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Abstract

When the notion of climate change emerged over 200 years ago, few speculated as to the impact of 

rising atmospheric temperatures on biological life. Tens of decades later, research clearly demonstrates 

that the impact of climate change on life on Earth is enormous, ongoing and with foreseen effects 

lasting well into the next century. Responses to climate change have been widely documented. 

However, the breadth of phenotypic traits involved with evolutionary adaptation to climate change 

remains unclear. In addition, it is difficult  to identify the genetic and/or epigenetic bases of phenotypes

adaptive to climate change, in part because it often is not clear whether this change is plastic, genetic, 

or some combination of the two. Adaptive responses to climate driven selection also interact with other

processes driving genetic changes in general, including demography as well as selection driven by 

other factors. In this Special Issue, we explore the factors that will impact the overall outcome of 

climate change adaptation. Our contributions explain that traits involved in climate change adaptation 

include classic phenomena, such as range shifts and environmentally dependent sex determination, but 

also often overlooked phenomena such as social and sexual conflicts and the expression of stress 

hormones. We learn how climate driven selection can be mediated via both natural and sexual 

selection, effectively influencing key fitness related traits such as offspring growth and fertility as well 

as evolutionary potential. Finally, we explore the limits and opportunities for predicting adaptive 

responses to climate change. This contribution forms the basis of ten actions that we believe will 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31



improve predictions of when and how organisms may adapt genetically to climate change. We 

anticipate that this Special Issue will inform novel investigations into how the effects of climate change

unfold from phenotypes to genotypes, particularly as methodologies increasingly allow researchers to 

study selection in field experiments.

Keywords: adaptation, epigenetics, climate change, evolutionary genomics, prediction

Lay Summary

What are the major factors driving evolutionary adaptation to climate change? How can we harness this

understanding to better predict how populations can adapt to a rapidly changing climate? The urgency 

of answering these questions is critical as more than a million species are currently directly facing the 

risk of extinction due to climate driven environmental change. This puts research exploring processes 

and mechanisms that affect evolutionary rescue at the core of mounting a global response to the current

climate crisis.  Here, we highlight key contributions that collectively demonstrate the breadth of 

evolutionary responses that organisms exhibit in response to climate change, including classic 

responses (e.g. range shifts, plasticity, and evolutionary responses), but also less conspicuous 

phenomena such as social and sexual conflicts. Some contributions go right to the heart of 

understanding the genetic and epigenetic bases of the observed responses, ultimately linking the 

environmental effects to the genotype-phenotype map. Other contributions investigate the interplay 

between different types of selection with climate driven selection in facilitating or hindering 

evolutionary adaptation, a major uncertainty that has been the focus of evolutionary research for a long 

time. These are pressing issues that require a deep understanding of processes which determine our 

ability to predict evolutionary outcomes of ongoing climate change. The final contribution of the 

Special Issue therefore explores the limits and opportunities for predicting adaptive responses to 

climate change. It builds on all the contributions of the Special Issue, and the viewpoints of many of 

their authors, to provide a road map for how we might be able to improve predictions with our current 

knowledge and what might be possible to predict in the future. We anticipate that this Special Issue will

ignite investigations of how the effects of climate change unfold from phenotypes to genotypes and the 

selective forces that produce evolutionary rescue in response to climate change.
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Introduction

When the notion of global warming first emerged over 200 years ago (Arrhenius 1896) few thought 

that human activity was capable of altering the global climate. Consequently, the urge to understand 

how changes in global temperatures could affect Earth’s ecosystems and biodiversity was limited. Fast 

forward to present day and we have arrived at a reality where nearly all ecological processes, including 

ecosystem function and services, are affected by a globally changing climate induced by human 

activities (Sheffers et al. 2016). Thus, the accelerating effects of climate change on biodiversity remain 

the nexus of our current climate crisis as more than a million species now directly face the risk of 

extinction (Diaz et al. 2019; IPBES 2019), although extinctions only represent the tip of the iceberg 

(Fraixedas et al. 2022).

Historically, the successful tackling of environmental crises caused by human societies have been 

fostered by a deep understanding of the biological processes involved. For example, major 

environmental crises caused by man-made chemicals, such as ozone depleting substances and DDT, 

were unravelled and tackled by understanding how the chemicals entered and interfered with entire 

food chains, ultimately causing cancer and genetic damage to organisms. The current climate crisis 

differs from historical ones in that ecosystem change is on a global scale wherein the effects on global 

biodiversity are both highly unpredictable and continually advancing (Marquet et al. 2019). Even if we 

successfully decreased the warming of the atmosphere, we find ourselves with limited alternatives but 

to allow the climate warming scenario forecasted for the 21st century to unfold (IPCC, 2022; Nadeau et

al. 2017; Marquet et al. 2019). These alterations in climatic conditions will lead many species to adapt 

or face extinction. Thus, climate change has become an unfortunate global experiment with 

evolutionary adaptation at its core, and the study of evolutionary rescue plays a major role in predicting

which species manage to persist, consequently influencing the future of all ecosystems.

There are two key questions. First, how will species adapt to climate change. Second, which critical 

factors best predict which species (or populations) can adapt and be rescued by evolution in the face of 

a rapidly changing climate? An important part to answering these questions lies rooted within the 

relevant traits that are directly or indirectly influenced by climate change (Urban et al. 2024, this issue).

Many reports have already demonstrated that climate change has influenced the distribution patterns of 
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many species and altered phenomena such as migration, the timing of events such as reproduction 

(Inouye 2022; Walter et al. 2002), or diapause (Bradshaw and Holzapfel 2001). However, it remains 

unknown why such responses are evident in some, but not all, species influenced by climate change. In 

cases where responses to climate change are evident, studies rarely demonstrate whether such changes 

are caused by plastic responses, genetic changes, or some combination of the two (Bonnet et al. 2019; 

Merilä and Hendry 2014; Ramakers et al. 2018). In fact, studies rarely investigate whether selection in 

the wild is driven by climate change (Bonnet et al. 2019). In addition, adaptive responses to climate 

change-driven selection may interact with other ecological and evolutionary processes that drive 

genetic changes in general (e.g. dispersal, demography, species interactions, and sexual selection). 

These factors represent major limitations to our understanding of ‘whether’ and ‘how’ species will 

adapt to climate change. Moreover, without uncovering how such interactions unfold it will be difficult

to predict evolutionary outcomes promoted by climate change (e.g. Pujol et al. 2018; Pelletier et al. 

2009). Accordingly, a section of this Special Issue is dedicated to studies that investigate traits that 

respond directly to selection, including the role of traits in mediating evolutionary adaptive responses 

to climate change and the plastic/genetic bases of these responses. A second section is dedicated to 

studies that investigate the impact of climate change on selection and evolutionary potential. The 

contributions in this section shed light on the complex relationship between climate driven evolutionary

change and change driven by ecological processes in general. In a concluding article, we merge 

perspectives of many of the contributors of this Special Issue to develop a road map for predicting 

adaptive responses to climate change. We do this by exploring what we may be able to currently 

predict, opportunities that are likely to advance future predictions, and factors that we likely will not be

able to predict (or may not even need to predict). In the current article, we highlight some transversal 

themes that emerged from the Special Issue (Figure 1). 

Predicting phenotypic responses to climate change

Predicting adaptive responses is a long-standing challenge. Historically, predicting adaptive evolution 

has been the aim of quantitative genetics (Roff 2007), and is notoriously challenging in the wild (Kruuk

et al. 2008; Pujol et al. 2018). Therefore, comparisons between predicted and estimated responses to 

selection in the wild in the context of climate change are scarce (but see for example Gienapp et al. 

2006; Moiron et al. 2024, this issue). Data sets from long-term monitoring are ideal for bridging such 

gaps. Using a long-term pedigree dataset, Moiron et al. (2024, this issue) show that arrival dates in 
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migrating common terns (Sterna hirundo) are shifting earlier in the season. Theoretical models predict 

earlier arrival, and accordingly, they do find ongoing evolution in the population. However, according 

to Moiron et al. (2024, this issue), both empirical and predicted genetic trends fall short compared with 

actual arrival dates trends, suggesting that a part of the response involves plasticity. Genomic 

approaches offer the possibility of exploring adaptation beyond single traits, for example over a wide 

range of unmeasured traits. Using Gene Ontology, Stonehouse et al. (2024, this issue), identify 

genomic regions in 20 populations of great tits (Parus major) across the entire European range that 

have responded to past and present climates. In an elegant study demonstrating that climate adaptation 

is genetically complex, the authors identify over 40 climate-associated genes, and infer their biological 

roles. Similar approaches could help predicting the ability of populations to adapt and thus assess their 

vulnerability to climate change (Bay et al. 2018).

Predicting evolutionary responses to climate change requires predicting patterns of evolutionary 

potential and selection under new or novel conditions. How genetic variance fluctuates across 

environments (G*E), populations, and traits is still poorly understood (Salt et al. 2018). Because 

selection and gene flow among populations can shape evolutionary potential, space-for-time 

substitution experiments can offer some insights on the expected changes in additive genetic variance. 

For example, in wild birds, evolutionary potential for morphological traits has been suggested to be 

highest when local habitat conditions are close to the niche optimum but not too close (intermediate 

habitat favourability, Martínez‐Padilla et al. 2017). Similarly, Chantepie et al. (2024, this issue) show 

that in great tits, the genetic (co)variances of life history (e.g. phenology, reproduction etc.), but not 

morphological traits, are shaped by the climatic conditions. This directly supports the conclusions from 

the genomic study by Stonehouse et al. (2024, this issue). However, Nadeau and Urban (2024, this 

issue) present a cautionary tale regarding predicting evolutionary potential based on the selection 

history of wild populations of Daphnia magna. Despite clear expectations of how spatial and temporal 

variation in temperature should shape genetic variation of fitness and critical thermal maximum, no 

such pattern was detected. Our predictions of evolutionary potential are still often based on verbal 

models because numeric predictions are extremely complex to devise. Basing predictions of 

evolutionary potential on empirical estimations of selection and gene flow (Arnold et al. 2008, 

Chantepie and Chevin 2020) would be a challenging but necessary next step.

Local and global climate are known to be a major drivers of selection pressures (Siepielski et al. 2017). 

Consequently, climate change is expected to alter selection pressures, including intensifying ongoing 
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ones, such as stronger selection for earlier breeding under extreme climatic events (Marrot et al. 2017) 

or altering them radically, for example leading to winter diapause counter selection (Tougeron et al. 

2020). Other environmental features may also strongly affect selection patterns. In support of this, 

Sauve et al. (2024, this issue) show the intensity of selection on growth in black-legged kittiwakes 

(Rissa tridactyla) is fluctuating according to air temperature. Thanks to a long-term feeding experiment

in a wild population, they also demonstrate how variable resource dynamics can alter and even locally 

buffer selection. The importance of environmental conditions is further supported in a study by Nomato

et al. (2024, this issue) investigating the effects of competition within plant communities. They utilize a

transplant experiment along an altitudinal gradient and estimate shifts in directional selection on alpine 

plant morphology and phenology in response to climate and to competition. Their results highlight that 

by depressing fitness, competitive interactions may limit the potential for selection. This study thus 

demonstrates that future studies should aim to also understand the more indirect effects of climate 

change, such as changing biotic interactions, on the potential for evolutionary rescue of natural 

populations. Doing so will be key to teasing apart the contribution of different sources of 

environmental heterogeneity in shaping selection and ultimately evolutionary responses. 

An equally important aspect of predicting evolutionary responses to climate change requires improving

our understanding of the evolution of plasticity itself since environmental cues can be altered by 

climate change (Bonamour et al. 2019, Bradshaw et al. 2001), and the expression of plasticity in 

extreme situations might reach its limits. These questions are often discussed in the context of plasticity

in continuous traits (e.g. Chevin and Hoffmann 2017), but less discussed for discrete traits that can be 

of major importance (e.g. environment-dependent sex determination, colour morph etc.) (Reid and 

Acker 2022). Crowther et al. (2024, this issue) investigate how plasticity in discrete traits impact 

evolutionary responses to environmental change. Environmental sex determination is common in many

taxa (e.g. reptiles and teleost fishes) where the temperature experienced during embryonic or larval 

development determines the sex of the offspring. Interestingly, sex determination can be plastic in 

different ways (visualized via the slope of a non-linear latent sex ratio reaction norm and a linear 

reaction norm of the temperature threshold producing either sex). The authors demonstrate how both 

types of plasticity differently affect the evolution of the threshold in response to climate change. For 

example, while a steep latent plasticity promotes the evolution of the threshold, linear plasticity of this 

threshold actually hampers its evolution. Hence, the type of ancestral plasticity will be crucial in 

determining the role of plasticity in facilitating or hindering evolution. 
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The role of plasticity in constraining or promoting evolved responses following environmental change 

is important for understanding how traits in general are going to adapt to climate change (Ghalambor et

al. 2007, Noble et al. 2019). In an elegant experiment, Swaegers et al. (2024, this issue) show that 

populations of the damselfly (Ischnura elegans) in a southward expansion from France into Spain have 

evolved increased heat tolerance compared with French core populations of the same species. By 

manipulating heat tolerance in the southward expanding populations via the use of a hypermethylating 

agent, the authors are able to significantly increase their heat tolerance beyond those typically 

measured in an older Spanish expansion zone. Thus, recent migrants are more plastic relative to older 

migrants. Experiments such as those conducted by Swaegers et al. (2024, this issue) demonstrate that 

epigenetic and therefore plastic responses can be critical during the early stages of range shifts, but that 

genetic adaptations likely prevail over time.

Harnessing the power of evolutionary history

The notion of using evolutionary history to inform future predictions is based on the premise that 

history often repeats itself. Evolutionary history can influence our predictions in various ways.  The 

previous section emphasized how selection pressures may shape evolutionary potential, but more 

complex scenarios can arise. In addition to Swaegers et al. (2024, this issue), two other studies from 

this Special Issue emphasize how species and population-specific history can affect responses to 

ongoing climate change, either through changes in distribution range or in situ adaptive responses. 

Predicting whether species will shift their distribution range or adapt locally is an important question as

the requirements and limitations of each are different (e.g. need for habitat corridors vs genetic 

variance). Moreover, the consequences of range shifts are evolutionarily important because they may 

affect the evolutionary trajectory of entire systems when the shifting species encounters novel habitats 

and novel competitors/communities (Súarez et al. 2022). In order to generate better predictions of how 

such evolutionary trajectories may unfold in response to climate change, we need candidate predictors 

that influence the extent and probability of range shifts. Hällfors et al. (2024, this issue) ask whether 

adaptation to climate niche in the past, a proxy for tolerance to changing environmental conditions, can 

predict a poleward range shift of 283 species of moths, butterflies and birds in Finland. Based on 

nationwide long-term monitoring data over two decades, they find that birds and moths with narrower 

climatic niches display stronger northward shifts. Surprisingly, they find an opposite pattern in 

butterflies in relation to moisture niche. This finding is critical because such large-scale patterns make 
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it possible to detect general trends and also provide insight into potential proximate causes (adaptation 

to thermal and moisture regimes) driving climate change adaptation. 

Another way through which evolutionary history can inform future predictions is through studies of 

sexual selection. In particular, the role of sexual selection in evolutionary rescue has been subject to 

strong debate wherein sexual selection can reduce the effective population size and lead to sexual 

conflicts impeding natural selection. Sexual selection may also accelerate adaptation to novel 

environments by increasing the breeding success of better adapted individuals (e.g. Arnqvist and Rowe 

2005). Fuelled by these ideas, several reviews have synthesized the effect of the interplay between 

natural and sexual selection on the rate of adaptation, especially in the context of changing 

temperatures (e.g. Pilakouta and Ålund 2022; Candolin and Heuschele 2008). Baur et al. (2024, this 

issue) offer a fresh perspective by asking how the history of sexual selection affects thermal sensitivity,

since the expression of sexually selected traits may reduce stress tolerance. Using long-term 

experimental evolution, the authors assess how different levels of sexual and natural selection affect 

male fertility under acute heat stress in the seed beetle (Callosobruchus maculatus). The performance 

of males with a history of polyandry are most affected by stressful thermal conditions as are their 

female counterparts. In particular, the experiment demonstrated that heat stress and sexual selection 

together may exacerbate species vulnerability to climate change. These results highlight the need to 

integrate the effects of sexual selection not only as an ongoing process, but also in terms of how it can 

affect organismal trade-offs, particularly between postcopulatory traits (e.g. sperm competition) and 

fertility.

No organism is an island… The importance of interactions, between 

mating partners and beyond

Interactions between organisms have strong potential to affect responses to climate change. For 

example, competition may affect the intensity of selective pressures (Nomoto et al.2024; Sauve et al. 

2024, both this issue) or shape adaptive potential (Baur et al. 2024, this issue). Kulmuni et al. (2024, 

this issue) suggest that hybrid mating interactions among closely related species will be of importance 

as well. Because the generation of new adaptive mutations is a slow process and standing genetic 

variation may not be sufficient for small or isolated populations, hybridization can ‘fast track’ the 

generation of adaptive genetic variance. Even though hybrids are generally associated with having 
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lower fitness, which can play an important role in maintaining barriers between species, there are 

accumulating empirical reports highlighting the adaptive potential of hybridization (e.g. Martin-Roy et 

al. 2021). Kulmuni et al. (2024, this issue) propose that strongly changing environments may increase 

the occurrence of hybrid vigour. Using both modelling and simulations, they show that hybrids of both 

haploid and diploid populations adapt faster to a rapidly changing environment relative to parental 

populations in virtually all models. As reflected here, current studies involve mostly dyadic 

interactions, such as mating partners, but there is a significant need to integrate a network of social 

interactions that includes, for example, helpers or competitors (from the same or a different species). 

Recently, much emphasis has been placed on understanding how social relationships can affect 

evolutionary trajectories (and ultimately population persistence) both through selection (e.g. Fisher et 

al. 2017) and their effects on evolutionary potential (e.g. Baud et al. 2022). In this Special Issue, two 

contributions evaluate the role of interactions between mating partners in population persistence. 

Focusing on laying date, a textbook example of adaptive phenological response to climate change, 

Murray et al. (2024, this issue) investigate whether the male partner can affect the rate of evolutionary 

response of laying date and hence the maximum sustainable rate of environmental change (cf/sensu 

Chevin et al. 2010). If females are expressing a plastic response to male phenotype, then the evolution 

of male phenotype can have a strong impact on population persistence, facilitating or hindering 

population adaptation depending on the genetic correlations between sexes. Gómez-Llano and 

colleagues (2024, this issue) ask whether male harm could influence adaptation and evolutionary rescue

to a changing environment. Using a meta-analysis approach, the authors demonstrate that male harm in 

general exerts negative effects on female fitness, the extent of which depends on the type of harm (e.g. 

male harassment vs traumatic insemination). The authors develop a theoretical model around these 

findings and further find that population decline can be reduced when sexual conflict influences local 

adaptation, but at the expense of genetic adaptation. The authors describe this trade off as a double- 

edged sword where male harm can buffer demographic costs (e.g. less adapted males exert weaker 

harm on females) of climate change, but in turn delay genetic adaptation and consequently evolutionary

rescue. An interesting twist to this story, however, is that variation in mating systems and the kind of 

harm that males exert on females can mitigate this trade off, suggesting that eco-evolutionary processes

that promote such variation will be critical to facilitate evolutionary rescue in systems where male harm

is prominent. Consequently, both Gómez-Llano et al. (2024, this issue) and Baur et al. (2024, this 

issue) highlight the complex effects of social interactions on evolutionary trajectories.
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Conclusion

In general, predictions are still hampered by a lack of integration among population dynamics, 

individual responses, and evolutionary responses (Johnston et al. 2019). This is highlighted by the 

contribution of Crino et al. (2024, this issue) presenting a conceptual framework centered on 

glucocorticoids, a major stress hormone in vertebrates mediating, among other things, responses to 

thermal stress. Physiological and behavioural responses to glucocorticoids have short term adaptive 

effects but their effects on fitness become more complex under chronic stress. The longer-term effects 

can also include both adaptive and maladaptive transgenerational consequences (Crino et al. 2024, this 

issue). Understanding the interplay between the pleiotropic effects of glucocorticoids as well as 

between the different time scales will provide keys to understand fitness variations and predict 

selection patterns as well as evolutionary trajectories. 

The diversity of evolutionary responses to climate change documented in this Special Issue clearly 

demonstrates that the solution to understanding ‘when’ and ‘how’ we can predict adaptive responses is 

as complex as the scope of the problem. To gain a perspective of the problem and its solutions, the 

concluding paper by Urban et al. (2024, this issue), builds on the views of many contributors to this 

Special Issue to highlight key challenges to advancing research on factors that promote evolutionary 

rescue (e.g. the capacity of systems to adapt to a rapidly changing environment). In particular, we need 

to investigate multiple traits simultaneously to gain insights into the potential changes in trait-space, to 

better understand when plasticity reaches its limits or hinders adaptive evolution, including plasticity 

evolution (Iler et al. 2013). 

Urban et al. (2024, this issue) also highlight the diversity of methods needed to address questions 

related to climate change adaptation. This is also evident in the diversity of methods used in the 

contributions of the Special Issue in general. In the future, experimental evolution, resurrection, and 

transplant experiments will play an enormously important role in unpacking adaptive capacity and the 

molecular bases of adaptive responses, particularly in conjunction with novel genomic tools. Similarly, 

long-term monitoring programmes of individuals or communities will be critical to shed light on how 

they are responding to climate change in general and how selection promotes evolutionary rescue. 

Using data from long-term monitoring programs to test against new data will play a key role in 

forecasting long term evolutionary change.
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Merging the challenges mentioned above with the perspectives of many of the contributors to this 

Special Issue, Urban et al. (2024, this issue) outline a road map for future research by providing key 

actions that will enable predictions of evolutionary change in response to climate change. We hope that

outlining these actions will lead to important research that seeks to fill important gaps that currently 

hamper our ability to inform future predictions. We therefore anticipate these actions will ignite 

investigations of how the effects of climate change unfold from phenotypes to genotypes and the 

selective forces that produce evolutionary rescue in general. 
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Figure 1. Schematic illustration of the key themes that emerged from the 14 contributions in the 

Special Issue: Evolutionary Adaptation to Climate Change, such as predicting Va (e.g. additive 

genetic variance), population persistence, and evolutionary history. Interactions among organisms 

include both within and among species interactions. Several contributions could fit in more than two of 

these themes, but here we highlight only the main aspects. Experiments ranged from short term 

reaction norm experiments to experimental evolution studies. Genetic analyses cover both genomic and

quantitative genetic studies, and long-term monitoring in the wild refer to species occurrence and 

individual monitoring data.
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