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Abstract: This paper addresses state estimation for dynamical systems involving localized
unknown nonlinearities. Direct application of linear state estimation techniques, e.g., the
Kalman filter, would yield erroneous state estimates. Existing approaches in the literature
either assume or estimate the nonlinearities. Alternatively, the present paper proposes to reject
the unknown nonlinearities as if they were unknown disturbances. By applying an existing
disturbance rejection technique, the need to know or to estimate the nonlinearities is avoided.
The efficiency of the proposed method is demonstrated through numerical simulations on a

nonlinear mechanical system.
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1. INTRODUCTION

Linear systems can be effectively modeled and estimated
using well-established techniques (Ljung, 2004). In con-
trast, nonlinear (NL) systems often exhibit intricate be-
haviours, making state estimation challenging due to mod-
eling difficulties and the lack of efficient state estimation
theory for general NL systems (Ljung, 2010). This com-
plexity arises from various nonlinear interactions among
system variables, external inputs (forces), and real-life
uncertainties, making the development of accurate models
and estimation algorithms particularly difficult (Paduart
et al., 2010).

Several methodologies have been developed to model NL
systems and estimate their state dynamics. In this regard,
discrete-time models have been preferred since the ob-
served measurement outputs (sensor data) are commonly
sampled at discrete time instants and their computational
efficiency compared to continuous-time models is known
to be superior (Paduart et al., 2010). Various estima-
tion methods - such as maximum likelihood estimation
(MLE) (Schon et al., 2005), expectation maximization
(EM) (Schon et al., 2011), etc. - estimate the states of
the NL systems by approximating the nonlinearity present
in the system. Since these methods faced irregular esti-
mation due to the nonlinearity of the system, smoothing
in combination with particle-based approaches emerged,
wherein the particle weights are filtered to achieve better
approximation for the nonlinearity (Schon et al., 2011).
However this method proves computationally expensive.
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With both input and system nonlinearity considered as
unknown, a subspace identification technique has been
developed to estimate the nonlinearities of the system
(Schrangl et al., 2020). The method iteratively estimates
the coefficients of the initially assumed polynomial descrip-
tion of the nonlinearities on each of the locations of the
multi-degree of freedom (mdof) system. The iterations at
each time step is continued until convergence of the nonlin-
earity coefficients, making the algorithm computationally
costly. In (Wei et al., 2023), a two step method for esti-
mating the nonlinearity was developed. It first identifies a
subset range where nonlinearity seems to be acting, then
using candidate nonlinear basis functions to estimate the
localised nonlinearity. Though the nonlinearity is being
estimated, an initial assumption has been made about
the form of the nonlinearity (Wei et al., 2023). By uti-
lizing observer/Kalman filter identification with nonlinear
feedback interpretation, (Liu and Cai, 2024) estimated a
nonlinear mdof system. However, the input was assumed
to be known. (Huang, 2024) introduced a center-manifold
frequency domain subspace method for NL system identi-
fication. It analytically solves the NL system identification
problem by decomposing it into series of linear-least square
problems, bypassing the need of iterative estimation of
the nonlinearities. Analytically solving equations makes
the computation relatively more expensive. Further it was
reported that the CM method was noise sensitive which is
inevitable for real-life applications. Similar, problem has
been observed in (Pan et al., 2015).

This study considers NL systems where the nonlinearities
are unknown but reside in some subspace of the state-
space. Typically, such system models result from space dis-
cretization of spatially distributed systems with localized
nonlinearities. This class of systems is of high practical



importance in mechanical engineering, where structures
are frequently modelled using the theory of linear elasticity
with the assumption of small strains or displacements,
which yield linear properties in most parts of the sys-
tem (mass, damping and stiffness). However, mechanical
systems are usually composed of assembled components
linked by connecting elements, such as bolts, joints or
gears, whose behaviour is often highly nonlinear. Char-
acterizing and modelling such nonlinearities often prove
challenging because NL systems can exhibit a wide variety
of behaviours and are extremely sensitive to parameter
variations (Ahlquist et al., 2011).

To address this issue, this paper proposes rejecting non-
linearities through output injection, treating them as un-
known disturbances (Zhang and Zhang, 2018), with the
fundamental assumption that nonlinearities are localized
within a known subspace of the state space whose dimen-
sion must be smaller than that of the observable sub-
space. This approach is related to unknown input observers
(Kitanidis, 1987; Darouach and Zasadzinski, 1997; Hsieh,
2000; Gillijns and De Moor, 2007; Gao et al., 2016; Bez-
zaoucha et al., 2017). Usually, in unknown input observer
design problems, state estimation and unknown input de-
coupling are made jointly in a single step. A particularity
of the approach, initially proposed in (Zhang and Zhang,
2018), is its two-step nature: unknown input decoupling is
first realized by output injection (in this paper unknown
nonlinearities are treated as unknown inputs). By rejecting
these unknown nonlinearities, robust state estimation can
be achieved using a classical Kalman filter on the trans-
formed state-space model, which becomes linear. We em-
phasize here that this approach does not require knowledge
of the type or amplitude of the nonlinearities, only their
locations.

In the following, Section 2 presents the considered nonlin-
ear state-space model. Section 3 recalls the output injec-
tion technique that is utilized. In Section 4, the developed
methodology has been numerically tested on a nonlinear
8 degree-of-freedom (dof) chain of oscillators, where the
output measurement has been simulated wile considering
localized nonlinearity and reconstructed using a linear
counterpart of the simulated system infused with the input
rejection technique.

2. NONLINEAR STATE-SPACE FORMULATION

A general NL system state-space model in discrete time
would be in the form of
Xk = g(Xk—1, W) (1)
Y = h(Xk,V;C).
In this paper, it is assumed that a state-space model of
an mdof NL system is available in the following particular
form, typically resulting from the discretization (both in
space and in time) of a spatially distributed system,
X = Axp_1 + Ef(Xk_l) + W (2)
v = Hxyp + vy (3)
with x;, € R™ and y; € R™ being the state and
measurement vectors housing n, and n, state variables
and measurement outputs. wp € R™ and vy € R™

are both unknown unmeasured Gaussian random input
vectors acting (respectively) on the NL system and the

measurement noise (with covariances Qy and Ry). A(e
R™=*"=) is the system matrix, respectively. H(€ R™v*"=)
is the output matrix which relates the state vector (xy)
to the observed measurements (yy). The nonlinearities of
the system are some unknown function f(xx—1) of the
state vector xj_1, whereas the linear part is described by
the linear term, Axjy_;. The matrix E € n; X ng is a
known coefficient matrix specifying the subspace in which
the nonlinear term resides. In this paper, A, and H are
assumed to be constant and known. Time-variations (LTV
systems), parameter estimation and change detection will
be the subjecst of further studies.

When the finite dimensional state vector x;, results from
the space discretization of the spatially distributed state,
the columns of the matrix E correspond to the positions of
the nonlinearities in the state-space. The localized nature
of the nonlinearities implies that E has much less columns
than rows, i.e., ng << ng. It is proposed in this paper to
deal with the unknown nonlinearities by rejecting them, as
if they were arbitrary unknown disturbances. To simplify
notations, f(xx—1) will be replaced by &, i.e., in what
follows,

&k = f(xk-1), (4)
which will be treated as an unknown arbitrary vector
sequence.

3. METHODOLOGY

To estimate the state trajectory of system (cf. Equa-
tions (2) and (3)) from available sensor data, despite the
unknown nonlinearities f(xj_1), this paper is based on
the elimination of the nonlinear term by means of output
injection.

Following (Zhang and Zhang, 2018), let G(€ R"™**™) be
a non-zero matrix to be specified later, it follows from the
measurement Equation (3) that

OZG(yk—HXk—Vk). (5)

Adding Equation (5) to the process equation (2) yields
Xy = Axp_1 + E& + wi + G (yr — Hxp — vi)
= Axy_1 + E& + wi + Gy
— GH(Ax_1 + E& +wi) — Gvy (6)
= Axp_1 + B¢ + Gy +

where, A = LA, E = LE, @), = Lw}, — Gvy, with
L=1, v, —GH. (7)
Choose
G =E(HE)' (8)

with 1 denoting matrix Moore-Penrose Pseudo-inverse
operation, then

E=LE = (I,,x», — E(HE)'H)E 9)
=E-E (10)
=0, (11)

hence E is equal to zero. Thus the corresponding process
equation becomes

xp = Axp_1 + Gy + Wy (12)



3.1 robust Kalman filter (rKF)

Since the transformed state-space model (cf. Equations (12)
and (3)) is linear, the Kalman filter (KF) is readily ap-
plicable for state estimation. To distinguish from the KF
applied to truely linear systems, the KF applied to the con-
sidered NL system after nonlinearity rejection is referred
to as robust Kalman Filter (rKF) in the present study.

Prediction: The state (xj;—1) and its covariance (P,_1)
are estimated based on the updated model, followed by
computation of the corresponding measurement,

Xplh—1 = AXp_1j1—1 + Gy (13)
Prj1 = APy 1 AT + LQiL” + GRyGT  (14)
Innovation:
€r = yr — Hxpp—1 (15)
Kalman gain:
K = Py HY (Hp Py HE + Ri) ™! (16)
Update:
Xk = Xpjk—1 + Kre (17)
Pip = (I - KiH)Ppp—y (18)

4. NUMERICAL STUDY

The efficiency of the proposed methodology has been
presented by undertaking different numerical studies on
an 8 dof chain of oscillators (Figure 1). The corresponding
equation of motion reads as follows,

Mq(t) + Cq(t) + K(q(t)) = u(t) (19)
where, M is the time invariant mass matrix, C is the time
invariant linear damping, and K(q(t)) is the elastic restor-
ing force which is a nonlinear function of the displacements
q(t). The overhead dot e denotes derivation with respect
to time such that q(t) and q(¢) correspond to the velocities
and accelerations, respectively. It is assumed here that
the nonlinearity is localized, i.e. the nonlinear restoring
force only acts on a reduced subset of dofs. This type of
nonlinearity is ubiquitous in mechanical systems due to the
presence of joints and contacts. For instance, localized non-
linearities were experimentally observed in the elastomeric
engine mounts of the Airbus A400M aircraft Ahlquist et al.
(2011). Without loss of generality, the nonlinear force can
be expressed as:

Foi(t) = Efy (q(t)) (20)
Further, the NL system can be defined by replacing

the nonlinear term, C(q(¢)), by linear and nonlinear
mono/polynomials:

Mq(t) + Cq(t) + Kq(t) + Fu(a(t) = fea(t)  (21)
where, F,,;(q(t)) is assummed to be the unknown nonlin-
earity. E is a binary matrix which localizes the presence
of nonlinearity on the corresponding dof, i.e., 1 if some
nonlinearity is attached to the particular dof, otherwise 0.
Meanwhile, K is the linear stiffness matrix, consisting of
the linear part of stiffness, wrt. to each dof.

Subsequently, the state-space formulation of the above NL
system can be expressed by Equations (12) and (3), with
states x = {q q}?, and measurement y = ¢~

It should be noted that the proposed methodology esti-
mates and reconstructs the states by assuming the exter-
nal forces and nonlinearities as unknown. Therefore the
support predictor model in the filter comprises only the
linear parts of the system without the term F,,;(t).

In the subsequent sections, first the simulated data has
been described, followed by a numerical study wherein
state reconstruction using different existing filters has been
compared. Further, a sensor density and noise study has
been undertaken which showcases the performance of the
proposed methodology with reduced number of measure-
ment outputs and varying levels of sensor noise. The pro-
posed methodology is also tested for its efficiency under
different types, locations and amplitudes of nonlinearities.

4.1 Simulation data

A localized polynomial nonlinearity is modelled as a cubic
polynomial f,;(t) = k,;q(t)? acting on one of the masses. A
band-limited white Gaussian noise with root mean square
value of 1000 N in frequency range [5, 150] Hz is considered
to act as external force f..(t), on the third degree of
freedom. Linear damping is introduced in the system by
considering a stiffness proportional damping term C = K
with coefficient 8 = 4.7e73 s™! chosen to ensure the
damping ratio equals 1% at the frequency of the first linear
mode. Multiple datasets are generated by numerically
integrating the equations of motion using Matlab’s ODE45
solver with the properties given in Table 1.

Table 1. Material properties of the NL system.

muys (kg) [ kK (N/m) [ kn (N/m®)
1400 3eb 1e9

The measurement outputs, here velocities at each dof,
are contaminated with a 1% signal-to-noise ratio (SNR)
stationary white Gaussian noise (SWGN). The material
properties and external force of the simulation data are
kept the same for all the following cases, unless specified
otherwise for different cases.

4.2 State estimation via proposed methodology

The relevance of the proposed methodology has been
highlighted by comparing the proposed methodology that
utilizes robust Kalman filter (rKF) with the different
established filters, such as the Kalman (KF), Extended
Kalman (EKF), and Ensemble Kalman (EnKF) Filters.
The same measurement output data has been supplied to
each of the filters while considering that the nonlinearity
and the external force are unknown.

First, KF has been used to estimate the states from the
known measurement outputs. The support predictor nu-
merical model for all the filters, is an 8 dof linear chain
of oscillators with the same m, ¢ and k as present in the
simulated data without any provision of nonlinearity (cf.
Figure 1). Figure 2a compares the measurement sensor
output (velocity) with the velocity of the first dof esti-
mated by the KF only. One can see that although the KF
provides a relatively good qualitative agreement with the
simulated states, there is a poor quantitative agreement.
This is clearly visible in Figure 3 which shows symmetric
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Fig. 1. Schematic representation of the systems under consideration - nonlinear system with localized nonlinearity.
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Fig. 3. SMAPE on the state estimation - velocities at dof
1 and 8) - using KF, EKF, EnKF and rKF.

mean absolute percentage error (SMAPE) as 12.99% for
the compared velocities. This result is coherent with the
fact that KF is not suitable to deal with NL systems.

In order to further highlight the performances and ad-
vantages of the proposed approach, a comparison with
other Kalman filter-based techniques, namely the ex-
tended Kalman filter (EKF) and ensemble Kalman filter
(EnKF) is performed. The state estimation by EKF shown
in Figure 2a shows a significant improvement compared
to the results obtained with KF. Nevertheless, the time
series of the velocities, as well as the SMAPE value shown
in Figure 3, show that its accuracy is still limited with a
SMAPE value of 6.54%. A similar analysis on the states
reconstructed with EnKF (utilizing 200 ensembles, chosen
after a convergence study) and depicted in Figure 2a shows
greater accuracy with a SMAPE value of 4.78%.

However, the rKF methodology still outperforms it with
an even smaller SMAPE value of 0.24%. Figure 2a shows

2. State estimation - velocities at dof 1 (a) and 8 (b) -

Velocity at dof 8 (m/s)

-2 WfMeasured velocity

Estimated velocity - KF - = -Estimated velocity - EKF
— - ~Estimated velocity - EnKF -~ -Estimated velocity - rKF
T T T i

0 0.2 0.4 0.6 0.8 1 1.2
Time (s)

(b)
using for KF, EKF, EnKF and rKF.

the states reconstructed with the proposed methodology.
A similar analysis has been carried out for the state re-
construction of dof 8 where the nonlinearity is attached.
Figures 2b and 3 show that the methodology outperforms
the other three tested methodologies in spite of an overall
decrease in accuracy due to the closeness of the nonlin-
earity that is being rejected. It is also worth noting that
the computational effort of the methodology is similar to
that of classical KF since, in this case, matrix G has to be
evaluated only once.

4.8 Sensor density and noise study

Often, while estimating a real-life NL system, access to
measurement data associated with each dof chosen for its
counterpart support numerical model in the filters, is not
feasible. Thus, the present study explores the efficiency of
the proposed methodology in such cases. The nonlinear
force is here set to act on the sixth dof of the numerical
model. Hence, the velocity (measurement output) at dof 6
has been chosen for observation, while the other assump-
tions remain the same as before (cf. Section 4.2).

Figure 4a shows the time series of the velocity at sixth
dof for several number of sensor outputs. The accuracy
of the state estimation decreases as the number of sensor
outputs is reduced from 8 (all dofs) to 1 (dof 6 only). The
SMAPE values, shown in Figure 4, increase from less than
1% to more than 5%. However, a satisfactory qualitative
agreement is observed for all the cases.

The efficiency of the proposed method is further evaluated
for different cases where the simulated data is contam-
inated with 1,2,5 and 10% SNR. Figure 5 shows the
SMAPE values of the velocities of the first and eighth dof.
It appears that the SMAPE values of both dof follow the
same increasing trend with the SNR, going from 0.24% to
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1% SNR to 5.5% with 10% SNR on the eighth dof.
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4.4 Effectiveness against different nonlinearities
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rKF for different amplitudes of nonlinear coefficient.

The aim of this section is to investigate the robustness
of the methodology to different amplitudes, locations and
forms of nonlinearity. Hence, several simulations were car-
ried out for different values of the nonlinear coefficient k,,;.

0 0.01 0.02 0.03 0.04 0.05 0.06
Symmetric mean absolute percentage error (SMAPE) for velocity at dof 6
(b)

reconstructed with rKF for varying sensor density.

For each value, the proposed methodology was used to esti-
mate the states and the accuracy to the reference solution
was evaluated and, for each case, the performances of rKF
have been compared with those of KF. Note that, for these
cases, the nonlinearity was assumed to act on dof 8.

Figure 6 depicts the SMAPE values of both rKF and KF
estimations for amplitudes of the nonlinear coefficient k,,;
ranging from 1e3 N/m? to 1e12 N/m3. It is observed that
the SMAPE values increase with the amplitude of the
nonlinear coefficient for both KF and rKF estimations.
However, the proposed methodology provides much more
accurate estimations of the states. For instance, for a
weakly NL system with a nonlinear coefficient equal to
1e3 N/m? where one would expect relatively small devia-
tions from nonlinear behaviour, the SMAPE value of the
rKF estimation is 0.34% while that of the KF estimation
reaches approximately 3% for the estimated state of the
eighth dof where the nonlinearity is located. The SMAPE
values increase monotonically with the amplitude of the
nonlinear coefficient, reaching about 11% and 6.5% for
the states estimated with KF and rKF, respectively. This
indicates that the methodology is capable of providing
much more accurate state estimations, even with relatively
strong local nonlinearities.

T T T T T T T
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Fig. 7. SMAPE values of the state estimation with rKF
for different functional forms and location of nonlin-
earities. Velocities at dof 1 and dof 8.



The effectiveness of the proposed methodology is further
demonstrated by changing the location of the attached
nonlinearity. For the first 3 cases, cf. Figure 7, the non-
linearity is attached to dof 3, 6, and 8 while keeping the
nonlinear coefficient same for all cases (k,; = 1e9). The
proposed methodology accurately estimates the states (cf.
Figure 7), with SMAPE values smaller than 0.3% for the
velocity at dof 1 and smaller than 1% for dof 8.

A similar analysis was carried out by introducing, on the
one hand, a nonlinearity on two dofs, here the fourth and
sixth, both having the same nonlinear coefficient (k,; =
1e9) and, on the other hand, a nonlinearity with both
quadratic and cubic terms of the form ( f,; = k‘nl,ng +
kni3q®) where the values of ko and k3 are set to
le6 N/m? and 1e9 N/m3, respectively, acting only on
the sixth dof. For these two cases, Figure 7 illustrates
the accuracy of the proposed methodology with SMAPE
values smaller than 5%.

To show the generality of the methodology, i.e., no assum-
tion on the model of nonlinearity is required; and only the
location of the nonlinearity must be known, a nonlinear
damping term is introduced in the form f,; = cni4?, with
cn = le6 Ns?/m? on the eighth dof of the simulation
model. Figure 7 shows that the proposed methodology
is also capable of accurately estimating the states with
a SMAPE value smaller that 4%.

5. CONCLUSION

In this paper, it has been shown that the state estimation
related to a nonlinear system can be handled by the clas-
sical Kalman filter through an output injection approach
provided the nonlinearity is local. Even if the gain seems
rather low compared to applying directly Kalman filtering,
it has to be evaluated how a small error in state estimates
can lead to non trivial errors in subsequent works such
as model estimation in related applications in such non-
linear setting. Further works will include this evaluation
together with the joint parameter/state estimation when
the parameters are varying and the nonlinearity position
is unknown, for both numerical and real applications.
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