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An Incremental Time-Domain Mixed-Signal
Matrix-Vector-Multiplication technique for

low-power edge-AI
Kévin Hérissé, Member, IEEE, Benoit Larras, Member, IEEE, Bruno Stefanelli,
Andreas Kaiser, Senior Member, IEEE, Antoine Frappé, Senior Member, IEEE

Abstract—This paper proposes a time-domain mixed-signal
computing architecture for Matrix-Vector Multiplication suited
for embedded in-memory computing applications. The system
leverages the low data rate of sensors’ data in embedded
AI applications to target an energy-efficient implementation
of the matrix-vector multiplication array. The mixed-signal
computing scheme relies on incremental time-domain multiply-
and-accumulate operations using switched current sources. The
concept is demonstrated on a 28 nm FDSOI prototype chip
of a 100 x 4 compute array that shows a 15.8 TOPS/W energy
efficiency for 5-bit MAC operations. Extrapolating the array
to 100 x 100 computing units leads to a 99.2 TOPS/W energy
efficiency.

Index Terms—In-Memory Computing, Matrix-Vector Multipli-
cation, Multiply-and-Accumulate, 28nm FDSOI, multi-bit com-
puting

I. INTRODUCTION

APPLICATIONS for embedded artificial intelligence (AI)
are numerous and cover multiple domains, from con-

sumer electronics, home automation, and health to industry.
To run neural network accelerators on a device with limited
energy budget and limited connection to a server, Tiny Ma-
chine Learning (TinyML) can be deployed on a dedicated
ASIC. However, a system composed of embedded sensors
that continuously send data to the embedded classification
core consumes a lot of energy since the processing elements
need to stay always on. It is possible to divide the main
classification task into simpler tasks that produce a wake-up
signal for the main processor to start its local computation.
This hierarchical scheme, shown in Figure 1, relies on a
dedicated pre-processing unit coupled with the main processor
and offers a lower energy consumption. For example, in
the case of natural language processing, the pre-processing
unit can run a Voice Activity Detection (VAD) or Keyword
Spotting (KWS) algorithm and Speaker Verification (SV) to
wake up the main processor when a specific keyword or sound
is detected [1]. By shifting the continuous classification task to
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Fig. 1: Exemple of architecture using pre-processing unit for
audio processing.

a dedicated ultra-low energy pre-processing unit, the main pro-
cessor only performs the remaining and more computationally
hungry tasks on relevant input data. The pre-processing unit is
generally composed of a feature extraction and a classification
block. This work focuses on the latter.

Two levers can be exploited to reduce the energy per
inference of a neural network (NN), as shown in Equation 1:

energy
inference

=
operation
inference︸ ︷︷ ︸

Software approach

× energy
operation︸ ︷︷ ︸

Hardware approach

(1)

The software approach aims to minimize the number of
operations performed during inference. This is achieved us-
ing pruning techniques [2], [3] to reduce the number of
parameters, quantization to reduce the weights and activation
bitwidth using Post Training Quantization (PTQ - the network
is quantized after training) [4]–[6] or Quantization Aware
Training (QAT - the network is quantized during training)
[7]–[11]. Quantization can be exploited up to a binary rep-
resentation of weights with a tradeoff regarding memory size
and performance [12]. Binary neural networks are particularly
suited for digital implementations [13], [14]. However, being
able to implement configurable multi-bit neural networks is
required to fit a large range of neural network architectures
targetting a wide range of applications. Consequently, this
study concentrates on the implementation of multi-bit architec-
tures. The software approach is helpful for training networks,
with fewer parameters and less complex activation functions
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Fig. 2: Weight-stationary MVM data flow from [15].

keeping the accuracy level high. The hardware approach will
allow reducing the energy consumption of the operations,
theoretically without affecting the accuracy.

The hardware approach aims at optimizing the energy con-
sumption per operation, especially minimizing the energy of
the multiply and accumulate (MAC) operation that composes
the Matrix-Vector Multiplication (MVM). To avoid the energy
cost due to the ”memory wall”, the processing elements (PE)
are typically implemented inside the memory. PEs embedding
their own local memory are placed in an array to provide a
weight-stationary data flow of the MVM, as shown in Figure 2.

The literature offers a wide range of In-Memory Comput-
ing approaches. Digital Compute-In-Memory (DCIM) [16],
[17] offers good energy efficiency, high configurability and
scalability and finds applications in large-scale accelerators.
Analog Computing-In-Memory (ACIM) shows a higher po-
tential to reach very high energy efficiency, but is limited to
medium-precision weights (4 to 8 bits) [18], since this type of
architecture is more susceptible to noise and mismatch.

Time-domain architectures represent a promising alternative
that harnesses the strengths of both digital and analog tech-
niques. It exhibits attributes of scalability and configurability
and can be seamlessly integrated with an ACIM (Analog
Computational In-Memory) framework to facilitate the incor-
poration of an ultra-low power pre-processing unit.

In the time-domain paradigm, as documented in prior stud-
ies [19]–[21], input signals undergo transformation into pulse
modulations based on their values. A typical architectural
illustration of a time-domain system is presented in Figure 3,
wherein the input signals are modulated into pulses through
a Digital-to-Time Converter (DTC). Subsequently, these mod-
ulated signals are transmitted to the weighting elements for
multiplication, with a dedicated DTC for each input. The
accumulation of results takes place in the analog domain,
requiring an Analog-to-Digital Converter (ADC) to store a
digital output.

To facilitate multi-bit operations, time-domain solutions
employ either a parallel strategy, involving weighted cells, or
an iterative approach, which entails multiple ADC conversions
(N conversions for N-bit weights), or a combination of both
techniques. Regardless of the chosen strategy, additional shift
and add circuitry is essential for reconstructing the final output.

Fig. 3: Time-domain iterative conversion.

Fig. 4: Illustration of a time-domain single conversion exploit-
ing the double bit-masking technique.

An excellent example of such techniques is found in [22]. A
digital-to-time conversion is performed on each input using a
global pulse generator. For the duration of the pulses, each
bitcell is selectively read on a positive or negative bit line,
depending on the input sign. To avoid an ADC conversion
for each bit position, a weighted charge-sharing technique is
employed to divide the voltage by the corresponding binary
weight and a differential 6-bit SAR ADC exclusively converts
the resulting output.

Figure 4 proposes a novel approach for addressing the
challenge at hand. The solution uses a double bit-masking
technique for the inputs and weights. A unique pattern genera-
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tor creates a repetitive weighted pulse signal that is masked by
the inputs at each row. The resulting signals are propagated to
the multi-bit weights that will further locally mask the signal.
It allows to perform the N×N -bit MAC operation in a single
ADC conversion without requiring additional combinational
circuitry.

This paper proposes a time-domain current-based macro that
allows for one-shot operation for multi-bit MAC operations.
The following contributions are presented:

• A new mixed-signal architecture using incremental time-
and current-based macro ready for ACIM.

• A double masking technique allowing just one ADC
conversion per 100 MACs

• A 28 nm FDSOI prototype circuit of the macro for a
100 × 4 matrix array performing 5-bit MAC operations,
reaching 15.8 TOPS/W and 99.2 TOPS/W when scaled to
a 100× 100 matrix array.

The remainder of this article is organized as follows. Section
II presents the memory storage, mixed-signal combination
techniques and the time and current-based principle. Section
III details the on-chip implementation of the proposed concept.
Section IV shows the measurements of the 28nm FDSOI
prototype. Section V presents the key contributions of this
work compared to prior In-Memory Computing macro imple-
mentations and opens the discussion about the work. Finally,
section VI concludes the article.

II. TIME-DOMAIN CURRENT-BASED MAC

A. Memory storage and mixed-signal combination techniques

MVM dataflow at the edge of a Deep Neural Network
(DNN) requires fixed weights in a dense array to reach high
memory capacity. On-chip non-volatile memories (NVM),
such as Resistive-random-access-memory (RRAM), are often
used in ACIM applications for their high density and their abil-
ity to mitigate the leakage of SRAM-based solutions. RRAM-
based solutions [23] use memristors to store the weights in
the form of a conductance value. To increase the density,
some works [24] store up to 4-bit on an RRAM, with a
programming endurance of 100k cycles across the 16 levels.
Although compatible with back-end-of-line (BEOL) CMOS,
this solution requires additional process steps to the standard
CMOS, high-current pulses to program the weights, and are
limited to low precision applications.

Therefore, SRAM-based in-memory computing solutions
are a great choice for robust integration in any CMOS node.
In the charge-based approach, the bitcell is composed of a
modified 6T SRAM and additional transistors to charge a
capacitor according to an element-wise multiplication. The
charges are redistributed across all capacitors on an Accumu-
lation Line (AL), resulting in a voltage to be further converted
by an ADC [25]–[27]. To perform a multi-bit operation with
switched capacitors, [25] shows a topology similar to a digital
multiplier using one AL for each output bit position. However,
this method needs additional circuitry to combine all the line’s
results, which is adequate for a reduced number of lines (< 5)
but dominates the power consumption for higher numbers of
bits.

Fig. 5: Current sources used to charge/discharge a capacitive
line controller by a PWM signal.

Other charge-based SRAM arrays implement MAC as a
weighted average of voltages, which are proportional to the
word line voltages, converted from the digital inputs. However,
with this approach [28], [29], where multiple wordlines are
activated with the same bit line, the system suffers from
writing disturbance where bits can be flipped if the level of the
line is too low. [30] proposes a 10T SRAM that decouples the
memory writing and the MAC operation, therefore increasing
the area overhead of the bitcell. Reference [31] exploits
charge-domain architecture, performing bitwise multiplication
using XNOR and AND gates to drive a capacitor causing
charge redistribution across a capacitance.

Current-based approach uses a current to charge/discharge
a capacitive line proportional to the inputs and weight mul-
tiplication. The main principle of time-domain and current-
based MAC, derived from [32], is to use two current sources
associated with one switch each, controlling the flow of current
charging/discharging a capacitive accumulation line (AL) as
shown in Figure 5. Recent CMOS technologies allow for
reducing the current of the current sources (< 1nA) without
too much mismatch and envisioning high efficiency for MAC
operations.

B. Time-domain computation

In the context of the TinyML environment, it is possible to
leverage the low output rate of embedded sensors to perform
computation. Although it results in a lower throughput, this
does not affect the possibility of implementing a wide range
of applications. Examples of applications with moderate speed
requirements are Keyword spotting and parking spot detection.
In Keyword spotting (KWS) a new spectrogram frame is
processed every 16 ms. In parking spot detection, a new
video frame every second meets the requirements. This work
envisions a solution for the low throughput application of
TinyML targeting embedded sensors and preprocessing of the
data on battery-constrained devices.

A pulse stream gated by each input bit and weight bit is
used to control a block able to perform accumulation in the
analog domain. However, to avoid the need for recombination,
the current contribution of each bit-wise operation needs to be
scaled according to their respective bit rank. This is achieved
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(a) Masking architecture for a single MAC operation.

(b) Patterns used to create a command signal.

Fig. 6: Pattern and the masking logic for MAC operations.

Fig. 7: Numerical example of output signal used to drive the
switch connected to the accumulation line.

by modulating the pulse-width length by power of two ratios.
As shown in Figure 6b, there is one pulse for each bit of X, the
first pulse associated with each bit is of length T ∗2k, k being
the bit rank. Each pulse is shifted to prevent overlapping with
the other one. For each weight position, the pattern for the X
bits is cycled through, with a pulse width multiplied by two to
scale the current according to the weight bit rank. Figure 6a
details the masking architecture used to command the analog
accumulation block and perform a 5-bit MAC operation with
a single ADC conversion. Figure 7 illustrates the generation
of the XW and CMD signals based on the input vector
X = [1010] and the weight vector W = [0101]. The XW
signal is produced by combining the PX patterns and masking
them with the input vector X . This XW signal is then further
masked by the weights W , utilizing the corresponding PW
patterns to create the CMD signal. The final CMD signal is
routed to the appropriate switch, governed by the sign bits of
both the input (X[4]) and the weight (W [4]).

C. Methods for accumulation

To be able to compute matrix-vector multiplication, the X
pattern is broadcast across all the input columns. The resulting
masked signals are then broadcast to the complete row to be
masked by the weights stored inside the processing element.
Figure 8 shows a diagram of the complete architecture. The
processing elements (PE) are composed of the weight storage,
the pattern masking logic (WLOGIC), and the current sources
with their switches. Each column of PE shares a capacitive AL.
According to the sign of the MAC operation, computed with
a simple XOR between the weight and input sign, the AL will
be charged or discharged by the corresponding current source
during a time T proportional to X ×W . All the contributing
PE outputs result in a total current that will charge the AL to
a voltage proportional to the accumulation of the consecutive
sums of all PE outputs. This voltage can then be converted by
an analog-to-digital converter, the digital value being equal
to the result of 100 MAC operation. .Figure 9 shows an
example of the AL behavior for 100 random inputs and 100
random weights operation simulated with Matlab®. The AL is
initialized to a voltage reference of VDD

2 (here 0.4V) to allow
for negative results, as shown on the numerical axis.

III. ON-CHIP IMPLEMENTED ARCHITECTURE

The designed IC embeds a macro of 100 inputs and 4 outputs
MVM for 5-bit MAC operation. This section will first present
the design of the PE and then the design of the shared elements
of each AL.

A. Processing Elements

1) Weight storage and masking logic: The weights are
stored on D-latch registers. The masking is performed with
logic gates. We use poly-biased gates to further reduce the
leakage of those elements. To further decrease the energy
consumption, the storage could easily be replaced with SRAM
cells.

2) Current Sources: The current sources are implemented
as 800nm × 800nm cascode current sources presented in
Figure 10. For this transistor dimensions, the mismatch is
simulated at 18% (σµ ). The bias references of the current
sources are shared for all PEs of a column. To mitigate the
gate leakage effect arising when 100 gates are connected
together, the transistors use thick gate oxide, reducing the gate
leakage from 30 pA to a negligible current of 10aA according
to simulation with 800nm × 800nm unit transistors. The
cascode architecture increases the output impedance on the
drain connected to the switch, providing a constant current
over a wide voltage range. As the AL voltage evolves, it will
reach the limits of the voltage range, causing the current to
drop as the current mirror transistor is no longer saturated.
The reference current is drawn from an external analog pin and
divided by three successive current mirrors with a 10:1 ratio.
A 100 nA reference results in a 100 pA current inside the PE.
There is one current reference for each type of current sources,
IREF P and IREF N. Switches are composed by complemen-
tary PMOS and NMOS transistors of size 100nm × 100nm
resulting in a 0.5 pA leakage when both switches are off. This
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Fig. 8: Diagram of the architecture for a Matrix-Vector Multiplication using time and current-based In-Memory COmputing
ready solution

Fig. 9: Accumulation Line behavior for a 100 random inputs
multiplication, with corresponding numerical value.

leakage does not contribute to the output, since it is mitigated
by the two opposed switches drawing a similar leakage current
with opposed signs.

B. Accumulation Line

The total capacitance of the accumulation line is primarily
determined by the parasitic capacitances from the switches
and the metal line. This capacitance value is obtained through
individual post-layout simulations of the processing elements
(PEs) with extracted parasitics. To estimate the overall capac-
itance of the accumulation line, the capacitance of a single PE
was scaled by the number of PEs connected to the line. Figure
11 illustrates the estimated capacitance for a configuration
of 100 PEs. It is important to note that the capacitance is

Fig. 10: Processing element schematics.

not constant; it varies depending on the voltage level and
the operational state of the switches. When the switches are
active, additional parasitic capacitances of about 30 to 40fF
are introduced. However, this estimation does not account
for the capacitance contribution from the metal line or other
components connected to the accumulation line, which will
significantly increase the total capacitance to about 400fF and
mitigate the variations.

1) Current source switches: When the switch is off, the
output of the current mirror is floating. This situation makes
the current establishment time not suited for a reference time
T needed for medium throughput (≈ 20ns). To be able to
switch fast enough, a current steering technique is used as
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Fig. 11: Post-layout estimation of the capacitance of 100 PEs
as a function of the accumulation line voltage. This does not
include the approx. 400fF accumulation line capacitance.

Fig. 12: Processing element schematics with current steering
and operational amplifier.

shown in Figure 12. The current source output is connected
to two switches that work in opposition. When the current
does not flow into the accumulation line, it is redirected into
a dummy accumulation line, hence, ensuring a fast reliable
current establishment time. This improvement creates however
a charge-sharing issue. As the two switches are not perfectly
synchronized, there is a moment when they are both on and
the AL and dummy AL are sharing charges and trying to
balance to the same voltage level. This effect is mitigated by
the addition of a voltage follower, at the column-level, between
the two accumulation lines, making the operational amplifier
(OA) offset the only difference between the two lines.

2) Operational Amplifier: The operational amplifier, with
dual differential pair, shown in Figure 13, is able to handle
common mode voltages from 0.2 V to 0.6 V which corresponds
to the maximum voltage reachable by the accumulation line
(at VDD = 0.8V ). According to the input level, one of the
differential pairs will amplify the signal. However, the OA
non-constant offset is now impacting the output result since
part of this offset is added to the accumulation line via charge
sharing when switching.

Fig. 13: Schematic of the rail-to-rail operational amplifier.

C. Pattern Generation

The pattern generator architecture is implemented as a finite-
state machine, using multiple counters and an external clock
with period T . The sequence is generated according to a
predefined number of clock periods, depending on the number
of bits of the signed inputs X and weights W, denoted Nx and
Nw, respectively. The total time of the sequence Ttot is given
in the following equation, with respect to the reference time
T .

Ttot = (2Nx−1 − 1)(2Nw−1 − 1)× T (2)

At the end of each pulse, a counter is incremented and this
value is compared to the configuration register to activate the
next pulse with the correct duration. The outputs PX and
PW are distributed to all the XLOGIC blocks. Like the other
digital blocks of this chip, the elements composing the pattern
generator are polybiased to reduce energy consumption.

D. Model of the computation

A model was developed on Matlab® to evaluate the impact
of mismatch, and accumulation line capacitance variation on
the output result. As errors might compensate each other,
they are evaluated separately first and together in the last
part of this section. Inputs and weights are converted into
an array storing their binary representation (Sign + 4b Mag-
nitude). At the beginning of each pattern pulse, the number
of contributing current sources is calculated by summing the
number of corresponding bits noted NON for the number
of discharging current sources and PON for the number of
charging current sources. PON and NON are updated at each
time step corresponding to a new pulse. For higher precision,
the simulation is performed discretely in time according to a
time step Ts chosen by the user. For each time step, the output
voltage is:

Vout(Ts) = Vout(Ts−1)−
IrefTsNON

Cref
+

IrefTsPON

Cref
(3)

To increase the precision of the model, the current reference
Iref is interpolated from transistor-level simulated values. The
different error values are computed for 10,000 random inputs
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and weights drawn from a normal distribution. The mean error
due to the non-linearity of the current sources is equal to
−2.13µV error with a standard deviation of 1.36µV .

1) Impact of mismatch: The mismatch is modeled by
drawing current from the following normal distribution:

Imismatch = N (Iref , σ = Iref × ϵ) (4)

with ϵ the mismatch value in percentage of µ. The Imismatch

is drawn once at the beginning of the computation and kept
constant during the computation for each element of the
accumulation line. With an input mismatch of 20% (σµ ), the
mean impact of the mismatch is equal to 3.45µV with a large
standard deviation of 2.8mV .

2) Impact of accumulation line capacitance non-linearity:
Figure 11 shows the capacitance value of an accumulation line
composed of 100 PEs depending on the state of the switch.
A mean capacitance value is calculated, which corresponds to
one of the two switches controlling the two current sources
being on and the other off. By using interpolation we can
use a capacitance value at each time step according to the
accumulation line voltage. The mean error added is equal to
−1.26µV with a standard deviation of 21µV .

3) Summary of contributions: The final error contribution
is equal to 2.18µV with a standard deviation of 2.8mV
dominated by the mismatch value. With an available voltage
dynamic ranging from 0.2 V to 0.6 V the number of quantiza-
tion levels NQ is equal to:

NQ =
0.6− 0.2

0.0028
= 142 (5)

With 142 quantization levels, the number of available output
bits is equal to 7.15 bits. This is in line with the 5-bit precision
of inputs and weights.

E. Simulations

1) Mismatch Analysis: The mismatch is simulated as 18%
for 800 nm by 800 nm PMOS and 6% for NMOS transistors
of the same size. The values are estimated from a 200-point
Montecarlo analysis with a current reference of 100 pA.

2) Corner analysis: The behavior of a single 100-input
accumulation line is simulated in different process corners
with random inputs and weights and is shown in Figure
14. The maximum final deviation with respect to the typical
(TT) curve is 3mV (less than 1 LSB for a 5-bit output) for
the SS corner. Calibration can be performed at start-up to
correct for process variations. In a practical implementation,
a simple calibration scheme would rely on performing MAC
operations with a known target output voltage, recording the
output value and adjusting either the global reference current
or the global clock period to match the expected output
result. This calibration scheme can also be used for voltage
and temperature variations, most probably on a regular basis
to account for time-dependent variations of the voltage or
temperature.

Fig. 14: Accumulation Line Behavior with Corner Analysis.

Fig. 15: Photograph of the die.

IV. MEASUREMENTS RESULTS

The prototype IC, composed of 100 inputs and 4 accumula-
tion lines was fabricated in STMicroelectronics 28nm FDSOI
CMOS process. Figure 15 shows a die photograph and Table
I a summary of the features and performances of the circuit.

Figure 16 shows the detailed layout of one PE. Memory
and logic gates account for 50% of the total area and current
sources for 25%. The measurements were performed at room
temperature under 0.8V supply. The first part of this section
presents the initialization and calibration of the macro. Fi-
nally, the computation precision and energy breakdown are
presented.
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TABLE I: Summary of the circuit characteristics.

Technology 28 nm

Cell Type Flip Flop Register

Test Chip Area (w/ IO 1.69mm2

Macro Area 0.048mm2

MAC Computing Latency 4.5µs @ 5bIN-5bW
20ns @ Ternary IN & W

Throughput 0.177 GOPS (5b)
40 GOPS (Ternary)

Throughput
(scaled for a 100x100 array)

4.44 GOPS (5b)
1,000 GOPS (Ternary)

Efficiency 15.8 TOPS/W (5b)
3,573 TOPS/W (Ternary)

Efficiency
(scaled for a 100x100 array)

99.2 TOPS/W (5b)
22,295 TOPS/W (Ternary)

Fig. 16: Layout of the Processing Element (PE).

A. OA Characterization

In addition to the operational amplifier placed between the
accumulation line and the dummy accumulation line, named
OA A on Figure 17, a second voltage follower operational
amplifier is placed between the dummy accumulation line
and the output pin of the circuit OA B. To measure it,
each line can be charged to an external voltage reference
(V REF LN and V REF DLN ) thanks to two pass gate
switches controlled by RST LN and RST DLN respec-
tively. Each Accumulation line has dedicated voltage reference
pins, and the reset commands are shared across all the accu-
mulation lines. The offset is measured by applying a known
voltage reference on each accumulation line. The offset of the
operational amplifier OA A is measured by first measuring
the offset of OA B by applying a known reference on the
dummy accumulation line and measuring the difference with
the output value, then the cumulated offset of OA A and
OA B is measured by applying a known reference on the
accumulation line, measuring the difference with the output
value and subtract the OA B offset. The measured offset of
OA A is shown in Figure 18. The offset is not linear and
ranges from 5 mV to 70 mV.

B. Accumulation Line Behavior

1) Capacitance measurement: To measure the accumula-
tion line capacitance, X and W bits are set to 1, except for the
sign. Figure 19 shows the evolution of the accumulation line
voltage when a 40pA current per cell is applied. An estimated

Fig. 17: Architecture for OA characterization.

Fig. 18: Measurement of the offset of OA A.

capacitance value of 400 fF is extracted from this curve. The
difference between the measured and the simulated values
can come from the simulation that was performed on one
processing element with extracted parasitics and then scaled to
a complete accumulation line. In addition, the simulation did
not take into account the OA input capacitance. To compensate
for the higher accumulation line capacitance, the current is
scaled up to 300 pA per cell for a 50MHz clock frequency.

2) AL behavior: Figure 20 shows an example of the mea-
sured output during the accumulation process for randomly
selected multiplications. The accumulation behavior is in line

Fig. 19: Accumulation Line capacitance measurement.
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Fig. 20: Accumulation Line behavior with random input and
weight.

with the expected values, simulated on Matlab®.

C. Transfer function

The input-output transfer function is given in Figure 21. The
curve is computed by setting X and W values accordingly to
span across the value range. The figure shows three curves
measured at three different time references: 20 ns (50 MHz),
40 ns (25 MHz) and 100 ns (10 MHz), hence the gain applied
on the figures x axis. Different saturation levels are observed
for each time reference, the lowest saturation level correspond-
ing to the 50 MHz curves is due to the bandwidth limitation of
the operational amplifiers, whereas the saturation of the two
other curves is a combination of the bandwidth limitation and
the current mirrors entering their triode region. This behavior
does not impact the linearity of the operation as normally
distributed random inputs and weights result in a Gaussian
distribution of the output that is centered on 0.4V.

D. Output precision evaluation

To evaluate the output precision, the output value of the
computation on a single accumulation line is measured for 200
randomly selected inputs and weights. A Matlab© script selects
the inputs and weights values and computes the theoretical
result matching the gain of the current and time references
applied to the circuits. The output level of the circuits is
retrieved thanks to the oscilloscope controlled by the computer
via serial communication. The error between the measured
and expected values is then computed. Figure 22 shows the
histogram of the computed error. It is normalized to the LSB of
an 8b output, considering a 330 mV dynamic range. Assuming
the distribution follows a Gaussian shape, the calculated stan-
dard deviation σ is equal to 7.2 mV. In [33], it is shown that
small LSTM networks can tolerate σ/LSB of up to 100%
without significant degradation, which translates here in 46
possible quantization levels, equivalent to an effective 5.5-bit

Fig. 21: Transfer function for different input clock frequencies.

Fig. 22: Histogram of the computed errors between the ex-
pected theoretical output value and the measured output on 200
randomly selected inputs and weight. The error is normalized
to an 8b output precision with a dynamic range of 330mV.
This test is performed at a 50MHz clock frequency and 0.8V
voltage supply.

output precision. Classic benchmarked datasets, like MNIST or
CIFAR-10, show near SoA accuracy with such configurations
of 5x5x5 input/weight/output bitwidths [17], [34], [35].

E. Energy Efficiency

The energy consumption of each block is measured thanks
to a dedicated supply pin. For the 400 MACs array (100
inputs × 4 ALs) under 0.8 V, the current sources consume
0.55µW , the logic blocks for X (100 blocks) and W masking
(400 blocks) consume 0.098 µW, the 4 operational amplifiers
OAA consume 0.75µW and the pattern generator consumes
9.79µW . The 4 OAB consume 40µW but are not included in
the final energy evaluation since they are only used for test.
The diagram in Figure 23 shows the domination of the pattern
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Fig. 23: Energy repartition of the 4x100 chip prototype.

generator with 87% of the total 11.188µW power consumption.
Using a 4.5µs inference time, the energy efficiency of the
macro reaches 15.8 TOPS/W. It is to note that the pattern
generator provides the PX and PW signals to the 100 rows
of the array. Thus, the large portion of energy consumed
by the pattern generator can be amortized if we implement
more ALs in parallel. To estimate the potential gain in energy
efficiency, the consumption is extrapolated for a 25x larger
array composed of 10,000 MACs (100 input × 100 ALs).
The following process is performed to have a fair estimation
of the potential performance. The power consumption related
to the current sources and the operational amplifiers will
scale linearly as we increase the number of ALs and will
be respectively 13.75 µW and 18.75 µW. The number of X
logic block will stay constant, while the number of W logic
blocks will scale with the number of ALs. However, since
the drivers inside the X logic block need to be increased to
handle the larger parasitic capacitance of the longer row lines,
we considered the pessimistic scenario in which the measured
consumption of 1 X and 4 W logic blocks is multiplied by 25,
leading to 2.45 µW. Finally, the pattern generator consumption
will be equal, since it only depends on the number of rows. The
total consumption is estimated to 44.74 µW. For the 10,000
MACs array, this is equivalent to 99.2 TOPS/W. Figure 24
reports the energy consumption distribution in the case of the
10,000 MACs array, highlighting that OAs and current sources
are now the dominant contributors.

By modifying the length of the sequence generated by the
pattern generator, configurable bitwidths for the inputs and
weights can be selected. As shown in Equation (2), the total
computation time Ttot depends on the bit precision of the
inputs and weights. Table II gives the sequence length and the
recalculated energy efficiency with several configurations. The
efficiency can reach up to 20,000 TOPS/W when configured
for ternary inputs and weights.

V. COMPARISON WITH PRIOR WORK AND DISCUSSION

In this section, this work is compared to state-of-the-art digital
and analog implementations of MVM In-Memory Computing
techniques. All the references presented in Table III show
macro efficiency only. Due to different bit precisions and tech-
nology nodes it is difficult to make a meaningful comparison

Fig. 24: Energy repartition with the pattern generator amor-
tized across a 100x100 matrix.

TABLE II: Evolution of the energy efficiency as a function of
the number of bits for the inputs and weights.

Number of bits Nx / Nw Ttot Energy efficiency

5 / 5 4.5µs 99.2 TOPS/W

4 / 4 0.98µs 455 TOPS/W

3 / 3 0.18µs 2,477 TOPS/W

1.5 / 1.5 0.02µs 22,295 TOPS/W

of these works with the TOPS/W metric. A normalized effi-
ciency over 1b activation and 1b weights has been calculated
from the available data for each implementation to allow easier
comparison.

Our prototype circuit does not include the ADC needed
for the readout of the accumulation lines. To have a more
realistic and fair comparison with the other works we need
to add a power budget for the ADC to the measured power
consumption of our circuit. Power consumptions of 10-bit
SAR ADCs with ENOB of 9 bits at 200kS/s reported in the
most recent available state of the art [36], [37], [38] are 57nW
and 85nW. The targeted ENOB in our application is 7 to
8 bits, knowing that 5 bits would actually be sufficient for
feeding the result to successive layers of the neural network.
Assuming 100nW power consumption for the ADC at the
required conversion rate of 222kS/s leaves a reasonable error
margin knowing that the target ENOB is well below 9 bits.
The last column of Table III includes this additional power
consumption in the efficiency calculations.

Compared to other works and not including the ADC power
consumption, our solution presents the highest efficiency at
2,480 TOPS-1b/W with the consumption scaled on a 10,000
MAC array. When taking into account the estimated ADC
power consumption the efficiency reaches 81.1 TOPS/W and
2,026 TOPS-1b/W which still compares well to other refer-
ences and remains among the best values for the TOPS-1b/W
efficiency. This prototype chip has not been optimized for area,
since flip-flop registers, from standard cell library, have been
instantiated to store inputs and weights. The area associated
with the memory storage can be reduced with appropriate
SRAM cell design.

Finally, by leveraging time, the obtained throughputs are
obviously lower than those of other references. However, this
throughput is sufficient for medium-scaled neural network

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--I: Regular Papers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSI.2024.3480154

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



11

TABLE III: Comparison with prior work

Reference ISSCC’22
[23]

JSSC’22
[17]

JSSC’23
[34]

ISSCC’21
[31]

JSSC’23
[39]

ISSCC’22
[35] This Work

Technology 40nm 65nm 28nm 16nm 22nm 28nm 28nm

MAC Operation Digital
RRAM

Digital
CIM

Charge
Domain

Charge
Domain

RRAM
Time Domain

Time
Domain

Time
Domain

Supply (V) 0.9 0.9 - 1.5 0.9 0.8 0.8 0.65 - 0.9 0.8
# Input Channel - 64 16 1,152 - 64 100

# Output Channel - 64 16 256 - 256 4 100
Macro Area (mm2) - - 0.468 25 18 - 0.048 1.09a -
Input Precision (bits) 4 2/4/6/8 4 1-8 8 4/8 5

Weight Precision (bits) 4 4/8 4 1-8 8 4/8 5
Output Precision (bits) 32 5 12 8 8 14/22 5

GOPS 94.75 2,000 767.5 11,800 (4b) 142.2 4,256(4b) 0.177 4.44a

GOPS/mm2 - - 1,640 2,670 10 - 3.69 4.07a -
TOPS/W 3.79 158.7 (2b I,4b W) 94.31 121 (4b) 21.6 84.45 (4b) 15.8 99.2a 81.1ab

TOPS-1b/W 60 1,269 1,508 1,936 1,382 1,351 395 2,480a 2,026ab
aEstimated b Additional ADC consumption included

applications. For example, a VGG16 model in [17] requires
0.63 GOPS for MNIST and CIFAR-10. This throughput can
be further improved by parallelizing multiple macros.

VI. CONCLUSION

This work shows the implementation of a time- and current-
based analog in-Memory computing macro able to reach 99.2
TOPS/W for 5-bit 100 × 100 matrix-vector multiplications.
This architecture is suitable for low-to-medium resolution
embedded AI applications. Targeting tiny machine learning ap-
plications, this work exploits the trade-off between efficiency
and the available time for computation.
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