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Using semiclassical methods, an analytical approach to describe grazing incidence scattering of fast
atoms (GIFAD) from surfaces is described. First, we consider a model with a surface corrugated in
the scattering plane, which includes the surface normal and the incidence direction. The treatment
uses a realistic, Morse potential, within a perturbation approach, and correctly reproduces the basic
GIFAD phenomenology, whereby the scattering is directed primarily in the specular direction. Second,
we treat the more general case of scattering from a surface corrugated in two-dimensions. Using time
averaging along the direction of fast motion in the incidence direction, we derive a time dependent
potential for the GIFAD scattering away from a low index direction. The results correctly describe
the observation that diffraction is seen only when the scattering plane is aligned close to a low-index
direction in the surface plane. For the case of helium scattering from LiF(001) we demonstrate that
the resulting theoretical predictions agree well with experiment and show that the analysis provides
new information on the scattering time and the length scale of the interaction. The analysis also gives
insights into the validity of the axial surface channeling approximation (ASCA) and shows that within
first order perturbation theory, along a low-index direction, the full 3-dimensional problem can be
represented accurately by an equivalent 2-dimensional problem with a potential averaged along the
third dimension. In contrast, away from low-index directions, the effective 2-dimensional potential in
the projectile frame is time-dependent.

I. Introduction

Grazing Incidence, Fast-Atom Diffraction (GIFAD) has
emerged as a tool with a particular sensitivity to both the
structural corrugation of electron density at the surface (see
e.g. Refs.[1, 2] for reviews) and to the details of the
van der Waals forces between the incident particle and the
surface[3–5]. The information provided by these experi-
ments is complementary to that obtained from thermal-energy
experiments.[6, 7]. The similarity between the two different
scattering approaches arises from the particular scattering ge-
ometry in GIFAD, and especially a high incident energy along
a direction close to grazing incidence, which leads to a sepa-
ration of the dynamics into a fast-direction, parallel to the sur-
face, and a slow-direction, normal to the surface. Motion in
the fast-direction leads to averaging of the interaction where
the dynamics in the slow-direction can be treated using meth-
ods developed for thermal energy scattering[8–12], or alter-
natively by treating the coupling between fast and slow vari-
ables as one of quasi-resonance[13]. In experiment, similar
effects have been seen when scattering molecular hydrogen at
large angles of incidence[14, 15]; however, experiments close
to grazing incidence show that averaging leads to extinction
of in-plane diffraction in almost every case, though counter
examples have been observed[16, 17]

In the scattering plane, defined to include the surface nor-
mal and the incidence direction, the transition from fast
to slow atom diffraction has been addressed with quan-
tum techniques[9, 11] confirming the suppression of in-plane
diffraction. The presence of strong out of plane diffraction
is observed only when a low-index direction in the surface
plane is closely parallel to the scattering plane giving rise
to the typical, high-symmetry diffraction pattern recorded at
once and responsible for the initial interest into the GIFAD
method[18, 19]. However, in the general case of arbitrary

surface orientation, only the specular peak is present and
the rapid attenuation of the diffraction when the scattering
plane is at an angle with the crystal axis has also been in-
vestigated with quantum theory[10, 20]. In this manuscript
we present a general description of both characteristics of GI-
FAD quoted above; the disappearance of in-plane diffraction
at grazing incidence and the rapid attenuation of out of plane
diffraction when the angle between the low-index direction
and the scattering plane increases. We quantify these effects
using a semi-classical approach, which offers a number of ad-
vantages in understanding the basic phenomenology and has
been used widely to describe GIFAD scattering[8, 12, 21, 22].
Not only are classical trajectories relatively easy to determine,
the essential aspects of the quantum behaviour are included
through interference effects between the relevant classical
trajectories. The method becomes particularly advantageous
when combined with perturbation methods and a Morse-type
potential[23, 24] as analytic results can then be derived. One
key result of this general analysis is that when the scatter-
ing plane is parallel to a low-index direction of the surface
the three-dimensional scattering potential is reduced to a two-
dimensional effective potential, the well known axial surface
channeling approximation (ASCA) [1, 9, 25], while away from
low-index directions, diffraction is suppressed and the effec-
tive potential becomes time-dependent.

Fig. 1 illustrates the scattering geometry for the case when
the scattering plane is misaligned by a small angle, φ , with re-
spect to a low index direction of the surface (y in Fig. 1). The
scattering plane itself is defined by the incident direction and
the surface normal, z. By definition it also includes the spec-
ularly scattered beam (shown red). Other directions for elas-
tic scattering lie on the Ewald sphere, of constant wavevector
modulus (shaded green) at points corresponding to changes
in wavevector ∆K = G jk, where G jk are the reciprocal lattice
vectors. Fig. 1 indicates the projection of the reciprocal lat-
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Figure 1 Schematic diagram showing the scattering geometry, and
defining some of the variables used in the text. The incident direction
for scattering is in the plane containing the laboratory coordinate, u,

and the surface normal, z. It is conventionally referred to as the
scattering plane. In the diagram, the specularly scattered beam (red

line) is the only scattered component that lies entirely in the
scattering plane (lightly shaded). Other directions for elastically

scattered particles lie on the Ewald sphere (green shading) according
to the projection of the reciprocal lattice, G j,k, (indicated by blue

lines of constant j and k) onto the sphere. The scattering geometry
shown correponds to a rotation, φ , of the surface about its normal, z.
Angles in the diagram have been exaggerated for clarity; for example,

the grazing angle of incidence θ̃i is typically a few milli-radians.

tice through lines of constant j and k, where the intersections
define the G-vectors. In grazing incidence fast atom diffrac-
tion (GIFAD), the basic phenomenology is that diffraction in
the scattering plane is suppressed compared with diffraction
out of the scattering plane. Furthermore, diffraction out of
the plane is only observed when a low index direction is
closely aligned with the scattering plane. In the latter case,
as sketched in Fig. 1, diffraction peaks with k = 0 and j ̸= 0
are observed, as shown by the dots in the figure. These two
aspects of the phenomenology are the subject of the present
work, where we derive analytic results within a semi-classical
analysis using a scattering potential of Morse form, coupled
with first-order perturbation theory. The validity of our ap-
proach is confirmed by comparison with experimental results
for the scattering of He from Lif(001).

II. Semiclassical perturbation theory. Grazing incidence and
specular scattering

One of the features of grazing incidence scattering along a
low index direction is that, in the scattering plane, one ob-
serves only a single elastic scattering peak. There are no ob-
servable Bragg peaks other than the specular one. With high
incident energies, the extremely fast motion along the inci-
dent direction underlies this phenomenon. The purpose of
this Section is to demonstrate qualitatively and quantitatively
how this comes about, using a semi-classical scattering theory

with a perturbation theory analysis.

For this purpose we first define the conditions of the "stan-
dard" scattering experiment in three degrees of freedom. One
is the vertical coordinate z (with conjugate momentum pz) de-
scribing the distance of the atom from the surface, the other
two are the horizontal coordinates x and y (with conjugate
momenta px and py) for motion parallel to the surface. The
Hamiltonian for an atom of mass M colliding with a corru-
gated surface is

H =
p2

x + p2
y + p2

z

2M
+V (x,y,z) . (1)

Assuming that the symmetry axes of the surface are along the
horizontal x and y coordinates, and that the potential is peri-
odic along these coordinates with periods lx and ly allows us
to write the potential as

V (x,y,z) =V00 (z)+
∞

∑
j,k

′Vjk (z)h jk cos
(

2πk
lx

x
)

cos
(

2π j
ly

y
)
, (2)

where the prime in the sum implies that the summation does
not include the case that j = k = 0. We have introduced
the "corrugation heights" h jk which are assumed to be much
smaller than the respective lattice lengths and so play the role
of the perturbation parameters. At a later stage we will com-
pare the theory with experiments involving LiF(001) and, for
that purpose, we set Vjk(z) =Vk j(z) and lx = ly and, in the spirit
of earlier work[26], we take the Vjk (z) = V ′

00(z). The h jk pa-
rameters are typically unequal and define the corrugation of
the potential.

For the zero-th order dynamics, the only potential govern-
ing the dynamics is the vertical potential V00 (z). In the gen-
eral scattering case, the particle is initiated at the time −t0
with initial vertical (negative) momentum pzi and horizontal
momenta pxi and pyi. To zero-th order, at t = 0 the particle im-
pacts the surface. We are then interested in the final momenta
of the particle at the time +t0, which is taken to be sufficiently
large to assure that the scattering event is over. In the analyti-
cal formalism developed below, we then take the limit t0 → ∞.

At this point we identify the GIFAD direction to be along
the y axis. The scattering plane is then defined by the y and z
coordinates. The angle of incidence

tanθi =
pyi

pzi

, (3)

is close to −π/2 since the central property of GIFAD scatter-
ing is that the incident momentum pyi along the horizontal
y direction is much larger than the magnitude of the (nega-
tive) momentum pzi in the vertical direction. Most often, in
GIFAD the small complementary angle θ̃i = π/2−θi is used to
describe the grazing angle of incidence referred to the surface
plane.

The exact quantum final momentum distribution for an ini-
tial state characterized by the initial momenta pyi , pzi and end-
ing with the final momenta py f , pz f with amplitude Wk for a
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transition to the k-th Bragg channel is

P
(

py f , pz f ; pyi , pzi

)
=

∞

∑
k=−∞

δ

[
pz f − pzt0

(pzi)
]

δ

(
py f − pyi − pk

)
|Wk|2 ,

(4)
where in the argument of the second delta function we have
used the notation

pk = h̄k
2π

ly
(5)

to express the Bragg condition and k is referred to as the Bragg
index. The final angular distribution is obtained by integrating
the momentum probability over all final momenta subject to
the condition that θ f = tan−1

(
py f /pz f

)
.

The central purpose of this Section is to use semiclassical
perturbation theory to understand why one observes experi-
mentally only the k = 0 (specular) Bragg peak. For this pur-
pose, we summarize the first and second-order semiclassical
perturbation theory results derived previously.[24, 27, 28] for
a single sine corrugation function such that h10 ≡ h and all
other corrugation amplitudes vanish. This implies that the ef-
fective two dimensional GIFAD Hamiltonian, takes the form

HG (x = px = 0) =
p2

y + p2
z

2M
+V10 (z)hsin

(
2π

ly
y
)

(6)

where the corrugation height h is assumed to be much smaller
than ly.

The first-order expression for the probability of observing
the k-th Bragg peak is [24]

∣∣Wk,1
∣∣2 = ∣∣∣∣Jk

(
Ay

h̄

)
− iπX1

2l

[
Jk−1

(
Ay

h̄

)
− Jk+1

(
Ay

h̄

)]∣∣∣∣2 , (7)

where Jk denotes the k-th order Bessel function, the action Ay
being

Ay = h
∫

∞

−∞

dtV10(z0,t)cos(ωyt) , (8)

where z0,t is the zero-th order trajectory in the vertical direc-
tion that hits the turning point at the time t = 0. The central
object for our purpose is the horizontal frequency ωy defined
as

ωy =
2π pyi

Ml
. (9)

Due to the fast GIFAD motion along y (also following the spirit
of ASCA), this frequency is much larger than the inverse of the
collision time, implying that many cycles along y are traversed
during the collision. In other words, as we shall also see below,
the time averaging implied in Eq. 8 causes the action Ay to
essentially vanish, leaving a contribution in Eq. 7 only for
k = 0. The term in the pre-factor, X1, is

X1 =

[∫
∞

−∞

dt
[
Fc (t)−

pyi

M
Gs (t)

]
+MFc (∞)

z0,t

pzi

(
1+

p2
yi

p2
zi

)]
(10)

with

Fc (t) =
2πh
lyM

∫ t

−∞

dt ′V10(z0,t ′)cos
(
ωyt ′

)
(11)

and

Gs (t) =
hM
p2

zt ,0

∫ t

−∞

dt ′
dV10(z0,t ′)

dt ′
sin
(
ωyt ′

)
. (12)

Here too, due to the fast GIFAD motion, we expect X1 to be
extremely small.

A. First order perturbation theory treatment for a Morse
potential model

Beyond the general observation that the fast oscillation due
to ωx causes all quantities to vanish, it is of interest to un-
derstand analytically, the (small) magnitudes involved in the
various parameters Ax,Rc,Pc and X1. These may be analyzed
analytically if one specifies the interaction potential to have
the Morse form

V̄M (z) = D
[
(exp(−αz)−1)2 −1

]
, (13)

which is defined through the physisorption well depth D and
the stiffness parameter α. In order to simplify the final expres-
sions, the following notations are used

Ω
2 =

2α2Ez

M
, (14)

cosΦ =−

√
D

Ez +D
, (15)

and

Ω̄ =
ωy

Ω
=

2π

αly
|tanθi| , (16)

where θi is the (negative) angle of incidence.
When applied to GIFAD, the first order treatment leads to

the following analytical results:

Fc (∞) =
4π2hpzi

Mly

Ω̄cosh
(
ΦΩ̄
)

sinh
(
πΩ̄
) , (17)

Ay = 2πhpzi

Ω̄cosh
(
ΦΩ̄
)

sinh
(
πΩ̄
) , (18)

X1 =
M

α pzi

Fc (∞)

{(
1+

p2
yi

p2
zi

)
ln
[
−cosΦ

2sin2
Φ

]
+

p2
yi

p2
zi

[
1+ cos2

Φ
]}

.

(19)

The GIFAD limit, in which the horizontal incident momen-
tum is much larger than the vertical implies that the "fre-
quency"

Ω̄ ≫ 1. (20)
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In this limit then

Fc (∞)→ 8π3hpzi

Mαl2
y

|tanθi|exp
[
−2π (π −Φ)

αl
|tanθi|

]
. (21)

Since the angle Φ is always less than π (see Eq. 15) we find
that Fc (∞) is exponentially small in the GIFAD limit and the
same will be the case for the parameter X1 which has the di-
mensions of length. In this limit, the action appearing in the
expression for the scattering amplitude is

Ay →
4π2hpzi

αly
|tanθi|exp

[
−2π (π −Φ)

αly
|tanθi|

]
, (22)

and it is also exponentially small. Noting the series expansion
of the Bessel functions

Jk (z) =
( z

2

)k ∞

∑
n=0

(
− z2

4

)n 1
n!(n+ k)!

, (23)

one finds that the first non-zero diffraction peaks will be given
approximately by

|W±1,1|2 ≃
∣∣∣∣J±1

(
Ay

h̄

)
∓ iπX1

2l

∣∣∣∣2 ≃ A2
y

4h̄2

(
1+

π2h̄2X2
1

l2
y A2

y

)
, (24)

while the specular peak will be given by

|W0,1|2 ≃
∣∣∣∣J0

(
Ay

h̄

)∣∣∣∣2 ≃ 1−
A2

y

4h̄2 . (25)

We then note from Eqs. 16 and 17 that

A2
y

4h̄2 ≃
4π4h2 p2

zi

h̄2
α2l2

y
tan2

θi exp
[
−4π (π −Φ)

αly
|tanθi|

]
, (26)

while

π h̄X1

lyAy
≃ Ω̄

2 h̄α

2pzi

[
ln

(√
(Ez +D)D

2Ez

)
+1+

D
Ez +D

]
. (27)

The non-zero Bragg components are truly exponentially small.
Interestingly, in the GIFAD limit, irrespective of the value of
the energy in the vertical (z) direction, the reduced prefactor
(X1/l) is larger than the reduced action (Ay/h̄); however, it is
also exponentially small.

The second order treatment for a Morse potential model is
presented in Appendix A, the conclusions are the same.

B. First order perturbation treatment for a repulsive potential
model

These results may be even further simplified by assuming
that the central contribution to the action comes from motion
close to the turning point of the unperturbed vertical trajec-
tory. If we ignore the well and only assume an exponential
wall

V (z) =Ve exp(−2αz) , (28)

then we readily find that

Ay = hpzi

2πΩ̄

sinh
(
πΩ̄
) → hpzi

4π2

αly
|tanθi|exp

(
− π2

αly
|tanθi|

)
.

(29)
The Morse potential result for Ay reduces to the same in the
limit that the vertical momentum is much larger than the well-
depth, since in this limit the angle Φ → π/2. We also find that

lim
Ez≫D→0

π h̄X1

lyAy
≃−Ω̄

2 h̄α√
2MD

√
D

4Ez
ln
(

D
4Ez

)
→ 0, (30)

and the prefactor term, X1, is no longer important. However,
this will be the case only if√

D
4Ez

≪ 1
Ω̄2 → D ≪

α4l4
y E2

z

4π4E2
y

Ez, (31)

so that for most physical cases, it is the prefactor (X1) that will
dominate. This is important since most implementations of
semiclassical theory ignore this prefactor.

Finally, let us compare with the result (Eq.38) derived by
Henkel et al. [29], for cold atoms reflected/diffracted on
an evanescent standing light-wave and recently adapted to
GIFAD[30]. In their notation,

|an|2 = J2
n

(
εβEW (θ)

pzi

h̄α

)
, (32)

where

βEW (θ) =
πq tan(θ)

α sinh
(

πq tan(θ)
α

) . (33)

The identification of their notation with ours is that

Ω ⇐⇒ α pzi

M
,α ⇐⇒ α,q ⇐⇒ 2π

ly
,ε ⇐⇒ hα, (34)

so that

βEW (θ) =
2π2 tan(θ)

αly sinh
(

2π2 tan(θ)
αl

) =
πΩ̄

sinh
(
πΩ̄
) , (35)

εβEW (θ)
pzi

h̄α
=

πΩ̄

sinh
(
πΩ̄
) hpzi

h̄
=

Ay

h̄
. (36)

As commented above, their theory does not take the prefac-
tor into consideration. However, qualitatively the result is the
same, the ratio of the lowest diffraction peaks to the specular
one is exponentially small.

III. General theory for GIFAD

The purpose of this Section is to understand what the im-
plications of a GIFAD scattering experiment are for theoretical
analysis. We will distinguish between a GIFAD experiment in
which the GIFAD direction is along one of the low-index di-
rections in the surface and when it is at an angle (necessar-
ily small) to it. To simplify, we will assume a surface with a
square unit-cell so that lx = ly ≡ l, but the same considerations
are applicable to other geometries.
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In the GIFAD experiment, there is a direction in which the
momentum parallel to the surface is very large. We thus trans-
form from the x,y coordinates which characterize the surface
to the coordinates u and v where by construction the fast GI-
FAD direction is along u

u = xsinϕ + ycosϕ, (37)

v = xcosϕ − ysinϕ. (38)

In the GIFAD experiment, the velocity in the GIFAD direction
is extremely fast, such that it creates an effective Hamiltonian
for the other two degrees of freedom. This assumption of fast
motion implies that one could first time average over the fast
motion, and this leads to the following relations〈

cos
(

2πk
l

u
)〉

= δk,0 (39)〈
cos
(

2πk
l

u
)

cos
(

2π j
l

u
)〉

=
1
2

δk, j
(
1−δk,0

)
+δk,0δ j,0,

(40)

where δk, j is the Kronecker delta function. The averaging is
such that the motion along the two degrees of freedom v,z
perpendicular to the GIFAD direction u is much slower than
the GIFAD motion, so the time average implied by the brackets
is identical to a spatial averaging over the GIFAD coordinate.

The potential as given in Eq. 2 in terms of the three coor-
dinates x,y,z is also rewritten in terms of the coordinates u,v,z
as

V (u,v,z) = ∑
j,k

Vjk (z)h jk cos
[

2πk
l

vcosϕ

]
cos
[

2πk
l

usinϕ

]
.

. cos
[

2π j
l

ucosϕ

]
cos
[

2π j
l

vsinϕ

]
−

−∑
j,k

Vjk (z)h jk sin
[

2πk
l

vcosϕ

]
sin
[

2πk
l

usinϕ

]
.

. sin
[

2π j
l

ucosϕ

]
sin
[

2π j
l

vsinϕ

]
. (41)

To implement the necessary averaging we note, using the stan-
dard trigonometric identities[31] that the averaging as in Eqs.
39 and 40 implies that〈

sin
(

2πk
l

usinϕ

)
sin
(

2π j
l

ucosϕ

)〉
=

1
2

[〈
cos
[

2πu
l

(k sinϕ − j cosϕ)

]〉
−

−
〈

cos
[

2πu
l

(k sinϕ + j cosϕ)

]〉]
(42)

and 〈
cos
(

2πk
l

usinϕ

)
cos
(

2π j
l

ucosϕ

)〉
=

1
2

[〈
cos
[

2πu
l

(k sinϕ − j cosϕ)

]〉
+

+

〈
cos
[

2πu
l

(k sinϕ + j cosϕ)

]〉]
. (43)

From these results, one readily deduces that, with the ex-
ception of the specular channel, j = k = 0, the averages van-
ish unless tanϕ = ± j/k. The most important cases are the
low index directions with ϕ = 0,±π/2,±π/4, corresponding
to j,k ∈ {0,±1}, which we discuss below. The scattering is
particularly interesting near to these low index directions as
we show.

A. Scattering along a low-index direction

Having in mind a surface such as LiF(001), and a square
unit cell, we consider the two low directions namely: [110]
and [100]. For the [110] case, we may assume that the GIFAD
coordinate u = y so that time averaging of the GIFAD fast mo-
tion over the full potential as in Eq. 2 one readily finds that
the dynamics is reduced to two degrees of freedom.

U[110] (x,z)≡ ⟨V (x,y,z)⟩=V00 (z)+∑
k

Vk0 (z)hk0 cos
(

2πk
l

x
)
.

(44)
The 100 case would then correspond to the choice ϕ = π/4 so
that from Eqs. 42 and 43 we have〈

cos
(

2πk
l

usinϕ

)
cos
(

2π j
l

ucosϕ

)〉
= δk,0δ j,0 +

+
1
2
[
δk, j +δk,− j

](
1−δk,0

)
, (45)

and〈
sin
(

2πk
l

usinϕ

)
sin
(

2π j
l

ucosϕ

)〉
=

1
2
[
δk, j −δk,− j

]
. (46)

This implies that after averaging over the GIFAD coordinate

U[100]

(
v,z;ϕ =

π

4

)
=V00 (z)+∑

k
Vkk (z)hkk cos

 2πk(
l√
2

)v

 . (47)

Eqs. 44 and 47 have two consequences. One is that the uncou-
pled component of the vertical potential (V00 (z)) must be the
same for scattering in both the [110] and [100] directions. Sec-
ondly, the potentials Vk0 (z), which determine the diffraction
along [110] are, in general, different from the Vkk (z), which
affect scattering along [100]. The two azimuths provide com-
plimentary information and, as we shall see in the next sub-
section, knowing these potentials puts some clear limitations
on the effective equations of motion when the GIFAD axis is
no longer a low-index direction.

B. Scattering close to a low-index direction

Here we consider scattering when the incident azimuth is
close to, but not exactly parallel with, a low-index direction
in the crystal plane. Our analysis shows that the magnitude
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of the deviation from the low-index direction, as expressed
in the angle δφ is critical. As already discussed above, if it
is too large, then one remains only with specular scattering
from the zero-th order scattering potential V0,0 (z). It follows
that measurements of the diffraction pattern as a function of
the angle δφ will provide information on the surface averaged
potential potential V0,0 (z). The two lowest index directions,
< 100 > and < 110 >, are considered separately.

1. Close to the <100> direction

Let us consider first when the GIFAD direction is close to the
100 direction, such that

ϕ =
π

4
−δφ , δφ ≪ 1. (48)

It is then a matter of straightforward algebra to show that the
potential as in Eq. 41 is rewritten as

V (u,v,z) = ∑
j,k

V jk (z)h jk cos

[√
2πk
l

[v(cosδφ + sinδφ)]

]
.

.cos

[√
2πk
l

[u(cosδφ − sinδφ)]

]
cos

[√
2π j
l

(v(cosδφ − sinδφ))

]
.

.cos

[√
2π j
l

(u(cosδφ + sinδφ))

]

+∑
j,k

V jk (z)h jk cos

[√
2πk
l

[v(cosδφ + sinδφ)]

]
.

.sin

[√
2π j
l

(v(cosδφ − sinδφ))

]
.

.sin

[√
2π j
l

(u(cosδφ + sinδφ))

]
cos

[√
2πk
l

[u(cosδφ − sinδφ)]

]

−∑
j,k

V jk (z)h jk sin

[√
2πk
l

[v(cosδφ + sinδφ)]

]
.

.cos

[√
2π j
l

(v(cosδφ − sinδφ))

]
.

.sin

[√
2πk
l

[u(cosδφ − sinδφ)]

]
cos

[√
2π j
l

(u(cosδφ + sinδφ))

]

−∑
j,k

V jk (z)h jk sin

[√
2πk
l

[v(cosδφ + sinδφ)]

]
.

.sin

[√
2π j
l

(v(cosδφ − sinδφ))

]
.

.sin

[√
2πk
l

[u(cosδφ − sinδφ)]

]
sin

[√
2π j
l

(u(cosδφ + sinδφ))

]
.

(49)

In Appendix B, the angular average over the GIFAD mo-
tion is carried out. The interaction potential is then written
in terms of the v and z variables, leading to the conclusion
that V (v,z) is a time-dependent effective potential with two
degrees of freedom.

2. Close to the <110> direction

Here we assume that the azimuthal angle of incidence is δφ

so that following the same kind of derivation, one finds after

some algebra that the GIFAD averaged potential is

U (v,z) =V00 (z)

+ ∑
k ̸=0

Vk0 (z)hk0

[
cos
(

2πk
l

vcosδφ

)
cos
(

2πk
l

ut sinδφ

)
−

− sin
(

2πk
l

vcosδφ

)
sin
(

2πk
l

ut sinδφ

)]
, (50)

and here too the scattering problem is reduced to two degrees
of freedom but with a time-dependent potential.

IV. Perturbation theory for scattering close to low-index
directions

Here we make a connection between the time-dependent
potentials, derived in the previous section, and experiments
that reveal the dependence of the diffraction pattern on the
deviation in angle from the the low-index directions[5]. For
this purpose, we calculate the distributions of diffraction in-
tensities using first-order perturbation theory. We then use the
second-moment of that distribution, its variance, as a measure
of the width of the pattern in order to make a direct compari-
son with experiment[5].

Analytic results may be obtained if we restrict the potential
to the first term in each Fourier series giving

U (v,z) =V00 (z)+
V11 (z)h11

2
cos
[

2π

l/
√

2
(vcosδφ −ut sinδφ)

]
,

(51)
for incidence close to the <100> direction and

U (v,z) =V00 (z)+V10 (z)h10 cos
[

2π

l
(vcosδφ +ut sinδφ)

]
,

(52)
for incidence close to <110>.

In the zeroth order motion, the particle moves only along
the GIFAD direction u so that the perpendicular surface co-
ordinate v is static. Without loss of generality, we may set
it as v = 0. From Eqs. 44 and 45 we then conclude that
xt = ut sinδφ . The free motion along u, is

ut = u−t0 +
pu

M
(t + t0) , (53)

so that the velocity along the x direction is (pu/M)sinδφ and
this identifies the frequency in the x direction ωx (see Eq. 9)
as

ωx ≡
2π

l
pu

M
sinδφ . (54)

The significance of the lateral frequency ωx is the same as
in Section II. Note that ωx establishes a connection to the sim-
plified ASCA formalism where the angle δφ is reduced to an
initial momentum px = pu sinδφ in an approximate stationary
Hamiltonian[10]. Ignoring the prefactor, the k-th diffraction
peak is given within first order perturbation theory, as before,
by

|Wk|2 = J2
k

(
Ax

h̄

)
, (55)
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where Jk is the integer Bessel function and the action is

Ax = h11

∫
∞

−∞

dt ′V11(z0,t ′)cos
(
ωxt ′

)
(56)

for the < 100 > direction and

Ax = h10

∫
∞

−∞

dt ′V10(z0,t ′)cos
(
ωxt ′

)
(57)

for the < 110 > direction, which we evaluate below. When the
incident direction is a low-index direction, δφ = 0, we have
ωx = 0 so that Ω̄= 0 and the action is 2hpzi . The diffraction pat-
tern along the x direction will be symmetric and its width will
depend on the incident vertical momentum. Well away from a
low-index direction, when the offset angle is such that Ω̄ ≫ 1,
the action will be exponentially small, and only specular scat-
tering is possible. This condition implies that (vzi = |pzi/M| is
the magnitude of the incident velocity in the vertical direction)

Ω̄ =
ωx

Ω
=

2π

lα
vG

vzi

sinδφ ≫ 1. (58)

If 2π/lα is of the order of unity, the inequality is satisfied when
δφ ≫ θ̃ , the grazing angle of incidence, since vzi = vG sin θ̃ .

Between these two limits ( i.e. when δφ ∼ θ̃), the action
is a decreasing function of the offset angle δφ and we expect
the width of the diffraction pattern to decrease as a function
of increasing offset angle δφ .

The manner in which the diffraction shrinks towards the
specular peak offers a direct point of comparison between the
predictions of first-order perturbation theory and the measure
of the angular width of the diffraction pattern obtained in
experiment[5].

For a measure of the "width" of the diffraction pattern we
use the second moment, or variance, of the diffraction intensi-
ties, which within the first order perturbation theory, is given
by

σ
2
k = Σk k2 Ik = Σk k2 Jk(Ax)

2 = (Ax)
2/2, (59)

where the final equality comes from a standard result[32].
The variance, σ2

k is readily converted to an experimental,
angular width σφ f using σφ f = φBσk, where the Bragg angle,
φB = arctan(G⊥/py), is that for the respective low-index scatter-
ing geometry and is given by G⊥ = 2π/a⊥. The linear distance,
a⊥, is that separating identical atomic rows, more commonly
known as the width of the scattering channel (see, for exam-
ple [2, 9, 22]), in the context of the axial surface channeling
approximation (ASCA).

For a potential of the Morse form (see section II A), values
for the action follow from Eqs. 56 and 57, which lead to ex-
pressions identical to Eq.18. Combining all these results gives

σφ f = φB
√

2pzih ×
πΩ̄cosh

(
ΦΩ̄
)

sinh
(
πΩ̄
) , (60)

where the first term describes the scattering width in the well-
aligned condition (δφ = 0 giving Ω̄ = 0) while the second term
can be considered as the incidence factor, β

(
πΩ̄
)
. It has a

value of 1 for Ω̄ = 0 and governs the evolution with δφ . It can
be written in a form directly adapted to GIFAD coordinates

by noting that close to a low index direction ( δφ ≪ 1 ), Ω̄ =
(G⊥/α).(sinδφ)/(sin θ̃i) ≃ (G⊥/α).(δφ/θ̃i). Values for φB and
h depend on the relevant low-index direction, while D and α

define the mean planar potential (Eq. 13).

V. Comparison with experiment

The results of the previous section make the general phe-
nomenology clear: when aligned with a low index direction,
ωx=0 and the action Ax, given by Eqs. 56 and 57 is maximal.
As the misalignment increases, so does ωx and oscillation of
the cos(ωxt) terms reduces the value of the action leading to
weaker diffraction as seen earlier in Eq.22.

We now compare the expression for the angular width of
the diffraction pattern using Eq. 60 with experiment at a
quantitative level. Results from the helium LiF(001) system,
recorded by Debiossac and Alarćon[20] provide what is re-
quired. The experiment employed helium atoms whose inci-
dent energy is E0=460 eV with a grazing angle of incidence of
θ̃i = 0.9◦ where the azimuth δφ was varied in steps of 0.08◦

around the [100] and [110] directions using a setup described
in Ref.[33]. As in the theory, the angular spread of the experi-
mental diffraction pattern is obtained from the variance of the
diffracted intensities.

σ
2
k = Σk Ik(k− k̄)2 with k̄ = Σk k Ik (61)

Note that the experimental variance is calculated without as-
suming symmetry of the diffraction pattern, Ik = I−k, which is
implicit in first-order perturbation theory in Eq.59. For each
value of δφ , diffracted intensities have been evaluated after
correction for inelastic and Debye-Waller effects, as detailed
in Ref.[34].

Figs.2 and 3 show the experimental behaviour (discrete
data points), compared with the results of first-order per-
turbation theory (solid and dashed lines). The diffraction
width, shown in Fig.2, decreases as the azimuthal misalign-
ment, δφ , increases, while the corresponding changes to the
specularly scattered intensity can be seen in Fig. 3. In
both azimuths, the diffraction width decreases uniformly to-
wards zero and the specular intensity increases towards unity,
though not monotonically in the case of the [110] azimuth,
where the behaviour can be related to the supernumerary
rainbow structure[35].

In the calculations we use Eq. 60 to generate the curves in
Fig. 2, and Eq. 55 to generate the curves in Fig. 3. To illus-
trate the robustness of the perturbation analysis, we choose
parameters close to ones derived from earlier work (see Table
I), rather than simply fitting Eqs. 55 and 60 to the experimen-
tal data.

Table I Parameter values used in the calculation shown in Figs. 2 and
3. The values for h are within a few percent from those measured in
Refs.[1, 2, 36], D is consistent with precise measurements via bound
state resonances[3, 6] while values of α are rarely reported (see text).

Direction a⊥ / Å h / Å D / meV α / Å−1

100 2.01 0.07 8.6 1.95
110 2.86 0.28 8.6 1.95

In Fig. 3, the experimental data for the [110] azimuth,
shows the specular intensity having local maxima and min-
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Figure 2 Evolution of the relative scattering width σφ f /θi with the
azimuthal misalignment angle δφ around the [100](△) and [110] (⃝)

directions. The red lines result from eq.60 i.e. without use of the
Bessel function. The corrugations h11 and h10 are derived at δφ = 0
while α and D are taken from literature and reported in TableI. The
inset shows a φ -scan taken from Ref.[5] where both peaks appear at

their absolute location.

ima. These correspond to interference effects due to the sur-
face corrugation and, as expected, they are sensitive to the
precise value of the parameters h11 and h10, corresponding to
the [110] and [100] directions respectively. The solid curve in
Fig. 3 corresponds to h11 = 0.28 Å, the same value as in Fig. 2,
while the dashed line corresponds to a value of h′11 = 0.32 Å.
The 12% greater corrugation of the dashed curve illustrates
the sensitivity of the diffraction intensities to the precise value
of the corrugation.

Our analysis shows that the theory and experiment are in
close agreement throughout, demonstrating that first-order
perturbation theory provides a useful and quantitative de-
scription of GIFAD scattering in this kinematic regime[37, 38].
In addition, the analysis confirms the origin of the phenomena
in terms of the time averaging of the potential over the colli-
sion time along the grazing incidence trajectory.

VI. Discussion and conclusions

In the present manuscript we have demonstrated that semi-
classical perturbation theory provides a semi-quantitative de-
scription of fast atom diffraction near grazing incidence (GI-
FAD). We have considered two related situations. In the first
case (Section II), the surface corrugation is restricted to lie in
the scattering plane and we showed that first-order perturba-
tion theory correctly reproduces the basic phenomenology of
GIFAD, whereby the scattering is directed exclusively into the
specular channel. The effect is well known and arises from
time averaging, of the corrugation in the surface potential dur-
ing the interaction. Our model describes the averaging in the
classical action (Eq. 8) in terms of a horizontal frequency (Eq.
9), which is zero at normal incidence, and increases with the
angle of incidence θi, which is to say as grazing incidence is
approached. The derivation also provides a prefactor, which
was absent in previous work[29].

Our analysis of the more general case where the poten-

Figure 3 Evolution of the specular beam intensity I0 for azimuthal
direction close to the [100] and [110] directions. The red lines are for
J0 (Ax) with Ax from eq.60 and h measured at δφ=0◦. The full line

corresponds to h derived from σk (eq.61) as in Fig.2 and TableI. The
dotted lines correspond to h′ derived from the fit of all the measured

intensities Ik by Bessel functions in eq.54 giving h′11 = 0.32 Å and
h′10 = 0.07 Å.

tial, V (x,y,z), is fully 3-dimensional (Section 3) shows that,
along low-index directions, the 3D potential reduces to a static
2D potential V (x,z), where x is the coordinate perpendicu-
lar to the plane of the incident motion. Our derivation pro-
vides an origin for the axial surface channeling approxima-
tion (ASCA)[9], which was developed initially using classi-
cal mechanics as an evolution of the axial channeling ap-
proximation in crystals[39] and has been verified quantum
mechanically[10].

When the scattering plane is not aligned exactly with a low-
index direction, an attempt to reduce the 3D potential to an
effective 2D case is only possible if the 2D potential has a time
dependence (Eqs. B5, 50). That time dependence implies an-
other horizontal frequency, in this case along a direction per-
pendicular to the low-index direction. The phenomenology,
and the quantitative estimates of changes to the scattering, are
closely related to those discussed above. The horizontal fre-
quency (Eq. 59) is zero when δφ = 0 and the scattering plane
is aligned exactly with a low-index direction. The alignment
maximises the action (Eq. 62) and the out-of-plane diffrac-
tion. Increasing the value of δφ leads to an increase in the
horizontal frequency, ωx, and reduced diffraction. Eventually
all of the scattering is directed into the specular peak, as il-
lustrated in Figs. 2 and 3, as observed in experiment[40]. In
effect, the corrugations in the surface plane are averaged in
both directions and the surface appears as a perfect mirror.

It is remarkable how well the first-order theory reproduces
the experimental observations in Figs. 2 and 3. Also, we note
that the numerical values used for the parameters are similar
to those found in earlier work[20, 22, 37, 40]. For example,
the corrugation amplitudes h10 and h11 are close to to those
obtained from an analysis of the relevant low-index diffrac-
tion [1, 2, 36]. The well-depth, D, is taken from the best the-
oretical estimates[41–43] using bound-state resonance mea-
surements in the thermal energy regime. The range of the
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potential, as measured by the Morse parameter, α, is more
difficult to pin down and it may be that the analysis we de-
scribe here offers a more direct route to obtain experimental
values for this quantity. Theoretical estimates for α can be
extracted from the same work that gives the well-depth. The
Fowler, Hutson potential[42], for example, is consistent with
a value of α = 1.4 Å−1, which is 28% less than the value used
in Figs. 2 and 3. Second-order perturbation theory correc-
tions may contribute to these differences in α. However, we
also note that the theoretical potentials are optimised in the
low energy regime (Ez = Ei cos2 θi ≤ 50 meV), rather than be-
ing specifically tuned to the normal-energies in GIFAD, which
may be an order of magnitude greater.

Our analysis in Figs. 2 and 3 illustrates the sensitivity of
such measurements to the range of the repulsive potential as
defined by α and suggests a new avenue to extract such infor-
mation from experiment. For example, the width of the bell-
shaped peaks, in Fig. 2 is directly related to the range of the
potential as can be seen by evaluating the variance of the in-
cidence factor, β

(
πΩ̄
)
, in Eq.60. Considering the case where

E ≫ D, so that Φ = π/2, the width of the obliquity function
is analytic by noting that

∫
(πΩ̄)2β

(
πΩ̄
)

d(πΩ̄) = 1 so that in
the GIFAD coordinates, the width takes a remarkably compact
form.

σT =
αθ̃i

πG⊥
. (62)

Notice that the width scales with α/G⊥ and that is precisely
what is seen in Fig. 2 when the widths of the two azimuths are
compared, since α is defined from the mean planar potential,
V00, and is identical in both azimuths (Eqs. 51 , 52).

We have given a general derivation of the GIFAD Hamilto-
nian, which turns out to be time dependent. To gain a more
intimate understanding of the processes involved we limited
ourselves, in the present work, to first order perturbation the-
ory. In principle, the diffraction patterns for the resulting time
dependent Hamiltonian may be computed numerically exactly.
There is no need to limit oneself to perturbation theory. How-
ever, it is gratifying to see that first order perturbation theory
does account for the main experimental features, especially
away from the symmetry axis.

The theoretical analysis presented in this paper is based on
some assumptions. One is a Morse potential interaction along
the vertical direction. Secondly, we assumed that the next or-
der vertical interaction terms are given by the derivative of
the Morse potential (V10(z) = V11(z) = V ′

M(z). Thirdly, we lim-
ited ourselves to first order perturbation theory. All of these
limitations may be relaxed but perhaps most prominently is
the fact that second order perturbation theory can account for
the asymmetry in the diffraction pattern when measured away
from the symmetry direction. This remains a topic for future
consideration.

In summary, the present work reinforces the value of per-
turbation theory, combined with a semi-classical analysis, as a
quantitative description of GIFAD scattering[38]. Our meth-
ods emphasise the origin of the averaging of the lateral poten-
tial that takes place, through expressions for the classical ac-
tion such as Eqs. 8, 55 and 56. The first-order theory provides
simple analytic expressions, which provide an excellent, quan-

titative description of the width σφ of the azimuthal diffrac-
tion pattern and its evolution with the angular deviation δφ

away the low symmetry direction. It gives the triangulation
technique a quantitative basis. The widths measured during
a φ -scan (see inset in Fig.2 and Refs[44, 45]) show peaks in-
dicating a low-index direction, where their height and width
are given by σφ/θ̃i =

√
2G⊥h and σT/θ̃i = α/G⊥π (Eqs 60 and

62) respectively. The analysis outlines, as simply as possible,
the role of the corrugation amplitude h and stiffness α. We
note that second-order theory, which we describe in Appendix
A, allows the discussion to be extended to the observed asym-
metries in the diffraction pattern[46]. Perturbation theory can
also address more complex forms of the interaction potential
allowing, for instance, the investigation of the effect of the
location of the attractive well[12].

Appendices
A. Review of Semiclassical second-order perturbation

treatment. Application to a Morse potential model

The second-order expression for the diffraction
intensities[24] is similar in form to Eq. 7:

∣∣Wk,2
∣∣2 = ∣∣∣∣∣ ∞

∑
m=−∞

(−i)m Jm

(
Rc

h̄

)
.

.

[
Jν(k−2m)

(
Ay

h̄

)
+

πX1

2il

(
Jν(k−1−2m)

(
Ay

h̄

)
−Jν(k+1−2m)

(
Ay

h̄

))]∣∣∣∣2 .
(A1)

Here, Jν (x) is no longer the Bessel function but the Anger
function of order ν . The argument Rc is

Rc =
lPs

4π
+

MFc (∞)X1

4
, (A2)

with

Ps =−πM
ly

∫ t0

−t0
dt

(
p2

zt ,0
[
Gs (t)Gs (−t)+G2

c (t)
]

M2 +

+ Fc (t)Fc (−t)+F2
s (t)

)
− πh2

ly

∫ t0

−t0
dtV ′

10(z0,t)cos(2ωyt) . (A3)

We also used the notation

ν(k) ≡ k− lPc

π h̄
, (A4)

with

Pc =
πM
ly

∫
∞

−∞

dt

[
Fc (t)Fs (t)−

p2
zt ,0

M2 Gc (t)Gs (t)

]
, (A5)

and

Fs (t) =
2πh
lyM

∫ t

−∞

dt ′V10(z0,t ′)sin
(
ωyt ′

)
(A6)

Gc (t) =
hM
p2

zt ,0

∫ t

−∞

dt ′
dV10(z0,t ′)

dt ′
cos
(
ωyt ′

)
. (A7)
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For the Morse potential model, one finds the explicit expres-
sions

Pc =
M2F2

c (∞) tan2 |θi|
4pyi

.

.

(
cos2 |θi|+ Ω̄Φ tanh

(
Ω̄Φ
)
−πΩ̄coth

(
πΩ̄
)

sin2 |θi|
−

− Ω̄

2
tanh

(
Ω̄Φ
)

sin2Φ

)
, (A8)

(A9)

and

Ps =

(
1+

p2
yi

p2
zi

)
M2Fc (∞)Fs0 (∞)

pyi

.

.

(
σ2

σ1
+ΦΩ̄ tanh

(
ΦΩ̄
)
−πΩ̄coth

(
πΩ̄
))

+
αhMFc (∞)

[1+ cosΦ]
.

.

[
ΦΩ̄ tanh

(
ΦΩ̄
)
− Ω̄

2
sin(2Φ) tanh

(
ΦΩ̄
)
−πΩ̄coth

(
πΩ̄
)]

+
M2Fc (∞)Fs0 (∞)

pxi

p2
yi

p2
zi

.

.

[
Ω̄2

2
sin(2Φ)

σ0

σ1
+

cosΦ [1− cos(Φ)]

2σ1
− Ω̄

2
sin(2Φ) tanh

(
ΦΩ̄
)]

+
pyi

2
Vsc,2, (A10)

and

Vsc,2 =−32π3h2

l2

cosh
(
2ΦΩ̄

)
sinh

(
2πΩ̄

) − 4π2h2α

l
D
Ez

tanΦcotθi
sinh

(
2ΦΩ̄

)
sinh

(
2πΩ̄

)
(A11)

Compared to the first order treatment, one finds the same
conclusion when considering the second-order perturbation
theory results. In the GIFAD limit one readily finds that

Fc (∞) =
4πhpzi

Ml
πΩ̄exp

[
−(π −Φ)Ω̄

]
, (A12)

Ax = 2hpziπΩ̄exp
[
−(π −Φ)Ω̄

]
(A13)

Pc = tan |θi|
4π2h2 |pzi |

l2 π
2
Ω̄

3 exp
[
−2(π −Φ)Ω̄

]
.

.

(
(Φ−π)

sin2 |θi|
− 1

2
sin2Φ

)
, (A14)

X1 =
4πh
αl

tan2 |θi|πΩ̄exp
[
−(π −Φ)Ω̄

]
.

.

{
ln
[
−cosΦ

2sin2
Φ

]
+1+ cos2

Φ

}
, (A15)

with

Rc =
lPs

4π
, (A16)

and

Ps = αhMFc (∞)2Ω̄
2
σ1.

.

{
2Ω̄

2 + Ω̄(Φ−π)+
Ω̄2

2
sin(2Φ)

σ0

σ1
+

cosΦ [1− cos(Φ)]

2σ1
−

− Ω̄

2
sin(2Φ)

}
+αhMFc (∞)Ω̄

[
(Φ−π)− 1

2 sin(2Φ)
]

[1+ cosΦ]
, (A17)

and

σ0 =
∞

∑
k=1

(−1)k sin(kΦ)(
Ω̄2 + k2

) , (A18)

σ1 =
∞

∑
k=1

(−1)k k cos(kΦ)(
Ω̄2 + k2

) = ∂σ0

∂Φ
, (A19)

σ2 =
∞

∑
k=1

(−1)k 2Ω̄2k cos(kΦ)(
Ω̄2 + k2

)2 . (A20)

Since Pc is exponentially smaller than Fc (∞) it can be set to 0,
and in this limit

ν(k) ≡ k− lPc

π h̄
→ k, (A21)

and the Anger function becomes the integer Bessel function

Jν(k−2m)

(
Ay

h̄

)
= Jk−2m

(
Ay

h̄

)
. (A22)

The second-order expression is then

|W1,2|2 =

∣∣∣∣∣ ∞

∑
m=−∞

(−i)m Jm

(
Rc

h̄

)
.

.

(
J1−2m

(
Ay

h̄

)
+

πX1

2il

[
J−2m

(
Ay

h̄

)
− J2−2m

(
Ay

h̄

)])∣∣∣∣2
→
∣∣∣∣J1

(
Ay

h̄

)
+

πX1

2il

∣∣∣∣2 (A23)

and perhaps as might be expected, this leading order term is
precisely the same as in the first-order perturbation theory.

To summarise this Appendix, we have shown that the very
fast motion in the GIFAD direction leads to an exponentially
small probability for measuring a nonzero diffraction peak in
this direction, as also observed experimentally. From the anal-
ysis above, it is clear that adding in the second horizontal co-
ordinate y which is perpendicular to the GIFAD plane will not
change this conclusion. The very large frequency ωx leads to
the same physics.

The principal difference between the second and first order
theories is that away from the GIFAD direction, the second
order theory diffraction pattern is not necessarily symmetric
about the elastic peak, in qualitative agreement with experi-
mental observations.
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B. Angular averaging

In this Appendix we detail some of the derivation leading
to the time dependent GIFAD Hamiltonian. To perform the
average over the fast GIFAD motion, let us consider the various
terms〈

cos

[√
2πk
l

[u(cosδφ − sinδφ)]

]
cos

[√
2π j
l

(u(cosδφ + sinδφ))

]〉
= δφ j,kδφk,0 +

+
1
2

δφ j,k

(〈
cos

[√
22πk
l

ucosδφ

]〉
+

〈
cos

[√
22πk
l

u(sinδφ)

]〉)
.

(B1)

Similarly, one has that〈
sin
[√

2π j
l (u(cosδφ + sinδφ))

]
cos
[√

2πk
l [u(cosδφ − sinδφ)]

]〉
= δ j,k

1
2

〈
sin
[√

22πk
l usinδφ

]
+ sin

[√
22πk
l u(cosδφ)

]〉
, (B2)

and〈
sin
[√

2πk
l [u(cosδφ − sinδφ)]

]
cos
[√

2π j
l (u(cosδφ + sinδφ))

]〉
= δ j,k

1
2

〈
−sin

[√
22πk
l usinδφ

]
+ sin

[√
22πk
l u(cosδφ)

]〉
,(B3)

and finally〈
sin
[√

2πk
l [u(cosδφ − sinδφ)]

]
sin
[√

2π j
l (u(cosδφ + sinδφ))

]〉
= δ j,kδk,0 +

1
2 δ j,k

(
1−δk,0

)
.

.
(
−
〈

cos
[√

22πk
l ucosδφ

]〉
+
〈

cos
[√

22πk
l u(sinδφ)

]〉)
.(B4)

As before, since cosδφ ≃ 1 the averaging of the terms
cos
[√

22πk
l ucosδφ

]
and sin

[√
22πk
l ucosδφ

]
will make them

vanish. However, the averaging over terms such as
cos
[√

22πk
l u(sinδφ)

]
is no longer clear due to the small magni-

tude of δφ . Due to the fast GIFAD motion, one could assume
that the time dependence of the GIFAD coordinate is known.
So, if the scattering process starts at the time −t0 we know
that the motion along the GIFAD direction is the free particle
motion as given in Eq. 53. and therefore averaging over the
fast motion will leave us with

U (v,z)=V00 (z)+
1
2 ∑

k ̸=0
Vkk (z)hkk cos

[√
22πk
l

(vcosδφ −ut sinδφ)

]
,

(B5)
leading to a time-dependent effective potential with two de-
grees of freedom.
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