To Distribute 14 

Spatial Information Over Time for Low-Latency Spiking Neural Networks,” in 15 

Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, 16 

pp. 4671–4680. 17 

[17] S. Kundu, M. Pedram, and P. A. Beerel, “Hire-snn: Harnessing the inherent 18 

robustness of energy-efficient deep spiking neural networks by training with 19 

crafted input noise,” in Proceedings of the IEEE/CVF International Conference on 20 

Computer Vision, 2021, pp. 5209–5218. 21 

[18] O. Russakovsky et al., “Imagenet large scale visual recognition challenge,” Int. J. 22 

Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015. 23 

[19] E. Lee, J.-S. Choi, M. Kim, H.-I. Suk, and A. D. N. Initiative, “Toward an 24 

interpretable Alzheimer’s disease diagnostic model with regional abnormality 25 



34 
 

representation via deep learning,” Neuroimage, vol. 202, p. 116113, 2019. 1 

[20] R. Ju, C. Hu, and Q. Li, “Early diagnosis of Alzheimer’s disease based on resting-2 

state brain networks and deep learning,” IEEE/ACM Trans. Comput. Biol. 3 

Bioinforma., vol. 16, no. 1, pp. 244–257, 2017. 4 

[21] Y. Yoo et al., “Deep learning of joint myelin and T1w MRI features in normal-5 

appearing brain tissue to distinguish between multiple sclerosis patients and 6 

healthy controls,” NeuroImage Clin., vol. 17, pp. 169–178, 2018. 7 

[22] S. L. Oh et al., “A deep learning approach for Parkinson’s disease diagnosis from 8 

EEG signals,” Neural Comput. Appl., pp. 1–7, 2018. 9 

[23] T. Song, W. Zheng, P. Song, and Z. Cui, “EEG emotion recognition using 10 

dynamical graph convolutional neural networks,” IEEE Trans. Affect. Comput., 11 

vol. 11, no. 3, pp. 532–541, 2018. 12 

[24] S. Taheri, M. Ezoji, and S. M. Sakhaei, “Convolutional neural network based 13 

features for motor imagery EEG signals classification in brain–computer interface 14 

system,” SN Appl. Sci., vol. 2, no. 4, pp. 1–12, 2020. 15 

[25] H. Jebelli, M. M. Khalili, and S. Lee, “Mobile EEG-based workers’ stress 16 

recognition by applying deep neural network,” in Advances in Informatics and 17 

Computing in Civil and Construction Engineering, Springer, 2019, pp. 173–180. 18 

[26] X. Zheng, W. Chen, Y. You, Y. Jiang, M. Li, and T. Zhang, “Ensemble deep 19 

learning for automated visual classification using EEG signals,” Pattern Recognit., 20 

vol. 102, p. 107147, 2020. 21 

[27] I. Kavasidis, S. Palazzo, C. Spampinato, D. Giordano, and M. Shah, “Brain2image: 22 

Converting brain signals into images,” in Proceedings of the 25th ACM 23 

international conference on Multimedia, 2017, pp. 1809–1817. 24 

[28] B. Kaneshiro, M. P. Guimaraes, H.-S. Kim, A. M. Norcia, and P. Suppes, “A 25 



35 
 

representational similarity analysis of the dynamics of object processing using 1 

single-trial EEG classification,” PLoS One, vol. 10, no. 8, p. e0135697, 2015. 2 

[29] A. Fares, S. Zhong, and J. Jiang, “EEG-based image classification via a region-3 

level stacked bi-directional deep learning framework,” BMC Med. Inform. Decis. 4 

Mak., vol. 19, no. 6, p. 268, 2019. 5 

[30] C. Spampinato, S. Palazzo, I. Kavasidis, D. Giordano, N. Souly, and M. Shah, 6 

“Deep learning human mind for automated visual classification,” in Proceedings of 7 

the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 8 

6809–6817. 9 

[31] S. Zhong, A. Fares, and J. Jiang, “An Attentional-LSTM for Improved 10 

Classification of Brain Activities Evoked by Images,” in Proceedings of the 27th 11 

ACM International Conference on Multimedia, 2019, pp. 1295–1303. 12 

[32] S. Palazzo, C. Spampinato, I. Kavasidis, D. Giordano, J. Schmidt, and M. Shah, 13 

“Decoding brain representations by multimodal learning of neural activity and 14 

visual features,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 11, pp. 15 

3833–3849, 2020. 16 

[33] J. Jiang, A. Fares, and S.-H. Zhong, “A Context-Supported Deep Learning 17 

Framework for Multimodal Brain Imaging Classification,” IEEE Trans. Human-18 

Machine Syst., vol. 49, no. 6, pp. 611–622, 2019. 19 

[34] N. Cudlenco, N. Popescu, and M. Leordeanu, “Reading into the mind’s eye: 20 

boosting automatic visual recognition with EEG signals,” Neurocomputing, vol. 21 

386, pp. 281–292, 2020. 22 

[35] A. Taherkhani, A. Belatreche, Y. Li, G. Cosma, L. P. Maguire, and T. M. 23 

McGinnity, “A review of learning in biologically plausible spiking neural 24 

networks,” Neural Networks, vol. 122, pp. 253–272, 2020. 25 



36 
 

[36] Reza Hojjaty Saeedy, “Biologically Inspired Computer Vision/ Applications of 1 

Computational Models of Primate Visual Systems in Computer Vision and Image 2 

Processing,” University of New Hampshire, 2021. 3 

[37] L. Deng et al., “Rethinking the performance comparison between SNNs and 4 

ANNs,” Neural networks, vol. 121, pp. 294–307, 2020. 5 

[38] W. Fang, Z. Yu, Y. Chen, T. Huang, T. Masquelier, and Y. Tian, “Deep Residual 6 

Learning in Spiking Neural Networks,” Adv. Neural Inf. Process. Syst., vol. 34, pp. 7 

21056–21069, 2021. 8 

[39] R. Hajizadeh, A. Aghagolzadeh, and M. Ezoji, “Mutual neighborhood and 9 

modified majority voting based KNN classifier for multi-categories classification,” 10 

Pattern Anal. Appl., vol. 25, no. 4, pp. 773–793, 2022. 11 

[40] B. Ghojogh, F. Karray, and M. Crowley, “Fisher and kernel Fisher discriminant 12 

analysis: Tutorial,” arXiv Prepr. arXiv1906.09436, 2019. 13 

[41] Y. Jiang, D. Krishnan, H. Mobahi, and S. Bengio, “Predicting the generalization 14 

gap in deep networks with margin distributions,” arXiv Prepr. arXiv1810.00113, 15 

2018. 16 

[42] S. V. Ali Lotfi Rezaabad, “Long short-term memory spiking networks and their 17 

applications,” in International Conference on Neuromorphic Systems, 2020, pp. 1–18 

9. 19 

 20 


