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ABSTRACT

We propose Cdbgtricks, a new method for updating a compacted de Bruijn graph when adding
novel sequences, such as full genomes. Our method indexes the graph, enabling to identify in constant
time the location (unitig and offset) of any k-mer. The update operation that we propose also updates
the index. Our results show that Cdbgtricks is faster than Bifrost and GGCAT. We benefit from the
index of the graph to provide new functionalities, such as reporting the subgraph that share a desired
percentage of k-mers with a query sequence with the ability to query a set of reads. The open-source
Cdbgtricks software is available at https://github.com/khodor14/Cdbgtricks.

1 Introduction

The de Bruijn graph is one of the fundamental data structures that play crucial roles in computational biology.
It is tremendously used in various applications, including but not limited to genome assembly [1, 2], read error
correction [3, 4], read alignment [5, 6] and read abundance queries [7]. The de Bruijn graph is a data structure in which
the nodes represent the distinct substrings of length k of a set of strings, called k-mers, and the edges link the nodes that
share an overlap of (k − 1). In a compacted de Bruijn graph, nodes along each maximal non-branching path of the de
Bruijn graph are compacted into a single node representing a sequence of length ≥ k, called a unitig. The de Bruijn
graph can be constructed from a set of assembled genomes or a set of reads.

Several methods have been proposed in the literature for compacted de Bruijn graph construction, including
PanTools [8], Bcalm2 [9], TwoPaCo [10], deGSM [11], Bifrost [12], Cuttlefish2 [13], GGCAT [14], and FDBG [15].
As genomic databases grow, there is a demand for dynamic de Bruijn graph data structures supporting sequence
additions. BufBoss [16], DynamicBoss [17], and FDBG [15] support the addition and the deletion of nodes and edges
in de Bruijn graphs.

Nevertheless, the performance of BufBoss, DynamicBoss and FDBG in sequence addition falls short compared to
Bifrost. We refer the reader to the results of the BufBoss paper [16]. Despite being faster in adding new sequences,
Bifrost builds a new graph from the sequences to be added, using its construction method, and then it merges the two
graphs. The reliance on constructing a graph from the new sequences introduces computational overhead, potentially
limiting the scalability and efficiency of Bifrost, particularly when dealing with large graphs, highlighting the need
for a more efficient updating mechanism.

Recent advances have focused on developing memory- and time-efficient indexing structures for k-mers. Some notable
methods, such as BLight [18], SSHash [19], GGCAT [14], and Pufferfish [20], are recognized for their efficiency in
this regard. However, it is important to note that these methods are static, meaning that they cannot easily incorporate
new data. This limitation becomes especially problematic with large datasets when construction time must be paid for
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every addition of new sequences.

Indexing methods are used as well for read queries, read mapping, and read alignment on de Bruijn graph. Read
mapping against the de Bruijn graph has been studied extensively. Bifrost [12], GGCAT [14] and Fulgor [21] proposed
read query methods. The limitation of Bifrost and Fulgor is the need to compare any queried k-mer with all k-mers
having the same minimizer, the smallest substring of length m < k according to some order. Although it is an efficient
design to reduce memory usage, it slows down when negative k-mers are queried.

In this paper, we propose “Cdbgtricks”, a novel strategy, and a method to add sequences to an existing uncolored
compacted de Bruijn graph. Our method takes advantage of kmtricks [22] that finds in a fast way what k-mers are to
be added to the graph, and our indexing strategy enables us to determine the part of the graph to be modified while
computing the unitigs from these k-mers. The index of Cdbgtricks is also able to report exact matches between
query reads and the graph. We compared Cdbgtricks against Bifrost and GGCAT. Despite GGCAT lacking the update
feature on the compacted de Bruijn graph, we included it in our comparison due to its potential efficiency in graph
construction, which may outperform an update approach. Cdbgtricks is up to 2x faster than Bifrost on updating a
compacted de Bruijn graph on 100 human genomes datasets, and it shows the competitiveness potential against GGCAT
on larger human genome datasets for which GGCAT may not scale due to the high disk requirement. Cdbgtricks is up
to 3x faster than Bifrost and GGCAT on updating a compacted de Bruijn graph on a large E. coli genomes dataset.

2 Methods

2.1 Preliminary definitions

A string s is a sequence of characters drawn from an alphabet Σ. In this paper, we use the DNA alphabet Σ =
{A,C,G, T} where every character has its complement in Σ. The complement pairs of Σ are (A, T ) and (C,G). The
reverse complement s̄ of s is found by reversing s and then complementing the characters. The canonical string of a
string s is the lexicographically smallest string between s and its reverse complement s̄. We denote by |s| the length
of s. s[i] denotes the ith symbol of s, starting from zero (s[0] represents the first character of s and s[|s| − 1] is its
last character). Denote by s(i, j) the substring of s starting at i and ending at j − 1. A k-mer is a string of length k.
For a given k, in our specific context, we denote by pref(s) = s(0, k − 1) the (k − 1)-prefix of a string s, and by
suff(s) = s(|s| − k + 1, |s|) the (k − 1)-suffix of s.

Definition 1. de Bruijn Graph: The de Bruijn graph constructed from a set of sequences S is a directed graph
G = (V,E) where V represents the set of distinct k-mers of S. When input sequences S are made of raw sequencing
data, before constructing the graph, the k-mers of S are counted, and those whose abundance is smaller than a fixed
threshold are considered to contain sequencing errors, thus they are discarded. Note that a node u represents a k-mer x
and its reverse complement x̄. Two nodes v and w are connected by an edge e ∈ E from v to w if one of the following
holds:

1. suff(v) = suff(w)

2. pref(v) = pref(w)

3. suff(v) = pref(w)

In any of these three cases, v is an in-neighbor of w, and w is an out-neighbor of v. It is worth mentioning that within
the scope of this paper, the edges are not stored explicitly; rather, they are deduced from the nodes.

Definition 2. Path: A path of a dBG is a an ordered set of nodes where every two consecutive nodes are connected by
an edge.

Definition 3. Unitig: A maximal non-branching path is a path p = {f, v1, v2, ..., v|p|−2, l} where every vi has only
one in-neighbor and one out-neighbor on p and f and l do not have this property. A maximal non branching path can be
compacted to form a unitig u. The compaction of two nodes v and w can be achieved as follows:

1. If suff(v) = pref(w) then compaction(v, w) = v ⊙ w[|w| − 1]

2. If suff(v) = suff(w) then compaction(v, w) = v ⊙ w[0]

3. If pref(v) = pref(w) then compaction(v, w) = w[0]⊙ v

2
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Without loss of generality, we suppose in what follows that two nodes v and w are in forward-forward direction i.e.,
suff(v) = pref(w). It should be noted that the rest of the cases remain valid within the scope of this definition. In
what follows we will not emphasize if a k-mer x is canonical or not.

Definition 4. Compacted de Bruijn Graph: Replacing the maximal non-branching paths by their unitigs provides a
compacted form of the de Bruijn graph. An illustration of a de Bruijn graph and its compacted version is shown in
Figure 1.

CGAGT

GAGTCC

Compacted de Bruijn graph (k=5)

ACCGA

de Bruijn Graph (k=5)

CCGAG

CGAGA GAGAG AGAGT

CGAGT

GAGTC AGTCC

ACCGAG

CGAGAGT

Figure 1: A de Bruijn graph and its compacted de Bruijn graph version.

Definition 5. Minimizer: A minimizer of a string s is a substring q of fixed length m where m < |s| and q is the
smallest m-mer of s with respect to some order. In this paper, the order is defined on the basis of a hash function.

Definition 6. Minimal perfect hash function MPHF: Given a set of keys K, a minimal perfect hash function (MPHF)
is a function that bijectively maps the elements of K to the elements of the set I = {i|0 ≤ i < |K|}.

2.2 Overview of the Algorithm

Cdbgtricks enables to add a set of new sequences S to a compacted de Bruijn graph G. We denote by KS the set of
k-mers in S and by KG the set of k-mers in G. The set of k-mers in KS but not in KG have to be added to G. We
call N this set KS\KG. To efficiently determine N we use the kmtricks [22] tool. To help understand the proposed
algorithm, we first describe the process when adding k-mers from N one after another in the compacted de Bruijn
graph G. We show later (Section 2.4), how to avoid these |N | individual additions.

When adding a k-mer x from N to the compacted de Bruijn graph G, we distinguish the following cases, as represented
in Figure 2:

1. Add x as a new unitig. Neither pref(x) nor suff(x) appears in any unitig of G. In this case, the existing
unitigs of G are not modified and x is added as a new single unitig in G (Fig 2.a).

2. Right extension of a unitig. If pref(x) equals suff(u) for a unitig u of G, and u has no out-neighbor, then
u is extended with the last character of x (u = u⊙ x[k − 1])(Fig 2.b).

3. Left extension of a unitig. If suff(x) equals pref(u) for a unitig u of G and u has no in-neighbor, then the
first character of x is added to the left of u (u = x[0]⊙ u) (Fig 2.c).

4. Merge two unitigs. If the addition of x leads to the right extension of a unitig u1 and to the left extension of a
unitig u2, then, after the extensions, suff(u1) = pref(u2). In this case the two unitigs u1 and u2 are merged
into a unique unitig u = u1 ⊙ u2(k, |u2|) (Fig 2.d).

5. Splitting a unitig. If pref(x) exists in a unitig u of G, not being the suffix nor the prefix of u, then u is
split into two unitigs u1 and u2 where suff(u1) = pref(u2) = pref(x) and x is added as a single unitig.
Respectively, if suff(x) exists in a unitig u of G, not being the suffix nor the prefix of u, then u is split into
two unitigs u1 and u2 where suff(u1) = pref(u2) = suff(x) and x is added as a single unitig (Fig 2.e).
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k-mer x
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k-mer x

add a unitig extend to the
right
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left

Merge two
unitigs

Split a unitig

operation

Figure 2: Possible operations when adding a k-mer to a compacted de Bruijn graph with k = 4. (a) Adding the
k-mer as a new unitig. (b) Extending a unitig to the right. (c) Extending a unitig to the left. (d) Merging two unitigs. (e)
Split a unitig into two unitigs. Gray and bold sequences represent overlap between the added k-mer and some unitigs of
the graph.

These operations rely extensively on the pattern matching of suff(x) and pref(x) in the unitigs of G. In order to
rapidly perform these operations, we propose to index the graph, as explained in the next section.

2.3 Indexing the graph

A core operation in Cdbgtricks consists in identifying if a (k − 1)-mer occurs in any unitig of a compacted de Bruijn
graph G, and, if this is the case, to determine the couple(s) (unitig id, offset) where it occurs.

This operation is performed twice for each k-mer x of N (for pref(x) and suff(x)). It has to have a O(1) time-
complexity and to be fast in practice. This is a very common operation for which existing indexing solutions such
as [18, 19] are convenient. However, in the context of this work, the specificity is that, when adding sequences to the
graph, the indexed data evolve as some unitigs G can be split, merged, extended, and some new unitigs can be added to
G. Hence, those static methods are not adapted. We propose the following strategy to cope with this particular situation.

2.3.1 Indexing k-mers for querying (k − 1)-mers

Despite the fact that we query (k − 1)-mers, we chose to index k-mers instead of (k − 1)-mers. A (k − 1)-mer may
have up to eight occurrences in the G because it can be the suffix of four possible k-mers and the prefix of four possible
k-mers. Indexing from one to eight couples (unitig id, offset) per indexed element is not efficient as it requires a
structure of undefined and variable size. This leads to heavy data-structures and cache-misses on construction and query
times. To cope with this issue, we chose to index k-mers instead of (k − 1)-mers. Indeed, each k-mer of a compacted
de Bruijn graph, occurs at exactly one couple (unitig id, offset).

Given this indexing scheme in which k-mers are indexed, when querying a (k − 1)-mer x′, the eight possible k-mers
containing this (k− 1)-mer (four k-mers in which x′ is the prefix, and four k-mers in which x′ is the suffix) are queried.
If a match is found, the offset of the (k − 1)-mer is deduced depending on the case (either x′ is the prefix or the suffix
of a queried k-mer for which a match is found).

As a matter of fact, we only index each k-mer in its canonical form. Then, a queried k-mer is searched in its canonical
form.

2.3.2 Partitioning the k-mers of the graph

Conceptually, we could use any associative table such as a hash table for mapping each k-mer of G to its couple
(unitig id, offset). However, this would require explicitly storing the k-mers which is a waste of space as k-mers
are already explicitly existing in unitigs. Alternatively, we use an MPHF f from the k-mers of the graph. Doing
so, we need only to store the position of each indexed k-mer. Formally the position of a k-mer x is defined by
px =< uid, uoff , orientation >, where uid is the identifier of the unitig u, 0 ≤ uoff ≤ |u| − k is the offset of x in u,

4
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and orientation is a boolean variable that is true if x is in its canonical form in u, else it is false. The positions of the
k-mers in the graph are stored in a vector V . Given a k-mer x, its position is px = V [j] where j = f(canonical(x)).
There are two observations to be made here:

• At query time, f can give valid hash values for alien k-mers, which are k-mers that are not present in the graph.
To handle this, we compare the queried k-mer to the actual k-mer in the graph, whose position is retrieved
thanks to V [f(canonical(x))].

• Adding new k-mers requires to recompute f .

This last point is problematic, since for every addition operation, f must be recomputed, which is a linear-time operation
in terms of the number of indexed k-mers. To resolve this, we divide the set of k-mers in the graph into multiple subsets
called “buckets”. Each subset is indexed using its own MPHF. The key idea being that while adding sequences to a
graph, only a subset of the buckets are modified, and so only a subset of the MPHFs have to be recomputed. At query
time, the bucket of the queried k-mer x is retrieved, and the corresponding MPHF provides the position of x in the
graph.

Formally, we define {b0, b1, ..., bn−1} buckets. For each of these buckets bi, an MPHF fi is computed on its k-mers.
MPHFs are computed using PTHash [23] as it provides the fastest lookup compared to the state of the art tools that
compute MPHFs.

The k-mers in the graph are separated into buckets based on their minimizers. The k-mers sharing the same minimizer
cannot be distributed into different buckets. However, this strategy may result in a well-known problem of non-uniform
distribution of the k-mers in the buckets [24]. Some buckets could be orders of magnitudes larger than some others. Also,
the small buckets are problematic for the construction of an MPHF using PTHash, as higher number of bits/k−mer is
required for small buckets (see Figure 3).

All in all, we propose a strategy so that all the batches contain a minimum number of k-mers.

• The number of k-mers sharing the same minimizer should be at least equal to a parameter ρ for creating a
bucket. Note that the size of a bucket does not have an upper-bound.

• For the remaining k-mers, we process them by groups of k-mers where the k-mers within a group share the
same minimizer. From these groups, we create what so-called “super-buckets” which are buckets containing
k-mers that share different minimizers. We start with an empty super-bucket S0 to which we add the groups
of k-mers one by one. Once the number of k-mers added to S0 exceeds γ × ρ k-mers (with γ a user defined
multiplicative factor), we create a new super-bucket. We keep creating and filling super-buckets until all groups
of k-mers are processed. The rational behind this strategy is to achieve a balanced distribution of k-mers on
the super-buckets. It is important to note that the size of a super-bucket has an upper bound, which we address
in section 2.5.

Finally the data-structure is composed of the following components, represented in Figure 4:

1. A hash table T that maps each minimizer to its bucket identifier. The hash table will be used to identify the
bucket that may contain a given k-mer x. The identifier of the bucket is then bi = T [minimizer(x)].

2. A hash table F that maps each bucket identifier to its MPHFs. Hence, F [bi] is the MPHF computed from the
set of k-mers in bucket bi.

3. A hash table U that maps the identifier of each unitig of the graph to its sequence. Hence, U [ui] is the unitig
sequence whose identifier is ui.

4. The positions of the k-mers in the graph are stored in a 2-D vector P . P [bi] is the vector of positions for the
k-mers in bucket bi. P [bi][F [bi](x)] is the tuple position < uid, uoff , orientation > for the k-mer x in the
bucket bi.

Overall given the position of a k-mer x, x can be retrieved by retrieving the unitig u = U [uid] from the hash table U ,
hence x = u(uoff , uoff + k) (Figure 4.c). Note that if the minimizer of x is not present in T , then x does not belong
to the graph (Figure 4.b).
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Figure 3: The number of bits/key required for building a MPHF with PTHash. MPHFs from different sets of keys
of sizes ranging from 10 to 5000 random 64-bit keys were computed by PTHash, and bits/key were then measured
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        GCTTTTGTAGGCCGGATAAGGCGTTCACGCC    (1,0)
        CTTTTGTAGGCCGGATAAGGCGTTCACGCCG    (1,1)
        GCGCGTTTCTTCTGCAATATATTGAATCTGC        (3,9)
        CGCGTTTCTTCTGCAATATATTGAATCTGCA       (3,10)
        GCGTTTCTTCTGCAATATATTGAATCTGCAT       (3,11)

Bucket 2
(Super-bucket 0)

(e)

(3,36)

Figure 4: Overview of the data structure. (a) the hash table U of the unitigs of a compacted de Bruijn graph with
k = 31; the hash table T of minimizers that maps a minimizer to its corresponding bucket or super-bucket; and the
vector P of positions of the k-mers as a tuple (uid, uoff ) where uid is the identifier of the unitig in which the k-mer
occur at offset uoff . Note that the values on top of the vector P represent the hash value of the k-mers computed by the
MPHF of their bucket or super-bucket, and the values to the left of P represent the bucket or super-bucket identifier. (b)
querying an absent k-mer whose minimizer is not in the index. (c) querying an absent k-mer whose minimizer is in the
index. (d) querying a present k-mer. (e) the dashed box is converted back to a super-bucket of the k-mers.

2.4 Computing the future unitigs and updating the graph

Recall that N denotes the set of k-mers to be added to a compacted de Bruijn graph G. In Section 2.2 we proposed an
overview of algorithms in which k-mers from N are added one after another to G. In practice, for performance reasons,
we first compact k-mers from N into what we call “funitigs” (for future unitigs).

The funitigs are not simply the unitigs of N as any (k − 1)-mer of those funitigs that is already in G must be either a
prefix or a suffix of a funitig. Doing so, the funitigs are not split latter when added to the graph. The details about the
funitig construction are given in Algorithm 2 of supplementary materials.
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Once the funitigs are constructed, each of them is added to the graph one after the other. The rules described section 2.2
for adding a k-mer to G exactly apply for adding a funitig to G. The Cdbgtricks tool exactly implements those rules,
that we do not recall here.

2.5 Updating the index

Cdbgtricks enables to update the index of a compacted de Bruijn graph, after the addition of sequences. The updated
index can serve for any future update on the graph and for k-mer queries against the graph.

While adding funitigs to the graph, we remember the identifiers of the modified unitigs and of the modified buckets.
After all funitigs are added to the graph, the index of the corresponding unitigs and buckets are updated. The update of
the index of the graph is tackled into three stages:

1. Splitting a unitig or a joining two unitigs or a unitig with a funitig result in changing unitig identifier(s) and the
offsets of some k-mers. When we split a unitig u into two unitigs u1 and u2, u1 get the identifier of u, u2 gets
a new identifier and the offsets of its k-mers get recomputed. When we merge a funitig with one or two unitigs,
the resultant sequence gets the identifier of one of these unitigs, and the offsets its k-mers get recomputed.

2. The addition of k-mers to super-buckets may lead to doubling their maximum size (γ × ρ). In this case, for
each concerned super-bucket, it is divided into two new super-buckets.

3. Recompute the MPHFs of the buckets and super-buckets to which new k-mers were added.

When dividing a super-bucket into two super-buckets (case 2), the objective is to balance the size of the two created
super-buckets. To address case 2, a straightforward greedy strategy is employed to split the super-bucket into two
smaller ones. We propose a simple greedy algorithm (see Algorithm 1) for performing this task.

Algorithm 1 Divide a super-bucket into two super-buckets
Require: A super-bucket of k-mers B
Ensure: Two balanced super-buckets B1 and B2

Initialize four empty sets, B1, B2,M1,M2
for each k-mer x ∈ B do

m← minimizer(x)
if m ∈M1 then

B1 ← B1 ∪ {x}
else if m ∈M2 then

B2 ← B2 ∪ {x}
else if |B1| < |B2| then

B1 ← B1 ∪ {x}
M1 ←M1 ∪ {m}

else
B2 ← B2 ∪ {x}
M2 ←M2 ∪ {m}

2.6 Read querying

A compacted de Bruijn graph constructed using Cdbgtricks supports sequence queries. In practice, while querying
a sequence s on a graph G, Cdbgtricks determines if at least α% of the k-mers of s are in the graph (with α a
user-defined parameter). If this is the case, Cdbgtricks indicates the uni-MEMs, as defined in deBGA [5]. Each
uni-MEM is a tuple < uid, ustart, uend, sstart, send > where ustart and uend are the start and end positions of
mapping on the unitig whose identifier is uid, and sstart and send are the start and end positions of mapping on the
queried sequence s. In other words, the k-mers whose offsets in the read are between rstart and rend are found in the
unitig uid between ustart and uend. A uni-MEM is found through the extension of the first common k-mer between the
read and a unitig. The extension ends in one of the following cases:

1. A mismatch is encountered.

2. Either the end of the read or the end of the unitig is encountered.
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3 Results

All presented results are reproducible using command lines and versions of tested tools, that are given in this repository
https://github.com/khodor14/Cdbgtricks_experiments. The executions were performed on the GenOuest
platform on a node with 4× 8 cores Xeon E5-2660 2,20 GHz with 128 GB of memory.

3.1 Genome datasets

We tested Cdbgtricks in two frameworks, corresponding to two input datasets of distinct size and complexity. The
first one, called “human” is composed of 100 assembled human genomes that were used in the GGCAT experiments [14].
These genomes are available on zenodo (10.5281/zenodo.7506049,10.5281/zenodo.7506425). The second set,
called “coli” is composed of 7055 E. coli genomes downloaded from NCBI (https://ftp.ncbi.nlm.nih.gov/
genomes/all/GCF/030/).

While Cdbgtricks is capable of initially constructing a compacted de Bruijn graph from scratch, it is worth noting
that there are faster alternatives for creating the initial graph. As such, for each dataset, we created an initial graph
in fasta format from one genome (chosen as the first in the alphabetic order of the file names) using Bifrost. Once
created Cdbgtricks can be used for indexing this initial graph. Subsequently, for each dataset, we added one by one
the remaining genomes.

3.2 Used Parameters

The used parameters are the same for the two datasets. In all experiments we used k = 31 and minimizers of size
m = 11. The tools were executed using 32 threads.

For Cdbgtricks, the parameters controlling the bucket size were set to default. The bucket lower bound size is
ρ = 5000 and a the super-bucket multiplicative factor γ is set to 4. This setting of parameters means that the size of a
super-bucket is approximately 20000 k-mers, and once it reaches 40000 k-mers, it gets divided into two super-buckets.
The values of the parameters were chosen to ensure satisfactory results that will be shown in the subsequent sections.

3.3 Percentage of modified buckets

As explained Section 2.3, one of the key ideas in Cdbgtricks is to distribute indexed k-mers into multiple buckets,
each bucket being indexed with its own MPHF. Doing so, we expect that, while adding k-mers from novel sequences,
k-mers are added to only a fraction of the buckets, and then only, a fraction of the MPHFs have to be recomputed. More
precisely, we expect that the percentage of modified buckets, i.e. 100× number of modified buckets

total number of buckets decreases as the number
of genomes in the graph increases. Note that here we do not differentiate buckets and super-buckets and we regroup
these two notions in the term “buckets”.

In this section we test this expectation on the human and E. coli datasets. The results about the percentage of modified
buckets are shown Figure 5. Results show that, as expected, the percentage of modified buckets decreases with respect
to the number of genomes. The shaded cluster of points for the E. coli dataset shows that in the majority of cases, the
percentage of modified buckets and super-buckets is less than 20%. More specifically, results with, say, more than 5000
E. coli genomes show that, except for some outliers, less than 10% of the buckets are modified when adding a new
genome.

These results validate the chosen default parameters, and they confirm the expectation that lesser and lesser buckets are
modified while increasing the number of genomes of the same species in a compacted de Bruijn graph.

3.4 Scalability

One of the main objective of Cdbgtricks is the time performances when updating a compacted de Bruijn graph with
new sequences. In this context, we compared the Cdbgtricks update time, with the update time obtained thanks to
Bifrost, also able to update an already created compacted de Bruijn graph. Furthermore, although GGCAT does not
provide graph updating capabilities, we included it in our comparison due to its efficiency. The memory and disk for the
update with Cdbgtricks and Bifrost and for the construction with GGCAT are also reported.

Results for the human dataset are shown in Figure 6. Note that, on the human dataset, GGCAT reached a timeout we set
at two days on more than 71 human genomes. Hence, only the results for the first 71 genomes were reported for GGCAT.
Globally, the results on this dataset show that Cdbgtricks is at least 2x faster than Bifrost on graphs composed of
50 genomes or more. Compared to GGCAT, Cdbgtricks is slower on this small number of genomes. Given that as the
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Figure 5: Percentage of modified buckets.

number of genomes in the graph increases, the GGCAT construction time naturally increases while the Cdbgtricks
update time decreases, one can expect Cdbgtricks to be faster when dealing with more genomes than those tested
here. However, given the observe GGCAT limitation after 71 genomes, we could not verify this fact in practice, at least
for human genomes. The memory used by Cdbgtricks and Bifrost are slightly the same and are limited to a few
dozen gigabytes. GGCAT uses much less memory, but needs up to order of magnitude more disk.
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Figure 6: Results on human genomes dataset. Time (a), memory (b) and disk usage (c) are given for updating a
graph for for Cdbgtricks and Bifrost and for constructing a graph from scratch for GGCAT.

Results for the coli dataset are shown in Figure 7. For the sake of clarity of presenting the results of the E. coli, we
chose to report the median time over a window of 200 genomes. The detailed presentation of execution time is in
supplementary materials. On this dataset, both Bifrost and GGCAT were faster than Cdbgtricks on graphs composed
of less than a thousand genomes. However, in the vast majority of cases, when the number of genomes get higher than,
say, 2000 genomes, Cdbgtricks is 2x to 3x faster than GGCAT and Bifrost. With Cdbgtricks, adding an E. coli
genome to a compacted de Bruijn graph graph containing already few thousands genomes requires between 30 and 50
seconds. Cdbgtricks uses slightly the same amount of memory compared to GGCAT and roughly twice the amount of
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memory compared to Bifrost. Cdbgtricks uses up to 4x more disk compared to Bifrost, while it uses much less
disk compared to GGCAT.
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Figure 7: Results on E. coli genomes dataset. Time (a), memory (b) and disk usage (c) are given for updating a
graph for for Cdbgtricks and Bifrost and for constructing a graph from scratch for GGCAT. The time is given as the
median over a window of 200 consecutive points.

3.5 Results querying sequences

We propose some experiments for comparing the query performances of Cdbgtricks with those of Bifrost, GGCAT
and Fulgor. Fulgor uses GGCAT to index the compacted de Bruijn graph in an efficient manner. Note that these four
tools do not offer the same query features. Although, these results must be considered as rough estimations showing the
main tendencies.

Using Bifrost, we constructed a graph from 15,806 E. coli genomes, and a graph from 10 human genomes. Then we
constructed an index for each graph using either Cdbgtricks, Bifrost or Fulgor. We have differentiated between
results obtained with positive queries (querying sequences present in the graph) and those obtained with negative queries
(querying random sequences). The positive queries are a subset of unitigs from each graph. The negative queries are
composed of one million random sequences of length between 500 and 1000 base pairs. The querying results are shown
Table 1.

Table 1: Performances of sequence queries using compacted de Bruijn graph, Bifrost and Fulgor

Dataset Query type Tool Memory (MB) Disk (MB) time (mm:ss)

E. coli
Negative

Cdbgtricks 4605 0 10:02
Bifrost 4362 0 06:43
Fulgor 9189 0 18:21
GGCAT 560 3325 01:32

Positive

Cdbgtricks 4606 0 02:49
Bifrost 4362 0 01:43
Fulgor 9203 0 39:20
GGCAT 644 2978 01:26

human
Negative

Cdbgtricks 26093 0 12:10
Bifrost 27376 0 11:37
Fulgor 8789 0 17:39
GGCAT 615 6861 4:55

Positive

Cdbgtricks 26093 0 04:12
Bifrost 27376 0 06:37
Fulgor 8802 0 05:44
GGCAT 746 7053 05:04
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The results shows that Cdbgtricks and Bifrost obtained similar results in term of memory, while Cdbgtricks is
slightly slower. While GGCAT is the fastest tool and it uses the smallest amount of memory in these query experiments, it
uses few Gigabytes of disk. On a large number of files (the coli dataset), Fulgor positive queries are order of magnitude
slower than Cdbgtricks, Bifrost and GGCAT. This is because Fulgor recovers the original references where queries
appear while Cdbgtricks, Bifrost and GGCAT were executed to only report the existence of queries in the graph.

4 Discussion and future work

In this paper, we presented Cdbgtricks, a novel method for updating a compacted de Bruijn graph when adding
new sequences such as full genomes. Cdbgtricks also indexes the graphs, hence it enables to query sequences and
detect the portions of the graph that share k-mers with the query. The dynamicity of the proposed index is achieved
thanks to the distribution of k-mers into multiple buckets, each bucket being indexed using a minimal perfect hash
function (MPHF). The addition of new k-mers affects only a fraction of the buckets, for which the MPHF has to be
recomputed. In practice, when indexing a large number of genomes (dozens of human genomes or thousand of E.
coli genomes) Cdbgtricks outperforms the computation time of state-of-the-art tools dedicated to the creation of the
update of compacted de Bruijn graphs.

Of independent interest, the indexing approach we propose presents two main advantages when compared to a classical
MPHF built for a set of k-mers, such as BBhash [25] or PTHash [23]:

• By essence an MPHF is static, bijectively associating n distinct elements to a unique value in [0, n[. Adding
an element to this kind of data structure requires one to recompute the entire MPHF from scratch to associate
the n+ 1 elements with a unique value in [0, n+ 1[. The data structure proposed in Cdbgtricks enables one
to update an MPHF, adding elements without necessitating a complete reconstruction. This can be seen as a
dynamic MHPF data structure.

• In any MPHF that does not explicitly store the indexed set of elements (as this is the case for BBhash and
PTHash), a queried k-mer will always be associated to a value in [0, n[, whether or not it belongs to the original
set (with a few exceptions in the case of BBhash). In this case, at query time, there is no way to differentiate
an alien-k-mer from a k-mer existing in the indexed sample. In the context of this work, the presence of the
stored unitigs enables us to validate that a query k-mer is in the original set, and thus enables us to detect
whether it is an alien-k-mer or not.

A future research direction is to devise a smarter bucket clustering approach. One way could be to group the buckets
whose minimizers appear in the same unitigs. Doing so, we could expect more data locality, limiting the cache-misses.

The compacted de Bruijn graph computed by Cdbgtricks is not colored. This means that the information is lost
about the original genome(s) a k-mer belongs to. In recent years, significant attention has been given to the use of
colored and compacted de Bruijn graphs in computational biology applications [26]. Hence, another research priorities
for the future of this tool is to integrate the color information. This will necessitate minor yet potentially expensive
operations. To include the new colors associated with a set of new sequences S, the color information of all k-mers in
S already present in the graph G will have to be updated, while those k-mers are not modified in the current uncolored
Cdbgtricks version.

There exists no limitation for using Cdbgtricks for merging the information of two compacted de Bruijn graphs G1

and G2. We can simply consider the k-mers of, say, G2 to be added into G1, and apply the exact same algorithm as
proposed here. Future work will include validation and scaling tests for this approach.

Finally, we believe that the number of common k-mers but also the number of splits and joins performed when adding a
sequence to a graph could be used as metrics to estimate the distance between a sequence and a compacted de Bruijn
graph, or even between two compacted de Bruijn graphs.
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