
HAL Id: hal-04765610
https://hal.science/hal-04765610v1

Preprint submitted on 4 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Channel Charting: Integrating Online Sample
Selection with Continual Learning for Streaming CSI

Data
Yamil Vindas, Maxime Guillaud

To cite this version:
Yamil Vindas, Maxime Guillaud. Dynamic Channel Charting: Integrating Online Sample Selection
with Continual Learning for Streaming CSI Data. 2024. �hal-04765610�

https://hal.science/hal-04765610v1
https://hal.archives-ouvertes.fr

Dynamic Channel Charting: Integrating Online
Sample Selection with Continual Learning for

Streaming CSI Data
Yamil Vindas , Maxime Guillaud

Inria, INSA Lyon, CITI Laboratory, UR3720, F-69621 Villeurbanne, France

Abstract—Wireless channel charting consists in the application
of dimensionality reduction methods to the channel state infor-
mation (CSI) collected during the operation of wireless commu-
nication systems. Due to hardware limitations, it is desirable to
limit the amount of information stored for that purpose; hence,
this work considers online sample selection to perform channel
charting from streaming CSI data. We specifically focus on the
case where dimensionality reduction is performed via contrastive
learning using sample triplets, and study several suitable sample
selection strategies. The proposed approaches are numerically
evaluated and compared using measured data.

I. INTRODUCTION

Channel charting (CC) is an unsupervised learning tech-
nique that utilizes channel state information (CSI) to con-
struct a low-dimensional representation of the radio prop-
agation environment [1]. Its applications include predictive
radio resource management and beam management, proximity
detection, context awareness for digital twin applications, and
improving localization [2].

A. Related work

1) Channel charting: Early methods for CC relied on non-
parametric dimensionality reduction (DR) techniques, such as
Sammon’s mapping and principal component analysis (PCA)
[1]. Recent advances leverage parametric deep learning mod-
els, including fully-connected (FC) autoencoders [1], Siamese
networks [3] and Triplet networks [4]. These deep learning
approaches offer improved handling of the out-of-sample prob-
lem, making them more effective for real-world applications.

Moreover, many applications of CC require applying DR to
a large number of CSI samples, which are measured at high
sampling rates (typically around 100 samples per second) by
each base station (BS). BSs often have limited computational
and storage resources, especially for auxiliary tasks like CC,
as their primary function is to manage telecommunications.
Consequently, it is not feasible to store all the generated
CSI samples. Furthermore, since it is desirable to apply CC
over data collected over long durations (potentially weeks or
months), it is reasonable to assume that the total amount of
CSI that will be acquired is a priori unbounded. Thus, it is

This work was supported by ANR (grant ANR-23-CHR4-0001-01) under
the CHIST-ERA project CHASER (CHIST-ERA-22-WAI-01), and by Horizon
Europe SNS project INSTINCT (grant 101139161). It was performed using
HPC resources from GENCI-IDRIS (Grant 2023-AD010614930).

beneficial to consider online methods that can generate partial,
incremental solutions that can be refined as additional data
becomes available. A promising framework to address this
is continual learning. For instance, [5] introduced an online
replay-based strategy to retain a limited set of CSI samples
for performing CC.

2) Continual learning (CL): CL is a recent field of machine
learning research focused on developing methods that enable
models to continuously learn and adapt to new data with-
out forgetting previously acquired knowledge, a phenomenon
know as catastrophic forgetting. Various families of methods
exist in continual learning [6]; in this work, we focus on
replay-based strategies, which involve maintaining a small
memory of real or synthetic samples, which aids models in
retaining information that might otherwise be lost over time.
Replay-based strategies are well-suited for online settings with
high-rate streaming data—provided that the memory update
mechanism is efficient. Moreover, these methods are inherently
compatible with unsupervised online continual learning, as
they share a close relationship with core-set approaches, which
have proven effective in unsupervised scenarios [7].

Core-set approaches, although initially not designed for
deep learning, posed challenges when applied to such models
because of their complexity and tendency towards poor gener-
alization [8]. Nevertheless, recent years have seen substantial
progress in adapting these techniques to deep learning contexts
[9], [10]. Recent methods have integrated gradient-matching
techniques with core-sets, enabling replay-based continual
learning that is suitable for online settings [9], [10]. The central
idea here is to preserve the gradient information of the entire
dataset through the core-set.

Additionally, while the term “core-set” is often used to
describe a long-term memory in replay-based approaches for
continual learning, these methods do not necessarily align with
the strict mathematical definitions of core-sets as outlined in
[7]. Thus, the focus shifts towards long-term memory con-
struction rather than strictly adhering to core-set definitions.
Different approaches either generate synthetic samples or store
other useful information (e.g., model outputs, gradients) to
represent previously seen samples [11], [12]. Another class of
methods employs loss or gradient information [13], [14], [15],
as well as other metrics (e.g., sample similarity, entropy) [5],
[16] to select samples that maximize the information content

https://orcid.org/0000-0003-3553-0071
https://orcid.org/0000-0002-4105-4537

of the memory.
The primary limitations of previous studies are that they

are often tailored to supervised learning contexts or fail to
effectively address online scenarios, where data arrives at
high rates. In such cases, it is crucial to rapidly update the
model and memory to prevent significant data loss and ensure
efficient model training.

B. Summary of the Contributions

• We introduce a dual memory architecture based on a
long-term memory acting as the core-set reservoir, and
a short-term buffer which can store incoming samples
during model updates and memory updates;

• We introduce several memory update strategies suitable
for the contrastive learning goal of triplet-based CC;

• We benchmark the proposed approaches using real-world
data from the DICHASUS measurement platform [17].

II. PROBLEM DEFINITION

A. CC through Contrastive Learning

Assume that we observe a stochastic process generating data
over time, i.e. for all t ≥ 0, xt ∈ Rd is a sample of dimension
d acquired a time t. For simplicity we discretize time and
index it by t ∈ N, denoting by tx the timestamp of sample
x. Our main goal is to train a neural network model fθ with
parameters θ to perform CC over an undefined period of time,
while avoiding as much as possible catastrophic forgetting.

In this work, we specifically focus on CC via triplet-based
contrastive learning. In this approach, the CC problem is
subsumed by a metric learning approach which relies on the
timestamps associated with each sample. Specifically, we seek
to train a model denoted by h to learn a distance. This
distance, defined as dh : (x,y) 7→ ||h(x) − h(y)||2, is
learned through triplets of (anchor, positive, negative) samples
(a,p,n) ∈ Rd×3 for which we know that dh should fulfill
dh(a,p) < dh(a,n). It has been shown in [4] that this
distance learning problem is a good proxy for the CC problem.
In practice, such triplets can be easily derived from the
timestamp information by selecting samples sufficiently close
in time (say, for which |ta − tp| ≤ Tc, where Tc is below the
expected channel coherence time) for the positive pair (a,p);
and selecting a third sample at random for which |ta−tn| > Tc

will yield the (likely) negative example n.
For a given dataset A ⊂ Rd and for any anchor sample a ∈

A, we let Ta(A) denote the set of positive and negative sample
pairs from A associated to a, which is defined according to
their respective timestamps: ∀a ∈ A,

Ta(A) = {(p,n) ∈ A×A s.t. |ta − tp| ≤ Tc < |ta − tn|}
(1)

The triplet loss associated with an anchor sample a ∈ A,
relative to a model h, is defined as follows:

LT (a, Ta(A);h) =
1

|Ta(A)|
·

∑
(p,n)∈Ta(A)

ℓT (a,p,n;h) (2)

Fig. 1: Problem Summary. Our framework involves steps to
periodically update long-term memory (Mt−1 at time t) and
train the model with new data from the buffer Bt. At time t, the
model is trained with the dataset DTrain

t = Bt ∪Mt−1. Each
sample in DTrain

t serves as an anchor for triplet learning, with
positive and negative examples drawn from DTrain

t (indicated
by the red and green arrows in the first block). Each block
corresponds to a line in our proposed online training Alg. 1.

where ℓT (a,p,n;h) = max(0,dh(a,p) − dh(a,n) + M)
and M is a margin hyperparameter that defines the mini-
mum required distance between the anchor/positive and an-
chor/negative pairs.

B. Online Learning

We suppose that we have a long-term memory M with
a limited storage capacity, allowing it to hold up to CM
samples. For initialization, incoming samples are added toM
sequentially until it reaches full capacity. We also suppose that
we have a buffer B with capacity CB which temporarily stores
at most CB of the latest received samples (see Figure 1). We
assume that we can process all samples in the buffer before
they are replaced by new incoming samples (no buffer over-
run). Additionally, samples are processed in batches, meaning
that at a given time t, we process all the samples in the buffer
Bt to determine whether they should be added to the long-term
memoryMt. After processing, all samples in Bt are replaced
by the new set of CB samples.

We denote as Mt the content of the memory at time t, Bt
the content of the buffer at time t, and fMθt

the model trained
with Mt. We suppose that fθMt−1

is retrained each time the
buffer memory is updated, using DTrain

t = Bt ∪Mt−1.

Similar to the continual learning set-up in [18] and other
memory-based approaches, at each time step t, we aim to find
a memoryMt that enables training the model fθ such that its
test performance closely approximates that of training with the
full dataset at time step t, Dt = {x0, . . . ,xt}, which consists
of all samples received up to time t, i.e.

E
(a,p,n)∼PT

[ℓT (a,p,n; fθDt
)] ≈ E

(a,p,n)∼PT

[ℓT (a,p,n; fθMt
)]

(3)
with θDt = argmin

θ

1
|Dt|

∑
x∈Dt

LT (x, Tx(Dt); fθ) and θMt =

argmin
θ

1
CM

∑
x∈Mt

LT (x, Tx(Mt); fθ) where PT is the distri-

bution of triplets of the test dataset, p and n are positive and
negative samples associated to anchor a, fθDt

is the model
trained using Dt, and fθMt

is the model trained using Mt.
Note that since the positive and negative samples associated

with an anchor sample depend on their temporal distance
(the difference between timestamps), and since samples are
added and removed over time from the long-term memory
M, the number of positive samples associated with anchors
in M tends to decrease and may potentially reach zero. In
this case, the anchor sample in memory becomes unusable for
contrastive training.

To ensure that, for each anchor a ∈ Mt, we have
Ta(Mt) ̸= ∅ at every time step t, when updating Mt−1 we
compute Ta(Bt ∪Mt−1) and randomly selecting one positive
sample to store inMt alongside the anchor. Since each anchor
a is added to memory directly from the buffer, there is always
at least one positive sample available in the buffer at that time.
This is preferable to directly storing triplets inM as it allows
for different positives for each anchor whenever possible.

III. CONSIDERED SOLUTIONS

A. State-of-the-Art Methods

1) Random selection: A straightforward yet naive approach
to online sample selection involves randomly determining
whether to retain each incoming sample from the buffer in
memory according to a fixed (non data-dependent) probability.
If the sample is retained, another sample in memory is
randomly chosen for removal to make space. Samples from
the buffer are processed in order of arrival; therefore, the long-
term memory update is defined as follows: for all t > CM and
τ ∈ [t− CB, t]:

Mτ =

{
(Mτ−1 \ {xr}) ∪ {xτ} with probability p
Mτ−1 with probability 1− p

(4)

where xr is a sample to be removed chosen uniformly at
random from the memory Mτ−1.

This approach suffers from catastrophic forgetting as, for
all t ≥ CM and τ ∈ [CM, t] the probability of sample xτ to
be in the long term memory Mt at time step t is given by

P(xτ ∈Mt) = p ·
(
1− 1

CM

)t−τ

. (5)

We observe that for t fixed, P(xτ ∈Mt) decreases for smaller
values of τ ; this indicates that earlier samples are less likely
to be included in Mt.

2) Reservoir sampling (RS): Introduced in [19], this mem-
ory update strategy operates on individual samples, without
the concept of a buffer (i.e., it relies solely on the long-term
memory). Given a timestamp t, the long-term memory update
rule is defined as follows: for all t > CM,

Mt =

{
(Mt−1 \ {xr}) ∪ {xt} with probability CM

t
Mt−1 else

(6)

where r is an integer sampled uniformly at random from [1, t].
It corresponds to uniformly sampling CM instances from the
set Dt, which denotes all samples observed up to time t.
Therefore, at time t, the probability of sample xτ with τ ≤ t
to be in the long term memory Mt is given by:

P(xτ ∈Mt) =
CM
t

. (7)

Thus RS enables an online implementation of a uniform
random sample selection policy.

3) SimS: This approach was proposed in a more advanced
form for supervised learning in [14] and in a simpler form
for unsupervised learning in [5]. The main objective is to
minimize the similarity between samples in Mt to encourage
diversity within the memory set. Let D denote a distance over
Rd; SimS aims to maximize the minimum distance withinMt:

max
Mt⊂Dt

(
min

(u,v)∈Mt

D(u,v)

)
s.t. |Mt| = CM. (8)

Solving (8) in an online fashion is not possible because we do
not have access to all samples simultaneously. [5] introduced
the following greedy algorithm to find an approximate solution
through the following memory update rule: for all t > CM and
τ ∈ [t − CB, t], let u = argminx∈Mτ−1

D(xτ ,x) denote the
nearest neighbor in memory Mτ−1 to the new sample xτ .
The proposed memory update rule is then defined as

Mτ =

 (Mτ−1 \ {xr}) ∪ {xτ}
if D(xτ ,u) > D(v,w),

Mτ−1 else
(9)

where (v,w) = argmin(x,y)∈M2
τ−1

D(x,y), xr = v with
probability p and xr = w with probability 1 − p. When
working with a buffer and long term memory, each update
consists in solving Eq. (8) by replacing Dt with Bt ∪Mt−1,
processing samples in the buffer sequentially in order of
arrival.

We introduce a more robust replacement strategy consisting
in adjusting the selection criteria for samples to be removed
from memory. Our idea involves examining the second closest
neighbors of both v and w, and prioritizing the removal of the
sample whose closest second neighbor is the closest overall.
We refer to this method as SimS-SCN, where SCN stands for
“Second Closest Neighbor.”

B. Proposed online model-based dataset condensation

We now introduce three novel model-based methods for
performing unsupervised online dataset condensation to dy-
namically select samples from the buffer Bt for storage in the
long-term memory Mt.

1) Max-Min Point Spacing (MMPS): This approach is
similar to the one from [5], with the difference that we use the
learned distance dfθMt−1

in lieu of the sample-space distance
D in eq. (8) to update the long-term memory from Mt−1 to
Mt. This yields the following optimization problem:

max
Mt⊂Dt

(
min

(u,v)∈Mt

dfθMt−1
(u,v)

)
s.t. |Mt| = CM

(10)

When working with a buffer and long-term memory, an
iterative approach to solve this problem consists in solving
Eq. (10) at each time step by replacing Dt with Bt ∪Mt−1.
The memory update rule can be defined as follows, for all
t > CM and τ ∈ [t− CB, t]:

Mτ =


(Mτ−1 \ {xr}) ∪ {xτ}

if dfθMτ−1
(xτ ,u) > dfθMτ−1

(v,w),

Mτ−1 else
(11)

where u = argminx∈Mτ−1
dfθMτ−1

(xτ ,x), (v,w) =

argmin(x,y)∈M2
τ−1

dfθMτ−1
(x,y), and xr = v if the second

closest neighbor to v is closer to v than the second closest
neigbor of w is to w, otherwise xr = w.

Note that MMPS significantly differs from [5], [16] in that:
• It operates directly within the reduced embedding space,

akin to the approach from [18] for supervised learning;
• It utilizes a contrastive/triplet learning framework;
• It employs a self-supervised, online CL methodology.
2) Loss-Driven Ranking Sample Selection (LDRSS): This

approach is comparable to the offline supervised continual
learning method discussed in [13]. However, our method in-
troduces a loss function-based unsupervised online CL frame-
work. The primary objective is to enhance the difficulty of the
samples stored in memory by maximizing their loss function,
as samples with higher loss tend to be more informative to
the model that those with smaller loss. This strategy promotes
diversity and complexity within the memory set.

LDRSS aims at solving the following problem at time t:

max
Mt⊂Dt

(∑
x∈Mt

LT (x, Tx(Mt); fθMt−1
)

)
s.t. |Mt| = CM

(12)
Again, solving this optimization problem is not practical

if we do not have access to all samples simultaneously, so
we propose to find an approximate solution by iteratively
solving (12) by replacing Dt with Bt ∪Mt−1.

Memory Mt−1 is updated using the samples in the buffer
Bt one by one in order of arrival, according to the following
memory update rule1: for all t > CM and τ ∈ [t− CB, t],

Mτ =


(Mτ−1 \ {xr}) ∪ {xτ} if LT (xτ , Txτ

(Bt∪
Mτ−1); fθMτ−1

) > LT (xr, Txr
(Mτ−1); fθMτ−1

)

Mτ−1 else
(13)

1It is important to note that updating the memory using sample losses
incurs minimal computational overhead since we can leverage the fact that
those losses are already computed for the purpose of model training.

where xr = argminu∈Mτ−1
LT (u, Tu(Mτ−1); fθMτ−1

).
3) Gradient-Driven Ranking Sample Selection (GDRSS):

This approach is comparable to the online CL method from
[14]. However, our method employs a direct gradient-based
scoring mechanism to select samples from the buffer for long-
term memory retention, since samples with larger gradients
tend to be more informative for model learning. The primary
goal is to retain the samples that contribute most significantly
to reaching a local minimum. GDRSS aims at solving the
following optimization problem at time t:

max
Mt⊂Dt

∑
x∈Mt

N
(
∇θLT (x, Tx(Mt); fθMt−1

)
)

s.t. |Mt| = CM
(14)

where ∇θLT corresponds to the gradient of the loss function
with respect to the parameters θ of a function fθ, and N is a
function reducing the gradient into a scalar value (for instance
a norm), defined as follows: for all u ∈ A,

N (∇θLT (u, Tu(A); fθ)) =
1

L

L∑
l=1

1

nl
||∇θlLT (u, Tu(A); fθ))||1

where L denotes the number of layers of the model fθ, θl

the parameters of layer l ∈ [1, L], and nl is the number of
parameters in layer l.

For the online setting, a greedy algorithm to find an approxi-
mate solution can be obtained by solving Eq. (14) sequentially
and replacing Dt with Bt ∪Mt−1. The memory update rule
can be defined as follows, for all t > CM and τ ∈ [t−CB, t]:

Mτ =


(Mτ−1 \ {xr}) ∪ {xτ} if G̃T (xτ , Txτ (Bt∪
Mτ−1); fθMτ−1

) > G̃T (xr, Txr
(Mτ−1); fθMτ−1

)

Mτ−1 else
(15)

where ∀u ∈ A, G̃T (u, Tu(A); fθ) =
N (∇θLT (u, Tu(A); fθ)), and xr =
argminu∈Mτ−1

G̃T (u, Tu(Mτ−1); fθMτ−1
).

C. Training strategy

By utilizing a buffer Bt and long-term memory Mt−1, we
can employ a continual learning paradigm based on replay. In
this approach, each time the model is trained, it is updated
using DTrain

t composed of all samples from both Bt and
Mt−1. This process involves solving

min
θ

λB · LB(fθ;Bt) + λM · LM(fθ;Mt−1) (16)

where LB(fθ;Bt) is the current data loss (obtained with the
buffer) and LM(fθ;Mt−1) is the replay loss on the long-term
memory, defined as follows:

LB(fθ;Bt) =
1

CB

∑
x∈Bt

LT (x, Tx(Bt ∪Mτ−1); fθ) (17)

LM(fθ;Mt) =
1

CM

∑
x∈Mt−1

LT (x, Tx(Bt ∪Mτ−1); fθ)

(18)
Finally, λB and λM are two hyperparameters that control the
importance of recent data and long-term memory, respectively.

A generic online sample selection and replay-based continual
training algorithm summarizing all previous approaches is
given in Algorithm 1.

Algorithm 1: Online sample selection and training

1 Initialize:
2 M0 ← [x1, ...,xCM];
3 B0 ← [xCM+1, ...,xCM+CB];
4 fθM0

by solving (16);
5 for t = CB, 2 · CB, ... do
6 Update buffer to obtain Bt;
7 DTrain

t ← Bt ∪Mt−1;
8 Update the model by solving (16) to obtain fθMt−1

for x ∈ Bt do
9 Update Mt−1 using a memory update rule (one

of equations (4), (6), (9), (11), (13), (15));
10 end
11 Mt ←Mt−CB ;
12 end

IV. EXPERIMENTAL SETUP
A. Dataset

We evaluate the methods using two datasets from the
DICHASUS platform of the University of Stuttgart [17],
specifically cf-02 (18,516 samples) for training, and cf-03,
(23,478 samples) for testing [20]. Both datasets cover the same
indoor industrial environment, where a robot equipped with an
omnidirectional antenna traversed an L-shaped area. CSI was
measured between the robot and four access points (APs), each
with eight antennas. The system operates using Orthogonal
Frequency Division Multiplexing with 1,024 subcarriers, over
a bandwidth of 50 MHz centered at 1.272 GHz.

In order to model the kind of non-stationarity of the CSI
stochastic process that can occur in real scenarios, we bias
the dataset by repeating the first half (upper section) of the
trajectory 11 times and the second half (lower section) once,
while preserving the continuity of the trajectory. This modi-
fication resulted in a total of 111,086 samples, corresponding
to approximately 1.60 hours of data collection at a sampling
frequency of around 20 Hz. We denote this enhanced dataset
as cf-02-R (cf-02 repeated). Finally, the data underwent
preprocessing according to the pipeline outlined in [1].

B. Experiments

We trained the FC network described in [21] using Al-
gorithm 1. During each training and retraining session, we
utilized 10 epochs. Throughout all simulations, models were
optimized using the ADAM optimizer with a batch size of
1500, a learning rate of 1 × 10−1, and a weight decay of
1×10−7. Triplet selection was performed with TC = 5 s, and
ℓT computed with M = 1. Since computing LT (a, Ta(A);h)
and G̃T (a, Ta(A);h) exactly is costly because the cardinality
of the set Ta(A) tends to be very large, we randomly sampled
one positive/negative pairs for each anchor sample every time
it is seen during training.

We fixed λB = λM = 1 in eq. (16) to compare the different
approaches against each other and to an offline method where
the samples within each batch were uniformly selected among
all the available samples. The offline method was trained over
30 epochs, using all the cf-02-R training data available. This
may introduce a bias toward the first half of the trajectory in
each batch (as it is oversampled), leading to an oversampling
in space, but not in time. Each experiment was repeated five
times, and the results were averaged.

We used trustworthiness (T), continuity (C), and Kruskal
stress (KS) metrics between the chart and the 2D positions
where each CSI sample was acquired (in practice not available)
to evaluate the preservation of the scene geometry within the
ambient space. For further details, we direct the reader to [4].

V. RESULTS AND DISCUSSION

First, from Table I, we can observe that GDRSS emerges
as the best overall approach among the online methods,
significantly outperforming others in terms of trustworthiness
and continuity, while achieving comparable Kruskal stress.
Additionally, GDRSS produces stable models, as evidenced
by the low standard deviation figures. Unlike RS, which treats
all incoming samples equally to yield an uniform sampling
in time, GDRSS chooses samples that are better suited to the
model’s needs, rather than relying on uniform sampling.

On the other hand, LDRSS does not achieve performance
comparable to that of GDRSS, despite also being a model-
based sampling selection approach that prioritizes challenging
samples. This is because, although samples with higher loss
values are generally more challenging to learn than those with
lower loss values, a single sample does not provide sufficient
information about the overall loss landscape. A sample with a
high loss value might be located in a local minimum or a flat
region, making it less effective for improving the model.

Furthermore, we observe that the performance of all online
methods surpasses that of the offline method, which has access
to the entire dataset at once. This improvement highlights a
favorable side effect of our online learning framework when
handling biased datasets (for instance, the cf-02-R dataset
is artificially biased toward the first half of the trajectory,
which is over-represented by appearing eleven times more
frequently than the second half). Such bias is likely present
in real-world CC datasets (in a more subtle way, due e.g. to
non-uniform spatial user distribution), where determining bias
can be challenging due to the lack of ground truth. With the
offline training approach, which trains based on sampling the
whole dataset with equal probability, this imbalance leads to
overfitting in the first half of the geometric trajectory, while the
model fails to learn adequately for the second half. In contrast,
this overfitting effect is mitigated in online models thanks to
the data-dependent memory updates, which ensure that when
the trajectory reaches previously unexplored areas, the model
learns these new regions through repeated optimization using
fresh samples from this space.

Fig. 2 depicts the ground truth location of samples in final
memory and the resulting test CC for the baseline RS method

TABLE I: Model performance based on the replay strategy.

Method T ↑ C ↑ KS ↓

Offline 73.90± 1.12 82.83± 1.27 0.61± 0.02
RS 87.62± 2.39 89.46± 1.80 0.47± 0.07

Random 83.32± 1.10 88.97± 1.27 0.41± 0.07
SimS-SCN 88.50± 0.76 91.85± 0.48 0 .32 ± 0 .02

MMPS 88 .85 ± 1 .23 92 .12 ± 0 .79 0.31± 0.03
LDRSS 87.20± 1.66 90.97± 0.50 0.35± 0.02
GDRSS 90.06± 0.67 92.99± 0.32 0.34± 0.03

and the best-performing method, GDRSS. The consequence of
the equally likely sample selection in RS is evident: the first
half of the trajectory (top part in Fig. 2(a)) is oversampled
in the geometric space due to being overrepresented in the
dataset, while the second half is undersampled. This imbalance
has a detrimental impact on the learned CC model, which
learns a poor representation of the bottom part of the trajectory
(which appears condensed into a small region in the lower left
area of the CC in Fig. 2(b)).

In contrast, the final memory obtained using GDRSS
demonstrates a more balanced sampling across geometric
space (Fig. 2(c)), i.e. it the sample selection process com-
pensates the over-represented part of dataset cf-02-R. Con-
sequently, the uneven sampling in the original data (where the
first half of the trajectory appears eleven times and the second
half only once) does not pose a problem for GDRSS. This is
reflected in the resulting CC (Fig. 2(d)), where the second half
of the trajectory (towards the green area) is more accurately
represented.

(a) RS sample positions (b) RS chart

(c) GDRSS sample positions (d) GDRSS chart

Fig. 2: Last memory sampling positions (left) and color-
matched learned CC (right) for RS (top) and GDRSS (bottom).

VI. CONCLUSION

In this work, we present a novel dual memory framework for
online channel charting (CC), introducing various approaches
for sample selection within the context of replay-based online
continual learning. We evaluated these methods against offline
and online baselines, showing that data-dependent sample

selection based on gradient-based GDRSS outperforms all
other approaches when dealing with non-stationary CSI.

REFERENCES

[1] C. Studer, S. Medjkouh, E. Gonultaş, T. Goldstein, and O. Tirkkonen,
“Channel charting: Locating users within the radio environment using
channel state information,” IEEE Access, vol. 6, 2018.

[2] P. Ferrand, M. Guillaud, C. Studer, and O. Tirkkonen, “Wireless channel
charting: Theory, practice, and applications,” IEEE Communications
Magazine, vol. 61, no. 6, pp. 124–130, 2023.

[3] E. Lei, O. Castañeda, O. Tirkkonen, T. Goldstein, and C. Studer,
“Siamese neural networks for wireless positioning and channel charting,”
in Allerton Conf. on Communication, Control, and Computing, 2019.

[4] P. Ferrand, A. Decurninge, L. G. Ordoñez, and M. Guillaud, “Triplet-
based wireless channel charting: Architecture and experiments,” IEEE
Journ. Sel. Areas in Comm., vol. 39, no. 8, pp. 2361–2373, 2021.

[5] S. Taner, M. Guillaud, O. Tirkkonen, and C. Studer, “Channel charting
for streaming CSI data,” in Asilomar Conference on Signals, Systems,
and Computers, 2023, pp. 1648–1653.

[6] S. Farquhar and Y. Gal, “Towards robust evaluations of continual
learning,” 2019, arXiv:1805.09733.

[7] D. Feldman, “Core-sets: Updated survey,” in Sampling Techniques for
Supervised or Unsupervised Tasks, F. Ros and S. Guillaume, Eds.
Springer International Publishing, 2020, pp. 23–44.

[8] C. Guo, B. Zhao, and Y. Bai, “Deepcore: A comprehensive library
for coreset selection in deep learning,” in Database and Expert Systems
Applications. Springer International Publishing, 2022, pp. 181–195.

[9] R. Tiwari, K. Killamsetty, R. Iyer, and P. Shenoy, “GCR: Gradient
coreset based replay buffer selection for continual learning,” in Proc.
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
June 2022, pp. 99–108.

[10] Y. Yang, H. Kang, and B. Mirzasoleiman, “Towards sustainable learning:
Coresets for data-efficient deep learning,” in Proc. Int. Conf. on Machine
Learning (ICML), 2023, pp. 39 314–39 330.

[11] P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S. Calderara, “Dark
experience for general continual learning: a strong, simple baseline,” in
Proc. Advances in Neural Information Processing Systems, 2020.

[12] G. Saha, I. Garg, and K. Roy, “Gradient projection memory for continual
learning,” in Proc. Int. Conf. on Learning Representations (ICLR), 2021.

[13] C. Zhuang, S. Huang, G. Cheng, and J. Ning, “Multi-criteria selection
of rehearsal samples for continual learning,” Pattern Recognition, vol.
132, p. 108907, 2022.

[14] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio, “Gradient based
sample selection for online continual learning,” in Advances in Neural
Information Processing Systems, vol. 32. Curran Associates, Inc., 2019.

[15] J. Ju, H. Jung, Y. Oh, and J. Kim, “Extending contrastive learning to
unsupervised coreset selection,” IEEE Access, vol. 10, 2022.

[16] F. Wiewel and B. Yang, “Entropy-based sample selection for online
continual learning,” in Proc. European Signal Processing Conference
(EUSIPCO), 2021, pp. 1477–1481.

[17] F. Euchner, M. Gauger, S. Dörner, and S. ten Brink, “A Distributed
Massive MIMO Channel Sounder for ”Big CSI Data”-driven Machine
Learning,” in 25th International Workshop on Smart Antennas, 2021.

[18] E. Yang, L. Shen, Z. Wang, T. Liu, and G. Guo, “An efficient dataset
condensation plugin and its application to continual learning,” in Proc.
Advances in Neural Information Processing Systems (NeurIPS), 2023.

[19] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math.
Softw., vol. 11, no. 1, p. 37–57, mar 1985.

[20] F. Euchner and M. Gauger, “CSI Dataset dichasus-cf0x: Distributed
Antenna Setup in Industrial Environment, Day 1,” 2022. [Online].
Available: https://doi.org/10.18419/darus-2854

[21] Y. Vindas and M. Guillaud, “Multi-site wireless channel charting through
latent space alignment,” in Proc. International Workshop on Signal
Processing Advances in Wireless Communications (SPAWC), 2024.

https://doi.org/10.18419/darus-2854

	Introduction
	Related work
	Channel charting
	Continual learning (CL)

	Summary of the Contributions

	Problem definition
	CC through Contrastive Learning
	Online Learning

	Considered solutions
	State-of-the-Art Methods
	Random selection
	Reservoir sampling (RS)
	SimS

	Proposed online model-based dataset condensation
	Max-Min Point Spacing (MMPS)
	Loss-Driven Ranking Sample Selection (LDRSS)
	Gradient-Driven Ranking Sample Selection (GDRSS)

	Training strategy

	Experimental Setup
	Dataset
	Experiments

	Results and discussion
	Conclusion
	References

