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Abstract

Recent advances in long-read sequencing technologies have enabled the complete assem-

bly of eukaryotic genomes from telomere to telomere by allowing repeated regions to be

fully sequenced and assembled, thus filling the gaps left by previous short-read sequencing

methods. Furthermore, long-read sequencing can also help characterizing structural vari-

ants, with applications in the fields of genome evolution or cancer genomics. For many

organisms, the main bottleneck to sequence long reads remains the lack of robust methods

to obtain high-molecular-weight (HMW) DNA. For this purpose, we developed an optimized

protocol to extract DNA suitable for long-read sequencing from the unicellular green alga

Chlamydomonas reinhardtii, based on CTAB/phenol extraction followed by a size selection

step for long DNA molecules. We provide validation results for the extraction protocol, as

well as statistics obtained with Oxford Nanopore Technologies sequencing.

Introduction

In recent years, long-read sequencing technologies, such as the ones developed by Pacific Bio-

sciences (PacBio) and Oxford Nanopore Technologies (Nanopore), have emerged as a solution

to the pitfalls of short-read technologies in the detection of structural variants and in assem-

bling repeated sequences and other complex regions [1]. Additionally, because native DNA is

used, long-read technologies can directly detect a variety of modified bases, including the most

commonly studied methylated cytosines [2, 3]. For their applications in genome assembly and

structural variant detection, these technologies typically sequence DNA molecules ranging in

size from kilobases to hundreds of kilobases as a continuous read. Reads traversing repeated

sequences are necessary to correctly assemble neighboring regions, with longer reads enabling

more contiguous genome assemblies. Today, the major bottleneck to sequence long reads

comes from the ability to extract high-quality DNA devoid of polyphenol and polysaccharide

contaminants with sizes compatible with this purpose. This is especially true for most plant tis-

sues and algae cells, because polyphenols and polysaccharides are often co-extracted with

DNA and can inhibit downstream applications such as sequencing [4, 5].
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Chlamydomonas reinhardtii is a unicellular green alga that is widely used as a model organ-

ism to study photosynthesis and cellular motility [6], and is an organism of choice for biotech-

nological application, with many synthetic biology tools being currently developed [7, 8]. In C.

reinhardtii, as for other plants and algae, contending with phenolic and polysaccharide con-

taminants while preserving HMW DNA is a major challenge and requires an optimized proto-

col. PacBio and Nanopore sequencing have been performed on this organism, contributing to

important advances in our understanding of its genome structure and content, base modifica-

tions and evolution [9–16]. However, it appears that a size selection step can substantially

enrich for longer molecules, as noted in [14, 15] and as we demonstrate in this work. An effi-

cient and well documented protocol is therefore needed for sequencing projects that require

long DNA molecules.

Here, we present a detailed protocol dedicated to efficiently extract and select HMW DNA

from C. reinhardtii cells. The protocol minimizes DNA-shearing manipulations [17] and com-

prises an additional step to enrich for HMW DNA. We validated the method by pulse-field gel

electrophoresis (PFGE) and measurement of read length from Nanopore sequencing.

Materials and methods

The protocol described in this peer-reviewed article is published on protocols.io, dx.doi.org/

10.17504/protocols.io.8epv59j9jg1b/v2 and is included for printing purposes as S1 File.

Nanopore sequencing

Sequencing libraries were prepared as per manufacturer’s recommendations, using NEBNext

companion module (E7180S, NEB) and Ligation Sequencing Kit SQK LSK-109 (Nanopore-

tech), except for the ligation time, which we increased to 30 min. For each run, 500 ng were

loaded on MinION flow cells (R9.4.1, Nanoporetech) and sequenced for 6h to 16h, depending

on flow-cell kinetics. Libraries were loaded at least twice, with 1h wash using the manufactur-

er’s washing buffer (EXP-WSH004) between runs. Basecalling was performed using Guppy

(version 4.3.4) with parameters set to “high accuracy”.

Results

We extracted genomic DNA following the presented protocol (S1 File) and applied size selec-

tion using the Short Read Eliminator (SRE) kit (Circulomics), an easy-to-use method that does

not require dedicated devices which is based on a length-dependent precipitation of nucleic

acids driven by polyvinylpyrrolidone crowding. Large amounts of small DNA fragments can

be detrimental for long-read Nanopore sequencing [18], not only because the subsequent

reads are short, but also because these molecules can outcompete the longer ones, both for

adapter ligation and pore usage, thus yielding suboptimal results.

The size distribution of the extracted DNA was assessed by PFGE and Nanopore sequenc-

ing, with and without size-selection for HMW DNA. Samples were migrated in a pulse field,

stained by ethidium bromide and imaged with UV light (Fig 1A). The DNA molecules

extracted without size selection migrated as a large smear spread between approximately 1.5

and 150 kb. After size selection with the SRE kit, the upper part of the distribution remained

unchanged while the low-molecular-weight fragments (< 10 kb) were visibly reduced. We

made a similar observation after electrophoresis and staining of the samples in a 0.3% agarose

gel (Fig 1B).

Size-selection of DNA fragments before preparation of libraries for Nanopore sequencing

led to a substantially decreased number of shorter molecules and an enrichment of longer ones

(Fig 2A and 2B), without negatively affecting read quality (Fig 2D) and with no effect on
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genome-wide sequencing depth (S1 Fig). Size-selection doubled the mean read length,

increased the N50 from 12 kb to 17 kb, with reads in the top decile being longer than 21 kb (S1

Table). The length distribution after size-selection was robust across different experiments

using two other independent biological samples, and reached an N50 of up to 20 kb and a top

decile length of up to 27 kb (Fig 2C and S1 Table). The longest molecules we sequenced were

over 100 kb, which are instrumental for genome assemblies. Indeed, we recently assembled the

genome of C. reinhardtii based on these reads and found a genome size between 114 and 117.7

Mb [15], depending on the assembler, which is consistent with the 114 Mb of the recently

released version 6 of the reference genome [16]. Overall, this protocol and the resulting quality

and length of the DNA molecules are suitable for reaching highly contiguous genome

assemblies.

Fig 1. Visualization of extracted genomic DNA size distributions. (a) PFGE using 0.5 μg of DNA prepared with (+)

or without (-) SRE size-selection, embedded in 30 μl of 0.5% low-melting agarose plugs, migrated in a 1% SeaKem

GTG agarose (Lonza) gel. The ladder is a mix of PFG mid-range (N0342S, NEB) and GeneRuler 1 kb Plus (SM1331,

ThermoFischer). Electrophoresis conditions: 0.5X TBE (Tris Borate EDTA) buffer, 6 V.cm-1, 120˚ angle, for 11h,

switching time ramp from 1 to 60 seconds. Gel stained in ethidium bromide and imaged with UV. (b) Standard gel

electrophoresis (0.3% agarose) of the indicated samples. GeneRuler 1 kb Plus (SM1331, ThermoFischer) is used as the

ladder. See S3 Fig for the uncropped images.

https://doi.org/10.1371/journal.pone.0297014.g001
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Supporting information

S1 File. Step-by-step protocol, also available on protocols.io: dx.doi.org/10.17504/

protocols.io.8epv59j9jg1b/v2.

(PDF)

S1 Table. Summary statistics for 6 DNA preparations and sequencing experiments. Major

limiting outputs are shown in red. a https://www.chlamylibrary.org and reference [19]. b with

quality > 7. c as per manufacturer’s protocol (Monarch1HMW DNA Extraction Kit for Tis-

sue Cat. no. T3060L, New England Biolabs). d cell lysis using DNeasy Maxi Plant (Cat. no.

68163, Qiagen) as in [20] and purification using Genomic-tip 100/G (Cat. no. 10243, Qiagen),

then AMPure beads (Cat. no. A63880, Beckman Coulter).

(PDF)

Fig 2. Distributions of read length in Nanopore-sequenced datasets. (a, b) Count percentage of (a) reads and of (b)

bases as a function of read length obtained from genomic DNA of C. reinhardtii (experiment “A”, see S1 Table) with or

without size selection (+SRE and -SRE). (c) Count of bases after size-selection (+SRE) as a function of read length

obtained from three different biological samples (see S1 Table and S2 Fig). (d) Quality score for individual reads,

grouped into bins of 0.1 log unit for samples “A-SRE” and “A+SRE”. The shaded areas represent the values between

the 1st and 3rd quartiles.

https://doi.org/10.1371/journal.pone.0297014.g002
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S1 Fig. Genome-wide sequencing depth normalized to the median, for all chromosomes,

using DNA obtained with (+) or without (-) SRE size selection.

(PDF)

S2 Fig. Count percentage of bases as a function of read length with alternative sample

preparations without size selection (-SRE). See S1 Table for details. Sample C was sequenced

in the presence of control DNA (“DNA CS” from Oxford Nanopore sequencing), which

peaked at 3 kb.

(PDF)

S3 Fig. Raw images.

(PDF)
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