
HAL Id: hal-04765616
https://hal.science/hal-04765616v1

Submitted on 4 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Two New 2p–3d Metal Complexes with a
Nitronyl-Nitroxide Ligand Derived from o-Vanillin:

Synthesis, Crystals Structures and Magnetic Properties
Cristian Andrei Spinu, Daniel O T A Martins, Teodora Mocanu, Mihaela

Hillebrand, Jean-Pascal Sutter, Floriana Tuna, Marius Andruh

To cite this version:
Cristian Andrei Spinu, Daniel O T A Martins, Teodora Mocanu, Mihaela Hillebrand, Jean-Pascal
Sutter, et al.. Two New 2p–3d Metal Complexes with a Nitronyl-Nitroxide Ligand Derived from o-
Vanillin: Synthesis, Crystals Structures and Magnetic Properties. Magnetochemistry, 2024, 10 (11),
pp.86. �10.3390/magnetochemistry10110086�. �hal-04765616�

https://hal.science/hal-04765616v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: Spinu, C.A.; Martins,

D.O.T.A.; Mocanu, T.; Hillebrand, M.;

Sutter, J.-P.; Tuna, F.; Andruh, M. Two

New 2p–3d Metal Complexes with a

Nitronyl-Nitroxide Ligand Derived

from o-Vanillin: Synthesis, Crystals

Structures and Magnetic Properties.

Magnetochemistry 2024, 10, 86.

https://doi.org/10.3390/

magnetochemistry10110086

Academic Editors: Carlos J. Gómez

García and Salah-Eddine Stiriba

Received: 1 October 2024

Revised: 25 October 2024

Accepted: 28 October 2024

Published: 1 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Two New 2p–3d Metal Complexes with a Nitronyl-Nitroxide
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Abstract: Two new 2p–3d complexes, (Et3NH)[ML(hfac)2], have been obtained using the nitronyl-
nitroxide radical (HL) derived from 2-hydroxy-3-methoxy-5-nitrobenzaldehyde (M = Mn 1; Co 2).
The two compounds are isomorphous and their structures consist of anionic mononuclear species,
[M(hfac)2L]−, M = Mn 1; Co 2, and triethylammonium cations, Et3NH+. The metal ions adopt
an octahedral geometry, being coordinated by phenoxido and aminoxyl oxygen atoms from the
ligand and four oxygen atoms from the hexafluoroacetylacetonato (hfac−) ligand. The cryomagnetic
behaviors of the two compounds reveal relatively strong antiferromagnetic M(II)-Rad interactions
(JMnRad = −191 cm−1, JCoRad = −166 cm−1 with H = −JSMSRad). The EPR spectra (X- and Q-band)
of compound 1 below 70 K show the characteristical features of a S = 2 spin system with zero field
splitting terms of D = 0.26 cm−1 and E = 0.031 cm−1.

Keywords: manganese(II) complexes; cobalt(II) complexes; nitronyl-nitroxide ligands; EPR spectra;
cryomagnetic measurements

1. Introduction

Numerous molecular magnetic materials are obtained by combining organic radicals
with either 3d or 4f metal ions [1–6]. Such paramagnetic ligands belong to different families:
TEMPO, verdazyl, and nitronyl-nitroxide derivatives. The most popular radicals used as
ligands are nitronyl-nitroxide (Nit) compounds, which generate a very rich coordination
chemistry, consisting of discrete mono- and oligonuclear complexes up to coordination
polymers (mainly 1D and 2D). We recall here that the first single chain magnet (SCM) [7],
and SCMs with large coercive field [8,9] are 1D coordination polymers constructed from
cobalt(II) ions and nitronyl-nitroxide ligands.

Let us briefly review the chemistry of manganese(II)-Nit molecular magnetic materials.
The coordinating abilities of the Nit ligands can be tuned by ligand functionalization. A
plethora of manganese(II) complexes have been synthesized with such ligands, varying
from mononuclear [10–16] and oligonuclear species [10,17–25], to 1D coordination poly-
mers [26,27]. Mononuclear complexes have been obtained by reacting 2-pyridyl [11,14],
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triphenylphosphine oxide [10], amide [12,13], and triazole [15,16] substituted nitronyl-
nitroxide ligands, with manganese(II) chloride, perchlorate and, most frequently, hex-
afluoroacetylacetonate. With longer ligands displaying coordination sites well separated
from one another, such as 4-pyridyl [17], 4-quinolyl [18], 4-(5-pyrimidyl)phenyl [19], 4-
(1-imidazole)phenyl [20], 2-quinoxalinyl [21], 4-(carboxyl)phenyl [22], 3-(m-pyridyl)-2-
thienyl [23], 4-(3-pyridinylmethoxy)phenyl [24], and 3-((1H-1,2,4-triazol-1-yl)methoxy)-
phenyl [25], the resulted complexes are binuclear. A smaller ligand, 3-isobutyl-pyrazole
substituted nitronyl-nitroxide, generates a 1D-chain [27]. 2D coordination polymers have
been obtained from nitronyl-nitroxide ligands decorated with imidazole and benzimi-
dazole fragments by using a molar ratio metal:ligand of 2:3. [28–30]. Low nuclearity
manganese(II)-(nitronyl-nitroxide) complexes, particularly mononuclear ones, are useful
models for magneto-structural correlations.

In this paper we report on the crystal structures and magnetic properties of two 3D
metal complexes containing a nitronyl-nitroxide ligand, (Et3NH)[M(hfac)2L], where M =
Mn(II) 1, Co(II) 2, and HL = 2-(2-hydroxy-3-methoxy-5-nitrophenyl)-4,4,5,5-tetramethyl-4,5-
dihydro-1H-imidazol-3-oxide-1-oxyl (Scheme 1).
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Scheme 1. Structure of HL ligand.

2. Experimental Part
2.1. Materials and Methods

The 2-(2-Hydroxy-3-methoxy-5-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imi-
dazol-3-oxide-1-oxyl (HL) ligand was synthesized as previously described [31]. All other
reagents and solvents were commercially purchased and used without any further purifica-
tion, if not stated otherwise. Elemental analyses (C, H, N) were performed on a EuroEA
Elemental Analyzer.

2.2. Synthesis of the Complexes
2.2.1. Synthesis of (Et3NH)[MnL(hfac)2] 1

Mn(hfac)2·2H2O (0.073 g, 0.1443 mmol) was dissolved in 10 mL of heptane and
refluxed for 30 min. Then, after cooling down the solution, another 10 mL of CH2Cl2
solution containing HL (0.047 g, 0.1443 mmol) and triethylamine (0.0146 g, 0.1443 mmol, 20
µL) was added over. The solution was refluxed for 30 min, cooled down and filtered. After
allowing the solvent to slowly evaporate for three days, violet needle shaped crystals of
the product were obtained 0.070 g, yield 54%. Anal. Calcd for C30H35O10N4F12Mn (%): C,
40.28; H, 3.94; N, 6.26; Found: C, 40.01; H, 3.11; N, 5.91. Selected IR peaks (cm−1): 3420 (w),
2992 (w), 2957 (w), 2837 (w), 2691 (w), 1649 (s), 1599 (w), 1555 (m), 1528 (m), 1503 (vs), 1455
(m), 1398 (w), 1366 (m), 1329 (s), 1308 (s), 1254 (vs), 1202 (s), 1144 (vs), 1103 (m), 1071 (w),
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978 (w), 947 (w), 870 (w), 831 (w), 797 (w), 764 (w), 743 (w), 665 (m), 583 (w), 544 (w), 529
(w), 451 (w). UV-Vis (nm): 428, 547, 589.

2.2.2. Synthesis of (Et3NH)[CoL(hfac)2] 2

Co(hfac)2·2H2O (0.073 g, 0.1443 mmol) was dissolved in 10 mL of heptane and refluxed
for 30 min. Then, after cooling down the solution, another 10 mL of CH2Cl2 solution
containing HL (0.047 g, 0.1443 mmol) and triethylamine (0.0146 g, 0.1443 mmol, 20 µL) was
added over. The solution was refluxed another 30 min, cooled down and filtered. After
allowing the solvent to slowly evaporate for three days, violet needle shaped crystals of
the product were obtained 0.085 g, yield 65%. Anal. Calcd for C30H35O10N4F12Co (%): C,
40.10; H, 3.93; N, 6.24; Found: C, 39.99; H, 3.84; N, 5.62. Selected IR peaks (cm−1): 3092 (w),
2991 (w), 2951 (w), 2839 (w), 2685 (w), 1643 (s), 1601 (w), 1555 (m), 1526 (m), 1504 (s), 1452
(m), 1396 (w), 1364 (m), 1329 (m), 1310 (s), 1256 (vs), 1204 (vs), 1146 (vs), 1094 (m), 1070 (w),
980 (w), 947 (w), 870 (w), 849 (w), 795 (m), 764 (w), 744 (w), 671 (m), 584 (w), 544 (w), 528
(w), 451 (w). UV-Vis (nm): 426, 538, 610, 1230.

3. Physical Measurements

IR spectra were recorded on a FTIR Bruker Tensor V-37 spectrophotometer (KBr pellets)
in the range of 4000–400 cm−1 (Figure S1). UV-Vis diffuse reflectance spectra were recorded
on a JASCO V-670 spectrophotometer on undiluted samples in the range 200–1600 nm.
The X-Ray powder diffraction measurements (XRPD) were carried out on a Proto AXRD
Benchtop using the Cu-Kα radiation with a wavelength of 1.54059 Å in the range 5–35◦ 2θ.

Continuous-wave (CW) electron paramagnetic resonance (EPR) spectra were recorded
on a Bruker EMX 300 EPR spectrometer operating at X- (~9.4 GHz) or Q-band (~34 GHz)
microwave frequencies, and at variable temperatures in the range 5 to 298 K. Spectra were
simulated using the EasySpin 6.0.6 software [32].

Magnetic measurements were carried out with a Quantum Design MPMS 5S SQUID
magnetometer in the temperature range 2−300 K. The measurements were performed on
crystalline powders of the complexes mixed with grease (for Co) and hold in a gelatin
capsule. The temperature dependences of the magnetization were measured in an applied
field of 1 kOe and the isothermal field dependence of the magnetizations were collected
up to 50 kOe. The molar susceptibility (χM) was systematically corrected for sample
holder, grease and for the diamagnetic contribution of all the atoms by using Pascal’s
tables [33]. AC susceptibility has been collected in zero field and with applied field with an
AC frequency of 1000 Hz.

4. Crystal Structure Determination and Refinement

Suitable single crystals were mounted on glass fiber and X-Ray data were collected
on a Rigaku XtaLAB Synergy, Single source at offset/far, HyPix (1) and STOE IPDS II (2)
diffractometers using a graphite-monochromated Mo Kα radiation source (λ = 0.71073Å).
The structures were solved by direct methods and refined by full-matrix least squares
techniques based on F2 using SHELXTL-2018 crystallographic software packages [34,35].
The non-H atoms were refined anisotropically. The H atoms attached to the C atoms were
placed on calculated positions (riding model), while the H atoms on the N atoms of the tri-
ethylammonium cations were assigned using the residual peaks, and refined with isotropic
thermal displacement parameters. The restraining DFIX and DANG commands were
applied to rationalize the bond and angles parameters. A summary of the crystallographic
data and the structure refinement for crystals 1 and 2 are given in Table 1. Selected bond
distances and angle values are listed in Table 2. CCDC Reference numbers: 2,388,242 (1),
2,388,243 (2).
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Table 1. Crystallographic data and structure refinement parameters for compounds 1 and 2.

Compound 1-Mn 2-Co

Formula C30H35N4O10F12Mn C30H35N4O10F12Co
Formula weight 894.56 898.55
Crystal system monoclinic monoclinic

Space group P21/c P21/c
a/Å 20.4684(18) 20.150(3)
b/Å 9.5569(5) 9.5624(8)
c/Å 21.6281(17) 21.501(3)
β/◦ 111.421(9) 110.433(11)

V/Å3 3928.5(6) 3882.0(9)
Z 4 4

Dc/g cm−3 1.509 1.537
T/K 293(2) 293(2)

µ/mm−1 0.448 0.556
Reflections collected 28,318 39,975

Independent reflection 6943 [Rint = 0.0487] 6840 [Rint = 0.1921]
Final R indices [I > 2σ(I)] 0.0478; 0.1247 0.0773; 0.1353

R indices (all data) 0.0772; 0.1404 0.1835; 0.1837
Goodness-of-fit on F2 1.031 1.088
∆ρmin/∆ρmax (e Å−3) −0.27/0.52 −0.32/0.37

Table 2. Selected bond distances and angle values in compounds 1 and 2.

1 2

Bonds length (Å)

Mn1–O1 = 2.191(2) Co1–O1 = 2.097(4)
Mn1–O3 = 2.121(2) Co1–O3 = 2.033(5)
Mn1–O7 = 2.172(2) Co1–O7 = 2.080(5)
Mn1–O8 = 2.162(2) Co1–O8 = 2.040(5)
Mn1–O9 = 2.129(2) Co1–O9 = 2.036(5)
Mn1–O10 = 2.162(2) Co1–O10 = 2.073(5)

Angles (◦)

O1 Mn1 O3 = 84.6(2) O1 Co1 O3 = 88.8(3)
O1 Mn1 O7 = 90.9(2) O1 Co1 O7 = 90.3(2)

O1 Mn1 O8 = 171.3(2) O1 Co1 O8 = 172.6(2)
O1 Mn1 O9 = 81.1(2) O1 Co1 O9 = 81.2(2)

O1 Mn1 O10 = 98.5(2) O1 Co1 O10 = 96.4(2)
O3 Mn1 O7 = 94.42(1) O3 Co1 O7 = 92.3(2)
O3 Mn1 O8 = 100.6(1) O3 Co1 O8 = 98.1(2)
O3 Mn1 O9 = 163.2(1) O3 Co1 O9 = 169.0(2)
O3 Mn1 O10 = 89.4(1) O3 Co1 O10 = 87.5(2)
O7 Mn1 O8 = 81.8(2) O7 Co1 O8 = 87.1(2)
O7 Mn1 O9 = 94.7(1) O7 Co1 O9 = 92.4(2)

O7 Mn1 O10 = 169.9(2) O7 Co1 O10 = 173.2(3)
O8 Mn1 O9 = 94.5(1) O8 Co1 O9 = 91.9(2)

O8 Mn1 O10 = 88.3(1) O8 Co1 O10 = 86.2(2)
O9 Mn1 O10 = 83.8(1) O9 Co1 O10 = 88.9(2)

5. Results and Discussion

The Nit ligand, HL, has been synthesized following Ullman’s protocol starting from
2-hydroxy-3-methoxy-5-nitrobenzaldehyde (o-vanillin with the 5 position previously pro-
tected with a nitro group) [31]. We have tested the ability of HL molecules to form com-
plexes by reacting it with M(hfac)2, M = Ni(II), Zn(II), in the presence of Et3N, to deproto-
nate the phenolic group [31]. The manganese and cobalt complexes, (Et3NH)[Mn(hfac)2L]
1, (Et3NH)[Co(hfac)2L] 2, are isomorphous with the nickel and zinc derivatives men-
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tioned above. Therefore, we describe briefly the crystal structure of the manganese
derivative. Compound (Et3NH)[Mn(hfac)2L] 1 consists of an anionic mononuclear species,
[Mn(hfac)2L]− (Figure 1), and triethylammonium cations, Et3NH+. The metal ion adopts
an octahedral coordination sphere, coordinated by phenoxido and aminoxyl oxygen atoms
from the ligand and four oxygen atoms from the hexafluoroacetylacetonato (hfac−) ligand.
The Mn(II)–O bonds vary from 2.121(2) to 2.191(2) Å. The N1–O1 bond length from the
coordinated aminoxyl group is 1.292(3) Å, slightly longer than the uncoordinated N2–O2
group (1.274(3) Å).
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Figure 1. The X-ray structure of the complex anion in 1; the hydrogen and fluorine atoms have been
omitted for clarity.

In compound 1 the CF3 groups are disordered over two crystallographic positions
assigned as A (0.43) and B (0.57). For both crystallographic models, the packing dia-
gram reveals a network of intermolecular F···F interactions (2.548–3.087 Å) connecting the
mononuclear units at supramolecular level (Figures S2 and S3). The crystal structure of
compound 2 is represented in Figure S4. The purity of the crystalline compounds, 1 and 2,
has been proved by powder X-Ray diffraction: the experimental diffractograms correspond
well to the simulated ones (Figures S5 and S6).

The diffuse reflectance UV-Vis spectra of the ligand and the two complexes are dis-
played in Figure S7. Compound 2 shows, apart from the bands arising from the organic
ligands, one d-d band at 4T1→4T2 (1230 nm), assuming the O point group [36].

5.1. Magnetic Properties of 1 and 2

Complexes 1 and 2 were studied by magnetometry, results are plotted as χMT = f(T)
(where χM stands for the molar magnetic susceptibility) and M = f(H) in Figure 2 and
Figure 4, respectively. The χMT product for 1 at 300 K is 3.27 cm3 mol−1 K, which is smaller
than the expected value of 4.75 cm3mol−1K for uncoupled S = 5/2 (MnII) and S = 1/2
(radical) spins, suggesting significant antiferromagnetic coupling between Mn(II) and the
paramagnetic ligand. The χMT value decreases as the temperature is reduced reaching
a plateau below 150 K at about 3.1 cm3 mol−1 K, and drops to a lower value below 50 K
(Figure 2). The recorded χMT plateau corresponds to a S = 2 spin ground state resulted from
the antiferromagnetic MnII—radical coupling. The data have been analyzed considering a
S = 5/2 and a S = 1/2 in exchange interaction (J), possible weak inter-molecular interactions
have been considered within the mean-field approximation (zJ’). Modeling was done using
the PHI program [37]. The best fit to the data gives the following values (with respect to H =
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−JSMnSRad): J = −191 cm−1; gMn = 2.032; gRad = 2.0 (fixed), with very weak intermolecular
interactions, zJ’ = −0.019 cm−1. The magnetization vs. field curve obtained at 2 K, reaches
saturation to high field with a value of 3.92 µB, a slightly lower than the value anticipated
for an S = 2 ground state.
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In the literature, the Mn(II)-Nit coupling is antiferromagnetic, with the exchange
parameter J ranging from −0.74 to −213 cm−1 [10–16], which is strongly influenced by
the values of the Mn–O–N and Mn–O–N–C (dihedral) angles, as well as the Mn–O(Nit)
distance. Mn–O–N angles of ca. 125◦ lead to quite strong antiferromagnetic coupling
between manganese (II) and the radical. Representative examples are presented in Table 3.

Table 3. Geometrical parameters and J values (with respect to H = −JSMnSRad) for selected
mononuclearMn(II)-Nit complexes.

Compound JMn-NIT
(cm−1) Mn–O (Å) Mn–O–N (◦) Mn–O–N–

C (◦) Ref.

[Mn(hfac)2(oPONit)]
a −213 2.150(4) 124.7 83.1 [10]

[Mn(hfac)2L1] b −114.4 2.181(2) 124.5 28.7 [12]

[Mn(NIT2Py)(NTB)]
(ClO4)2

c −0.74 2.133(3) 132.9 20.4 [14]

[Mn(hfac)2L3] d −193.4 2.129(3) 123.6 47.8 [15]

[Mn(hfac)2(4-Me-
3-Nit-trz)] e −99.2 2.158(2) 117.2 51.9 [16]

(Et3NH)[MnL(hfac)2]
1 −191 2.191(2) 128.1 57.9 this work

a oPONit = (o-nitronyl nitroxide-phenyl)diphenylphosphine oxide. b L1 = 4,4,5,5-tetramethyl-4,5-dihydro-1H-
imidazole-3-oxide-1-oxyl-2-carboxylic acid amide. c NIT2Py = 2-(2′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-
oxyl-3-oxide. d L3 = 4,4,5,5-tetramethyl-2-(2-phenyl-1,2,3-triazole-4-yl)imidazoline-1–oxyl-3-oxide. e 4-Me-3-Nit-
trz = 2-[3-(4-methyl-1,2,4-triazolyl)]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide.
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The strong antiferromagnetic Mn(II)–Rad interaction is confirmed by DFT calculations,
which were performed using the Gaussian09 program [38], maintaining the crystal geome-
try without optimization. Starting with the spins of the Mn(II) ion and of the radical, 5/2
and 1/2 respectively, two states were considered: a high spin (HS), S = 3, 2S + 1 = 7 and a
low spin (LS), in which the radical spin is antiparallel to that of the Mn ion, S = 2, 2S + 1 =
5. The energy of the low spin state, hereafter labeled as the Broken Symmetry (BS) state,
was calculated by the fragment procedure as implemented in the Gaussian09 program and
further checked for its stability. Two functionals, uB3LYP [39] and uM06 [40] were used
with the TZVP basis set [41]. The exchange coupling constant, J, was calculated using the
literature Equations (1)–(3) [42,43]:

J = (EBS − EHS)/(2SMnSRad + SRad) (1)

J = 2(EBS − EHS)/S2
max (Smax = S1 + S2) (2)

J = 2(EBS − EHS)/(<S2>HS − <S2>BS) (3)

The results presented in Table 4 reflect the antiferromagnetic behavior of the complex,
the broken spin state (BS) being the ground state; as far as the J value is concerned, Equation
(2) led to the closest agreement with the experimental value, Jexp = −191 cm−1. It can also
be remarked that both functionals lead to quite similar results.

Table 4. Energies of the low (BS) and high spin (HS) states and J values calculated using Equations
(1)–(3).

Functional EBS (Ha) EHS (Ha) J (cm−1)

(Equation
(1))

(Equation
(2))

(Equation
(3))

uB3Lyp −4192.3621525 −4192.3581071 −295.95 −197.30 −297.90

uM06 −4190.8464697 −4190.8426809 −277.18 −184.79 −279.09

The spin isodensity surfaces corresponding to the two spin states are displayed in
Figure 3a (BS-state) and Figure 3b (HS-state). For both states the spin density is mainly
localized on the Mn ion and to a lower extent on the nitronyl groups.
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The magnetic data of compound 2, in the form of χMT vs. T and M vs. H/T, are shown
in Figure 4. Due to the significant orbital contribution in octahedral geometry, the Co(II) ion
is characterized by a χMT value that overcome the calculated spin-only value of 1.875 cm3

mol−1 K and usually approaches 3 cm3 mol−1 at 298 K [33,44,45]. Therefore, in the absence
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of any interaction between Co and ligand, an approximate χMT value of 3.375 cm3 mol−1 K
would be expected for compound 2. However, the measured χMT for 2 is 2.26 cm3 mol−1

K at room temperature, and it decreases as the temperature is lowered. This suggests that
strong antiferromagnetic coupling occurs between the Co(II) and the radical. The χMT(T)
curve shows a steady decrease below 300 K, then an inflection is noticed around 130 K.
Below this temperature, a faster decrease occurs, because of the thermal depopulation of the
excited Kramers doublets of the Co(II) ions. Fitting of the data has assumed contributions
from JCoRad, D for Co(II), and possible intermolecular interactions considered within a
mean field approximation (zJ’). The analysis was performed simultaneously on χMT and M
= f(H/T). The following values have been obtained: gCo = 2.417, J = −166 cm−1, D = 65 cm−1.
The antiferromagnetic Co(II)-Rad interaction is quite strong (formalism: H = −JSCoSRad).
However, some uncertainty applies because gCo is not known precisely (that for the radical
was fixed to 2 for the calculations). The field dependence of the magnetization is also well
reproduced, as it is plotted in the form of M = f(H/T) in Figure 4b.

Magnetochemistry 2024, 10, x FOR PEER REVIEW 8 of 12 
 

 

cm3 mol−1 K and usually approaches 3 cm3 mol−1 at 298 K [33,44,45]. Therefore, in the 

absence of any interaction between Co and ligand, an approximate χMT value of 3.375 cm3 

mol−1 K would be expected for compound 2. However, the measured χMT for 2 is 2.26 cm3 

mol−1 K at room temperature, and it decreases as the temperature is lowered. This suggests 

that strong antiferromagnetic coupling occurs between the Co(II) and the radical. The 

χMT(T) curve shows a steady decrease below 300 K, then an inflection is noticed around 

130 K. Below this temperature, a faster decrease occurs, because of the thermal 

depopulation of the excited Kramers doublets of the Co(II) ions. Fitting of the data has 

assumed contributions from JCoRad, D for Co(II), and possible intermolecular interactions 

considered within a mean field approximation (zJ’). The analysis was performed 

simultaneously on χMT and M = f(H/T). The following values have been obtained: gCo = 

2.417, J = −166 cm−1, D = 65 cm−1. The antiferromagnetic Co(II)-Rad interaction is quite 

strong (formalism: H = −JSCoSRad). However, some uncertainty applies because gCo is not 

known precisely (that for the radical was fixed to 2 for the calculations). The field 

dependence of the magnetization is also well reproduced, as it is plotted in the form of M 

= f(H/T) in Figure 4b. 

If the magnetic data are represented as χM vs. T plot (Figure S8), after a plateau 

observed at 30 K, a Curie tail (i.e., an increase of the magnetic susceptibility) is clearly 

observed for lower T indicating the presence of a paramagnetic impurity. This χM vs. T 

curve was perfectly reproduced when a fraction (0.01) of a S = 3/2 impurity was 

considered. The contribution of this 0.01 fraction of S = 3/2 was taken into account for the 

analyses of χMT and M = f(H) discussed above. 

AC magnetic susceptibility measurements between 2 and 15 K did not reveal any 

evidence for slow relaxation of the magnetization for this compound. 

  
(a) (b) 

Figure 4. Experimental () and best fits (full red lines) for (a) χMT = f(T) and (b) M = f(H/T) behaviors 

for compound 2. 

5.2. Electron Paramagnetic Resonance (EPR) Data for 1 

Continuous-wave (CW) EPR spectra for powder samples of 1 were recorded at X- 

(ca. 9.4 GHz) and Q-band (ca. 34 GHz) and several temperatures (Figures 5 and 6 

respectively). Spectra recorded below 70 K show the clear characteristics of a S = 2 spin 

state that was stabilized by antiferromagnetic coupling between the spins of Mn(II) and 

Nit radical (see above). Here the zero-field splitting (ZFS) interaction D[Sz2 – (1/3)S(S + 1)] 

− E(Sx2 − Sy2) splits the levels of an S = 2 spin state into two non-Kramer doublets, |±2 and 

|±1, and a singlet corresponding to the mS = 0 [46]. Under the application of a magnetic 

field EPR transitions can occur within and between these splitting components leading to 

0.0

0.50

1.0

1.5

2.0

2.5

0 50 100 150 200 250 300

2
Fit


M

T 
(c

m
3
m

o
l-1

K
)

T (K)

0.0

0.050

0.10

0.15

0.20

0.25

0.30

0 5 10 15 20 25

2K
3K
4K
5K
Fits

M
 (

µ
B
)

H/T (kOeK
-1

)
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for compound 2.

If the magnetic data are represented as χM vs. T plot (Figure S8), after a plateau
observed at 30 K, a Curie tail (i.e., an increase of the magnetic susceptibility) is clearly
observed for lower T indicating the presence of a paramagnetic impurity. This χM vs. T
curve was perfectly reproduced when a fraction (0.01) of a S = 3/2 impurity was considered.
The contribution of this 0.01 fraction of S = 3/2 was taken into account for the analyses of
χMT and M = f(H) discussed above.

AC magnetic susceptibility measurements between 2 and 15 K did not reveal any
evidence for slow relaxation of the magnetization for this compound.

5.2. Electron Paramagnetic Resonance (EPR) Data for 1

Continuous-wave (CW) EPR spectra for powder samples of 1 were recorded at X- (ca.
9.4 GHz) and Q-band (ca. 34 GHz) and several temperatures (Figures 5 and 6 respectively).
Spectra recorded below 70 K show the clear characteristics of a S = 2 spin state that was
stabilized by antiferromagnetic coupling between the spins of Mn(II) and Nit radical (see
above). Here the zero-field splitting (ZFS) interaction D[Sz

2 – (1/3)S(S + 1)] − E(Sx
2 − Sy

2)
splits the levels of an S = 2 spin state into two non-Kramer doublets, |±2⟩ and |±1⟩, and
a singlet corresponding to the mS = 0 [46]. Under the application of a magnetic field EPR
transitions can occur within and between these splitting components leading to a multi-line
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structure as observed in Figures 5 and 6. Simulation of the Q-band EPR spectrum at 9 K
(Figure 7) using EasySpin [32], and the spin Hamiltonian (4):

H = gBSB + D
[
Sz

2 − (1/3)S(S + 1)
]
+ E

(
Sx

2 − Sy
2
)

(4)

with S = 2, and D and E as the axial and rhombic zero-field splitting terms, respectively,
provided D = 0.26 cm−1 and E = 0.031 cm−1. ZFS is present in systems which S > 1/2 and
is a result from both SOC and spin-spin coupling (SSC) interactions, the former being more
prominent in transition metals. Although perfectly symmetric half-occupied d-orbitals
should not present any SOC, some may arise if the compound deviates from a perfect
symmetry [47].
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6. Conclusions

Two 2p–3d mononuclear complexes have been synthesized and structurally charac-
terized. For both Mn(II) and Co(II) compounds strong antiferromagnetic metal-radical
interaction was found, with a significant Zero Field Splitting effect (D). The EPR inves-
tigation of the manganese derivative reveals the signature of an S = 2 ground state, in
agreement with the magnetic measurements.
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